WO2017183146A1 - 回路基板、回路基板の製造方法及び電子装置 - Google Patents

回路基板、回路基板の製造方法及び電子装置 Download PDF

Info

Publication number
WO2017183146A1
WO2017183146A1 PCT/JP2016/062589 JP2016062589W WO2017183146A1 WO 2017183146 A1 WO2017183146 A1 WO 2017183146A1 JP 2016062589 W JP2016062589 W JP 2016062589W WO 2017183146 A1 WO2017183146 A1 WO 2017183146A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
circuit board
electrode layer
recess
opening
Prior art date
Application number
PCT/JP2016/062589
Other languages
English (en)
French (fr)
Inventor
昌治 古山
水谷 大輔
赤星 知幸
正輝 小出
真名武 渡邊
清吾 山脇
慧 福井
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/062589 priority Critical patent/WO2017183146A1/ja
Priority to JP2018512713A priority patent/JP6704129B2/ja
Publication of WO2017183146A1 publication Critical patent/WO2017183146A1/ja
Priority to US16/162,470 priority patent/US11317520B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0212Printed circuits or mounted components having integral heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a circuit board, a circuit board manufacturing method, and an electronic apparatus.
  • a technique for incorporating a capacitor (capacitor) in a circuit board is known.
  • the capacitor has a structure in which a dielectric layer using a predetermined material is sandwiched between a pair of conductor layers.
  • a technique is known in which a conductor via that penetrates the capacitor in contact with a dielectric layer and one of a pair of conductor layers sandwiching the dielectric layer is known for interlayer connection inside the capacitor.
  • a technique is also known in which a conductor via that penetrates the capacitor without contacting the dielectric layer and at least one of the pair of conductor layers sandwiching the dielectric layer is also known.
  • the conductor via is formed in the circuit board by forming a hole penetrating a predetermined portion of the capacitor and forming a material of the conductor via in the hole.
  • JP 2006-210776 A Japanese Patent Laid-Open No. 2015-18988
  • the gap between the dielectric layer and the conductor layer is formed when the conductor via is formed. Cracks and peeling may occur. Cracks or peeling between the dielectric layer and the conductor layer of the capacitor may reduce the capacitance of the capacitor and may reduce the reliability and performance of the circuit board incorporating the capacitor.
  • an insulating layer a dielectric layer provided in the insulating layer, a first conductor layer provided on a first surface of the dielectric layer and having an opening, and the dielectric
  • a capacitor including a second conductor layer provided on a second surface opposite to the first surface of the layer and having a recess at a position corresponding to the opening, and provided in the insulating layer, the dielectric layer,
  • a circuit board is provided that includes a conductor via that penetrates the opening and the recess, is in contact with the recess, and is smaller than the opening in plan view.
  • FIG. (1) shows an example of the formation method of a circuit board.
  • FIG. (2) which shows an example of the formation method of a circuit board.
  • FIG. (3) which shows an example of the formation method of a circuit board.
  • the 2 of an example of the drill process which concerns on 1st Embodiment.
  • a method for reducing the power supply impedance there is known a method in which a chip capacitor is mounted on a circuit board and the chip capacitor is connected between a power supply line and a ground (GND) line of the circuit board.
  • GND ground
  • a method of incorporating a chip capacitor in the circuit board, or a capacitor formed by a dielectric layer and a pair of conductor layers sandwiching it A method of incorporating a (thin film capacitor) is known.
  • a circuit board incorporating a capacitor includes a capacitor having a structure in which a dielectric layer is sandwiched between a pair of conductor layers in an insulating layer.
  • One of the conductor layer pair has a power supply potential and the other has a GND potential, and is electrically connected to a power supply terminal for external connection of the circuit board and a GND terminal, respectively.
  • a conductor via that penetrates the capacitor provided in the insulating layer can be provided for internal interlayer connection.
  • a circuit board including such a conductor via is formed by the following method, for example.
  • FIG. 1 to 3 are diagrams showing an example of a method of forming a circuit board.
  • 1A to FIG. 1C, FIG. 2A to FIG. 2C, and FIG. 3A to FIG. 3C each show a cross-sectional view of the main part of each step of circuit board formation. This is schematically shown.
  • a capacitor substrate 100a in which a dielectric layer 110 is sandwiched between a pair of conductor layers (electrode layers) 120 and conductor layers (electrode layers) 130 is prepared.
  • the capacitor substrate 100a can be obtained, for example, by forming the dielectric layer 110 on one electrode layer 130 and forming the other electrode layer 120 thereon.
  • Various dielectric materials are used for the dielectric layer 110, and various conductor materials are used for the electrode layer 120 and the electrode layer 130.
  • a ceramic material such as barium titanate (BaTiO 3 ; BTO) is used for the dielectric layer
  • a metal material such as copper (Cu) or nickel (Ni) is used for the electrode layer 120 and the electrode layer 130.
  • one electrode layer 120 of the capacitor substrate 100a is patterned into a predetermined shape.
  • the patterning of the electrode layer 120 is performed by etching, for example.
  • FIG. 1B illustrates an example in which an opening 121 is formed in a region including a position where a conductive via 310 (or a hole 300 for forming the conductive layer 310 described later) is formed in the electrode layer 120. .
  • the capacitor substrate 100a on which the electrode layer 120 is patterned is integrated with the insulating layer 210 as shown in FIG.
  • the insulating layer 210 is an insulating layer made of, for example, an insulating layer such as a resin or a prepreg, such as an epoxy resin, provided on a base substrate having one or more wiring layers.
  • the capacitor substrate 100 a is bonded to the insulating layer 210 by being pressed while being patterned so that the patterned electrode layer 120 side faces the insulating layer 210. And integrated.
  • the other electrode layer 130 is patterned into a predetermined shape.
  • the patterning of the electrode layer 130 is performed by etching, for example.
  • etching for example.
  • FIG. 2A a resist pattern 140 having a predetermined shape is formed on the electrode layer 130.
  • FIG. 2B the electrode layer 130 is etched using the formed resist pattern 140 as a mask, and the electrode layer 130 is patterned into a predetermined planar shape.
  • the resist pattern 140 is removed as shown in FIG.
  • the electrode layer 130 is patterned so as to be provided at a position corresponding to the electrode layer 120 and the opening 121 thereof.
  • an insulating layer 220 is formed on the capacitor substrate 100a as shown in FIG.
  • the insulating layer 220 is an insulating layer using an insulating layer such as a resin or a prepreg, for example, an epoxy resin.
  • Such an insulating layer 220 is thermocompression bonded onto the capacitor substrate 100a on the insulating layer 210. Thereby, the capacitor substrate 100 a integrated with the insulating layer 210 is covered with the insulating layer 220.
  • the basic structure of the circuit board in which the capacitor 100 (capacitor substrate 100a) is built in the insulating layer 210 and the insulating layer 220 (insulating layer 200) is formed.
  • a conductor via that penetrates the built-in capacitor 100 is provided in the circuit board for interlayer connection inside the circuit board, first, a hole 300 that penetrates the capacitor 100 is formed as shown in FIG.
  • the hole 300 is formed by laser processing or drilling.
  • the hole 300 is formed, for example, so as to penetrate the circuit board or lead to a part of the wiring layer provided in the base substrate on the insulating layer 210 side.
  • the hole 300 is formed at the position of the opening 121 of the electrode layer 120 with an opening size smaller than the opening 121 (size smaller than the opening 121 in plan view).
  • an opening 121 having an opening size larger than the hole 300 to be formed is formed.
  • the dielectric layer 110 and one electrode layer 130 out of the dielectric layer 110, the electrode layer 120, and the electrode layer 130 of the capacitor 100 are exposed on the inner wall of the hole 300.
  • a conductor material is formed on the inner wall of the hole 300, and a conductor via 310 is formed.
  • Various conductive materials for example, metal materials such as Cu are used for the conductive via 310.
  • the conductor via 310 is formed by first forming a conductor layer (seed layer) 301 by electroless plating, and then forming a conductor layer (plating layer) 302 by electrolytic plating using the seed layer 301 as a power feeding layer. can get.
  • the seed layer 301 and the plating layer 302 are also formed on the upper surface of the insulating layer 220.
  • the seed layer 301 and the plating layer 302 formed on the upper surface of the insulating layer 220 are used as a part of the wiring (conductor layer 313) connected to the conductor via 310 of the circuit board.
  • the conductor via 310 provided on the inner wall of the hole 300 is in contact with the dielectric layer 110 and the electrode layer 130 of the capacitor 100 exposed on the inner wall when the hole 300 is formed. Thereby, the conductor via 310 penetrating the capacitor 100 and the electrode layer 130 of the capacitor 100 are electrically connected.
  • the connected conductor via 310 and the electrode layer 130 of the capacitor 100 are set to a power supply potential or a GND potential.
  • the other electrode layer 120 provided with the opening 121 and not connected to the conductor via 310 of the capacitor 100 has a potential different from that of the electrode layer 130 connected to the conductor via 310.
  • the conductor via 310 forms an interlayer connection structure that electrically connects a plurality of layers including the capacitor 100 in the circuit board.
  • the cavity 400 remains in the center of the hole 300 in which the conductor via 310 is formed on the inner wall after the conductor via 310 is formed.
  • the cavity 400 may be filled with a resin (not shown) such as an epoxy resin.
  • a resin such as an epoxy resin.
  • the conformal via formed on the inner wall of the hole 300 is illustrated as the conductor via 310, a filled via filled with a conductor material may be formed in the hole 300.
  • one or a plurality of substrates each having an insulating layer such as a resin and a conductor layer patterned on the capacitor 100 are stacked on the capacitor 100 side.
  • a circuit board having a desired number of wiring layers may be obtained by performing a batch lamination process.
  • the hole 300 is formed as shown in FIG. 3B, and the conductor via 310 is formed as shown in FIG. 3C.
  • each layer to be laminated is drilled by laser processing and a conductive material is formed in the hole, and a conductor via for electrically connecting the layers is formed.
  • multistage laser processing method of forming There is also a so-called multistage laser processing method of forming.
  • FIG. 4 is an explanatory view of a hole forming step in forming a circuit board
  • FIG. 5 is an explanatory view of a conductor via forming step and a heating step in forming the circuit board.
  • 4A schematically shows a cross section of the main part before drilling
  • FIG. 4B schematically shows a cross section of the main part in the middle of drilling
  • FIG. The main part cross section after opening is typically illustrated.
  • FIG. 5A schematically shows a cross section of the main part of the electroless plating process
  • FIG. 5B schematically shows a cross section of the main part of the electroplating process
  • FIG. The principal part cross section of the process is typically illustrated.
  • the hole 300 for the conductor via 310 in the stacked body of the insulating layer 210, the capacitor 100, and the insulating layer 220 (FIG. 3A) as shown in FIG.
  • Drilling using a drill 500 as shown in FIG. The drilling process using the drill 500 is performed so as to penetrate the insulating layer 220, the electrode layer 130 and the dielectric layer 110 of the capacitor 100, and the insulating layer 210 from the insulating layer 220 side, for example.
  • the perforating process is performed on the position of the opening 121 formed in the electrode layer 120 of the capacitor 100 as shown in FIG. 4 and 5, the electrode layer 120 is not shown (the opening 121 is shown).
  • FIG. 4B the insulating layer 220, the electrode layer 130, the dielectric layer 110, and the insulating layer 210 are exposed on the inner wall of the hole 300 formed by the drill 500.
  • the electrode layer 130 is deformed as shown in FIGS. 4B and 4C due to stress during the processing, and the electrode layer 130 is not deformed.
  • the dielectric layer 110 is deformed along with the deformation. 4B and 4B between the electrode layer 130 and the dielectric layer 110 due to the deformation of the electrode layer 130 and the dielectric layer 110, or the difference in physical properties and adhesion between each other. Cracks 600 as shown in C) may occur.
  • the crack 600 When electroless plating is performed in a state where such a crack 600 has occurred, as shown in FIG. 5A, the crack 600 is filled depending on the electroless plating solution 610 and the seed layer 301 to be formed. But can remain.
  • the plating solution 620 may enter the remaining crack 600.
  • the crack 600 may remain as a void after electrolytic plating.
  • the plating solution 620 that has penetrated into the crack 600 or the void remaining in the crack 600 has a seed layer 301 in which the inner wall of the hole 300 is formed by electroless plating and a plating layer 302 that is formed by electrolytic plating, that is, a conductor via 310. And can be confined in the crack 600.
  • the plating liquid 620 remaining in the crack 600 is heated.
  • voids the gas inside it
  • the electrode layer 130 and the dielectric layer of the capacitor 100 start from the crack 600 on the inner wall of the hole 300 as shown in FIG.
  • a peeling 630 may occur between the two. Separation 630 that occurs between the electrode layer 130 and the dielectric layer 110 causes a decrease in the capacitance of the capacitor 100.
  • the capacitor 100 and the circuit board incorporating the capacitor 100 are formed by the crack 600 generated between the electrode layer 130 and the dielectric layer 110 and the peeling 630 resulting therefrom. Reliability and performance may be reduced.
  • FIG. 6 is a diagram illustrating an example of a circuit board according to the first embodiment.
  • FIG. 6 schematically shows a cross section of an essential part of an example of the circuit board according to the first embodiment.
  • the circuit board 1 shown in FIG. 6 includes an insulating layer 20 (insulating layer 21 and insulating layer 22) and a capacitor 10 (capacitor substrate 10a) provided in the insulating layer 20.
  • the circuit board 1 further includes a conductor via 31 provided in a hole 30 penetrating the insulating layer 20 and the capacitor 10 and a conductor layer 33 connected to the conductor via 31.
  • the capacitor 10 includes a dielectric layer 11, a pair of conductor layers (electrode layers) 12 and a conductor layer (electrode layer) 13 that sandwich the dielectric layers 11.
  • Various dielectric materials are used for the dielectric layer 11.
  • a ceramic material is used for the dielectric layer 11.
  • various high dielectric materials such as BTO can be used.
  • the ceramic material for the dielectric layer 11 examples include barium strontium titanate (Ba x Sr 1-x TiO 3 ; BSTO) obtained by adding strontium (Sr) to BTO, strontium titanate (SrTiO 3 ; STO), zirconate titanate High dielectric materials such as lead (Pb (Zr, Ti) O 3 ; PZT) and PZT (PLZT) to which lanthanum (La) is added can also be used.
  • the thickness of the dielectric layer 11 is, for example, 1 ⁇ m to 3 ⁇ m.
  • a metal material is used for the electrode layer 12 and the electrode layer 13.
  • the metal material of the electrode layer 12 Cu, Ni, or the like can be used.
  • Each of the electrode layer 12 and the electrode layer 13 has a thickness of 15 ⁇ m to 30 ⁇ m, for example.
  • the electrode layer 12 and the electrode layer 13 are each patterned into a predetermined planar shape.
  • the electrode layer 12 has an opening 12a in a region including a position where the conductor via 31 or the hole 30 is formed.
  • the electrode layer 13 has a recessed portion 13 a that is a thinned portion on the outer peripheral portion 31 ⁇ / b> A of the conductor via 31 or the hole 30.
  • the electrode layer 12 and the electrode layer 13 are provided with an opening 12a and a recess 13a at positions corresponding to each other.
  • Such a capacitor 10 is provided in the insulating layer 20.
  • the insulating layer 21 which is a part provided under the capacitor 10 of the insulating layer 20 is an insulating layer such as a resin or a prepreg provided on a base substrate having one or more wiring layers.
  • a resin material such as an epoxy resin, a polyimide resin, or a bismaleimide triazine resin, or a material in which a fiber or cloth such as glass is contained in such a resin material can be used.
  • the insulating layer 22 of the insulating layer 20 which is a part provided on the capacitor 10 is also a resin material such as an epoxy resin, a polyimide resin, or a bismaleimide triazine resin, or a fiber or cloth such as glass on such a resin material. Can be used.
  • the hole 30 is formed so as to penetrate the insulating layer 22, the capacitor 10, and the insulating layer 21.
  • the hole 30 is formed by drilling as will be described later.
  • a hole 30 having a planar circular shape and an opening size of 50 ⁇ m to 300 ⁇ m in diameter is provided.
  • the hole 30 is in contact with the recess 13a at the position of the opening 12a of the electrode layer 12 and the recess 13a of the electrode layer 13, and has an opening size smaller than the opening 12a (size smaller than the opening 12a in plan view). ,It is formed.
  • the dielectric layer 11 and the electrode layer 13 of the capacitor 10 are exposed on the inner wall of the hole 30.
  • the exposed portion of the electrode layer 13 includes a recessed portion 13a that is a thinned portion.
  • a conductor via 31 is provided in the hole 30.
  • Various conductor materials are used for the conductor via 31.
  • a metal material is used for the conductor via 31.
  • the conductor via 31 is formed by using a plating method as will be described later.
  • the conductor via 31 is, for example, a conformal via provided on the inner wall of the hole 30 leaving the cavity 40 in the center.
  • the cavity 40 may be filled with resin (not shown).
  • a conductor layer 33 connected to the conductor via 31 provided in the hole 30 is provided on the upper surface 22 a of the insulating layer 22, a conductor layer 33 connected to the conductor via 31 provided in the hole 30 is provided.
  • Various conductor materials are used for the conductor layer 33.
  • a metal material is used for the conductor layer 33.
  • the metal material of the conductor layer 33 Cu or the like can be used.
  • the conductor layer 33 is formed simultaneously with the conductor via 31 when the conductor via 31 is formed on the inner wall of the hole 30 using a plating method, for example, as will be described later.
  • the conductor via 31 penetrates the recess 13 a and the dielectric layer 11 of the electrode layer 13 of the capacitor 10 in contact therewith, and penetrates the opening 12 a of the electrode layer 12 in a non-contact manner.
  • the conductor via 31 (and the conductor layer 33 connected thereto) is electrically connected to the electrode layer 13 of the capacitor 10.
  • an opening 12a larger than the hole 30 for forming the conductor via 31 is provided in the electrode layer 12 in advance, and the formation position of the hole 30 for forming the conductor via 31 in advance in the electrode layer 13 Is provided with a recess 13a. Then, with the capacitor 10 including the electrode layer 12 and the electrode layer 13 provided between the insulating layer 21 and the insulating layer 22, a hole is formed by drilling so as to penetrate the opening 12a and the recess 13a. 30 is formed.
  • FIG. 7 and 8 are explanatory diagrams of an example of drilling according to the first embodiment.
  • FIG. 7A schematically illustrates a cross-section of the main part of the substrate before drilling
  • FIG. 7B schematically illustrates a plan view of the main part of the capacitor before drilling
  • FIG. 8A schematically shows a cross-section of the main part of the substrate after drilling
  • FIG. 8B schematically shows a plan view of the main part of the capacitor after drilling.
  • a substrate 1 a shown in FIG. 7A includes an insulating layer 21, a capacitor 10 provided on the insulating layer 21, and an insulating layer 22 provided on the capacitor 10.
  • FIG. 7B (and FIG. 8B), the opening 12a of the electrode layer 12 of the capacitor 10 is illustrated by a dotted line.
  • the electrode layer 13 is provided with a recess 13a at a position corresponding to the opening 12a of the electrode layer 12 before drilling.
  • a planar circumferential shape including the entire outer edge E (shown by a chain line) at a position where the hole 30 is formed by drilling is formed as the recess 13a of the electrode layer 13.
  • a recess 13a is provided.
  • the recess 13a as shown in FIGS. 7A and 7B is formed by, for example, half-etching the electrode layer 13 before forming the insulating layer 22 on the capacitor 10 as described later. Is done.
  • the openings of the insulating layer 22, the recess 13a of the electrode layer 13 of the capacitor 10, the dielectric layer 11, and the electrode layer 12 as shown in FIG. 8A.
  • a hole 30 is formed through the portion 12 a and the insulating layer 21.
  • the inner wall of the hole 30 to be formed is inside the edge of the opening 12a (illustrated by a dotted line) of the electrode layer 12, and the recess 13a of the electrode layer 13. Located in.
  • the electrode layer 13 is provided with a planar circumferential recess 13a including the entire outer edge E at the drilling position, and the outer edge E at the drilling position of the electrode layer 13 is provided. It is thin. Thereby, the stress at the time of drilling the electrode layer 13 is reduced as compared with the case of drilling the electrode layer 13 not provided with such a recess 13a.
  • the concave portion 13a of the electrode layer 13 has a planar circumferential shape and the convex portion 13c is left in the center, such a convex portion is not necessarily provided.
  • the etching in the surface of the electrode layer 13 may proceed non-uniformly depending on the material of the electrode layer 13, the etching conditions, and the like.
  • the etching region is wide, the portion to be left as the recess 13a of the electrode layer 13 penetrates the circuit board 1, and when the conductor via 31 is formed in the hole 30 after drilling, the conductor via 31 and the electrode layer 13 is not connected (disconnected), and the performance of the circuit board 1 may be deteriorated.
  • the outer edge E at the drilling position of the electrode layer 13 is made thin while suppressing a problem that may be caused by the etching region of the electrode layer 13 being widened, and stress during drilling of the electrode layer 13 is reduced. Can be reduced.
  • a part of the recess 13a includes a penetrating portion. May be.
  • FIG. 9A schematically shows a cross section of the main part of the substrate before drilling
  • FIG. 9B schematically shows a plan view of the main part of the capacitor before drilling
  • FIG. 10A schematically shows a cross-section of the main part of the substrate after drilling
  • FIG. 10B schematically shows a plan view of the main part of the capacitor after drilling.
  • the substrate 1 a shown in FIG. 9A includes an insulating layer 21, a capacitor 10 provided on the insulating layer 21, and an insulating layer 22 provided on the capacitor 10.
  • FIG. 9B (and FIG. 10B), the opening 12a of the electrode layer 12 of the capacitor 10 is illustrated by a dotted line.
  • the electrode layer 13 is provided with a recess 13a at a position corresponding to the opening 12a of the electrode layer 12 before drilling.
  • a planar circular shape including a part of the outer edge E shown by a chain line
  • the hole 30 is formed by drilling as the concave portion 13a of the electrode layer 13.
  • the recess 13a group as shown in FIG. 9A and FIG. 9B can be obtained by, for example, half-etching the electrode layer 13 before forming the insulating layer 22 on the capacitor 10, as will be described later. It is formed.
  • the insulating layer 22, the recess 13a group of the electrode layer 13 of the capacitor 10, the dielectric layer 11, and the electrode layer 12 As shown in FIG. 9A, the insulating layer 22, the recess 13a group of the electrode layer 13 of the capacitor 10, the dielectric layer 11, and the electrode layer 12 as shown in FIG. A hole 30 penetrating the opening 12a and the insulating layer 21 is formed. As shown in FIGS. 10A and 10B, the inner wall of the hole 30 to be formed is inside the edge of the opening 12a (illustrated by a dotted line) of the electrode layer 12, and the recess 13a of the electrode layer 13. It is located between the group and the adjacent recesses 13a (the part where the electrode layer 13 is not thinned).
  • the electrode layer 13 is provided with a plurality of planar circular recesses 13a including a part of the outer edge E at the drilling position, and the outer edge of the electrode layer 13 at the drilling position. Several portions of E are thinned. Thereby, the stress at the time of drilling the electrode layer 13 is reduced as compared with the case of drilling the electrode layer 13 not provided with such a group of recesses 13a.
  • the outer edge E of the electrode layer 13 at the drilling position is suppressed while suppressing an increase in electric resistance between the conductor via 31 and the electrode layer 13.
  • the stress at the time of drilling the electrode layer 13 can be reduced.
  • each of the recesses 13a as shown in the examples of FIGS. 9 and 10 are not limited to the above examples.
  • the stress reduction effect during drilling of the electrode layer 13 increases.
  • the effect of reducing the electrical resistance with the conductor via 31 formed on the inner wall of the hole 30 increases as the area of the non-thinned portion of the electrode layer 13 increases due to the recess 13a group.
  • the electrode layer 13 can be reduced and the electrode layer 13 can be sufficiently electrically connected to the conductor via 31 at a portion where the electrode layer 13 is not thinned, a part of the recess 13a group or The whole may be a through hole, or a through site may be included in a part of the recess 13a.
  • the electrode layer 13 is provided by providing a recess 13a or a group of recesses 13a at a predetermined portion of the electrode layer 13 before drilling. Stress during drilling is reduced. Therefore, as shown in FIG. 4 and FIG. 5, the deformation of the electrode layer 130 and the dielectric layer 110 below it due to the stress during drilling, and the generation of the crack 600 between the electrode layer 130 and the dielectric layer 110. Further, peeling 630 at the time of heating due to the crack 600 is suppressed. In the substrate 1a, by suppressing the occurrence of cracks and peeling between the electrode layer 13 and the dielectric layer 11, it is possible to suppress a decrease in the capacitance of the built-in capacitor 10.
  • FIGS. 7 and 8 exemplify concave portions 13a whose outer shape is a plane circular shape
  • FIGS. 9 and 10 illustrate a group of concave portions 13a whose outer shape is a flat circular shape. It is not limited to a planar circular shape
  • FIGS. 7 and 8 and FIGS. 9 and 10 illustrate the conductor via 31 and the opening 12a whose outer shape is a plane circle, but the outer shapes of the conductor via 31 and the opening 12a are also illustrated. It is not limited to a planar circular shape.
  • the outer shape of the conductor via 31, each recess 13a, and the opening 12a is various planes. It can be a shape.
  • the recess 13a or the recess 13a group provided in the electrode layer 13 is formed in the electrode layer 13 and the drilled hole 30 while the stress reduction effect at the time of drilling increases as the area or total area increases.
  • the contact area with the conductive via 31 is reduced.
  • the electrode layer 13 provided with the recess 13a or the recess 13a group, and the electrical resistance between the electrode layer 13 provided with the recess 13a or the recess 13a group and the conductor via 31 the electrode layer The depth and area of the concave portion 13a or the concave portion 13a group provided in the group 13 are set.
  • FIGS. 11A to 11C and FIGS. 12A to 12C each schematically show a cross-section of the main part of each step of circuit board formation according to the first embodiment. Show.
  • the insulating layer 21 and the capacitor substrate 10a as shown in FIG. A laminate is prepared.
  • the dielectric layer 11 mainly composed of BTO is sintered on one electrode layer 13 mainly composed of Ni, and the other electrode mainly composed of Cu is formed thereon. It is obtained by coating the layer 12.
  • one electrode layer 12 is patterned, integrated with an insulating layer 21 using a resin or the like, and the other electrode layer 13 is further patterned.
  • a resist pattern 14 having an opening 14a in a region where a recess 13a or a group of recesses 13a is to be formed is formed on the electrode layer 13 of the capacitor substrate 10a in such a laminate.
  • the electrode layer 13 is half-etched using the resist pattern 14 as a mask.
  • a recess 13 a or a group of recesses 13 a is formed in a region including the whole or a part of the outer edge at the drilling position when the hole 30 is formed by drilling to be described later.
  • the recess 13a as illustrated in FIGS. 7A and 7B or the group of recesses 13a as illustrated in FIGS. 9A and 9B uses the resist pattern 14.
  • the electrode layer 13 is formed by half etching.
  • the half etching of the electrode layer 13 can be performed by wet etching. At the time of etching, various conditions (type of etching solution, temperature, concentration, processing time, etc.) are adjusted. Various etching conditions are adjusted, and a recess 13 a or a group of recesses 13 a having a predetermined depth is formed in the electrode layer 13. For example, a recess 13a or a group of recesses 13a having a depth of 20 ⁇ m is formed by half-etching the electrode layer 13 having a thickness of 30 ⁇ m. In this case, the electrode layer 13 having a thickness of 10 ⁇ m remains under the recess 13a.
  • the resist pattern 14 is removed. Thereby, the capacitor substrate 10a including the electrode layer 12 having the opening 12a, the dielectric layer 11, and the electrode layer 13 having the recess 13a or the recess 13a group in a region corresponding to the opening 12a on the insulating layer 21.
  • the laminated body 1aa provided with is obtained.
  • an insulating layer 22 using a resin or the like is formed on the obtained laminate 1aa.
  • the insulating layer 22 is thermocompression-bonded on the capacitor substrate 10a provided on the insulating layer 21, and is integrated with the insulating layer 21 and the capacitor substrate 10a.
  • FIGS. 11A to 11C and 12A For example, a method as shown in FIGS. 11A to 11C and 12A is used, and the capacitor 10 (capacitor substrate 10a) is placed in the insulating layer 21 and the insulating layer 22 (insulating layer 20). A built-in substrate 1a is formed.
  • a hole 30 penetrating the insulating layer 22, the capacitor 10, and the insulating layer 21 is formed as shown in FIG. 12B.
  • the hole 30 is formed by drilling.
  • the hole 30 is formed at the position of the opening 12 a provided in the electrode layer 12 of the capacitor 10 and the recess 13 a or the group of recesses 13 a provided in the electrode layer 13.
  • the holes 30 are formed by drilling.
  • the one electrode layer 13 of the capacitor 10 has a recess 13a or a group of recesses 13a in a region corresponding to the opening 12a and including the whole or part of the outer edge of the drilling position before drilling. Is formed.
  • the other electrode layer 12 of the capacitor 10 has an opening 12a having a larger opening size than the outer edge of the drilling position before drilling.
  • the recess 13a or the group of recesses 13a is formed at the drilling position of one electrode layer 13, so that the electrodes are not formed compared to the case where they are not formed.
  • the stress when the layer 13 is cut with a drill is reduced.
  • the electrode layer 12 is not cut by the drilling process. Since the stress at the time of drilling is reduced by the recess 13a or the recess 13a group, the deformation of the electrode layer 130 and the dielectric layer 110 therebelow, the electrode layer 130 and the dielectric as shown in FIGS. Generation of cracks 600 with body layer 110 is suppressed.
  • a conductor material such as Cu is formed on the inner wall of the hole 30 as shown in FIG.
  • the conductor layer (seed layer) 30a is first formed by electroless plating, and then the conductor layer (plating layer) 30b is formed by electrolytic plating using the seed layer 30a as a power feeding layer.
  • the conductor via 31 is formed on the inner wall of the hole 30.
  • the conductor via 31 includes the dielectric layer 11 of the capacitor 10, the electrode layer 12, and the electrode layer 13 that are exposed on the inner wall of the hole 30 formed by drilling, and the recess 13 a or the recess of the electrode layer 13. It is in contact with the group 13a and is electrically connected to the electrode layer 13.
  • the seed layer 30a and the plating layer 30b are formed on the upper surface 22a of the insulating layer 22 in addition to the inner wall of the hole 30 as shown in FIG. Thereby, the conductor layer 33 is formed on the upper surface 22 a of the insulating layer 22.
  • the conductor layer 33 may be patterned into a predetermined shape.
  • the conductor via 31 is formed on the inner wall of the hole 30 and is formed as a conformal via leaving the cavity 40 in the center.
  • the cavity 40 may be filled with a resin (not shown) such as an epoxy resin.
  • the hole 30 can be filled with a conductor material to form a filled via.
  • FIG. 13 is a diagram showing another example of the circuit board forming method according to the first embodiment.
  • FIGS. 13A to 13C each schematically show a cross-section of the main part of each step of circuit board formation according to the first embodiment.
  • a stacked body of the insulating layer 21 and the capacitor substrate 10a as shown in FIG. 13A is prepared in accordance with the example of FIGS. 1A to 1C.
  • the capacitor substrate 10a has a dielectric layer 11, a patterned electrode layer 12, and an electrode layer 13 before patterning, and is integrated with an insulating layer 21 using a resin or the like.
  • a resist pattern 15 for patterning the electrode layer 13 is formed on the electrode layer 13 of the capacitor substrate 10a in such a laminate.
  • the resist pattern 15 has an opening 15b provided in a region where the electrode layer 13 is removed, and an opening 15a leading to a region where the recess 13a or the recess 13a group is formed.
  • the opening 15a leading to the region where the recess 13a or the recess 13a group is formed has, for example, a relatively fine size in which the opening size is equal to or less than the thickness of the electrode layer 13. It is an opening.
  • the electrode layer 13 is etched using the resist pattern 15 as a mask, as shown in FIG.
  • Etching of the electrode layer 13 can be performed by wet etching. At the time of etching, various conditions (type of etching solution, temperature, concentration, processing time, etc.) are adjusted.
  • the electrode layer 13 in the opening 15b is removed, and the electrode layer 13 is patterned into a predetermined planar shape.
  • the etching of the region for forming the recess 13a or the recess 13a group of the electrode layer 13 also proceeds through the opening 15a having a relatively fine opening.
  • the etching rate of the electrode layer 13 is reduced as compared with the opening 15b having a larger opening size by making the opening 15a a relatively fine opening.
  • the resist pattern 15 is removed as shown in FIG. Thereby, the laminated body 1aa in which the capacitor substrate 10a including the electrode layer 12 having the opening 12a, the dielectric layer 11, and the electrode layer 13 having the concave portion 13a or the concave portion 13a group is provided on the insulating layer 21. can get.
  • the electrode layer 13 can be patterned into a predetermined planar shape and the recesses 13a or the recesses 13a can be formed simultaneously. .
  • the insulating layer 22 is formed on the stacked body 1aa to form the substrate 1a (FIG. 12A), and the hole 30 is formed by drilling. Is formed (FIG. 12B), and the conductor via 31 and the conductor layer 33 are formed by plating (FIG. 12C).
  • the circuit board 1 can also be formed using the method as described above.
  • the recess 13a is formed with respect to the electrode layer 13 of the capacitor substrate 10a after being integrated with the insulating layer 21.
  • the recess 13a group is formed.
  • the formation of the concave portion 13a or the concave portion 13a group of the electrode layer 13 is performed before the integration with the insulating layer 21 in accordance with the examples of FIGS. 11 (A) to 11 (C) or FIGS. 13 (A) to 13 (C). It can also be performed on the electrode layer 13 of the capacitor substrate 10a.
  • the capacitor substrate 10a in which both the electrode layer 12 and the electrode layer 13 are patterned is integrated with the insulating layer 21, and the steps as shown in FIGS. 12A to 12C are performed.
  • the electrode layer 13 is provided with a recess 13a or a group of recesses 13a at a position corresponding to the outer edge of the drilling position. Therefore, stress during drilling of the electrode layer 13 is reduced, deformation of the electrode layer 13 and the dielectric layer 11 thereunder is suppressed, and generation of cracks between the electrode layer 13 and the dielectric layer 11 is suppressed. . In the circuit board 1, since the generation of cracks between the electrode layer 13 and the dielectric layer 11 is suppressed, the penetration of the plating solution into the cracks when the conductor via 31 is formed in the hole 30 using the plating method. Is suppressed.
  • the reliability and performance of the capacitor 10 can effectively suppress the occurrence of cracks during drilling, the separation during testing with heating or during actual use, and the resulting decrease in capacitance.
  • the circuit board 1 excellent in the above is realized.
  • the capacitor 10 or the capacitor substrate 10a is arranged with the electrode layer 12 facing the insulating layer 21 and the electrode layer 13 facing the insulating layer 22, but of course the electrode layer 13 is facing the insulating layer 21 and the electrode
  • the layer 12 may be disposed toward the insulating layer 22 side.
  • an opening larger than the outer edge of the drilling position is formed in the electrode layer 13 on the lower layer side, and the electrode layer 12 on the upper layer side is in a region corresponding to the opening of the electrode layer 13, A recess or a group of recesses is formed in a region including the whole or part of the outer edge of the drilling position.
  • the concave portion 13a or the concave portion 13a group is provided in the electrode layer 13 of the capacitor 10
  • the concave portion or the concave portion group may be provided in the electrode layer 12 together with the electrode layer 13.
  • the capacitor substrate 10a (FIG. 1A) before being integrated with the insulating layer 21 is drilled in a predetermined region of the electrode layer 12 (a region corresponding to the opening of the electrode layer 13).
  • a recess or a group of recesses is formed in a region including the whole or part of the position outer edge.
  • the formation of the concave portion or the concave portion group on the electrode layer 12 of the capacitor substrate 10a is performed according to an example of a method as shown in FIG. 11 (A) to FIG. 11 (C) or FIG. 13 (A) to FIG. 13 (C). It can be carried out.
  • the capacitor substrate 10a is integrated with the insulating layer 21, and a recess is formed in a predetermined region of the electrode layer 13 (a region corresponding to the opening 12a of the electrode layer 12 and including the whole or part of the outer edge of the drilling position). 13a or recess 13a group is formed.
  • the formation of the recess 13 a or the group of recesses 13 a of the electrode layer 13 may be performed on the electrode layer 13 of the capacitor substrate 10 a before being integrated with the insulating layer 21.
  • Formation of the concave portion 13a or the concave portion 13a group on the electrode layer 13 can be performed according to the example of the method shown in FIGS. 11 (A) to 11 (C) or FIGS. 13 (A) to 13 (C). .
  • a build-up process in which an insulating layer such as a resin is laminated on the circuit board 1 formed as described above and a conductor via and a conductor layer are formed on the insulating layer is performed by 1 It may be repeated once or a plurality of times to obtain a circuit board having a desired number of wiring layers.
  • FIG. 14 is a diagram illustrating an example of a circuit board according to the second embodiment.
  • FIG. 14 schematically shows a cross section of an essential part of an example of a circuit board according to the second embodiment.
  • a circuit board 1A shown in FIG. 14 includes a base substrate 24 including wirings 24a, an insulating layer 21 provided on the base substrate 24, a capacitor 10 provided on the insulating layer 21, and a capacitor 10 provided. And an insulating layer 22.
  • a plurality of (in this example, three) holes 30 are provided so as to penetrate the insulating layer 22, the capacitor 10, the insulating layer 21, and the base substrate 24.
  • Conformal via-shaped conductor vias 31 are provided on the inner wall of each hole 30.
  • the electrode layer 12 of the capacitor 10 is provided with a recess 12b or a group of recesses 12b or an opening 12a at a position where the conductor via 31 is provided.
  • the electrode layer 13 of the capacitor 10 is provided with an opening 13b or a recess 13a or a group of recesses 13a at a position where the conductor via 31 is provided.
  • One of the conductor vias 31 passes through the opening 12a of the electrode layer 12, the dielectric layer 11, and the opening 13b of the electrode layer 13, and is not electrically connected to the capacitor 10.
  • Another conductor via 31 penetrates through the opening 13b of the electrode layer 13, the dielectric layer 11, and the recess 12b or the recess 12b group of the electrode layer 12, and the recess 12b or A group of recesses 12 b is located and is electrically connected to the electrode layer 12 of the capacitor 10.
  • Still another conductor via 31 penetrates the recess 13a or group of recesses 13a of the electrode layer 13, the dielectric layer 11, and the opening 12a of the electrode layer 12, and the recess 13a in the outer peripheral portion 31A.
  • the recess 13 a group is located and is electrically connected to the electrode layer 13 of the capacitor 10.
  • Resin 41 is filled inside the conductor via 31.
  • a conductor layer 36 is provided above and below the conductor via 31 filled with the resin 41.
  • the conductor layer 36 is formed by using, for example, a plating method (so-called lid plating).
  • lid plating a plating method
  • the conductor layer 33 provided on the insulating layer 22 and the conductor layer 33 similarly provided below the base substrate 24 are patterned into a predetermined shape together with the conductor layer 36 after the formation of the conductor layer 36.
  • the buildup layer 2a is provided on the insulating layer 22 and the base substrate 24, respectively.
  • Each build-up layer 2 a includes an insulating layer 23, a connection via 35 provided in a hole 35 a that penetrates the insulating layer 23 and communicates with the conductor layer 36 on the conductor via 31, and a conductor provided on the connection via 35.
  • Layer 37 is included.
  • the conductor layer 37 is used as a terminal for external connection of the circuit board 1A.
  • FIG. 14 illustrates three conductor vias 31, that is, a conductor via 31 a that is not electrically connected to the capacitor 10, and a conductor via 31 b and a conductor via 31 c that are electrically connected to the capacitor 10.
  • the conductor layer 37 (terminal 37a) electrically connected to the conductor via 31a serves as a signal terminal.
  • the conductor layer 37 (terminal 37b) electrically connected to the conductor via 31b and the conductor layer 37 (terminal 37c) electrically connected to the conductor via 31c one is a power supply terminal and the other is a GND terminal. It is said.
  • one of the electrode layer 12 electrically connected to the conductor via 31b and the electrode layer 13 electrically connected to the conductor via 31c of the capacitor 10 is set to the power supply potential, and the other is set to the GND potential. Is done.
  • a circuit board 1A as shown in FIG. 14 is obtained.
  • the electrode layer 12 before drilling is provided with a recess 12b or a group of recesses 12b corresponding to the opening 13b of the electrode layer 13, thereby drilling the electrode layer 12.
  • Time stress is reduced.
  • the electrode layer 13 before drilling is provided with a recess 13 a or a group of recesses 13 a corresponding to the opening 12 a of the electrode layer 12. Stress during drilling is reduced. Accordingly, the circuit board 1A with excellent reliability and performance can effectively suppress the generation of cracks during drilling of the capacitor 10, the peeling during heating caused by the cracks, and the decrease in the capacitance due thereto. Is realized.
  • the conductor via 31 (31a, 31b, 31c) may be a filled via.
  • Various electronic components such as a semiconductor device such as a semiconductor chip and a semiconductor package can be mounted on the circuit boards 1 and 1A and the like described in the first and second embodiments.
  • FIG. 15 is a diagram illustrating an example of an electronic apparatus according to the third embodiment.
  • FIG. 15 schematically illustrates a cross-section of an essential part of an example of an electronic device according to the third embodiment.
  • the circuit board 1A described in the second embodiment is taken as an example.
  • An electronic device 50 shown in FIG. 15 includes a circuit board 1A and an electronic component 60 mounted on the circuit board 1A.
  • the electronic device 50 has a configuration in which the circuit board 1 ⁇ / b> A on which the electronic component 60 is mounted is further mounted on the circuit board 70.
  • the electronic component 60 is, for example, a semiconductor chip or a semiconductor package including the semiconductor chip. Such an electronic component 60 is mounted on the circuit board 1A.
  • the terminal 37a, the terminal 37b, and the terminal 37c provided on the mounting surface side of the electronic component 60 of the circuit board 1A, and the terminal 61a, the terminal 61b, and the terminal 61c provided on the electronic component 60 are respectively made of solder. Bonded via the bumps 62. Thereby, the electronic component 60 and the circuit board 1A are electrically connected.
  • the terminal 61a of the electronic component 60 is a signal terminal.
  • the terminal 61b and 61c of the electronic component 60 for example, the terminal 61b is a power supply terminal and the terminal 61c is a GND terminal.
  • the circuit board 1A on which the electronic component 60 is thus mounted is further mounted on the circuit board 70.
  • the circuit board 70 is, for example, a printed board.
  • the terminal 37a, the terminal 37b and the terminal 37c provided on the circuit board 70 side of the circuit board 1A, and the terminal 71a, the terminal 71b and the terminal 71c provided on the circuit board 70 respectively have bumps 72 using solder or the like. Are joined together.
  • the circuit board 1A on which the electronic component 60 is mounted and the circuit board 70 are electrically connected.
  • the terminal 71a of the circuit board 70 is a signal terminal.
  • the terminal 71b and 71c of the circuit board 70 for example, the terminal 71b is a power supply terminal and the terminal 71c is a GND terminal.
  • the capacitor 10 is provided on the power supply line from the circuit board 70 to the electronic component 60.
  • the electrode layer 12 of the capacitor 10 is set to the power supply potential
  • the electrode layer 13 is set to the GND potential.
  • a recess 12 b or a group of recesses 12 b is provided at the drilling position of the electrode layer 12 of the capacitor 10, and a recess 13 a or a group of recesses 13 a is provided at the drilling position of the electrode layer 13.
  • a circuit board 1A having excellent performance is realized. By using such a circuit board 1A, the electronic device 50 excellent in reliability and performance against heating is realized.
  • the electronic device 50 can be further mounted on various electronic devices (also referred to as electronic devices).
  • various electronic devices such as computers (personal computers, supercomputers, servers, etc.), smartphones, mobile phones, tablet terminals, sensors, cameras, audio devices, measuring devices, inspection devices, and manufacturing devices.
  • FIG. 16 is a diagram illustrating an example of an electronic apparatus according to the third embodiment.
  • FIG. 16 schematically illustrates an example of an electronic device.
  • the electronic device 50 as described above is mounted (built in) the electronic device 80.
  • the circuit board 1 ⁇ / b> A used in the electronic device 50 it is possible to effectively suppress the occurrence of cracks during drilling of the capacitor 10, peeling during testing with heating or during actual use, and a decrease in capacitance due thereto. .
  • the electronic device 50 excellent in the reliability and performance with respect to heating is implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 キャパシタを内蔵する回路基板の、加熱による信頼性及び性能の低下を抑える。 回路基板(1)は、絶縁層(20)内に設けられたキャパシタ(10)を有する。キャパシタ(10)は、誘電体層(11)と、誘電体層(11)の一方の面に設けられ開口部(12a)を有する電極層(12)と、誘電体層(11)の他方の面に設けられ開口部(12a)と対応する位置に凹部(13a)を有する電極層(13)とを含む。回路基板(1)には、誘電体層(11)、開口部(12a)及び凹部(13a)を貫通し、電極層(13)の凹部(13a)に接し、平面視で電極層(12)の開口部(12a)よりも小さい導体ビア(31)が設けられる。

Description

回路基板、回路基板の製造方法及び電子装置
 本発明は、回路基板、回路基板の製造方法及び電子装置に関する。
 回路基板にキャパシタ(コンデンサ)を内蔵する技術が知られている。キャパシタは、所定材料を用いた誘電体層を一対の導体層で挟んだ構造とされる。
 キャパシタを内蔵する回路基板に関し、その内部の層間接続のため、誘電体層とそれを挟む導体層対の一方とに接してキャパシタを貫通するような導体ビアを設ける技術が知られている。このほか、誘電体層とそれを挟む導体層対の少なくとも一方とに接しないでキャパシタを貫通するような導体ビアを設ける技術も知られている。導体ビアは、キャパシタの所定部位を貫通する孔を形成し、その孔に導体ビアの材料を形成することで、回路基板内に設けられる。
特開2006-210776号公報 特開2015-18988号公報
 キャパシタを内蔵し、誘電体層とそれを挟む導体層対の一方とに接してキャパシタを貫通するように導体ビアを設ける回路基板では、導体ビアの形成時に、誘電体層と導体層との間にクラックや剥離が生じることがある。キャパシタの誘電体層と導体層との間に生じるクラックや剥離は、キャパシタの静電容量を低下させ、キャパシタを内蔵する回路基板の信頼性及び性能を低下させる可能性がある。
 本発明の一観点によれば、絶縁層と、前記絶縁層内に設けられ、誘電体層と、前記誘電体層の第1面に設けられ開口部を有する第1導体層と、前記誘電体層の前記第1面とは反対の第2面に設けられ前記開口部と対応する位置に凹部を有する第2導体層とを含むキャパシタと、前記絶縁層内に設けられ、前記誘電体層、前記開口部及び前記凹部を貫通し、前記凹部に接し、平面視で前記開口部よりも小さい導体ビアとを含む回路基板が提供される。
 また、本発明の一観点によれば、上記のような回路基板の製造方法、及び上記のような回路基板を含む電子装置が提供される。
 開示の技術によれば、キャパシタの誘電体層と導体層との間のクラックや剥離、それによる静電容量の低下が抑えられ、信頼性及び性能に優れる回路基板が実現される。また、そのような回路基板を含む、信頼性及び性能に優れる電子装置が実現される。
 本発明の目的、特徴及び利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
回路基板の形成方法の一例を示す図(その1)である。 回路基板の形成方法の一例を示す図(その2)である。 回路基板の形成方法の一例を示す図(その3)である。 回路基板形成における孔開け工程の説明図である。 回路基板形成における導体ビア形成工程及び加熱工程の説明図である。 第1の実施の形態に係る回路基板の一例を示す図である。 第1の実施の形態に係るドリル加工の一例の説明図(その1)である。 第1の実施の形態に係るドリル加工の一例の説明図(その2)である。 第1の実施の形態に係るドリル加工の別例の説明図(その1)である。 第1の実施の形態に係るドリル加工の別例の説明図(その2)である。 第1の実施の形態に係る回路基板の形成方法の一例を示す図(その1)である。 第1の実施の形態に係る回路基板の形成方法の一例を示す図(その2)である。 第1の実施の形態に係る回路基板の形成方法の別例を示す図である。 第2の実施の形態に係る回路基板の一例を示す図である。 第3の実施の形態に係る電子装置の一例を示す図である。 第3の実施の形態に係る電子機器の一例を示す図である。
 近年、電子装置、電子機器に搭載される半導体チップ、半導体パッケージ等の半導体装置の高性能化、動作の高速化、大電流化、低電圧化が進行している。このような半導体装置の安定な動作には、電源電圧の変動を抑制すること、高周波ノイズを除去することが重要になる。そのため、半導体装置が搭載される回路基板には、電源インピーダンスの低減が求められている。
 電源インピーダンスを低減するための手法の1つに、チップコンデンサを回路基板に実装し、回路基板の電源線とグランド(GND)線との間にチップコンデンサを接続する手法が知られている。また、半導体装置からコンデンサまでの配線長を短くして配線のインダクタンス成分を抑える観点から、回路基板にチップコンデンサを内蔵する手法や、誘電体層とそれを挟む一対の導体層で形成されるキャパシタ(薄膜キャパシタ)を内蔵する手法が知られている。
 ここで、キャパシタを内蔵する回路基板について説明する。
 キャパシタを内蔵する回路基板は、絶縁層内に、誘電体層を一対の導体層で挟んだ構造を有するキャパシタを含む。導体層対の一方は電源電位、他方はGND電位とされ、それぞれ回路基板の外部接続用の電源端子、GND端子と電気的に接続される。
 キャパシタを内蔵する回路基板では、内部の層間接続のために、絶縁層内に設けられたキャパシタを貫通するような導体ビアが設けられ得る。このような導体ビアを含む回路基板は、例えば、次のような方法で形成される。
 図1~図3は回路基板の形成方法の一例を示す図である。図1(A)~図1(C)、図2(A)~図2(C)及び図3(A)~図3(C)にはそれぞれ、回路基板形成の各工程の要部断面を模式的に図示している。
 まず、図1(A)に示すような、誘電体層110が一対の導体層(電極層)120及び導体層(電極層)130で挟まれたキャパシタ基板100aが準備される。キャパシタ基板100aは、例えば、一方の電極層130上に誘電体層110を形成し、その上にもう一方の電極層120を形成することで、得られる。誘電体層110には、各種誘電体材料が用いられ、電極層120及び電極層130には、各種導体材料が用いられる。例えば、誘電体層にはチタン酸バリウム(BaTiO3;BTO)等のセラミック材料が用いられ、電極層120及び電極層130には銅(Cu)、ニッケル(Ni)等の金属材料が用いられる。
 次いで、キャパシタ基板100aの一方の電極層120が、所定形状にパターニングされる。電極層120のパターニングは、例えばエッチングにより行われる。図1(B)には、電極層120の、後述する導体ビア310(又はそれを形成する孔300)が形成される位置を含む領域に、開口部121が形成された例を図示している。
 電極層120がパターニングされたキャパシタ基板100aは、図1(C)に示すように、絶縁層210と一体化される。絶縁層210は、例えば、1層又は複数層の配線層を有するベース基板上に設けられた、樹脂、プリプレグ等の絶縁層、例えばエポキシ樹脂等が用いられた絶縁層である。このような絶縁層210上に、キャパシタ基板100aが、パターニングされたその電極層120側を絶縁層210に対向され、加熱されながら加圧されて接着(熱圧着)されることで、絶縁層210と一体化される。
 絶縁層210と一体化されたキャパシタ基板100aは、もう一方の電極層130が、所定形状にパターニングされる。電極層130のパターニングは、例えばエッチングにより行われる。この場合は、まず図2(A)に示すように、電極層130上に、所定形状のレジストパターン140が形成される。次いで、図2(B)に示すように、形成されたレジストパターン140をマスクにして、電極層130のエッチングが行われ、電極層130が所定平面形状にパターニングされる。エッチング後、図2(C)に示すように、レジストパターン140が除去される。電極層130は、電極層120及びその開口部121と対応する位置に設けられるように、パターニングされる。
 電極層130のパターニング後、キャパシタ基板100a上には、図3(A)に示すように、絶縁層220が形成される。絶縁層220は、例えば、樹脂、プリプレグ等の絶縁層、例えばエポキシ樹脂等が用いられた絶縁層である。このような絶縁層220が、絶縁層210上のキャパシタ基板100aの上に熱圧着される。これにより、絶縁層210と一体化されたキャパシタ基板100aが、絶縁層220によって被覆される。
 以上のような工程により、絶縁層210及び絶縁層220(絶縁層200)内にキャパシタ100(キャパシタ基板100a)を内蔵する回路基板の基本構造が形成される。
 回路基板に、その内部の層間接続のため、内蔵されるキャパシタ100を貫通するような導体ビアを設ける場合、まず、図3(B)に示すように、キャパシタ100を貫通する孔300が形成される。孔300は、レーザー加工又はドリル加工によって形成される。孔300は、例えば、回路基板を貫通するように、或いは絶縁層210側のベース基板に設けられた配線層の一部に通じるように、形成される。
 孔300は、電極層120の開口部121の位置に、開口部121よりも小さい開口サイズ(平面視で開口部121よりも小さいサイズ)で形成される。換言すれば、電極層120のパターニング時(図1(B))には、形成される孔300よりも大きな開口サイズの開口部121が形成される。孔300の内壁には、図3(B)に示すように、キャパシタ100の誘電体層110、電極層120及び電極層130のうち、誘電体層110及び一方の電極層130が露出する。
 孔300の形成後、図3(C)に示すように、孔300の内壁に導体材料が形成され、導体ビア310が形成される。導体ビア310には、各種導体材料、例えばCu等の金属材料が用いられる。導体ビア310は、例えば、まず無電解メッキによって導体層(シード層)301を形成し、次いでそのシード層301を給電層に用いた電解メッキによって導体層(メッキ層)302を形成することで、得られる。
 孔300の内壁に導体ビア310が形成される際には、絶縁層220の上面にもシード層301及びメッキ層302が形成される。絶縁層220の上面に形成されるシード層301及びメッキ層302は、回路基板の、導体ビア310と繋がる配線の一部(導体層313)として用いられる。
 図3(C)に示すように、孔300の内壁に設けられた導体ビア310は、孔300の形成時にその内壁に露出したキャパシタ100の誘電体層110と電極層130とに接する。これにより、キャパシタ100を貫通する導体ビア310と、キャパシタ100の電極層130とが電気的に接続される。接続された導体ビア310とキャパシタ100の電極層130とは、電源電位又はGND電位とされる。尚、キャパシタ100の、開口部121が設けられ導体ビア310とは接続されないもう一方の電極層120は、導体ビア310と接続される電極層130とは異なる電位とされる。導体ビア310により、回路基板内の、キャパシタ100を含む複数の層間を電気的に接続する層間接続構造が形成される。
 例えば図3(C)に示すように、内壁に導体ビア310が形成された孔300の中央部には、導体ビア310の形成後、空洞400が残る。この空洞400内には、エポキシ樹脂等の樹脂(図示せず)が充填されてもよい。尚、ここでは導体ビア310として、孔300の内壁に形成されたコンフォーマルビアを例示するが、孔300内に導体材料を充填したフィルドビアが形成されてもよい。
 ここでは図示を省略するが、図3(C)の工程後、例えば絶縁層220側に樹脂等の絶縁層を積層してその絶縁層に導体ビア及び導体層を形成する、所謂ビルドアップ工程が実施されてもよい。このようなビルドアップ工程を1回又は複数回繰り返して実施することで、所望の配線層数を有する回路基板を得る。
 このほか、例えば図3(A)の工程後、キャパシタ100側に、樹脂等の絶縁層とその上にパターニングされて形成された導体層とを有する基板を、1枚又は複数枚積層する、所謂一括積層工程を実施し、所望の配線層数を有する回路基板を得てもよい。この場合、一括積層工程後に、図3(B)のようにして孔300の形成が行われ、図3(C)のようにして導体ビア310の形成が行われる。
 例えば、上記のような方法が用いられ、キャパシタ100を貫通する導体ビア310が形成され、導体ビア310による回路基板の層間接続構造が実現される。
 ここで、回路基板の層間接続構造を得るための別法として、積層する各層に都度レーザー加工による孔開けとその孔内への導体材料の形成を行い、層間を電気的に接続する導体ビアを形成していく、所謂多段レーザー加工法もある。
 これに対し、上記のように複数層に一括で孔300を形成し(図3(B))、その孔300に導体ビア310を形成する(図3(C))方法を用いると、多段レーザー加工法を用いる場合に比べて、回路基板形成の簡素化、効率化が図られる。また、孔300の形成をドリル加工で行うと、一定の開口径で所望の深さの孔300を形成することができ、回路基板の多層化における設計自由度の向上が図られる。
 その一方で、ドリル加工で孔300を形成する方法においては、次の図4及び図5に示すようなことが起こり得る。
 図4は回路基板形成における孔開け工程の説明図、図5は回路基板形成における導体ビア形成工程及び加熱工程の説明図である。図4(A)には孔開け前の要部断面を模式的に図示し、図4(B)には孔開け途中の要部断面を模式的に図示し、図4(C)には孔開け後の要部断面を模式的に図示している。図5(A)には無電解メッキ工程の要部断面を模式的に図示し、図5(B)には電解メッキ工程の要部断面を模式的に図示し、図5(C)は加熱工程の要部断面を模式的に図示している。
 図4(A)に示すような、絶縁層210、キャパシタ100及び絶縁層220の積層体(図3(A))に対し、導体ビア310用の孔300を形成するために、図4(B)に示すようなドリル500を用いた孔開け加工が行われる。ドリル500を用いた孔開け加工は、例えば絶縁層220側から、絶縁層220、キャパシタ100の電極層130及び誘電体層110、並びに絶縁層210を貫通するように、行われる。孔開け加工は、上記図3(B)に示したように、キャパシタ100の電極層120に形成した開口部121の位置に対して行われる。尚、図4及び図5に電極層120は図示していない(その開口部121が図示されている)。ドリル500で形成される孔300の内壁には、図4(B)に示すように、絶縁層220、電極層130、誘電体層110及び絶縁層210が露出する。
 このようにドリル500を用いて孔開け加工を行うと、その加工時のストレスにより、図4(B)及び図4(C)に示すように、電極層130が変形し、その電極層130の変形と共に誘電体層110が変形する。このような電極層130及び誘電体層110の変形、或いは更に互いの物性の違いや密着性等によって、電極層130と誘電体層110との間には、図4(B)及び図4(C)に示すようなクラック600が発生し得る。
 このようなクラック600が発生した状態で、図5(A)に示すように、無電解メッキが行われると、クラック600は、無電解メッキのメッキ液610、形成されるシード層301によっては充填されず、残存し得る。無電解メッキ後、図5(B)に示すように、更に電解メッキが行われると、残存するクラック600内にメッキ液620が浸入し得る。或いは、電解メッキ後もクラック600がボイドとして残存し得る。クラック600内に浸入したメッキ液620、或いはクラック600内に残存するボイドは、孔300の内壁が無電解メッキで形成されるシード層301及び電解メッキで形成されるメッキ層302、即ち導体ビア310で塞がれ、クラック600内に閉じ込められ得る。
 クラック600内にメッキ液620やボイドが残存する状態で、導体ビア310形成後の回路基板が、試験時や実使用時に熱が付与されて加熱されると、クラック600内に残存するメッキ液620やボイド(その内部の気体)が膨張し得る。このように加熱によってクラック600内のメッキ液620やボイドが膨張すると、図5(C)に示すように、孔300の内壁のクラック600を起点にして、キャパシタ100の電極層130と誘電体層110との間に剥離630が発生し得る。電極層130と誘電体層110との間に発生する剥離630は、キャパシタ100の静電容量の低下を引き起こす。
 このように、ドリル加工で孔300を形成する方法を用いると、電極層130と誘電体層110との間に発生するクラック600及びそれに起因した剥離630により、キャパシタ100及びそれを内蔵する回路基板の信頼性及び性能が低下する可能性がある。
 尚、ここでは、電極層120の開口部121に対応した位置に存在する、電極層130と誘電体層110との積層部位に、ドリル加工を行う場合を例にした。このほか、電極層130の開口部に対応した位置に存在する、誘電体層110と電極層120との積層部位に、ドリル加工を行う場合も同様である。この場合も、ドリル加工に起因して誘電体層110と電極層120との間に発生するクラックや剥離により、キャパシタ100及びそれを内蔵する回路基板の信頼性及び性能が低下する可能性がある。
 以上のような点に鑑み、ここでは以下に実施の形態として示すような手法を用い、キャパシタを内蔵する回路基板の信頼性及び性能の低下を抑える。
 まず、第1の実施の形態について説明する。
 図6は第1の実施の形態に係る回路基板の一例を示す図である。図6には第1の実施の形態に係る回路基板の一例の要部断面を模式的に図示している。
 図6に示す回路基板1は、絶縁層20(絶縁層21及び絶縁層22)と、絶縁層20内に設けられたキャパシタ10(キャパシタ基板10a)とを含む。回路基板1は更に、絶縁層20及びキャパシタ10を貫通する孔30内に設けられた導体ビア31と、導体ビア31に接続された導体層33とを含む。
 キャパシタ10は、誘電体層11と、誘電体層11を挟む一対の導体層(電極層)12及び導体層(電極層)13とを含む。
 誘電体層11には、各種誘電体材料が用いられる。例えば、誘電体層11には、セラミック材料が用いられる。誘電体層11のセラミック材料としては、BTO等の各種高誘電体材料を用いることができる。誘電体層11のセラミック材料としては、BTOにストロンチウム(Sr)を添加したチタン酸バリウムストロンチウム(BaxSr1-xTiO3;BSTO)、チタン酸ストロンチウム(SrTiO3;STO)、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3;PZT)、ランタン(La)を添加したPZT(PLZT)等の高誘電体材料を用いることもできる。誘電体層11の厚さは、例えば1μm~3μmとされる。
 電極層12及び電極層13には、各種導体材料が用いられる。例えば、電極層12及び電極層13には、金属材料が用いられる。電極層12の金属材料としては、Cu、Ni等を用いることができる。電極層12及び電極層13の厚さはそれぞれ、例えば15μm~30μmとされる。電極層12及び電極層13は、それぞれ所定平面形状にパターニングされる。電極層12は、導体ビア31又は孔30が形成される位置を含む領域に、開口部12aを有する。電極層13は、導体ビア31又は孔30の外周部31Aに、薄化された部位である凹部13aを有する。電極層12及び電極層13には、互いに対応する位置に、それぞれ開口部12a及び凹部13aが設けられる。
 このようなキャパシタ10が、絶縁層20内に設けられる。絶縁層20の、キャパシタ10下に設けられる部位である絶縁層21は、例えば、1層又は複数層の配線層を有するベース基板上に設けられた、樹脂、プリプレグ等の絶縁層である。絶縁層21には、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂等の樹脂材料、又はこのような樹脂材料にガラス等の繊維やクロスが含有されたものを用いることができる。絶縁層20の、キャパシタ10上に設けられる部位である絶縁層22にも同様に、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂等の樹脂材料、又はこのような樹脂材料にガラス等の繊維やクロスが含有されたものを用いることができる。
 孔30は、絶縁層22、キャパシタ10及び絶縁層21を貫通するように形成される。孔30は、後述のように、ドリル加工によって形成される。例えば、平面円形状で、直径が50μm~300μmの開口サイズの孔30が設けられる。孔30は、電極層12の開口部12a及び電極層13の凹部13aの位置に、凹部13aに接し、且つ、開口部12aよりも小さい開口サイズ(平面視で開口部12aよりも小さいサイズ)で、形成される。孔30の内壁には、キャパシタ10の誘電体層11、電極層12及び電極層13のうち、誘電体層11及び電極層13が露出する。電極層13の露出部には、その薄化された部位である凹部13aが含まれる。
 孔30内には、導体ビア31が設けられる。導体ビア31には、各種導体材料が用いられる。例えば、導体ビア31には、金属材料が用いられる。導体ビア31の金属材料としては、Cu等を用いることができる。導体ビア31は、後述のように、メッキ法を用いて形成される。導体ビア31は、例えば、中央部に空洞40を残して孔30の内壁に設けられたコンフォーマルビアとされる。尚、空洞40内には樹脂(図示せず)が充填されてもよい。
 絶縁層22の上面22aには、孔30内に設けられる導体ビア31と接続された導体層33が設けられる。導体層33には、各種導体材料が用いられる。例えば、導体層33には、金属材料が用いられる。導体層33の金属材料としては、Cu等を用いることができる。導体層33は、例えば、後述のように、メッキ法を用いて孔30の内壁に導体ビア31を形成する際に、その導体ビア31と同時に形成される。
 回路基板1では、導体ビア31が、キャパシタ10の電極層13の凹部13a及び誘電体層11をこれらに接触して貫通し、電極層12の開口部12aを非接触で貫通する。導体ビア31(及びそれに接続される導体層33)は、キャパシタ10の電極層13と電気的に接続される。
 回路基板1を形成する際には、電極層12に予め、導体ビア31を形成する孔30よりも大きな開口部12aを設け、電極層13に予め、導体ビア31を形成する孔30の形成位置に凹部13aを設ける。そして、このような電極層12及び電極層13を含むキャパシタ10を、絶縁層21と絶縁層22との間に設けた状態で、開口部12a及び凹部13aを貫通するように、ドリル加工によって孔30を形成する。
 図7及び図8は第1の実施の形態に係るドリル加工の一例の説明図である。図7(A)にはドリル加工前の基板の要部断面を模式的に図示し、図7(B)にはドリル加工前のキャパシタの要部平面を模式的に図示している。図8(A)にはドリル加工後の基板の要部断面を模式的に図示し、図8(B)にはドリル加工後のキャパシタの要部平面を模式的に図示している。
 図7(A)に示す基板1aは、絶縁層21と、絶縁層21上に設けられたキャパシタ10と、キャパシタ10上に設けられた絶縁層22とを含む。
 図7(B)(及び図8(B))にはキャパシタ10の電極層12の開口部12aを点線で図示している。電極層13には、ドリル加工前に、電極層12の開口部12aと対応する位置に、凹部13aが設けられる。図7(A)及び図7(B)の例では、電極層13の凹部13aとして、ドリル加工で孔30が形成される位置の外縁E(鎖線で図示)の全体が含まれる平面周状の凹部13aを設けている。図7(A)及び図7(B)に示すような凹部13aは、例えば、後述のように、キャパシタ10上に絶縁層22を形成する前に、電極層13をハーフエッチングすることで、形成される。
 図7(A)に示すような基板1aに対するドリル加工により、図8(A)に示すような、絶縁層22、キャパシタ10の電極層13の凹部13a、誘電体層11、電極層12の開口部12a、及び絶縁層21を貫通する、孔30が形成される。図8(A)及び図8(B)に示すように、形成される孔30の内壁は、電極層12の開口部12a(点線で図示)の縁よりも内側で、電極層13の凹部13aに位置する。
 図7及び図8に示す基板1aの例では、電極層13に、ドリル加工位置の外縁Eの全体が含まれる平面周状の凹部13aを設け、電極層13の、ドリル加工位置の外縁Eを薄くしている。これにより、このような凹部13aを設けていない電極層13をドリル加工する場合に比べて、電極層13のドリル加工時のストレスが低減される。
 尚、ここでは電極層13の凹部13aを平面周状とし、中央に凸部13cを残したが、このような凸部は必ずしも設けることを要しない。
 但し、電極層13に凹部13aをハーフエッチングで形成する際には、電極層13の材質やエッチング条件等によって、電極層13面内のエッチングが不均一に進行する場合がある。このような場合、エッチング領域が広いと、回路基板1に電極層13の凹部13aとして残すべき部位が貫通し、ドリル加工後の孔30に導体ビア31を形成した際、導体ビア31と電極層13とが未接続(断線)となり、回路基板1の性能が低下する可能性がある。
 これに対し、図7及び図8の例のように、凹部13aを中央に凸部13cが残るような平面周状にすると、エッチング領域が広くなるのが抑えられ、エッチングの速度、深さ、面積等をコントロールし易くなる。それにより、回路基板1に電極層13の凹部13aとして残すべき部位の貫通、それによる導体ビア31との未接続を抑えることも可能になる。凹部13aを平面周状にすると、電極層13のエッチング領域が広くなることで生じ得る不具合を抑えつつ、電極層13のドリル加工位置の外縁Eを薄くし、電極層13のドリル加工時のストレスを低減することができる。
 尚、電極層13のドリル加工時のストレスが低減可能で、導体ビア31と電極層13とを断線させずに電気的に接続可能であれば、凹部13a内の一部には貫通部位が含まれてもよい。
 また、図9及び図10は第1の実施の形態に係るドリル加工の別例の説明図である。図9(A)にはドリル加工前の基板の要部断面を模式的に図示し、図9(B)にはドリル加工前のキャパシタの要部平面を模式的に図示している。図10(A)にはドリル加工後の基板の要部断面を模式的に図示し、図10(B)にはドリル加工後のキャパシタの要部平面を模式的に図示している。
 図9(A)に示す基板1aも上記同様、絶縁層21と、絶縁層21上に設けられたキャパシタ10と、キャパシタ10上に設けられた絶縁層22とを含む。
 図9(B)(及び図10(B))にはキャパシタ10の電極層12の開口部12aを点線で図示している。電極層13には、ドリル加工前に、電極層12の開口部12aと対応する位置に、凹部13aが設けられる。図9(A)及び図9(B)の例では、電極層13の凹部13aとして、ドリル加工で孔30が形成される位置の外縁E(鎖線で図示)の一部が含まれる平面円形状の凹部13aを複数箇所(ここでは一例として6箇所)に設けている。図9(A)及び図9(B)に示すような凹部13a群は、例えば、後述のように、キャパシタ10上に絶縁層22を形成する前に、電極層13をハーフエッチングすることで、形成される。
 図9(A)に示すような基板1aに対するドリル加工により、図10(A)に示すような、絶縁層22、キャパシタ10の電極層13の凹部13a群、誘電体層11、電極層12の開口部12a、及び絶縁層21を貫通する、孔30が形成される。図10(A)及び図10(B)に示すように、形成される孔30の内壁は、電極層12の開口部12a(点線で図示)の縁よりも内側で、電極層13の凹部13a群、及び隣接凹部13a間(電極層13の薄化されていない部位)に位置する。
 図9及び図10に示す基板1aの例では、電極層13に、ドリル加工位置の外縁Eの一部が含まれる平面円形状の凹部13aを複数設け、電極層13の、ドリル加工位置の外縁Eの複数箇所を薄くしている。これにより、このような凹部13a群を設けていない電極層13をドリル加工する場合に比べて、電極層13のドリル加工時のストレスが低減される。
 図9及び図10の例では、ドリル加工位置の外縁Eの複数箇所に凹部13aを設けるため、隣接凹部13a間には、電極層13の薄化されていない部位(未薄化部)13dが残る。そのため、ドリル加工で形成した孔30に導体ビア31を形成した際、導体ビア31は、電極層13の薄化された凹部13aだけでなく、薄化されていない未薄化部13dとも接続され、導体ビア31と電極層13との間の電気抵抗の増大を抑えることができる。図9及び図10の例のように、凹部13aを複数箇所に設けると、導体ビア31と電極層13との間の電気抵抗の増大を抑えつつ、電極層13の、ドリル加工位置の外縁Eの複数箇所を薄くし、電極層13のドリル加工時のストレスを低減することができる。
 図9及び図10の例に示すような凹部13a群の各々の個数や外形サイズは、上記の例に限定されるものではない。凹部13a群により、電極層13の薄化された部位の合計面積が大きくなるほど、電極層13のドリル加工時のストレス低減効果が大きくなる。一方、凹部13a群により、電極層13の薄化されていない部位の面積が大きくなるほど、孔30の内壁に形成される導体ビア31との電気抵抗低減効果が大きくなる。
 尚、電極層13のドリル加工時のストレスが低減可能で、電極層13をその薄化されていない部位で導体ビア31と十分に電気的に接続可能であれば、凹部13a群の一部又は全部は貫通孔とされてもよく、或いは凹部13a内の一部に貫通部位が含まれてもよい。
 上記図7及び図8、又は上記図9及び図10に例示した基板1aのように、ドリル加工前の電極層13の所定部位に凹部13a又は凹部13a群を設けておくことで、電極層13のドリル加工時のストレスが低減される。そのため、上記図4及び図5に示したような、ドリル加工時のストレスによる電極層130及びその下の誘電体層110の変形、電極層130と誘電体層110との間のクラック600の発生、クラック600に起因した加熱時の剥離630が抑えられる。基板1aにおいて、その電極層13と誘電体層11との間のクラックや剥離の発生を抑えることで、内蔵されるキャパシタ10の静電容量の低下を抑えることが可能になる。
 尚、上記図7及び図8には外形が平面円形状の凹部13aを例示し、上記図9及び図10には外形が平面円形状の凹部13a群を例示するが、各凹部13aの外形は、平面円形状に限定されるものではない。更に、上記図7及び図8、及び上記図9及び図10には、外形が平面円形状の導体ビア31及び開口部12aを例示するが、導体ビア31及び開口部12aの外形の形状も、平面円形状に限定されるものではない。孔30の内壁に形成される導体ビア31が、凹部13a又は凹部13a群と接し、開口部12aと接しない構造となれば、導体ビア31、各凹部13a及び開口部12aの外形は、各種平面形状とすることができる。
 電極層13に設ける凹部13a又は凹部13a群は、深くなるほど、また面積又は合計面積が広くなるほど、ドリル加工時のストレス低減効果は高くなる一方、電極層13とドリル加工後の孔30に形成される導体ビア31との接触面積は小さくなる。例えば、凹部13a又は凹部13a群を設けた電極層13に対するドリル加工時のストレス、及び凹部13a又は凹部13a群を設けた電極層13と導体ビア31との間の電気抵抗を考慮し、電極層13に設ける凹部13a又は凹部13a群の深さ、面積を設定する。
 続いて、上記のような構成を有する回路基板1の形成方法の一例について説明する。
 図11及び図12は第1の実施の形態に係る回路基板の形成方法の一例を示す図である。図11(A)~図11(C)及び図12(A)~図12(C)にはそれぞれ、第1の実施の形態に係る回路基板形成の各工程の要部断面を模式的に図示している。
 この例では、上記図1(A)~図1(C)及び図2(A)~図2(C)の例に従い、図11(A)に示すような、絶縁層21及びキャパシタ基板10aの積層体が準備される。キャパシタ基板10aは、例えば、Niを主成分とした一方の電極層13上に、BTOを主成分とした誘電体層11を焼結形成し、その上に、Cuを主成分とした他方の電極層12を被覆形成することで、得られる。キャパシタ基板10aは、一方の電極層12がパターニングされ、樹脂等が用いられた絶縁層21と一体化され、更に、もう一方の電極層13がパターニングされる。このような積層体の、キャパシタ基板10aの電極層13の上に、図11(A)に示すように、凹部13a又は凹部13a群を形成する領域に開口部14aを有するレジストパターン14が形成される。
 レジストパターン14の形成後、図11(B)に示すように、そのレジストパターン14をマスクにして、電極層13のハーフエッチングが行われる。電極層13のハーフエッチングにより、後述するドリル加工による孔30の形成時の、そのドリル加工位置の外縁の全体又は一部が含まれる領域に、凹部13a又は凹部13a群が形成される。例えば、上記図7(A)及び図7(B)に例示したような凹部13a、又は上記図9(A)及び図9(B)に例示したような凹部13a群が、レジストパターン14を用いた電極層13のハーフエッチングにより形成される。
 電極層13のハーフエッチングは、ウェットエッチングによって行うことができる。エッチング時には、各種条件(エッチング液の種類、温度、濃度、処理時間等)が調整される。エッチングの各種条件が調整され、電極層13に所定深さの凹部13a又は凹部13a群が形成される。例えば、厚さ30μmの電極層13に対するハーフエッチングにより、深さ20μmの凹部13a又は凹部13a群が形成される。この場合、凹部13aの下には、厚さ10μmの電極層13が残存する。
 ハーフエッチング後、図11(C)に示すように、レジストパターン14が除去される。これにより、絶縁層21上に、開口部12aを有する電極層12と、誘電体層11と、開口部12aに対応する領域に凹部13a又は凹部13a群を有する電極層13とを含むキャパシタ基板10aが設けられた積層体1aaが得られる。
 得られた積層体1aaの上には、図12(A)に示すように、樹脂等が用いられた絶縁層22が形成される。絶縁層22は、例えば絶縁層21上に設けられたキャパシタ基板10aの上に熱圧着され、絶縁層21及びキャパシタ基板10aと一体化される。
 例えば、図11(A)~図11(C)及び図12(A)に示すような方法が用いられ、絶縁層21及び絶縁層22(絶縁層20)内にキャパシタ10(キャパシタ基板10a)を内蔵する基板1aが形成される。
 図12(A)に示すような基板1aの形成後、図12(B)に示すように、絶縁層22、キャパシタ10及び絶縁層21を貫通する孔30が形成される。孔30は、ドリル加工によって形成される。孔30は、キャパシタ10の電極層12に設けられた開口部12a、及び電極層13に設けられた凹部13a又は凹部13a群の位置に、形成される。例えば、上記図8(A)及び図8(B)に例示したように、又は上記図10(A)及び図10(B)に例示したように、ドリル加工によって孔30が形成される。
 キャパシタ10の一方の電極層13には、ドリル加工前に、開口部12aに対応する領域にあって、ドリル加工位置の外縁の全体又は一部が含まれる領域に、凹部13a又は凹部13a群が形成されている。キャパシタ10のもう一方の電極層12には、ドリル加工前に、そのドリル加工位置の外縁よりも大きな開口サイズで開口部12aが形成されている。
 ドリル加工による、キャパシタ10を貫通する孔30の形成時には、一方の電極層13のドリル加工位置に凹部13a又は凹部13a群が形成されていることで、それらが形成されていない場合に比べ、電極層13がドリルで削られる際のストレスが低減される。もう一方の電極層12は、ドリルが開口部12aを貫通するため、そのドリル加工で電極層12が削られることはない。凹部13a又は凹部13a群により、ドリル加工時のストレスが低減されるため、上記図4及び図5に示したような、電極層130及びその下の誘電体層110の変形、電極層130と誘電体層110との間のクラック600の発生が抑えられる。
 孔30の形成後は、図12(C)に示すように、孔30の内壁にCu等の導体材料が形成され、導体ビア31が形成される。例えば、まず無電解メッキによって導体層(シード層)30aが形成され、次いでそのシード層30aを給電層に用いた電解メッキによって導体層(メッキ層)30bが形成される。これにより、孔30の内壁に導体ビア31が形成される。導体ビア31は、キャパシタ10の誘電体層11、電極層12及び電極層13のうち、ドリル加工で形成された孔30の内壁に露出する誘電体層11、及び電極層13の凹部13a又は凹部13a群と接し、電極層13と電気的に接続される。
 導体ビア31の形成時には、図12(C)に示すように、孔30の内壁のほか、絶縁層22の上面22aにもシード層30a及びメッキ層30bが形成される。これにより、絶縁層22の上面22aに、導体層33が形成される。導体層33は、所定形状にパターニングされてもよい。
 導体ビア31は、孔30の内壁に形成され、中央部に空洞40を残したコンフォーマルビアとして形成される。この場合、空洞40には、エポキシ樹脂等の樹脂(図示せず)が充填されてもよい。尚、孔30内に導体材料を充填し、フィルドビアを形成することもできる。
 例えば、以上のような方法を用いて、回路基板1が形成される。
 また、回路基板1は、次のような方法を用いて形成することもできる。
 図13は第1の実施の形態に係る回路基板の形成方法の別例を示す図である。図13(A)~図13(C)にはそれぞれ、第1の実施の形態に係る回路基板形成の各工程の要部断面を模式的に図示している。
 この例では、上記図1(A)~図1(C)の例に従い、図13(A)に示すような、絶縁層21及びキャパシタ基板10aの積層体が準備される。キャパシタ基板10aは、誘電体層11と、パターニングされた電極層12と、パターニング前の電極層13とを有し、樹脂等が用いられた絶縁層21と一体化される。このような積層体の、キャパシタ基板10aの電極層13の上に、図13(A)に示すように、電極層13をパターニングするためのレジストパターン15が形成される。
 レジストパターン15は、電極層13を除去する領域に設けられた開口部15b、及び凹部13a又は凹部13a群を形成する領域に通じる開口部15aを有する。レジストパターン15の開口部15b及び開口部15aのうち、凹部13a又は凹部13a群を形成する領域に通じる開口部15aは、例えば、その開口サイズを電極層13の厚さ以下とした比較的微細な開口とされる。
 レジストパターン15の形成後、図13(B)に示すように、そのレジストパターン15をマスクにして、電極層13のエッチングが行われる。電極層13のエッチングは、ウェットエッチングによって行うことができる。エッチング時には、各種条件(エッチング液の種類、温度、濃度、処理時間等)が調整される。
 レジストパターン15をマスクにした電極層13のエッチングにより、開口部15bの電極層13が除去され、電極層13が所定平面形状にパターニングされる。このエッチングの際には、比較的微細な開口とした開口部15aを通じて、電極層13の凹部13a又は凹部13a群を形成する領域のエッチングも進行する。この開口部15aを通じたエッチングは、開口部15aを比較的微細な開口としたことで、より大きな開口サイズの開口部15bと比べて、電極層13のエッチング速度が小さくなる。開口部15aの開口サイズ、及びエッチングの各種条件(エッチング液の処理時間等)を調整することで、電極層13に所定深さの凹部13a又は凹部13a群が形成される。
 エッチング後、図13(C)に示すように、レジストパターン15が除去される。これにより、絶縁層21上に、開口部12aを有する電極層12と、誘電体層11と、凹部13a又は凹部13a群を有する電極層13とを含むキャパシタ基板10aが設けられた積層体1aaが得られる。
 図13(A)~図13(C)に示すような方法を用いることで、電極層13の、所定平面形状へのパターニングと、凹部13a又は凹部13a群の形成とを、同時に行うことができる。
 以後は、上記図12(A)~図12(C)と同様にして、積層体1aa上に絶縁層22が形成されて基板1aが形成され(図12(A))、ドリル加工により孔30が形成され(図12(B))、メッキ法により導体ビア31及び導体層33が形成される(図12(C))。
 以上のような方法を用いて、回路基板1を形成することもできる。
 尚、図11(A)~図11(C)及び図13(A)~図13(C)の例では、絶縁層21と一体化した後のキャパシタ基板10aの電極層13に対して凹部13a又は凹部13a群の形成を行うようにした。電極層13の凹部13a又は凹部13a群の形成は、図11(A)~図11(C)又は図13(A)~図13(C)の例に従い、絶縁層21と一体化する前のキャパシタ基板10aの電極層13に対して行うこともできる。この場合は、電極層12と電極層13とが共にパターニングされたキャパシタ基板10aが、絶縁層21と一体化され、図12(A)~図12(C)のような工程が実施される。
 回路基板1では、孔30を形成するドリル加工前に、電極層13の、ドリル加工位置の外縁に相当する位置に、凹部13a又は凹部13a群が設けられる。そのため、電極層13のドリル加工時のストレスが低減され、電極層13及びその下の誘電体層11の変形が抑えられ、電極層13と誘電体層11との間のクラックの発生が抑えられる。回路基板1では、電極層13と誘電体層11との間のクラックの発生が抑えられるため、メッキ法を用いて孔30内に導体ビア31を形成する際の、クラックへのメッキ液の浸入が抑えられる。クラックの発生とそこへのメッキ液の浸入が抑えられるため、試験時や実使用時に回路基板1が加熱されても、クラック内のメッキ液の膨張、それによる誘電体層11と電極層12及び電極層13との間の剥離の発生が抑えられる。その結果、回路基板1に内蔵されるキャパシタ10の静電容量の低下が抑えられる。
 上記手法によれば、キャパシタ10の、ドリル加工時のクラックの発生、加熱を伴う試験時や実使用時の剥離、それによる静電容量の低下を効果的に抑えることのできる、信頼性及び性能に優れた回路基板1が実現される。
 尚、ここではキャパシタ10或いはキャパシタ基板10aを、電極層12を絶縁層21側に、電極層13を絶縁層22側に向けて配置したが、勿論、電極層13を絶縁層21側に、電極層12を絶縁層22側に向けて配置してもよい。
 この場合は、下層側になる電極層13に、ドリル加工位置の外縁よりも大きい開口部が形成され、上層側になる電極層12に、電極層13の開口部に対応する領域にあって、ドリル加工位置の外縁の全体又は一部が含まれる領域に、凹部又は凹部群が形成される。
 また、ここではキャパシタ10の電極層13に凹部13a又は凹部13a群を設ける例を示したが、電極層13と共に、電極層12にも同様に、凹部又は凹部群を設けてもよい。
 この場合は、例えば、絶縁層21と一体化する前のキャパシタ基板10a(図1(A))の、その電極層12の所定領域(電極層13の開口部と対応する領域にあってドリル加工位置外縁の全体又は一部が含まれる領域)に、凹部又は凹部群を形成する。キャパシタ基板10aの電極層12への凹部又は凹部群の形成は、図11(A)~図11(C)又は図13(A)~図13(C)に示したような方法の例に従い、行うことができる。
 そのキャパシタ基板10aを絶縁層21と一体化し、電極層13の所定領域(電極層12の開口部12aと対応する領域にあってドリル加工位置外縁の全体又は一部が含まれる領域)に、凹部13a又は凹部13a群を形成する。尚、電極層13の凹部13a又は凹部13a群の形成は、絶縁層21と一体化する前のキャパシタ基板10aの電極層13に対して行ってもよい。電極層13への凹部13a又は凹部13a群の形成は、図11(A)~図11(C)又は図13(A)~図13(C)に示した方法の例に従い、行うことができる。
 このようにして、電極層12と電極層13の双方の、各々の所定領域に、凹部又は凹部群を設けた積層体を得る。以後は、上記図12(A)~図12(C)と同様にして、絶縁層の形成(図12(A))、ドリル加工による孔の形成(図12(B))、メッキ法による導体ビア及び導体層の形成(図12(C))を行う。ドリル加工前の電極層12及び電極層13の各々に設けられる凹部又は凹部群により、電極層13の開口部、誘電体層11及び電極層12のドリル加工時のストレス、電極層12の開口部、誘電体層11及び電極層13のドリル加工時のストレスが、共に低減される。
 また、ここでは図示を省略するが、上記のようにして形成された回路基板1上に樹脂等の絶縁層を積層してその絶縁層に導体ビア及び導体層を形成するビルドアップ工程を、1回又は複数回繰り返し、所望の配線層数を有する回路基板を得てもよい。
 次に、第2の実施の形態について説明する。
 図14は第2の実施の形態に係る回路基板の一例を示す図である。図14には第2の実施の形態に係る回路基板の一例の要部断面を模式的に図示している。
 図14に示す回路基板1Aは、配線24aを含むベース基板24と、ベース基板24上に設けられた絶縁層21と、絶縁層21上に設けられたキャパシタ10と、キャパシタ10上に設けられた絶縁層22とを含む。絶縁層22、キャパシタ10、絶縁層21及びベース基板24を貫通するように、複数(ここでは一例として3個)の孔30が設けられる。各孔30の内壁に、コンフォーマルビア形状の導体ビア31が設けられる。
 キャパシタ10の電極層12には、導体ビア31が設けられる位置に、凹部12b又は凹部12b群、或いは、開口部12aが設けられる。キャパシタ10の電極層13には、導体ビア31が設けられる位置に、開口部13b、或いは、凹部13a又は凹部13a群が設けられる。
 導体ビア31の1つ(導体ビア31a)は、電極層12の開口部12a、誘電体層11、及び電極層13の開口部13bを貫通し、キャパシタ10とは電気的に接続されない。導体ビア31の別の1つ(導体ビア31b)は、電極層13の開口部13b、誘電体層11、及び電極層12の凹部12b又は凹部12b群を貫通し、外周部31Aに凹部12b又は凹部12b群が位置し、キャパシタ10の電極層12と電気的に接続される。導体ビア31の更に別の1つ(導体ビア31c)は、電極層13の凹部13a又は凹部13a群、誘電体層11、及び電極層12の開口部12aを貫通し、外周部31Aに凹部13a又は凹部13a群が位置し、キャパシタ10の電極層13と電気的に接続される。
 導体ビア31の内側には、樹脂41が充填される。樹脂41が充填された導体ビア31の上下には、導体層36が設けられる。導体層36は、例えばメッキ法を用いて形成される(所謂蓋メッキ)。例えば、絶縁層22上に設けられた導体層33、及び同様にベース基板24下に設けられた導体層33はそれぞれ、導体層36の形成後に、導体層36と共に、所定形状にパターニングされる。
 絶縁層22上及びベース基板24下には、それぞれビルドアップ層2aが設けられる。各ビルドアップ層2aには、絶縁層23と、絶縁層23を貫通し導体ビア31上の導体層36に通じる孔35a内に設けられた接続ビア35と、接続ビア35上に設けられた導体層37とが含まれる。例えば、導体層37が、回路基板1Aの外部接続用の端子として利用される。
 図14には一例として、キャパシタ10とは電気的に接続されない導体ビア31a、並びにキャパシタ10と電気的に接続される導体ビア31b及び導体ビア31cの、3つの導体ビア31を図示している。回路基板1Aにおいて、導体ビア31aと電気的に接続される導体層37(端子37a)が、信号端子とされる。導体ビア31bと電気的に接続される導体層37(端子37b)、及び導体ビア31cと電気的に接続される導体層37(端子37c)のうち、一方が電源端子とされ、他方がGND端子とされる。これにより、キャパシタ10の、導体ビア31bと電気的に接続される電極層12、及び導体ビア31cと電気的に接続される電極層13のうち、一方が電源電位とされ、他方がGND電位とされる。
 上記第1の実施の形態で述べた技術を採用することで、例えばこの図14に示すような回路基板1Aが得られる。回路基板1Aでは、これを形成する際、ドリル加工前の電極層12に、電極層13の開口部13bに対応して凹部12b又は凹部12b群を設けておくことで、電極層12のドリル加工時のストレスが低減される。同様に回路基板1Aでは、これを形成する際、ドリル加工前の電極層13に、電極層12の開口部12aに対応して凹部13a又は凹部13a群を設けておくことで、電極層13のドリル加工時のストレスが低減される。これにより、キャパシタ10の、ドリル加工時のクラックの発生、クラックに起因した加熱時の剥離、それによる静電容量の低下を効果的に抑えることのできる、信頼性及び性能に優れた回路基板1Aが実現される。
 尚、ここでは絶縁層22側及びベース基板24側にそれぞれ1層ずつビルドアップ層2aを設けた回路基板1Aを例示したが、ビルドアップ層2aの層数はこれに限定されるものではない。また、導体ビア31(31a,31b,31c)は、フィルドビアとすることもできる。
 次に、第3の実施の形態について説明する。
 上記第1及び第2の実施の形態で述べたような回路基板1,1A等の上には、半導体チップや半導体パッケージ等の半導体装置をはじめ、各種電子部品を搭載することができる。
 図15は第3の実施の形態に係る電子装置の一例を示す図である。図15には第3の実施の形態に係る電子装置の一例の要部断面を模式的に図示している。
 ここでは、上記第2の実施の形態で述べた回路基板1Aを例にする。図15に示す電子装置50は、回路基板1Aと、回路基板1A上に搭載された電子部品60とを含む。電子装置50は、電子部品60を搭載する回路基板1Aが、更に回路基板70上に搭載された構成を有する。
 電子部品60は、例えば、半導体チップ、又は半導体チップを含む半導体パッケージである。このような電子部品60が、回路基板1A上に搭載される。回路基板1Aの、電子部品60の搭載面側に設けられた端子37a、端子37b及び端子37cと、電子部品60に設けられた端子61a、端子61b及び端子61cとがそれぞれ、半田等を用いたバンプ62を介して接合される。これにより、電子部品60と回路基板1Aとが電気的に接続される。ここで、電子部品60の端子61aは、信号端子である。電子部品60の端子61b及び端子61cは、例えば、端子61bが電源端子、端子61cがGND端子である。
 このように電子部品60が搭載された回路基板1Aが、更に回路基板70上に搭載される。回路基板70は、例えばプリント基板である。回路基板1Aの、回路基板70側に設けられた端子37a、端子37b及び端子37cと、回路基板70に設けられた端子71a、端子71b及び端子71cとがそれぞれ、半田等を用いたバンプ72を介して接合される。これにより、電子部品60が搭載された回路基板1Aと、回路基板70とが、電気的に接続される。ここで、回路基板70の端子71aは、信号端子である。回路基板70の端子71b及び端子71cは、例えば、端子71bが電源端子、端子71cがGND端子である。
 電子装置50では、回路基板70から、バンプ72、回路基板1A及びバンプ62を介して、電子部品60に電源が供給される。回路基板70から電子部品60への電源供給ライン上に、キャパシタ10が設けられる。この例では、キャパシタ10の電極層12が電源電位とされ、電極層13がGND電位とされる。電源供給ライン上にキャパシタ10が設けられることで、電源インピーダンスの低減、電源電圧の変動、高周波ノイズの発生が抑えられ、電子部品60の安定な動作が実現される。
 回路基板1Aでは、キャパシタ10の電極層12のドリル加工位置に凹部12b又は凹部12b群が設けられ、電極層13のドリル加工位置に凹部13a又は凹部13a群が設けられる。これにより、キャパシタ10のドリル加工時のストレスを低減し、クラックの発生、加熱を伴う試験時や実使用時の剥離、それによる静電容量の低下を効果的に抑えることのできる、信頼性及び性能に優れた回路基板1Aが実現される。このような回路基板1Aが用いられることで、加熱に対する信頼性及び性能に優れた電子装置50が実現される。
 電子装置50は更に、各種電子機器(電子装置とも称する)に搭載することができる。例えば、コンピュータ(パーソナルコンピュータ、スーパーコンピュータ、サーバ等)、スマートフォン、携帯電話、タブレット端末、センサ、カメラ、オーディオ機器、測定装置、検査装置、製造装置といった、各種電子機器に搭載することができる。
 図16は第3の実施の形態に係る電子機器の一例を示す図である。図16には、電子機器の一例を模式的に図示している。
 図16に示すように、上記のような電子装置50が、電子機器80に搭載(内蔵)される。電子装置50に用いられる回路基板1Aでは、キャパシタ10の、ドリル加工時のクラックの発生、加熱を伴う試験時や実使用時の剥離、それによる静電容量の低下を効果的に抑えることができる。これにより、加熱に対する信頼性及び性能に優れた電子装置50が実現され、そのような電子装置50を搭載する、信頼性及び性能に優れた電子機器80が実現される。
 上記については単に例を示すものである。更に、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応する全ての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 1,1A,70 回路基板
 1a 基板
 1aa 積層体
 2a ビルドアップ層
 10,100 キャパシタ
 10a,100a キャパシタ基板
 11,110 誘電体層
 12,13,120,130 電極層
 12a,13b,14a,15a,15b,121 開口部
 12b,13a 凹部
 13c 凸部
 13d 未薄化部
 14,15,140 レジストパターン
 20,21,22,23,200,210,220 絶縁層
 22a 上面
 24 ベース基板
 24a 配線
 30,35a,300 孔
 30a,301 シード層
 30b,302 メッキ層
 31,31a,31b,31c,310 導体ビア
 31A 外周部
 33,36,37,313 導体層
 35 接続ビア
 37a,37b,37c,61a,61b,61c,71a,71b,71c 端子
 40,400 空洞
 41 樹脂
 50 電子装置
 60 電子部品
 62,72 バンプ
 80 電子機器
 500 ドリル
 600 クラック
 610,620 メッキ液
 630 剥離

Claims (12)

  1.  絶縁層と、
     前記絶縁層内に設けられ、誘電体層と、前記誘電体層の第1面に設けられ開口部を有する第1導体層と、前記誘電体層の前記第1面とは反対の第2面に設けられ前記開口部と対応する位置に凹部を有する第2導体層とを含むキャパシタと、
     前記絶縁層内に設けられ、前記誘電体層、前記開口部及び前記凹部を貫通し、前記凹部に接し、平面視で前記開口部よりも小さい導体ビアと
     を含むことを特徴とする回路基板。
  2.  前記凹部は、平面視で前記導体ビアの外周部に設けられることを特徴とする請求項1に記載の回路基板。
  3.  前記凹部は、前記導体ビアの外縁に沿って連続して設けられることを特徴とする請求項2に記載の回路基板。
  4.  前記凹部は、前記外周部内の一部に設けられることを特徴とする請求項2に記載の回路基板。
  5.  前記凹部は、前記外周部内の複数箇所に設けられることを特徴とする請求項2に記載の回路基板。
  6.  前記導体ビアは、前記誘電体層と接することを特徴とする請求項1に記載の回路基板。
  7.  前記第1導体層及び前記第2導体層のうち、一方は銅を含み、他方はニッケルを含むことを特徴とする請求項1に記載の回路基板。
  8.  絶縁層内に、誘電体層と、前記誘電体層の第1面に設けられ開口部を有する第1導体層と、前記誘電体層の前記第1面とは反対の第2面に設けられ前記開口部と対応する位置に凹部を有する第2導体層とを含むキャパシタが設けられた基板を形成する工程と、
     前記絶縁層内に、前記誘電体層、前記開口部及び前記凹部を貫通し、前記凹部に接し、平面視で前記開口部よりも小さい導体ビアを形成する工程と
     を含むことを特徴とする回路基板の製造方法。
  9.  前記基板を形成する工程は、前記導体ビアが形成される位置の外縁の全部又は一部が含まれる領域に前記凹部を有する前記第2導体層を形成する工程を含むことを特徴とする請求項8に記載の回路基板の製造方法。
  10.  前記第2導体層を形成する工程は、
     前記第2導体層の材料上に、前記材料の厚さよりも小さい開口部が前記領域に設けられたレジストパターンを形成する工程と、
     前記レジストパターンをマスクにした前記材料のエッチングにより、前記領域に前記凹部を有する前記第2導体層を形成する工程と
     を含むことを特徴とする請求項9に記載の回路基板の製造方法。
  11.  前記導体ビアを形成する工程は、
     ドリルを用いて、前記誘電体層、前記開口部及び前記凹部を貫通し、内壁に前記凹部が露出し、平面視で前記開口部よりも小さい孔を形成する工程と、
     メッキ法を用いて、前記孔内に前記導体ビアの材料を形成する工程と
     を含むことを特徴とする請求項8に記載の回路基板の製造方法。
  12.  回路基板と、
     前記回路基板に搭載された電子部品と
     を含み、
     前記回路基板は、
     絶縁層と、
     前記絶縁層内に設けられ、誘電体層と、前記誘電体層の第1面に設けられ開口部を有する第1導体層と、前記誘電体層の前記第1面とは反対の第2面に設けられ前記開口部と対応する位置に凹部を有する第2導体層とを含むキャパシタと、
     前記絶縁層内に設けられ、前記誘電体層、前記開口部及び前記凹部を貫通し、前記凹部に接し、平面視で前記開口部よりも小さい導体ビアと
     を含むことを特徴とする電子装置。
PCT/JP2016/062589 2016-04-21 2016-04-21 回路基板、回路基板の製造方法及び電子装置 WO2017183146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/062589 WO2017183146A1 (ja) 2016-04-21 2016-04-21 回路基板、回路基板の製造方法及び電子装置
JP2018512713A JP6704129B2 (ja) 2016-04-21 2016-04-21 回路基板、回路基板の製造方法及び電子装置
US16/162,470 US11317520B2 (en) 2016-04-21 2018-10-17 Circuit board, method of manufacturing circuit board, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062589 WO2017183146A1 (ja) 2016-04-21 2016-04-21 回路基板、回路基板の製造方法及び電子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/162,470 Continuation US11317520B2 (en) 2016-04-21 2018-10-17 Circuit board, method of manufacturing circuit board, and electronic device

Publications (1)

Publication Number Publication Date
WO2017183146A1 true WO2017183146A1 (ja) 2017-10-26

Family

ID=60116628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062589 WO2017183146A1 (ja) 2016-04-21 2016-04-21 回路基板、回路基板の製造方法及び電子装置

Country Status (3)

Country Link
US (1) US11317520B2 (ja)
JP (1) JP6704129B2 (ja)
WO (1) WO2017183146A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704129B2 (ja) * 2016-04-21 2020-06-03 富士通インターコネクトテクノロジーズ株式会社 回路基板、回路基板の製造方法及び電子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393198A (ja) * 1986-10-08 1988-04-23 株式会社日立製作所 多層プリント回路板の製造方法
JPH0222893A (ja) * 1988-07-11 1990-01-25 Nec Corp 多層印刷配線板の製造方法
JP2005166940A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 回路基板の製造方法及びこれを用いた部品内蔵モジュールの製造方法
JP2005310983A (ja) * 2004-04-20 2005-11-04 Dt Circuit Technology Co Ltd キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512497B2 (ja) * 2005-01-31 2010-07-28 イビデン株式会社 コンデンサ内蔵パッケージ基板及びその製法
JP4801687B2 (ja) 2008-03-18 2011-10-26 富士通株式会社 キャパシタ内蔵基板及びその製造方法
JP5188256B2 (ja) 2008-04-30 2013-04-24 新光電気工業株式会社 キャパシタ部品の製造方法
US7791897B2 (en) * 2008-09-09 2010-09-07 Endicott Interconnect Technologies, Inc. Multi-layer embedded capacitance and resistance substrate core
JP5757163B2 (ja) * 2011-06-02 2015-07-29 ソニー株式会社 多層配線基板およびその製造方法、並びに半導体装置
JP2015018988A (ja) 2013-07-12 2015-01-29 パナソニック株式会社 キャパシタ内蔵基板及びその製造方法、キャパシタ内蔵基板を用いた半導体装置
WO2017183135A1 (ja) * 2016-04-20 2017-10-26 富士通株式会社 回路基板、回路基板の製造方法及び電子装置
JP6704129B2 (ja) * 2016-04-21 2020-06-03 富士通インターコネクトテクノロジーズ株式会社 回路基板、回路基板の製造方法及び電子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393198A (ja) * 1986-10-08 1988-04-23 株式会社日立製作所 多層プリント回路板の製造方法
JPH0222893A (ja) * 1988-07-11 1990-01-25 Nec Corp 多層印刷配線板の製造方法
JP2005166940A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 回路基板の製造方法及びこれを用いた部品内蔵モジュールの製造方法
JP2005310983A (ja) * 2004-04-20 2005-11-04 Dt Circuit Technology Co Ltd キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法

Also Published As

Publication number Publication date
JPWO2017183146A1 (ja) 2018-11-22
JP6704129B2 (ja) 2020-06-03
US11317520B2 (en) 2022-04-26
US20190053385A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US11406025B2 (en) Glass wiring board, method for manufacturing the same, and semiconductor device
US6828224B2 (en) Method of fabricating substrate utilizing an electrophoretic deposition process
JP4243117B2 (ja) 半導体パッケージとその製造方法および半導体装置
JP5331958B2 (ja) 配線基板及び半導体パッケージ
JP5188256B2 (ja) キャパシタ部品の製造方法
US8810007B2 (en) Wiring board, semiconductor device, and method for manufacturing wiring board
US8669643B2 (en) Wiring board, semiconductor device, and method for manufacturing wiring board
US11006516B2 (en) Wiring board, semiconductor device, and method of manufacturing wiring board
JP2015053350A (ja) キャパシタ内蔵基板及びその製造方法、キャパシタ内蔵基板を用いた半導体装置
JP4954824B2 (ja) 部品内蔵配線基板、配線基板内蔵用コンデンサ
KR20150102504A (ko) 임베디드 기판 및 임베디드 기판의 제조 방법
TW201511623A (zh) 零件內建基板的製造方法及零件內建基板
US10896871B2 (en) Circuit board, method for manufacturing circuit board, and electronic device
JP6704129B2 (ja) 回路基板、回路基板の製造方法及び電子装置
WO2018128095A1 (ja) 回路基板、回路基板の製造方法及び電子装置
US20140201992A1 (en) Circuit board structure having embedded electronic element and fabrication method thereof
TW201936019A (zh) 線路板結構及其製作方法
JP4841234B2 (ja) ビアアレイキャパシタ内蔵配線基板の製造方法
TWI846342B (zh) 電子封裝件及其承載基板與製法
JP6551212B2 (ja) 配線基板、配線基板の製造方法及び電子装置
KR100665366B1 (ko) 캐패시터 내장형 인쇄회로기판과 그 제조방법
JP2023042086A (ja) 電子デバイス及び電子デバイスの製造方法
JP2017208369A (ja) 回路基板、回路基板の製造方法及び電子装置
US20150364539A1 (en) Package board and package using the same
JP2018207036A (ja) 部品形成基板、部品、および部品形成基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018512713

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899418

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899418

Country of ref document: EP

Kind code of ref document: A1