WO2017183210A1 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
WO2017183210A1
WO2017183210A1 PCT/JP2016/062858 JP2016062858W WO2017183210A1 WO 2017183210 A1 WO2017183210 A1 WO 2017183210A1 JP 2016062858 W JP2016062858 W JP 2016062858W WO 2017183210 A1 WO2017183210 A1 WO 2017183210A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
axis
prism
laser device
chamber
Prior art date
Application number
PCT/JP2016/062858
Other languages
English (en)
French (fr)
Inventor
浩孝 宮本
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to CN201680083420.8A priority Critical patent/CN108780979B/zh
Priority to PCT/JP2016/062858 priority patent/WO2017183210A1/ja
Priority to JP2018512765A priority patent/JP6737877B2/ja
Publication of WO2017183210A1 publication Critical patent/WO2017183210A1/ja
Priority to US16/123,328 priority patent/US10522966B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • H01S3/08036Single-mode emission using intracavity dispersive, polarising or birefringent elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm

Definitions

  • This disclosure relates to a laser device.
  • the semiconductor exposure apparatus As semiconductor integrated circuits are miniaturized and highly integrated, improvement in resolving power is demanded in semiconductor exposure apparatuses.
  • the semiconductor exposure apparatus is simply referred to as “exposure apparatus”. For this reason, the wavelength of light output from the light source for exposure is being shortened.
  • a gas laser device As a light source for exposure, a gas laser device is used instead of a conventional mercury lamp.
  • a gas laser apparatus for exposure a KrF excimer laser apparatus that outputs ultraviolet light with a wavelength of 248 nm and an ArF excimer laser apparatus that outputs ultraviolet light with a wavelength of 193 nm are used.
  • the spectral line width in natural oscillation of KrF and ArF excimer laser devices is as wide as about 350 to 400 pm, the chromatic aberration of laser light (ultraviolet light) projected on the wafer by the projection lens on the exposure device side is generated, resulting in high resolution. descend. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device until the chromatic aberration becomes negligible.
  • the spectral line width is also called the spectral width.
  • a narrow-band optical system Line Narrow ⁇ ⁇ ⁇ Module
  • the band narrowing element may be an etalon, a grating, or the like.
  • Such a laser device having a narrowed spectral width is called a narrow-band laser device.
  • a laser apparatus includes a chamber in which a pair of discharge electrodes are disposed, and a beam width of a beam output from the chamber at least in a first direction between the pair of discharge electrodes.
  • a first beam expander disposed so as to expand in a first direction substantially parallel to the discharge direction and a narrow-band optical system, wherein the beam width of the beam output from the chamber is at least
  • a grating disposed so as to chromatically disperse a beam whose beam width has been expanded by a panda within a plane substantially parallel to the second direction, and at least one optical element and a grating. At least one of the, but and a narrowing optical system which is arranged to compensate the chromatic dispersion of the first beam expander.
  • a laser apparatus includes a chamber in which a pair of discharge electrodes is disposed, a grating disposed to chromatically disperse a beam output from the chamber, and a chamber and a grating.
  • a first beam expander disposed in the beam path between, wherein the beam width at the incident position on the grating is expanded at least in a first direction and in a first direction substantially perpendicular to the dispersion plane of the grating
  • a second beam expander disposed in a beam path between the chamber and the grating, wherein the beam width at an incident position on the grating is at least a first beam expander.
  • a second beam expander Arranged to expand in a second direction that is substantially parallel to the dispersion surface of the grating, and at least Comprising a second beam expander comprising one optical element, and at least one of the grating and at least one optical element is arranged to compensate the chromatic dispersion of the first beam expander.
  • FIG. 1 schematically illustrates a configuration of a laser apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 schematically illustrates the configuration of the laser apparatus according to the first embodiment of the present disclosure.
  • 3A to 3C show the relationship between the grating and the optical axis of the incident beam when the dispersion surface of the grating 14e is not inclined.
  • 3D to 3F show the relationship between the grating and the optical axis of the incident beam when the dispersion surface of the grating 14e is inclined.
  • FIG. 4 schematically illustrates a configuration of a laser apparatus according to the second embodiment of the present disclosure.
  • FIG. 5 schematically illustrates a configuration of a laser apparatus according to the third embodiment of the present disclosure.
  • 6A to 6C schematically show an angle changing mechanism that can be used in the laser apparatus according to the fourth embodiment of the present disclosure.
  • 7A to 7C schematically illustrate an angle changing mechanism that can be used in the laser apparatus according to the fifth embodiment of the present disclosure.
  • a laser apparatus includes a chamber, a first beam expander, and a narrow-band optical system.
  • a pair of discharge electrodes is disposed inside the chamber.
  • the first beam expander and the narrowband optical system are disposed outside the chamber.
  • the narrow-band optical system includes a second beam expander and a grating.
  • the first beam expander includes a plurality of prisms.
  • the first beam expander expands the beam output from the chamber in a first direction substantially parallel to the discharge direction between the pair of discharge electrodes.
  • the second beam expander includes at least one prism. The second beam expander expands the beam output from the chamber in a second direction substantially perpendicular to the discharge direction between the pair of discharge electrodes.
  • the beams expanded by the first beam expander and the second beam expander enter the grating.
  • the beam incident on the grating may be wavelength-dispersed in a plane substantially parallel to the second direction.
  • At least one of the optical element and the grating constituting the second beam expander is arranged so as to compensate for the chromatic dispersion caused by the first beam expander.
  • the terms “vertical”, “parallel” and the like in the present application do not strictly define numerical values such as an angle and include an error within a practical range.
  • FIGS. 1 and 2 schematically illustrate a configuration of a laser apparatus according to the first embodiment of the present disclosure.
  • the laser apparatus shown in FIGS. 1 and 2 includes a laser chamber 10, a pair of discharge electrodes 11a and 11b, a band narrowing optical system 14, and an output coupling mirror 15.
  • the narrow-band optical system 14 and the output coupling mirror 15 constitute an optical resonator.
  • the laser chamber 10 is disposed in the optical path of the optical resonator.
  • the laser device is a master oscillator that oscillates and outputs seed light incident on an amplifier (not shown).
  • FIG. 1 shows the internal configuration of the laser device viewed from a direction substantially parallel to the discharge direction between the pair of discharge electrodes 11a and 11b.
  • the internal configuration of the laser device is viewed from a direction substantially perpendicular to the discharge direction between the pair of discharge electrodes 11 a and 11 b and substantially perpendicular to the traveling direction of the laser light output from the output coupling mirror 15. It is shown.
  • the traveling direction of the laser light output from the output coupling mirror 15 is the Z direction.
  • the discharge direction between the pair of discharge electrodes 11a and 11b is the V direction or the ⁇ V direction.
  • the direction perpendicular to both of these is the H direction.
  • the ⁇ V direction substantially coincides with the direction of gravity.
  • the laser chamber 10 is a chamber in which a laser gas as a laser medium containing, for example, argon gas or krypton gas as a rare gas, fluorine gas as a halogen gas, neon gas as a buffer gas, or the like is enclosed. Windows 10 a and 10 b are provided at both ends of the laser chamber 10.
  • the laser chamber 10 is supported by a holder 20.
  • the pair of discharge electrodes 11a and 11b are arranged in the laser chamber 10 as electrodes for exciting the laser medium by discharge.
  • a pulsed high voltage is applied to the pair of discharge electrodes 11a and 11b from a pulse power module (not shown).
  • the windows 10a and 10b are arranged such that the light incident surfaces and the HZ planes of these windows are substantially parallel, and the light incident angle is substantially a Brewster angle. .
  • the narrowing optical system 14 includes at least one prism, a grating 14e, holders 16a to 16e, and a housing 12.
  • the at least one prism includes four prisms 14a to 14d that expand the beam in the H direction substantially perpendicular to the discharge direction.
  • the prisms 14a to 14d may constitute the second beam expander in the present disclosure.
  • the H direction may correspond to the second direction in the present disclosure.
  • Each of the four prisms 14a to 14d is made of calcium fluoride crystals.
  • Each of the four prisms 14a-14d has two surfaces 18 and 19 through which the beam passes.
  • the prisms are arranged so that the beam passing through the surface 18 is non-perpendicular to the surface 18 and the beam passing through the surface 19 is substantially perpendicular to the surface 19.
  • the beam is refracted and chromatic dispersion is performed in a plane perpendicular to the V-axis.
  • the refraction of the beam is suppressed.
  • the surface 18 is coated with a film that suppresses reflection of at least P-polarized light included in the laser light.
  • the surface 19 is coated with a film that suppresses reflection of laser light.
  • the grating 14e is an shale grating in which a surface includes a highly reflective material and a large number of grooves are formed at predetermined intervals.
  • the housing 12 accommodates the prisms 14a to 14d, the grating 14e, and the holders 16a to 16e.
  • the prism 14a is supported by the holder 16a
  • the prism 14b is supported by the holder 16b
  • the prism 14c is supported by the holder 16c
  • the prism 14d is supported by the holder 16d
  • the grating 14e is supported by the holder 16e. Is done.
  • the holder 16c that supports the prism 14c can be rotated about an axis parallel to the V axis by the rotary stage 16f.
  • the housing 12 is connected to the laser chamber 10 by an optical path tube 21a.
  • the inside of the optical path tube 21a and the inside of the housing 12 are communicated with each other.
  • An inert gas introduction tube 12c is connected to the housing 12 at a position away from the optical path tube 21a.
  • An inert gas discharge pipe 21 c is connected to the optical path pipe 21 a at a position away from the housing 12. The inert gas is purged so as to be introduced into the housing 12 from the inert gas introduction pipe 12c and discharged from the inert gas discharge pipe 21c of the optical path pipe 21a.
  • the output coupling mirror 15 is accommodated in the housing 13.
  • the output coupling mirror 15 is supported by a holder 17 inside the housing 13.
  • the surface of the output coupling mirror 15 on the chamber 10 side is coated with a partial reflection film, and the other surface is coated with a reflection suppression film.
  • the housing 13 is connected to the laser chamber 10 by an optical path tube 21b.
  • the inside of the optical path tube 21b and the inside of the housing 13 are communicated with each other.
  • An inert gas introduction tube and an inert gas discharge tube (not shown) are connected to the inside of the optical path tube 21b and the housing 13, and the inert gas is purged inside these.
  • the laser apparatus includes a first beam expander that expands the beam in the V direction substantially parallel to the discharge direction.
  • the first beam expander includes a plurality of prisms 43 and 44.
  • the prisms 43 and 44 are disposed in the optical path between the window 10a and the grating 14e.
  • the V direction may correspond to the first direction in the present disclosure.
  • the prisms 43 and 44 are arranged inside the optical path tube 21a.
  • the prisms 43 and 44 are disposed in the optical path between the window 10a and the prism 14a closest to the window 10a. That is, all of the prisms 14a to 14d are disposed between the prisms 43 and 44 and the grating 14e.
  • the small prisms 43 and 44 can be employed.
  • Each of the plurality of prisms 43 and 44 is composed of calcium fluoride crystals.
  • Each of the plurality of prisms 43 and 44 has two surfaces 18 and 19 through which the beam passes. These prisms are arranged so that the beam passing through the surface 18 is non-perpendicular to the surface 18 and the beam passing through the surface 19 is substantially perpendicular to the surface 19.
  • the beam is refracted and wavelength dispersion is performed in a plane parallel to the VZ plane. In the surface 19, the refraction of the beam is suppressed.
  • the surfaces 18 of the plurality of prisms 43 and 44 are coated with a film that reduces reflection of at least S polarized light in the light included in the laser light.
  • the surfaces 19 of the plurality of prisms 43 and 44 are coated with a film that suppresses reflection of laser light. Thereby, the plurality of prisms 43 and 44 can suppress the reflection of the polarization component in the H direction and transmit the polarization component in the H direction with high transmittance.
  • the magnification ratio Mv of the beam width in the V direction by the prisms 43 and 44 is preferably 1.1 times or more and 4 times or less.
  • the beam width expansion ratio Mv in the V direction by the prisms 43 and 44 is preferably smaller than the beam width expansion ratio Mh in the H direction by the four prisms 14a to 14d.
  • the prisms 43 and 44 do not have to expand the beam width in the H direction. In that case, the functional sharing with the prisms 14a to 14d for expanding the beam width in the H direction can be clarified, and the design of the optical system can be facilitated.
  • the prisms 43 and 44 shift the second beam B2 at the grating side position in the V direction with respect to the first beam B1 at the chamber side position.
  • the first beam B1 and the second beam B2 are parallel.
  • the allowable range of parallelism of both beams is preferably within ⁇ 1 °, and more preferably within ⁇ 0.5 °.
  • the light generated in the laser chamber 10 is emitted to the outside of the laser chamber 10 through the windows 10a and 10b.
  • the light emitted from the window 10 a of the laser chamber 10 has its beam width in the V direction expanded by the prisms 43 and 44.
  • the light emitted from the prisms 43 and 44 has its beam width in the H direction expanded by the prisms 14a to 14d and is incident on the grating 14e.
  • the light incident on the grating 14e from the prisms 14a to 14d is reflected by the plurality of grooves of the grating 14e and diffracted in the direction corresponding to the wavelength of the light.
  • the grating 14e is arranged in a Littrow arrangement so that the incident angle of light incident on the grating 14e from the prisms 14a to 14d matches the diffraction angle of diffracted light having a desired wavelength. As a result, light in the vicinity of the desired wavelength is returned to the laser chamber 10 via the prisms 14a to 14d and the prisms 43 and 44.
  • the prisms 14a to 14d reduce the beam width in the H direction of the diffracted light from the grating 14e.
  • the prisms 43 and 44 compress the beam width in the V direction of the beam emitted from the prism 14a. Light emitted from the prisms 43 and 44 is returned to the discharge region of the laser chamber 10 through the window 10a.
  • the output coupling mirror 15 transmits and outputs part of the light output from the window 10 b of the laser chamber 10, reflects the other part and returns it to the laser chamber 10.
  • the light emitted from the laser chamber 10 reciprocates between the narrow-band optical system 14 and the output coupling mirror 15, and is amplified and passes through the discharge space between the discharge electrodes 11a and 11b. Oscillates. This light is narrowed every time it is folded by the narrow band optical system 14. Further, the polarization component in the H direction is selected by the arrangement of the windows 10a and 10b, the coating of the prisms 43 and 44, and the coating of the prisms 14a to 14d.
  • the amplified light is output from the output coupling mirror 15 as laser light. This laser light has a wavelength in the vacuum ultraviolet region, and the wavelength is about 193.4 nm.
  • the first embodiment by enlarging the beam width in the V direction by the prisms 43 and 44, the energy density of the light incident on the grating 14e is reduced, so that an increase in the surface temperature of the grating 14e is suppressed.
  • the refractive index distribution of the inert gas in the vicinity of the surface of the grating 14e is reduced as compared with the case where the beam width is not expanded in the V direction. Therefore, the distortion of the wavefront of the light diffracted by the grating 14e is suppressed, and the spectral line width of the laser light output from the laser device is suppressed from widening.
  • the prisms 43 and 44 not only expand the beam in the V direction but also have a function of chromatic dispersion in a plane parallel to the VZ plane. For this reason, the optical axes of the beams incident on the grating 14e from the prisms 43 and 44 are slightly different depending on whether the oscillation wavelength is ⁇ 1 or ⁇ 2. 2 represents the optical axis when the oscillation wavelength is ⁇ 1, and the two-dot chain line in FIG. 2 represents the optical axis when the oscillation wavelength is ⁇ 2.
  • the pointing in the V direction when the laser beam reciprocates once in the optical resonator is shifted by 0.1 mrad.
  • the pointing in the V direction when the laser beam reciprocates six times in the optical resonator is shifted by a maximum of 0.6 mrad.
  • these optical axis shifts are exaggerated for the sake of explanation.
  • the pointing of the laser beam output from the optical resonator may shift in the V direction.
  • the beam profile or beam divergence or beam pointing of the laser beam may be deteriorated.
  • the dispersion surface of the grating 14e is slightly inclined with respect to the surface orthogonal to the dispersion surfaces of the prisms 43 and 44.
  • the beam incident on the grating 14e is slightly wavelength-dispersed also in the V direction.
  • the chromatic dispersion in the V direction by the prisms 43 and 44 is compensated.
  • the dispersion surfaces of the prisms 43 and 44 are surfaces that are substantially perpendicular to both the surface 18 and the surface 19.
  • the dispersion surface of the grating 14e is a surface perpendicular to the direction of each groove formed in the grating 14e.
  • the first axis substantially perpendicular to the diffraction surface of the grating 14e is taken as the S axis.
  • a second axis that is substantially perpendicular to the S-axis and substantially parallel to the dispersion surface of the grating 14e is defined as a P-axis.
  • An axis substantially perpendicular to both the S axis and the P axis is defined as a Q axis.
  • the diffraction surface of the grating 14e is a surface on which a large number of grooves on which the beam output from the chamber 10 is incident are formed.
  • the S axis, the P axis, and the Q axis are axes that change according to changes in the position and posture of the grating 14e.
  • an axis substantially parallel to the beam axis at the incident position on the grating 14e is defined as the Z1 axis.
  • An axis substantially perpendicular to both the Z1 axis and the V axis is defined as an H1 axis.
  • the dispersion surface of the grating 14e is inclined by inclining the grating 14e around both the P-axis and the S-axis.
  • the chromatic dispersion compensation action by tilting the grating 14e will be described with reference to FIGS. 3A to 3F.
  • 3A to 3C show the relationship between the grating and the optical axis of the incident beam when the dispersion surface of the grating 14e is not inclined.
  • 3A is a view of the grating 14e along the Z1 axis
  • FIG. 3B is a view of the grating 14e along the H1 axis
  • FIG. 3C is a view of the grating 14e along the Q axis.
  • the deviation between the optical axis when the oscillation wavelength is ⁇ 1 and the optical axis when the oscillation wavelength is ⁇ 2 is exaggerated.
  • These optical axes are shifted in the V direction or the ⁇ V direction due to the wavelength dispersion by the prisms 43 and 44.
  • the dispersion surface sp of the grating 14e is not inclined with respect to the surface hz orthogonal to the dispersion surfaces of the prisms 43 and 44, the Q axis and the V axis are substantially parallel.
  • the surface hz perpendicular to the dispersion surfaces of the prisms 43 and 44 is a surface parallel to the HZ surface shown in FIGS.
  • the dispersion surface sp of the grating 14e is a surface parallel to the SP surface in FIGS. 3A to 3C.
  • the optical axis when the oscillation wavelength is ⁇ 1 and the optical axis when the oscillation wavelength is ⁇ 2 are:
  • the light enters the diffraction surface of the grating 14e at substantially the same incident angle. Therefore, the optical axis when the oscillation wavelength is ⁇ 1 and the optical axis when the oscillation wavelength is ⁇ 2 are diffracted by the grating 14e without compensating for the deviation.
  • 3D to 3F show the relationship between the grating and the optical axis of the incident beam when the dispersion surface of the grating 14e is inclined.
  • 3D is a view of the grating 14e along the Z1 axis
  • FIG. 3E is a view of the grating 14e along the H1 axis
  • FIG. 3F is a view of the grating 14e along the Q axis.
  • the deviation between the optical axis when the oscillation wavelength is ⁇ 1 and the optical axis when the oscillation wavelength is ⁇ 2 is exaggerated.
  • These optical axes are shifted in the V direction or the ⁇ V direction due to the wavelength dispersion by the prisms 43 and 44.
  • the Q axis and the V axis are not parallel.
  • the optical axis when the oscillation wavelength is ⁇ 1 and the optical axis when the oscillation wavelength is ⁇ 2 are mutually
  • the light enters the diffraction surface of the grating 14e at different incident angles. Therefore, the incident angle to the grating 14e when the oscillation wavelength is ⁇ 1 and the diffraction angle of the light with the wavelength ⁇ 1 by the grating 14e are matched, and the incident angle to the grating 14e when the oscillation wavelength is ⁇ 2.
  • each of the prisms 14a to 14d is disposed so that the respective dispersion surfaces of the prisms 14a to 14d substantially coincide with each other.
  • the dispersion surface of the grating 14e is inclined with respect to the dispersion surfaces of the prisms 14a to 14d.
  • the dispersion surface is a surface substantially perpendicular to both the surface 18 and the surface 19.
  • any of the dispersion surfaces of the prisms 14a to 14d and the dispersion surface of the grating 14e may be inclined with respect to a surface orthogonal to the dispersion surfaces of the prisms 43 and 44.
  • the grating 14e when the magnification ratio of the beam width in the V direction by the prisms 43 and 44 is double, the grating 14e is 0.14 ° counterclockwise around the S axis and 0 counterclockwise around the P axis. It is desirable to place it at an angle of 35 °.
  • the installation surface for placing the grating 14e may be processed so that the grating 14e is arranged with such an inclination.
  • the bottom surface of the grating substrate constituting the grating 14e may be processed so that the grating 14e is arranged with such an inclination.
  • the dispersion surface of the grating 14e may be tilted by inserting a shim into the bottom surface of the grating 14e or the holder 16e.
  • FIG. 4 schematically shows a configuration of a laser device according to the second embodiment of the present disclosure. Show. FIG. 4 shows the internal configuration of the laser device viewed from a direction substantially parallel to the discharge direction between the pair of discharge electrodes 11a and 11b.
  • the dispersion surface of the grating 14e instead of tilting the dispersion surface of the grating 14e with respect to the surface orthogonal to the dispersion surfaces of the prisms 43 and 44, the dispersion surface of at least one prism included in the second beam expander is tilted. .
  • chromatic dispersion due to the first beam expander can be compensated.
  • the third axis that is substantially perpendicular to the surface 18 on which the beam is refracted is taken as the S axis.
  • a fourth axis that is substantially perpendicular to the S-axis and substantially parallel to the dispersion surface of the prism 14c is defined as a P-axis.
  • An axis substantially perpendicular to both the S axis and the P axis is defined as a Q axis.
  • the surface 18 of the prism 14 c is a surface on which the beam output from the chamber 10 is incident.
  • the S axis, the P axis, and the Q axis are axes that change according to changes in the position and orientation of the prism 14c.
  • the S axis, the P axis, and the Q axis are defined similarly to the prism 14c.
  • the prism 14c is rotated ⁇ 0.23 ° counterclockwise around the S axis and counterclockwise around the P axis. It is desirable to place it at an angle of 0.057 °.
  • the prism 14d instead of inclining the prism 14c, it is desirable that the prism 14d be inclined by ⁇ 0.074 ° counterclockwise around the S axis and 0.20 ° counterclockwise around the P axis.
  • the installation surface for mounting the prism 14c or 14d may be processed so that the prism 14c or 14d is arranged with such an inclination.
  • the bottom surface of the prism substrate constituting the prism 14c or 14d may be processed so that the prism 14c or 14d is arranged with such an inclination. Further, the dispersion surface of the prism 14c or 14d may be tilted by inserting a shim into the bottom surface of the prism 14c or 14d or the holder 16c or 16d.
  • the beam incident on the prism having the tilted dispersion surface is slightly wavelength-dispersed in the V direction. Thereby, wavelength dispersion in the V direction by the prisms 43 and 44 can be compensated.
  • the dispersion surfaces of the prisms 14a to 14d are not inclined.
  • the dispersion surfaces of the prisms other than the one prism to be inclined and the dispersion surface of the grating 14e coincide with each other.
  • the dispersion surface of one prism to be inclined is inclined with respect to the dispersion surface of the remaining prisms and the dispersion surface of the grating 14e.
  • the dispersion surfaces of a plurality of prisms among the prisms 14a to 14d may be inclined with respect to a surface orthogonal to the dispersion surfaces of the prisms 43 and 44.
  • the prism whose dispersion surface is tilted to compensate for chromatic dispersion is the prism 14c that can be rotated around an axis parallel to the V axis to adjust the oscillation wavelength, or the prism 14d that is closer to the grating 14e than the prism 14c. It is desirable to be. As a result, even if the prism 14c rotates about an axis parallel to the V axis in order to vary the oscillation wavelength of the laser, the wavelength dispersion of the prisms 43 and 44 can be compensated.
  • the dispersion surface of any of the prisms 14b, 14c, and 14d may be inclined to compensate for chromatic dispersion. .
  • it is the same as that of 1st Embodiment.
  • FIG. 5 schematically illustrates a configuration of a laser apparatus according to the third embodiment of the present disclosure.
  • FIG. 5 shows the internal configuration of the laser device viewed from a direction substantially parallel to the discharge direction between the pair of discharge electrodes 11a and 11b.
  • the prisms 43 and 44 shift the second beam B2 at the grating side position in the ⁇ V direction with respect to the first beam B1 at the chamber side position. That is, the prisms 43 and 44 are vertically inverted with respect to the arrangement in the first embodiment.
  • the direction in which the grating or prism is tilted is opposite to that in the first or second embodiment. About another point, it is the same as that of 1st or 2nd embodiment.
  • the grating 14e is rotated ⁇ 0.14 ° counterclockwise around the S axis and counterclockwise around the P axis. It is desirable to place it at an angle of -0.35 °.
  • the prism 14c is rotated 0.23 ° counterclockwise around the S axis and counterclockwise around the P axis. It is desirable to place it at an angle of -0.057 °.
  • the prism 14d be inclined by 0.074 ° counterclockwise around the S axis and ⁇ 0.20 ° counterclockwise around the P axis.
  • the absolute value of the inclination angle around the S-axis of the grating 14e is preferably 0.084 ° or more and 0.29 ° or less.
  • the absolute value of the inclination angle around the P-axis of the grating 14e is preferably 0.12 ° or more and 0.64 ° or less.
  • the absolute value of the inclination angle around the S axis of the prism 14c is preferably 0.14 ° or more and 0.40 ° or less.
  • the absolute value of the inclination angle around the P-axis of the prism 14c is preferably 0.034 ° or more and 0.34 ° or less.
  • the absolute value of the inclination angle around the S axis of the prism 14d is preferably 0.046 ° or more and 0.16 ° or less.
  • the absolute value of the inclination angle around the P-axis of the prism 14d is preferably 0.12 ° or more and 0.36 ° or less.
  • FIGS. 6A to 6C schematically show an angle changing mechanism that can be used in the laser apparatus according to the fourth embodiment of the present disclosure.
  • FIG. 6A shows the grating 14e and the angle changing mechanism as seen from the Q-axis direction.
  • FIG. 6B shows the grating 14e and the angle changing mechanism as seen from the P-axis direction.
  • FIG. 6C shows the grating 14e and the angle changing mechanism as seen from the S-axis direction.
  • the inclination angle of the grating 14e can be adjusted.
  • the angle changing mechanism 30 shown in FIGS. 6A to 6C includes a first plate 31, a second plate 32, a protrusion 33, a first micrometer 34, and a second micrometer 35.
  • the first plate 31 is fixed to the holder 16e described with reference to FIG.
  • the protrusion 33, the first micrometer 34, and the second micrometer 35 are fixed to the first plate 31.
  • the first micrometer 34 is located at a position shifted in the P direction as viewed from the protrusion 33
  • the second micrometer 35 is positioned at a position shifted in the ⁇ S direction as viewed from the protrusion 33.
  • the second plate 32 is supported by the protrusion 33, the first micrometer 34, and the second micrometer 35.
  • the grating 14 e is fixed to the upper surface of the second plate 32.
  • a mount portion 36 having a conical depression is fixed to the lower surface of the second plate 32.
  • the mount portion 36 is located directly below the diffraction surface of the grating 14e.
  • the mount part 36 is positioned at one point by receiving the protrusion 33 in the conical depression of the mount part 36.
  • a mount portion 37 having a groove having a V-shaped cross section is fixed to the lower surface of the second plate 32.
  • the mount portion 37 is located immediately below the diffraction surface of the grating 14e and away from the mount portion 36.
  • the groove having a V-shaped cross section of the mount portion 37 is formed in a direction parallel to the diffraction surface of the grating 14e.
  • the grating 14e is supported and positioned at three points.
  • a spring 38 having a stress in the direction of narrowing the distance between the first plate 31 and the second plate 32 is disposed.
  • a spring 39 having an elastic force in the direction of narrowing the distance between the first plate 31 and the second plate 32 is disposed.
  • the first micrometer 34 can adjust the height of the head portion 34a by a control device (not shown). Thereby, the inclination of the grating 14e can be adjusted around an axis substantially parallel to the S axis.
  • the second micrometer 35 can adjust the height of the head portion 35a by a control device (not shown). Thereby, the inclination of the grating 14e can be adjusted around an axis substantially parallel to the P axis.
  • compensation for chromatic dispersion is improved by adjusting the tilt angle of the grating 14e even when the chromatic dispersion characteristics change due to thermal deformation of the optical element in the laser device. be able to.
  • the angle of the prism 14c or 14d may be adjusted by a similar mechanism.
  • FIGS. 7A to 7C schematically show an angle change mechanism that can be used in the laser apparatus according to the fifth embodiment of the present disclosure.
  • FIG. 7A shows the prism 14d and the angle changing mechanism as seen from the Q-axis direction.
  • FIG. 7B shows the prism 14d and the angle changing mechanism as seen from the negative direction of the P-axis.
  • FIG. 7C shows the prism 14d and the angle changing mechanism as seen from the S-axis direction.
  • a part of the angle changing mechanism is shown in cross section.
  • the inclination angle of the prism 14d can be adjusted.
  • the angle changing mechanism 40 shown in FIGS. 7A to 7C includes a first hinge 41a, a second hinge 41b, and a plate 46.
  • the first hinge 41a is composed of a single plate folded in half.
  • the first hinge 41a includes a movable portion 42a on one side and a fixed portion 43a on the other side when viewed from a thin bent portion.
  • the thin bent portion of the first hinge 41a is disposed substantially parallel to the S axis.
  • the second hinge 41b is composed of another plate folded in half.
  • the second hinge 41b includes a movable part 42b on one side and a fixed part 43b on the other side when viewed from the thin bent part.
  • the thin bent portion of the second hinge 41b is disposed substantially parallel to the P axis.
  • the fixing portion 43b of the second hinge 41b is fixed to the holder 16d described with reference to FIG.
  • the fixed part 43a of the first hinge 41a is fixed to the movable part 42b of the second hinge 41b.
  • the plate 46 is fixed to the movable part 42a of the first hinge 41a.
  • a prism 14 d is fixed to the plate 46.
  • 1st bolt 44a penetrates the through-hole formed in the movable part 42a of the 1st hinge 41a, and is screwed in the fixing
  • the head of the first bolt 44a does not pass through the through hole formed in the movable portion 42a, and restricts the movable portion 42a from being separated from the fixed portion 43a. That is, the opening of the first hinge 41a is restricted by the first bolt 44a.
  • the second bolt 45a is screwed into the movable part 42a of the first hinge 41a, and the tip of the second bolt 45a reaches the fixed part 43a.
  • the second bolt 45a restricts the movable portion 42a from approaching the fixed portion 43a. That is, the closing of the first hinge 41a is restricted by the second bolt 45a.
  • the opening angle of the first hinge 41a is adjusted, and the inclination of the prism 14d can be adjusted around an axis substantially parallel to the S axis.
  • the second hinge 41b has the same configuration as the first hinge 41a.
  • the constituent elements corresponding to the constituent elements of the first hinge 41a are illustrated by changing the end of the reference numerals to “b”, and detailed description thereof is omitted.
  • the second hinge 41b can adjust the inclination of the prism 14d around an axis substantially parallel to the P axis.
  • compensation for chromatic dispersion is improved by adjusting the tilt angle of the prism 14d even when the chromatic dispersion characteristic is changed due to thermal deformation of an optical element in the laser device. be able to.
  • the angle of another prism may be adjusted or the angle of the grating may be adjusted by a similar mechanism.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Lasers (AREA)

Abstract

レーザ装置は、一対の放電電極が内部に配置されたチャンバと、チャンバから出力されたビームのビーム幅を、少なくとも第1の方向であって一対の放電電極の間における放電方向と略平行な第1の方向に拡大するように配置された、第1のビームエキスパンダと、狭帯域化光学系であって、チャンバから出力されたビームのビーム幅を、少なくとも第2の方向であって第1の方向と略垂直な第2の方向に拡大するように配置された、少なくとも1つの光学素子を含む第2のビームエキスパンダと、第1及び第2のビームエキスパンダによってビーム幅が拡大されたビームを、第2の方向と略平行な面内に波長分散させるように配置された、グレーティングと、を有し、少なくとも1つの光学素子とグレーティングとの内の少なくとも1つが、第1のビームエキスパンダによる波長分散を補償するように配置されている狭帯域化光学系と、を備える。

Description

レーザ装置
 本開示は、レーザ装置に関する。
 半導体集積回路の微細化、高集積化につれて、半導体露光装置においては解像力の向上が要請されている。半導体露光装置を以下、単に「露光装置」という。このため露光用光源から出力される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を出力するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を出力するArFエキシマレーザ装置が用いられている。
 現在の露光技術としては、露光装置側の投影レンズとウエハ間の間隙を液体で満たして、当該間隙の屈折率を変えることによって、露光用光源の見かけの波長を短波長化する液浸露光が実用化されている。ArFエキシマレーザ装置を露光用光源として用いて液浸露光が行われた場合は、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光という。ArF液浸露光はArF液浸リソグラフィーとも呼ばれる。
 KrF、ArFエキシマレーザ装置の自然発振におけるスペクトル線幅は約350~400pmと広いため、露光装置側の投影レンズによってウエハ上に縮小投影されるレーザ光(紫外線光)の色収差が発生して解像力が低下する。そこで色収差が無視できる程度となるまでガスレーザ装置から出力されるレーザ光のスペクトル線幅を狭帯域化する必要がある。スペクトル線幅はスペクトル幅とも呼ばれる。このためガスレーザ装置のレーザ共振器内には狭帯域化素子を有する狭帯域化光学系(Line Narrow Module)が設けられ、この狭帯域化光学系によりスペクトル幅の狭帯域化が実現されている。なお、狭帯域化素子はエタロンやグレーティング等であってもよい。このようにスペクトル幅が狭帯域化されたレーザ装置を狭帯域化レーザ装置という。
米国特許出願公開第2001/0014110号明細書 特許第4358052号公報 米国特許出願公開第2015/0325980号明細書 特許第3590524号公報
概要
 本開示の1つの観点に係るレーザ装置は、一対の放電電極が内部に配置されたチャンバと、チャンバから出力されたビームのビーム幅を、少なくとも第1の方向であって一対の放電電極の間における放電方向と略平行な第1の方向に拡大するように配置された、第1のビームエキスパンダと、狭帯域化光学系であって、チャンバから出力されたビームのビーム幅を、少なくとも第2の方向であって第1の方向と略垂直な第2の方向に拡大するように配置された、少なくとも1つの光学素子を含む第2のビームエキスパンダと、第1及び第2のビームエキスパンダによってビーム幅が拡大されたビームを、第2の方向と略平行な面内に波長分散させるように配置された、グレーティングと、を有し、少なくとも1つの光学素子とグレーティングとの内の少なくとも1つが、第1のビームエキスパンダによる波長分散を補償するように配置されている狭帯域化光学系と、を備える。
 本開示の他の1つの観点に係るレーザ装置は、一対の放電電極が内部に配置されたチャンバと、チャンバから出力されたビームを波長分散させるように配置されたグレーティングと、チャンバとグレーティングとの間のビーム経路に配置された第1のビームエキスパンダであって、グレーティングへの入射位置におけるビーム幅を、少なくとも第1の方向であってグレーティングの分散面と略垂直な第1の方向に拡大するように配置された、第1のビームエキスパンダと、チャンバとグレーティングとの間のビーム経路に配置された第2のビームエキスパンダであって、グレーティングへの入射位置におけるビーム幅を、少なくとも第2の方向であってグレーティングの分散面と略平行な第2の方向に拡大するように配置された、少なくとも1つの光学素子を含む第2のビームエキスパンダと、を備え、グレーティングと少なくとも1つの光学素子との内の少なくとも1つが、第1のビームエキスパンダによる波長分散を補償するように配置される。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、本開示の第1の実施形態に係るレーザ装置の構成を模式的に示す。 図2は、本開示の第1の実施形態に係るレーザ装置の構成を模式的に示す。 図3A~図3Cは、グレーティング14eの分散面を傾斜させていない場合のグレーティングと入射ビームの光軸との関係を示す。図3D~図3Fは、グレーティング14eの分散面を傾斜させた場合のグレーティングと入射ビームの光軸との関係を示す。 図4は、本開示の第2の実施形態に係るレーザ装置の構成を模式的に示す。 図5は、本開示の第3の実施形態に係るレーザ装置の構成を模式的に示す。 図6A~図6Cは、本開示の第4の実施形態に係るレーザ装置において使用可能な角度変更機構を模式的に示す。 図7A~図7Cは、本開示の第5の実施形態に係るレーザ装置において使用可能な角度変更機構を模式的に示す。
実施形態
<内容>
1.概要
2.グレーティングを傾斜させて第1のビームエキスパンダによる波長分散を補償するレーザ装置
 2.1 構成
  2.1.1 レーザチャンバ
  2.1.2 狭帯域化光学系
  2.1.3 出力結合ミラー
  2.1.4 第1のビームエキスパンダ
 2.2 動作
 2.3 波長分散の補償作用
3.第2のビームエキスパンダに含まれるプリズムを傾斜させて第1のビームエキスパンダによる波長分散を補償するレーザ装置
4.第1のビームエキスパンダが上下反転している場合
5.グレーティングの角度変更機構
6.プリズムの角度変更機構
7.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
 本開示の1つの観点において、レーザ装置は、チャンバと、第1のビームエキスパンダと、狭帯域化光学系と、を備える。チャンバの内部には、一対の放電電極が配置される。第1のビームエキスパンダ及び狭帯域化光学系は、チャンバの外に配置される。狭帯域化光学系は、第2のビームエキスパンダと、グレーティングと、を備える。
 第1のビームエキスパンダは、複数のプリズムを含む。第1のビームエキスパンダは、チャンバから出力されたビームを、一対の放電電極の間における放電方向と略平行な第1の方向に拡大させる。
 第2のビームエキスパンダは、少なくとも1つのプリズムを含む。第2のビームエキスパンダは、チャンバから出力されたビームを、一対の放電電極の間における放電方向と略垂直な第2の方向に拡大させる。
 第1のビームエキスパンダ及び第2のビームエキスパンダによって拡大されたビームは、グレーティングに入射する。グレーティングに入射したビームは、第2の方向と略平行な面内に波長分散してもよい。
 さらに、第2のビームエキスパンダを構成する光学素子及びグレーティングの内の少なくとも1つが、第1のビームエキスパンダによる波長分散を補償するように配置される。
 なお、本願における「垂直」、「平行」等の語は、角度等の数値を厳密に規定するものではなく、実用的範囲内での誤差を含む趣旨である。
2.グレーティングを傾斜させて第1のビームエキスパンダによる波長分散を補償するレーザ装置
 2.1 構成
 図1及び図2は、本開示の第1の実施形態に係るレーザ装置の構成を模式的に示す。図1及び図2に示されるレーザ装置は、レーザチャンバ10と、一対の放電電極11a及び11bと、狭帯域化光学系14と、出力結合ミラー15と、を含む。狭帯域化光学系14と出力結合ミラー15とが、光共振器を構成する。レーザチャンバ10は、光共振器の光路に配置される。レーザ装置は、図示しない増幅器に入射させるシード光をレーザ発振して出力するマスターオシレータである。
 図1においては、一対の放電電極11a及び11bの間の放電方向に略平行な方向からみたレーザ装置の内部構成が示されている。図2においては、一対の放電電極11a及び11bの間の放電方向に略垂直で、且つ、出力結合ミラー15から出力されるレーザ光の進行方向に略垂直な方向からみたレーザ装置の内部構成が示されている。出力結合ミラー15から出力されるレーザ光の進行方向は、Z方向である。一対の放電電極11a及び11bの間の放電方向は、V方向又は-V方向である。これらの両方に垂直な方向は、H方向である。-V方向は、重力の方向とほぼ一致している。
 2.1.1 レーザチャンバ
 レーザチャンバ10は、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含むレーザ媒質としてのレーザガスが封入されるチャンバである。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられる。レーザチャンバ10は、ホルダ20によって支持されている。
 一対の放電電極11a及び11bは、レーザ媒質を放電により励起するための電極として、レーザチャンバ10内に配置される。一対の放電電極11a及び11bには、図示しないパルスパワーモジュールからパルス状の高電圧が印加される。
 図1に示されるように、ウインドウ10a及び10bは、これらのウインドウに対する光の入射面とHZ面とが略平行となり、かつ、この光の入射角度が略ブリュースター角となるように配置される。
 2.1.2 狭帯域化光学系
 狭帯域化光学系14は、少なくとも1つのプリズムと、グレーティング14eと、ホルダ16a~16eと、筐体12とを含む。少なくとも1つのプリズムは、放電方向と略垂直なH方向にビームを拡大させる4つのプリズム14a~14dを含む。プリズム14a~14dは、本開示における第2のビームエキスパンダを構成し得る。H方向は、本開示における第2の方向に相当し得る。
 4つのプリズム14a~14dの各々は、フッ化カルシウムの結晶で構成される。4つのプリズム14a~14dの各々は、ビームが通過する2つの面18及び19を有する。面18を通過するビームが面18に対して非垂直となり、面19を通過するビームが面19に対して略垂直となるように、これらのプリズムが配置される。面18においては、ビームが屈折し、V軸に垂直な面内に波長分散が行われる。面19においては、ビームの屈折が抑制される。面18には、レーザ光に含まれる光の内の少なくともP偏光の反射を抑制する膜がコーティングされている。面19には、レーザ光の反射を抑制する膜がコーティングされている。グレーティング14eは、表面に高反射率の材料を含み、多数の溝が所定間隔で形成されたエシェールグレーティングである。
 筐体12は、プリズム14a~14d、グレーティング14e及びホルダ16a~16eを収容する。筐体12の内部において、プリズム14aはホルダ16aに支持され、プリズム14bはホルダ16bに支持され、プリズム14cはホルダ16cに支持され、プリズム14dはホルダ16dに支持され、グレーティング14eはホルダ16eに支持される。発振波長を調整するため、プリズム14cを支持するホルダ16cは、回転ステージ16fによってV軸に平行な軸を中心として回転可能である。
 筐体12は、光路管21aによってレーザチャンバ10に接続される。光路管21aの内部と筐体12の内部とは連通するようになっている。筐体12には、光路管21aから離れた位置に不活性ガス導入管12cが接続されている。光路管21aには、筐体12から離れた位置に不活性ガス排出管21cが接続されている。不活性ガスは、不活性ガス導入管12cから筐体12内に導入され、光路管21aの不活性ガス排出管21cから排出されるようにパージされている。
 2.1.3 出力結合ミラー
 出力結合ミラー15は、筐体13に収容されている。出力結合ミラー15は、筐体13の内部で、ホルダ17によって支持されている。出力結合ミラー15のチャンバ10側の表面には、部分反射膜がコーティングされ、もう一つの面には反射抑制膜がコーティングされている。
 筐体13は、光路管21bによってレーザチャンバ10に接続されている。光路管21bの内部と筐体13の内部とは連通するようになっている。光路管21bの内部及び筐体13には図示しない不活性ガス導入管と不活性ガス排出管が接続され、これらの内部には、不活性ガスがパージされる。
 2.1.4 第1のビームエキスパンダ
 第1の実施形態に係るレーザ装置は、放電方向と略平行なV方向にビームを拡大させる第1のビームエキスパンダを備える。第1のビームエキスパンダは、複数のプリズム43及び44を含む。プリズム43及び44は、ウインドウ10aとグレーティング14eとの間の光路に配置される。V方向は、本開示における第1の方向に相当し得る。
 プリズム43及び44は、光路管21aの内部に配置される。プリズム43及び44は、ウインドウ10aとウインドウ10aに最も近いプリズム14aとの間の光路に配置される。すなわち、プリズム43及び44とグレーティング14eとの間に、プリズム14a~14dのすべてが配置される。ウインドウ10aから出力された光のビーム幅がプリズム14aによって拡大される前の、ビーム幅が狭い位置にプリズム43及び44を配置することにより、小型のプリズム43及び44を採用することができる。
 複数のプリズム43及び44の各々は、フッ化カルシウムの結晶で構成される。複数のプリズム43及び44の各々は、ビームが通過する2つの面18及び19を有する。面18を通過するビームが面18に対して非垂直となり、面19を通過するビームが面19に対して略垂直となるように、これらのプリズムが配置される。面18においては、ビームが屈折し、VZ面に平行な面内に波長分散が行われる。面19においては、ビームの屈折が抑制される。複数のプリズム43及び44の面18には、レーザ光に含まれる光の内の少なくともS偏光の反射を低減する膜がコーティングされている。複数のプリズム43及び44の面19には、レーザ光の反射を抑制する膜がコーティングされている。これにより、複数のプリズム43及び44は、H方向の偏光成分の反射を抑制し、H方向の偏光成分を高い透過率で透過させることができる。
 プリズム43及び44によるV方向へのビーム幅の拡大率Mvは、1.1倍以上、4倍以下が好ましい。プリズム43及び44によるV方向へのビーム幅の拡大率Mvは、4つのプリズム14a~14dによるH方向へのビーム幅の拡大率Mhより小さいことが好ましい。
 プリズム43及び44は、H方向にはビーム幅を拡大させなくてもよい。その場合、H方向のビーム幅を拡大させるプリズム14a~14dとの機能分担を明確にし、光学系の設計を容易にすることができる。
 プリズム43及び44は、チャンバ側の位置における第1のビームB1に対してグレーティング側の位置における第2のビームB2をV方向にシフトさせる。但し、第1のビームB1と第2のビームB2とは平行である。ここで、両ビームの平行の許容範囲は、好ましくは±1°以内であり、さらに好ましくは±0.5°以内である。
 2.2 動作
 一対の放電電極11a及び11b間に高電圧が印加されると、一対の放電電極11a及び11b間に放電が起こる。この放電のエネルギーにより、レーザチャンバ10内のレーザ媒質が励起されて高エネルギー準位に移行する。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。レーザチャンバ10のウインドウ10aから出射した光は、V方向のビーム幅をプリズム43及び44によって拡大させられる。そして、プリズム43及び44から出射した光は、そのH方向のビーム幅をプリズム14a~14dによって拡大させられて、グレーティング14eに入射する。
 プリズム14a~14dからグレーティング14eに入射した光は、グレーティング14eの複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。グレーティング14eは、プリズム14a~14dからグレーティング14eに入射する光の入射角と、所望波長の回折光の回折角とが一致するようにリトロー配置されている。これにより、所望波長付近の光がプリズム14a~14dとプリズム43及び44とを介してレーザチャンバ10に戻される。
 プリズム14a~14dは、グレーティング14eからの回折光のH方向のビーム幅を縮小させる。プリズム43及び44は、プリズム14aから出射されたビームのV方向のビーム幅を圧縮させる。プリズム43及び44から出射した光は、ウインドウ10aを介して、レーザチャンバ10の放電領域に戻される。
 出力結合ミラー15は、レーザチャンバ10のウインドウ10bから出力される光のうちの一部を透過させて出力し、他の一部を反射させてレーザチャンバ10内に戻す。
 このようにして、レーザチャンバ10から出射した光は、狭帯域化光学系14と出力結合ミラー15との間で往復し、放電電極11a及び11bの間の放電空間を通過する度に増幅されレーザ発振する。この光は、狭帯域化光学系14で折り返される度に狭帯域化される。さらに、上述したウインドウ10a及び10bの配置と、プリズム43と44のコーティングと、プリズム14a~14dのコーティングと、によって、H方向の偏光成分が選択される。こうして増幅された光が、出力結合ミラー15からレーザ光として出力される。このレーザ光は、真空紫外域の波長を有し、その波長は、約193.4nmである。
 第1の実施形態によれば、プリズム43及び44によってV方向にビーム幅を拡大することにより、グレーティング14eに入射する光のエネルギー密度が低減されるので、グレーティング14eの表面温度の上昇が抑制される。これにより、V方向にビーム幅を拡大しない場合にくらべてグレーティング14eの表面付近における不活性ガスの屈折率分布が低減される。従って、グレーティング14eによって回折される光の波面の歪みが抑制され、レーザ装置から出力されるレーザ光のスペクトル線幅が広くなることが抑制される。さらに、グレーティング14eの回折面に入射する光のエネルギー密度が低減されると、グレーティング14eの回折表面の劣化が抑制される。その結果、グレーティング14eの回折効率の低下が抑制され、グレーティングの寿命が延びる。
 2.3 波長分散の補償作用
 プリズム43及び44は、V方向にビームを拡大するだけでなく、VZ面に平行な面内に波長分散させる機能も有する。このため、プリズム43及び44からグレーティング14eに入射するビームの光軸は、発振波長がλ1である場合とλ2である場合とでわずかに異なる。図2における一点鎖線は、発振波長がλ1である場合の光軸を示し、図2における二点鎖線は、発振波長がλ2である場合の光軸を示す。例えば、発振波長が193.300nmから193.457nmに変更されると、光共振器内をレーザ光が1往復したときのV方向のポインティングは0.1mradずれる。光共振器内をレーザ光が6往復したときのV方向のポインティングは最大0.6mradずれる。図2においては、説明のために、これらの光軸のずれが誇張されて描かれている。
 従って、発振波長が変化すると、光共振器から出力されるレーザ光のポインティングがV方向にずれることがある。これにより、レーザ光のビームプロファイルあるいはビームダイバージェンスあるいはビームポインティングを悪化させるおそれがある。
 そこで、第1の実施形態においては、プリズム43及び44の分散面に直交する面に対して、グレーティング14eの分散面をわずかに傾けて配置する。グレーティング14eの分散面をわずかに傾けて配置することにより、グレーティング14eに入射したビームはV方向にもわずかに波長分散する。これにより、プリズム43及び44によるV方向の波長分散を補償する。ここで、プリズム43及び44の分散面は、面18と面19との両方に略垂直な面である。グレーティング14eの分散面は、グレーティング14eに形成された各々の溝の方向に垂直な面である。
 図1に示されるように、グレーティング14eの回折面に略垂直な第1の軸をS軸とする。S軸に略垂直であってグレーティング14eの分散面に略平行な第2の軸をP軸とする。S軸とP軸との両方に略垂直な軸をQ軸とする。ここで、グレーティング14eの回折面は、チャンバ10から出力されたビームが入射する多数の溝が形成された面である。S軸、P軸、Q軸は、グレーティング14eの位置及び姿勢の変化に応じて変化する軸である。
 また、図1に示されるように、グレーティング14eへの入射位置におけるビーム軸に略平行な軸をZ1軸とする。Z1軸とV軸との両方に略垂直な軸をH1軸とする。
 第1の実施形態においては、P軸とS軸との両方の軸周りに、グレーティング14eを傾けることにより、グレーティング14eの分散面を傾斜させている。グレーティング14eを傾けることによる波長分散の補償作用について、図3A~図3Fを参照しながら説明する。
 図3A~図3Cは、グレーティング14eの分散面を傾斜させていない場合のグレーティングと入射ビームの光軸との関係を示す。図3AはZ1軸に沿ってグレーティング14eを見た図であり、図3BはH1軸に沿ってグレーティング14eを見た図であり、図3CはQ軸に沿ってグレーティング14eを見た図である。これらの図においても、発振波長がλ1である場合の光軸と発振波長がλ2である場合の光軸とのずれが誇張されて描かれている。これらの光軸は、プリズム43及び44による波長分散により、V方向又は-V方向にずれている。図3A~図3Cにおいては、プリズム43及び44の分散面に直交する面hzに対して、グレーティング14eの分散面spを傾斜させていないので、Q軸とV軸は略平行となる。ここで、プリズム43及び44の分散面に直交する面hzは、図1及び図2に示されるHZ面に平行な面である。グレーティング14eの分散面spは、図3A~図3CにおけるSP面に平行な面である。
 図3A~図3Cに示されるように、グレーティング14eの分散面spを傾斜させていない場合には、発振波長がλ1である場合の光軸と発振波長がλ2である場合の光軸とは、ほぼ同じ入射角でグレーティング14eの回折面に入射する。従って、発振波長がλ1である場合の光軸と発振波長がλ2である場合の光軸とは、そのずれが補償されないまま、グレーティング14eにおいて回折される。
 図3D~図3Fは、グレーティング14eの分散面を傾斜させた場合のグレーティングと入射ビームの光軸との関係を示す。図3DはZ1軸に沿ってグレーティング14eを見た図であり、図3EはH1軸に沿ってグレーティング14eを見た図であり、図3FはQ軸に沿ってグレーティング14eを見た図である。これらの図においても、発振波長がλ1である場合の光軸と発振波長がλ2である場合の光軸とのずれが誇張されて描かれている。これらの光軸は、プリズム43及び44による波長分散により、V方向又は-V方向にずれている。図3D~図3Fにおいては、プリズム43及び44の分散面に直交する面hzに対して、グレーティング14eの分散面spを傾斜させているので、Q軸とV軸は非平行となる。
 図3D~図3Fに示されるように、グレーティング14eの分散面spを傾斜させた場合には、発振波長がλ1である場合の光軸と発振波長がλ2である場合の光軸とは、互いに異なる入射角でグレーティング14eの回折面に入射する。従って、発振波長がλ1である場合のグレーティング14eへの入射角と、グレーティング14eによる波長λ1の光の回折角とを一致させ、且つ、発振波長がλ2である場合のグレーティング14eへの入射角と、グレーティング14eによる波長λ2の光の回折角とを一致させることにより、これらの光軸のずれを補償することができる。
 グレーティング14eを傾斜させる場合、プリズム14a~14dの各々の分散面が互いに略一致するようプリズム14a~14dの各々が配置されるのが好ましい。その場合には、グレーティング14eの分散面が、プリズム14a~14dの分散面に対して傾斜している。なお、プリズム14a~14dの各々において、分散面は、面18と面19との両方に略垂直な面である。あるいは、プリズム14a~14dの内のいずれかの分散面と、グレーティング14eの分散面との両方が、プリズム43及び44の分散面に直交する面に対して傾斜していてもよい。
 一例として、プリズム43及び44によるV方向へのビーム幅の拡大率が2倍である場合、グレーティング14eを、S軸周りに反時計回りに0.14°、P軸周りに反時計回りに0.35°傾けて配置することが望ましい。グレーティング14eがそのような傾きで配置されるように、グレーティング14eを載せるための設置面が加工されていてもよい。また、グレーティング14eがそのような傾きで配置されるように、グレーティング14eを構成するグレーティング基板の底面が加工されていてもよい。また、グレーティング14eの底面またはホルダ16eにシムを挿入することによって、グレーティング14eの分散面を傾けてもよい。
3.第2のビームエキスパンダに含まれるプリズムを傾斜させて第1のビームエキスパンダによる波長分散を補償するレーザ装置
 図4は、本開示の第2の実施形態に係るレーザ装置の構成を模式的に示す。図4においては、一対の放電電極11a及び11bの間の放電方向に略平行な方向からみたレーザ装置の内部構成が示されている。第2の実施形態においては、プリズム43及び44の分散面に直交する面に対してグレーティング14eの分散面を傾ける代わりに、第2のビームエキスパンダに含まれる少なくとも1つのプリズムの分散面を傾ける。これより、第1のビームエキスパンダによる波長分散を補償することができる。
 図4に示されるように、プリズム14cにおいて、ビームが屈折する面18に略垂直な第3の軸をS軸とする。S軸に略垂直であってプリズム14cの分散面に略平行な第4の軸をP軸とする。S軸とP軸との両方に略垂直な軸をQ軸とする。ここで、プリズム14cの面18は、チャンバ10から出力されたビームが入射する面である。S軸、P軸、Q軸は、プリズム14cの位置及び姿勢の変化に応じて変化する軸である。
 プリズム14dにおいても、プリズム14cと同様にS軸、P軸、Q軸が定義される。
 一例として、プリズム43及び44によるV方向へのビーム幅の拡大率が2倍である場合、プリズム14cを、S軸周りに反時計回りに-0.23°、P軸周りに反時計回りに0.057°傾けて配置することが望ましい。あるいは、プリズム14cを傾ける代わりに、プリズム14dを、S軸周りに反時計回りに-0.074°、P軸周りに反時計回りに0.20°傾けて配置することが望ましい。プリズム14c又は14dがそのような傾きで配置されるように、プリズム14c又は14dを載せるための設置面が加工されていてもよい。プリズム14c又は14dがそのような傾きで配置されるように、プリズム14c又は14dを構成するプリズム基板の底面が加工されていてもよい。また、プリズム14c又は14dの底面またはホルダ16c又は16dにシムを挿入することによって、プリズム14c又は14dの分散面を傾けてもよい。
 プリズム14c又はプリズム14dの分散面を傾けることにより、分散面を傾けたプリズムに入射したビームはV方向にもわずかに波長分散する。これにより、プリズム43及び44によるV方向の波長分散を補償することができる。
 プリズム14a~14dの内のいずれか1つの分散面を傾斜させる場合、残りのプリズム及びグレーティング14eの分散面は傾斜させないのが好ましい。その場合には、傾斜させる1つのプリズム以外のプリズムの分散面とグレーティング14eの分散面は互いに一致している。そして、傾斜させる1つのプリズムの分散面が、残りのプリズムの分散面とグレーティング14eの分散面に対して傾斜している。あるいは、プリズム14a~14dの内の複数のプリズムの分散面を、プリズム43及び44の分散面に直交する面に対して傾斜させてもよい。
 波長分散を補償するために分散面が傾けられるプリズムは、発振波長を調整するためにV軸に平行な軸を中心として回転可能なプリズム14cか、あるいはプリズム14cよりもグレーティング14e側のプリズム14dであることが望ましい。これにより、レーザの発振波長を可変するためにプリズム14cがV軸に平行な軸を中心として回転したとしても、プリズム43及び44の波長分散を補償することができる。あるいは、プリズム14bがV軸に平行な軸を中心として回転可能とした場合に、波長分散を補償するために、プリズム14b、14c、14dのいずれかの分散面が傾くように配置してもよい。
 他の点については、第1の実施形態と同様である。
4.第1のビームエキスパンダが上下反転している場合
 図5は、本開示の第3の実施形態に係るレーザ装置の構成を模式的に示す。図5においては、一対の放電電極11a及び11bの間の放電方向に略平行な方向からみたレーザ装置の内部構成が示されている。第3の実施形態において、プリズム43及び44は、チャンバ側の位置における第1のビームB1に対してグレーティング側の位置における第2のビームB2を-V方向にシフトさせる。すなわち、プリズム43及び44は、第1の実施形態における配置に対して上下反転している。
 第3の実施形態においては、グレーティング又はプリズムを傾ける方向が、第1又は第2の実施形態におけるものと逆になる。
 他の点については、第1又は第2の実施形態と同様である。
 一例として、プリズム43及び44によるV方向へのビーム幅の拡大率が2倍である場合、グレーティング14eを、S軸周りに反時計回りに-0.14°、P軸周りに反時計回りに-0.35°傾けて配置することが望ましい。
 また、一例として、プリズム43及び44によるV方向へのビーム幅の拡大率が2倍である場合、プリズム14cを、S軸周りに反時計回りに0.23°、P軸周りに反時計回りに-0.057°傾けて配置することが望ましい。あるいは、プリズム14cを傾ける代わりに、プリズム14dを、S軸周りに反時計回りに0.074°、P軸周りに反時計回りに-0.20°傾けて配置することが望ましい。
 グレーティング14eのS軸周りの傾斜角度の絶対値は、0.084°以上、0.29°以下が望ましい。
 グレーティング14eのP軸周りの傾斜角度の絶対値は、0.12°以上、0.64°以下が望ましい。
 プリズム14cのS軸周りの傾斜角度の絶対値は、0.14°以上、0.40°以下が望ましい。
 プリズム14cのP軸周りの傾斜角度の絶対値は、0.034°以上、0.34°以下が望ましい。
 プリズム14dのS軸周りの傾斜角度の絶対値は、0.046°以上、0.16°以下が望ましい。
 プリズム14dのP軸周りの傾斜角度の絶対値は、0.12°以上、0.36°以下が望ましい。
5.グレーティングの角度変更機構
 図6A~図6Cは、本開示の第4の実施形態に係るレーザ装置において使用可能な角度変更機構を模式的に示す。図6Aは、Q軸方向からみたグレーティング14e及び角度変更機構を示す。図6Bは、P軸方向からみたグレーティング14e及び角度変更機構を示す。図6Cは、S軸方向からみたグレーティング14e及び角度変更機構を示す。第4の実施形態においては、グレーティング14eの傾斜角度が調整可能である。
 図6A~図6Cに示される角度変更機構30は、第1プレート31と、第2プレート32と、突起部33と、第1マイクロメータ34と、第2マイクロメータ35と、を含む。第1プレート31は、図2を参照しながら説明したホルダ16eに固定されている。突起部33と、第1マイクロメータ34と、第2マイクロメータ35とは、第1プレート31に固定されている。第1マイクロメータ34は、突起部33からみてP方向にずれた場所に位置し、第2マイクロメータ35は、突起部33からみて-S方向にずれた場所に位置する。
 第2プレート32は、突起部33と、第1マイクロメータ34と、第2マイクロメータ35とにより支持される。グレーティング14eは、第2プレート32の上面に固定されている。
 第2プレート32の下面には、円錐形の窪みを有するマウント部36が固定される。マウント部36は、グレーティング14eの回折面の真下に位置している。マウント部36の円錐形の窪みで突起部33を受けることにより、マウント部36が一点に位置決めされる。
 第2プレート32の下面には、断面V字形の溝を有するマウント部37が固定される。マウント部37は、グレーティング14eの回折面の真下であって、マウント部36から離れた場所に位置している。マウント部37の断面V字形の溝は、グレーティング14eの回折面に平行な方向に形成されている。マウント部37の断面V字形の溝で第1マイクロメータ34のヘッド部34aを受けることにより、グレーティング14eの回折面が、突起部33と第1マイクロメータ34のヘッド部34aとを結ぶ線と略平行となるように位置決めされる。
 さらに、第2プレート32の下面で第2マイクロメータ35のヘッド部35aを受けることにより、グレーティング14eが3点支持されて位置決めされる。
 第1マイクロメータ34の近傍には、第1プレート31と第2プレート32との間隔を狭める方向に応力を有するバネ38が配置される。第2マイクロメータ35の近傍には、第1プレート31と第2プレート32との間隔を狭める方向に弾性力を有するバネ39が配置される。
 第1マイクロメータ34は、図示しない制御装置により、ヘッド部34aの高さを調整可能である。これにより、グレーティング14eの傾きをS軸と略平行な軸周りに調節可能である。
 第2マイクロメータ35は、図示しない制御装置により、ヘッド部35aの高さを調整可能である。これにより、グレーティング14eの傾きをP軸と略平行な軸周りに調節可能である。
 第4の実施形態によれば、レーザ装置内の光学素子の熱による変形などにより波長分散特性が変化したような場合でも、グレーティング14eの傾斜角度を調整することにより、波長分散の補償を改善することができる。
 ここではグレーティング14eの傾きを調節する場合について説明したが、同様の機構により、プリズム14c又は14dの角度を調節してもよい。
6.プリズムの角度変更機構
 図7A~図7Cは、本開示の第5の実施形態に係るレーザ装置において使用可能な角度変更機構を模式的に示す。図7Aは、Q軸方向からみたプリズム14d及び角度変更機構を示す。図7Bは、P軸の負の方向からみたプリズム14d及び角度変更機構を示す。図7Cは、S軸方向からみたプリズム14d及び角度変更機構を示す。図7Cにおいて、角度変更機構の一部は断面で示されている。第5の実施形態においては、プリズム14dの傾斜角度が調整可能である。
 図7A~図7Cに示される角度変更機構40は、第1の蝶番41aと、第2の蝶番41bと、プレート46と、を含む。
 第1の蝶番41aは、2つ折りにされた1枚の板で構成されている。第1の蝶番41aは、肉薄の折り曲げ部からみて一方側の可動部42aと他方側の固定部43aとを含む。第1の蝶番41aの肉薄の折り曲げ部は、S軸と略平行に配置されている。
 第2の蝶番41bは、2つ折りにされた別の1枚の板で構成されている。第2の蝶番41bは、肉薄の折り曲げ部からみて一方側の可動部42bと他方側の固定部43bとを含む。第2の蝶番41bの肉薄の折り曲げ部は、P軸と略平行に配置されている。
 第2の蝶番41bの固定部43bは、図2を参照しながら説明したホルダ16dに固定されている。第2の蝶番41bの可動部42bに、第1の蝶番41aの固定部43aが固定されている。第1の蝶番41aの可動部42aに、プレート46が固定される。プレート46に、プリズム14dが固定されている。
 第1のボルト44aが、第1の蝶番41aの可動部42aに形成された貫通孔を貫通して、固定部43aにねじ込まれる。第1のボルト44aの頭部は可動部42aに形成された上記貫通孔を通過せず、可動部42aが固定部43aから離れることを規制する。すなわち、第1のボルト44aにより、第1の蝶番41aが開くことが規制される。
 第2のボルト45aが、第1の蝶番41aの可動部42aにねじ込まれて、第2のボルト45aの先端が固定部43aに達する。第2のボルト45aは、可動部42aが固定部43aに近づくことを規制する。すなわち、第2のボルト45aにより、第1の蝶番41aが閉じることが規制される。
 これにより、第1の蝶番41aの開き角度が調節され、プリズム14dの傾きをS軸と略平行な軸周りに調節可能である。
 第2の蝶番41bは、第1の蝶番41aと同様の構成を有する。第1の蝶番41aの構成要素に対応する構成要素について、それぞれ符号の末尾を「b」に変更して図示し、詳細な説明を省略する。第2の蝶番41bは、プリズム14dの傾きをP軸と略平行な軸周りに調節可能である。
 第5の実施形態によれば、レーザ装置内の光学素子の熱による変形などにより波長分散特性が変化したような場合でも、プリズム14dの傾斜角度を調整することにより、波長分散の補償を改善することができる。
 ここではプリズム14dの傾きを調節する場合について説明したが、同様の機構により、他のプリズムの角度を調節してもよいし、グレーティングの角度を調節してもよい。
7.その他
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (20)

  1.  一対の放電電極が内部に配置されたチャンバと、
     前記チャンバから出力されたビームのビーム幅を、少なくとも第1の方向であって前記一対の放電電極の間における放電方向と略平行な前記第1の方向に拡大するように配置された、第1のビームエキスパンダと、
     狭帯域化光学系であって、
     前記チャンバから出力されたビームのビーム幅を、少なくとも第2の方向であって前記第1の方向と略垂直な前記第2の方向に拡大するように配置された、少なくとも1つの光学素子を含む第2のビームエキスパンダと、
     前記第1及び前記第2のビームエキスパンダによってビーム幅が拡大されたビームを、前記第2の方向と略平行な面内に波長分散させるように配置された、グレーティングと、を有し、
     前記少なくとも1つの光学素子と前記グレーティングとの内の少なくとも1つが、前記第1のビームエキスパンダによる波長分散を補償するように配置されている、
    前記狭帯域化光学系と、
    を備えるレーザ装置。
  2.  前記第1のビームエキスパンダは、前記第1のビームエキスパンダよりも前記チャンバ側の位置における第1のビームと、前記第1のビームエキスパンダよりも前記グレーティング側の位置における第2のビームと、が略平行となるように配置された第1及び第2のプリズムを含む、請求項1記載のレーザ装置。
  3.  前記第1のビームエキスパンダの分散面と直交する面に対して、前記グレーティングの分散面が傾くように前記グレーティングが配置されている請求項2記載のレーザ装置。
  4.  前記グレーティングが、当該グレーティングの回折面に略垂直な第1の軸と、前記第1の軸に略垂直であって当該グレーティングの分散面に略平行な第2の軸と、を中心にそれぞれ傾けて配置されている、請求項3記載のレーザ装置。
  5.  前記第1の軸を中心とした前記グレーティングの傾斜角度の絶対値が、0.084度以上、0.29度以下であり、前記第2の軸を中心とした前記グレーティングの傾斜角度の絶対値が、0.12度以上、0.64度以下である、請求項4記載のレーザ装置。
  6.  前記少なくとも1つの光学素子が、第3のプリズムを含んでおり、
     前記第1のビームエキスパンダの分散面と直交する面に対して前記第3のプリズムの分散面が傾くように前記第3のプリズムが配置されている請求項2記載のレーザ装置。
  7.  前記第3のプリズムは、前記チャンバから出力されたビームが通過する第1の面及び第2の面を有し、
     前記第3のプリズムが、前記第1の面に垂直な第3の軸と、前記第3の軸に略垂直であって前記第3のプリズムの分散面に略平行な第4の軸と、を中心にそれぞれ傾けて配置されている、請求項6記載のレーザ装置。
  8.  前記第3の軸を中心とした前記第3のプリズムの傾斜角度の絶対値が、0.046度以上、0.40度以下であり、前記第4の軸を中心とした前記第3のプリズムの傾斜角度の絶対値が、0.034度以上、0.36度以下である、請求項7記載のレーザ装置。
  9.  前記第3のプリズムと、前記少なくとも1つの光学素子のうちの前記第3のプリズムよりも前記チャンバ側に配置されたプリズムと、の内の1つを、前記第1の方向に平行な軸を中心として回転可能な回転機構
    をさらに備える、請求項6記載のレーザ装置。
  10.  前記少なくとも1つの光学素子と前記グレーティングとの内の少なくとも1つの傾斜角度を変更する角度変更機構を有する、請求項1記載のレーザ装置。
  11.  一対の放電電極が内部に配置されたチャンバと、
     前記チャンバから出力されたビームを波長分散させるように配置されたグレーティングと、
     前記チャンバと前記グレーティングとの間のビーム経路に配置された第1のビームエキスパンダであって、前記グレーティングへの入射位置におけるビーム幅を、少なくとも第1の方向であって前記グレーティングの分散面と略垂直な前記第1の方向に拡大するように配置された、前記第1のビームエキスパンダと、
     前記チャンバと前記グレーティングとの間のビーム経路に配置された第2のビームエキスパンダであって、前記グレーティングへの入射位置におけるビーム幅を、少なくとも第2の方向であって前記グレーティングの分散面と略平行な前記第2の方向に拡大するように配置された、少なくとも1つの光学素子を含む前記第2のビームエキスパンダと、
    を備え、
     前記グレーティングと前記少なくとも1つの光学素子との内の少なくとも1つが、前記第1のビームエキスパンダによる波長分散を補償するように配置されている、
    レーザ装置。
  12.  前記第1のビームエキスパンダは、前記第1のビームエキスパンダよりも前記チャンバ側の位置における第1のビームと、前記第1のビームエキスパンダよりも前記グレーティング側の位置における第2のビームと、が略平行となるように配置された第1及び第2のプリズムを含む、請求項11記載のレーザ装置。
  13.  前記第1のビームエキスパンダの分散面と直交する面に対して、前記グレーティングの分散面が傾くように前記グレーティングが配置されている請求項12記載のレーザ装置。
  14.  前記グレーティングが、当該グレーティングの回折面に略垂直な第1の軸と、前記第1の軸に略垂直であって当該グレーティングの分散面に略平行な第2の軸と、を中心にそれぞれ傾けて配置されている、請求項13記載のレーザ装置。
  15.  前記第1の軸を中心とした前記グレーティングの傾斜角度の絶対値が、0.084度以上、0.29度以下であり、前記第2の軸を中心とした前記グレーティングの傾斜角度の絶対値が、0.12度以上、0.64度以下である、請求項14記載のレーザ装置。
  16.  前記少なくとも1つの光学素子が、第3のプリズムを含んでおり、
     前記第1のビームエキスパンダの分散面と直交する面に対して前記第3のプリズムの分散面が傾くように前記第3のプリズムが配置されている請求項12記載のレーザ装置。
  17.  前記第3のプリズムは、前記チャンバから出力されたビームが通過する第1の面及び第2の面を有し、
     前記第3のプリズムが、前記第1の面に垂直な第3の軸と、前記第3の軸に略垂直であって前記第3のプリズムの分散面に略平行な第4の軸と、を中心にそれぞれ傾けて配置されている、請求項16記載のレーザ装置。
  18.  前記第3の軸を中心とした前記第3のプリズムの傾斜角度の絶対値が、0.046度以上、0.40度以下であり、前記第4の軸を中心とした前記第3のプリズムの傾斜角度の絶対値が、0.034度以上、0.36度以下である、請求項17記載のレーザ装置。
  19.  前記第3のプリズムと、前記少なくとも1つの光学素子のうちの前記第3のプリズムよりも前記チャンバ側に配置されたプリズムと、の内の1つを、前記第1の方向に平行な軸を中心として回転可能な回転機構
    をさらに備える、請求項16記載のレーザ装置。
  20.  前記少なくとも1つの光学素子と前記グレーティングとの内の少なくとも1つの傾斜角度を変更する角度変更機構を有する、請求項11記載のレーザ装置。
PCT/JP2016/062858 2016-04-22 2016-04-22 レーザ装置 WO2017183210A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680083420.8A CN108780979B (zh) 2016-04-22 2016-04-22 激光装置
PCT/JP2016/062858 WO2017183210A1 (ja) 2016-04-22 2016-04-22 レーザ装置
JP2018512765A JP6737877B2 (ja) 2016-04-22 2016-04-22 レーザ装置
US16/123,328 US10522966B2 (en) 2016-04-22 2018-09-06 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062858 WO2017183210A1 (ja) 2016-04-22 2016-04-22 レーザ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/123,328 Continuation US10522966B2 (en) 2016-04-22 2018-09-06 Laser apparatus

Publications (1)

Publication Number Publication Date
WO2017183210A1 true WO2017183210A1 (ja) 2017-10-26

Family

ID=60116702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062858 WO2017183210A1 (ja) 2016-04-22 2016-04-22 レーザ装置

Country Status (4)

Country Link
US (1) US10522966B2 (ja)
JP (1) JP6737877B2 (ja)
CN (1) CN108780979B (ja)
WO (1) WO2017183210A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120772A (ja) * 1989-10-04 1991-05-22 Toshiba Corp レーザ共振器
JPH0513890A (ja) * 1991-07-09 1993-01-22 Hitachi Ltd 色素レーザ発振装置
JP2003518757A (ja) * 1999-12-22 2003-06-10 サイマー, インコーポレイテッド 二方向ビーム拡大を用いた狭線化レーザ
JP2006024766A (ja) * 2004-07-08 2006-01-26 Komatsu Ltd グレーティングの姿勢制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590524B2 (ja) 1998-03-25 2004-11-17 株式会社小松製作所 狭帯域化レーザの波面制御装置
JP5157004B2 (ja) * 2006-07-04 2013-03-06 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整方法
CN100589010C (zh) * 2007-09-13 2010-02-10 华东师范大学 一种新型的棱镜对脉冲色散补偿器
CN101854022B (zh) * 2009-04-03 2012-04-04 苏州大学 双波长超短脉冲输出的被动锁模光纤激光器
JP6273089B2 (ja) 2012-12-27 2018-01-31 ソニー株式会社 レーザ射出装置及びレーザ射出装置の製造方法
JP6213293B2 (ja) * 2014-02-18 2017-10-18 ソニー株式会社 半導体レーザ装置組立体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120772A (ja) * 1989-10-04 1991-05-22 Toshiba Corp レーザ共振器
JPH0513890A (ja) * 1991-07-09 1993-01-22 Hitachi Ltd 色素レーザ発振装置
JP2003518757A (ja) * 1999-12-22 2003-06-10 サイマー, インコーポレイテッド 二方向ビーム拡大を用いた狭線化レーザ
JP2006024766A (ja) * 2004-07-08 2006-01-26 Komatsu Ltd グレーティングの姿勢制御装置

Also Published As

Publication number Publication date
JP6737877B2 (ja) 2020-08-12
US10522966B2 (en) 2019-12-31
US20190006814A1 (en) 2019-01-03
CN108780979A (zh) 2018-11-09
CN108780979B (zh) 2021-03-19
JPWO2017183210A1 (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
US6856638B2 (en) Resonator arrangement for bandwidth control
WO2016189968A1 (ja) レーザ装置及び狭帯域化光学系
US10916910B2 (en) Line narrowing module
US9147993B2 (en) Master oscillator system and laser apparatus
US10797465B2 (en) Laser apparatus
US10965087B2 (en) Laser device
WO2017183210A1 (ja) レーザ装置
JP4416481B2 (ja) 光学的パルス伸長器および露光用放電励起ガスレーザ装置
WO2021186739A1 (ja) 狭帯域化装置、及び電子デバイスの製造方法
US20170149199A1 (en) Laser device
JP2009081363A (ja) ガスレーザ用光学素子及びそれを用いたガスレーザ装置
US20230187892A1 (en) Line narrowing gas laser device and electronic device manufacturing method
JPH10112570A (ja) 狭帯域発振エキシマレーザ
US20230066377A1 (en) Alignment adjuster and method for manufacturing electronic devices
US20030072347A1 (en) Apparatus for locking bending mechanism that bends reflex type wavelength selection element
JP2001223422A (ja) 超狭帯域化レーザ装置及び狭帯域化レーザ装置
JP2011238976A (ja) ガスレーザ用光学素子及びそれを用いたガスレーザ装置
JPS5852888A (ja) 固体レ−ザ光源装置
JPH0491483A (ja) ガスレーザ発振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018512765

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899482

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899482

Country of ref document: EP

Kind code of ref document: A1