WO2017181922A1 - 远红外箱式干燥系统及干燥方法 - Google Patents
远红外箱式干燥系统及干燥方法 Download PDFInfo
- Publication number
- WO2017181922A1 WO2017181922A1 PCT/CN2017/080740 CN2017080740W WO2017181922A1 WO 2017181922 A1 WO2017181922 A1 WO 2017181922A1 CN 2017080740 W CN2017080740 W CN 2017080740W WO 2017181922 A1 WO2017181922 A1 WO 2017181922A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared
- drying
- far
- dried
- wavelength
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B9/00—Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
- F26B9/06—Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
Definitions
- the invention relates to a far infrared box type drying system, in particular to a far infrared box type drying system and a drying method.
- a functional food refers to a food having a specific nutritional health function, that is, a food suitable for a specific population, having a function of regulating body function and being difficult to treat. Functional foods are sometimes referred to as health food products. In academic and scientific research, it is more scientific to call “functional food”. Its scope includes: foods that enhance the body's health, foods that prevent disease, foods that restore health, foods that regulate body rhythms, and foods that delay aging.
- Japan is the birthplace of modern functional foods and the second largest R&D and consumption area for functional foods.
- the total market value of functional foods has reached 4 to 8 billion US dollars as of 1999, and its growth rate is even more alarming.
- functional foods are showing good growth in other parts of the world, especially in emerging developing countries, and their share is increasing year by year.
- the foreign functional food market has the following characteristics: First, there are many varieties of health foods with low fat, low calorie and low cholesterol, and the largest sales volume. Second, plant foods are favored, health tea, Chinese herbal medicines rise abroad, and sales are optimistic. The third is advanced technology and high-tech production. The products are of high purity and good performance. They are mostly soft capsules, chip-like shapes, or made into sports drinks, which are easy to absorb.
- China's functional foods started late, more than 4,000 functional food manufacturers have more standardized, and the annual sales reached 100 million yuan, no more than 18, the functional food market share in the international market is too low, only the global market About 4%.
- the product functions focus on immune mediation, anti-fatigue and blood lipid regulation, and the most widely used plant extracts and Chinese herbal medicines have basic materials with Chinese characteristics.
- China's functional foods have developed rapidly.
- the main reason for restricting the development of functional foods in China is that the drying methods for crops are more traditional. At present, traditional drying or hot air drying is used in China. Although the crops are dried, they are caused during the drying process. The loss of natural nutrients in crops.
- the drying efficiency is high, the temperature is high during the drying process, and it is easy to cause certain nutrients in the crops. It deteriorates at high temperatures.
- the invention discloses a far-infrared box type drying system, which is used for solving the problem that some nutrients in crops are deteriorated at high temperature due to high temperature in the drying process in the prior art.
- a far-infrared box drying system consisting of a drying box body, an infrared drying layer and an infrared control system, wherein the infrared drying layer is provided with a planar infrared radiation heating layer, and the infrared drying layer is installed at
- the box-type drying body is connected to the infrared control system, and the planar infrared radiation heating layer uniformly radiates infrared energy to the material to be dried by infrared radiation and is received by the material to be dried.
- the infrared control system realizes infrared dry layer infrared according to the peak wavelength of the material to be dried The "biased" of the infrared wavelength peak of the radiant energy, thereby achieving material drying.
- the infrared drying unit comprises a planar infrared radiation heating layer, a tray, a planar infrared radiation heating layer support frame and a U-shaped tray supporting groove.
- the far-infrared box drying system as described above, wherein the tray is slidably mounted in the U-shaped tray supporting groove, and the opposite sides of the tray are symmetrically provided with a sliding male cymbal, and the U-shaped tray supports
- the slot is matched with the two side walls and has a female raft that is matched and slidably placed in the female sill.
- the far-infrared box drying system as described above, wherein the tray adopts a food-grade plastic tray, and the food-grade plastic tray is made of high-density polyethylene, polyethylene, heat-resistant polyethylene, and poly Propylene, polybutene, the food grade plastic tray has a square hole at the bottom and the periphery, and the square hole of the bottom and the periphery of the food grade plastic tray has a length of 2 - 10 mm.
- the material selected for the material tray is very important. According to the black body radiation theory of Planck's law of radiation, the infrared radiation energy is affected by the material of the receiver, and the infrared radiation passing rate of different materials will have a large difference.
- Food processing generally uses stainless steel, but the infrared absorption rate of stainless steel is independent of the wavelength of the radiant energy projected onto the object, that is, the stainless steel is gray, and the infrared radiation energy is not transparent, and the core of the invention is to realize the infrared wavelength.
- the above-mentioned materials are generally used, and the infrared transmittance is generally more than 85%, so that the infrared of the planar heating material can be better realized. Penetration of energy wavelengths.
- planar infrared radiation heating layer support frame is a "field" type structure for fixing a planar infrared radiation heating layer, and the planar infrared radiation heating
- the layer support frame is made of stainless steel.
- planar infrared radiation emitting layer adopts: an infrared drying unit at the uppermost end of the drying chamber and an infrared drying unit at the lowermost end of the drying chamber adopts a single-sided infrared radiation heating layer, and other infrared rays.
- the double-sided infrared radiation heating layer with infrared radiation heating on both the upper side and the back side is used for the single side, and the single-sided infrared radiation heating layer and the double-sided infrared radiation heating layer are all made of planar infrared electric heating material, the single-sided infrared
- the infrared radiation wavelength of the radiant heat generating layer and the double-sided infrared radiation heating layer is 4-18 ⁇ m
- the operating temperature of the single-sided infrared radiation heating layer and the double-sided infrared radiation heating layer is 30-120 ° C
- the planar infrared electric heating material is One or a combination of carbon fiber, carbon nanotube or graphene as a heating system Prepared planar infrared heating sheet.
- the single-sided infrared radiation heating layer is respectively installed on the upper surface of the drying chamber and the planar infrared radiation heating layer support frame of the infrared drying unit at the lowermost end of the drying chamber, and the double-sided infrared radiation heating layer is installed on the surface.
- the single-sided infrared radiation heating material of the infrared drying unit at the uppermost end of the drying chamber uniformly radiates infrared energy to the material to be dried in the upper part of the tray and is to be dried by infrared radiation.
- the single-sided infrared radiation heating material of the infrared drying unit at the lowermost end of the drying chamber uniformly radiates infrared energy to the material to be dried at the bottom of the tray and receives the material to be dried by infrared radiation
- the double The bottom of the tray facing the infrared drying layer of the infrared radiation heating layer uniformly radiates infrared energy to the material to be dried at the bottom of the tray by infrared radiation and is received by the material to be dried
- the double-sided infrared radiation heating layer The upper part of the tray on the back side of the infrared drying layer is uniformly radiated by infrared radiation. Radiation to the material to be dried in the upper layer of infrared drying trays and receiving material to be dried.
- the far-infrared box drying system as described above, wherein the infrared control system is composed of a temperature sensor, a humidity sensor, a fan system, a self-weighing system, and an infrared radiation energy control system.
- the temperature sensor comprises: a sheet-shaped thermistor type temperature sensor; a needle-shaped thermistor type temperature sensor, wherein the sheet-shaped thermistor type temperature sensor is mounted on the surface An intermediate position of the surface of the infrared radiation heat generating layer, the needle-shaped thermal resistance type temperature sensor being installed in the tray.
- the far-infrared box drying system as described above, wherein the infrared drying layer has a plurality of layers, and the plurality of infrared drying layers are stacked on top of each other in the drying box body, and the temperature sensor has a plurality of Odd or even layers of the infrared dried layer.
- the far-infrared box drying system as described above, wherein the humidity sensor is located at an upper portion of the drying chamber inside the main structure of the drying box, and is connected to an infrared radiation energy control system, and the humidity sensor monitors the humidity in the drying box in real time. .
- the far-infrared box drying system as described above, wherein the fan system is composed of an inner circulation fan and a dehumidification fan.
- the inner circulation fan is a centrifugal inner circulation fan, and the inner circulation fan can be activated after starting Forming forced convection of forced hot air and uniformly drying the air temperature of each part in the tank;
- the dehumidifying fan is a centrifugal dehumidifying fan.
- the far-infrared box drying system as described above, wherein the centrifugal dehumidifying fan is composed of a dehumidifying port and a fresh air port, and the centrifugal dehumidifying fan is located at a top end of the drying box, and the centrifugal dehumidifying fan
- the humidifying port extracts the hot air with high humidity in the drying box, and makes the air pressure inside the drying box smaller than the air pressure outside the drying box, and the fresh air outlet of the centrifugal dehumidifying fan draws the external fresh air into the drying box, when the drying box
- the internal air pressure is lower than the air pressure outside the drying box, a pressure difference is generated and the fresh air is automatically opened to draw in fresh air.
- the far-infrared box drying system as described above, wherein the self-weighing system is a load cell, the weighing sensor is placed at the bottom of the infrared drying layer, and the weight of the plastic pallet material is monitored in real time, and the data is sent.
- the self-weighing system is a load cell
- the weighing sensor is placed at the bottom of the infrared drying layer, and the weight of the plastic pallet material is monitored in real time, and the data is sent.
- the far-infrared box drying system as described above, wherein the external wavelength controller is composed of a voltage regulator, a voltage display, and an infrared spectrum peak controller.
- the infrared spectrum peak controller presets multiple peaks of infrared energy radiation wavelength, and the preset multi-range infrared energy radiation wavelength "matching" peaks include 5-6 ⁇ m, 6-7 ⁇ m, 7-8 ⁇ m, 8-9 ⁇ m, 9 ⁇ 10 ⁇ m, 10 ⁇ 11 ⁇ m, 11 ⁇ 12 ⁇ m, 13 ⁇ 14 ⁇ m, 14 ⁇ 15 ⁇ m, preset multi-range infrared energy radiation wavelength matching peak marked with corresponding voltage, adjusted by voltage regulator to the peak wavelength of infrared energy radiation The corresponding voltage can reach the peak wavelength of the infrared energy radiated by the planar infrared electrothermal material.
- infrared drying the most effective and fastest drying method is to achieve rapid drying by the "matching" of the infrared wavelength peak of the heating element and the infrared wavelength peak of the material to be dried.
- the infrared drying is essentially the absorption of the molecular vibration of the material to be dried.
- the electromagnetic wave energy accelerates the molecular motion and raises the temperature of the material to be dried to achieve the purpose of dehydration.
- the infrared frequency of the heating element is consistent with the vibration frequency of the molecules of the material to be dried, the infrared energy is converted into the vibration energy of the molecule, so that the temperature of the material to be dried rises, the infrared wavelength of the material to be dried and the far infrared wavelength emitted by the heating element.
- the solution is to realize functional foods, that is, to maximize the preservation of a nutrient component in the material to be dried by drying, such as the principle of "matching" by infrared wavelength, although the drying process is accelerated, but infrared
- the efficiency is lower than the efficiency of "matching" the dry material, but it can greatly preserve a nutrient in the material to achieve a functional food.
- the infrared energy radiation wavelength peak value is 5-6 ⁇ m
- the wavelength of the biased infrared energy radiation is 5-6 ⁇ m or 7-8 ⁇ m
- the peak wavelength of the infrared energy radiation is 7 -8 ⁇ m with bias matching infrared energy radiation wavelength of 6-7 ⁇ m or 8-9 ⁇ m
- infrared energy radiation wavelength peak for 9-10 ⁇ m the wavelength of the matched infrared energy radiation is 8-9 ⁇ m or 10-11 ⁇ m
- the peak wavelength of the infrared energy radiation is 10
- the wavelength of the matched infrared energy radiation is 9-10 ⁇ m or 11-12 ⁇ m, and the infrared energy radiation is used.
- the peak wavelength is 11-12 ⁇ m
- the wavelength of the matched infrared energy radiation is 10-11 ⁇ m or 12-13 ⁇ m
- the peak wavelength of the infrared energy radiation is 12-13 ⁇ m.
- the wavelength of the matched infrared energy radiation is 11-12. ⁇ m or 13- ⁇ m
- the peak wavelength of infrared energy radiation is 13-14 ⁇ m
- the wavelength of the biased infrared energy radiation is 12-13 ⁇ m or 14-15 ⁇ m
- the peak wavelength of infrared energy radiation is 11-12 ⁇ m.
- 10-11 ⁇ m or 12-13 ⁇ m when the infrared energy radiation wavelength peak is 14-15 ⁇ m
- the bias matching infrared energy radiation wavelength is 13-14 ⁇ m.
- the far-infrared box drying system as described above, wherein the temperature controller is composed of a material temperature display, a planar infrared radiation heating layer temperature display, and a temperature controller, and the material temperature display receives and displays the insertion in real time.
- the internal temperature of the material measured by the temperature sensor inside the dry material
- the surface infrared radiation heating layer temperature display accepts and displays the temperature of the surface of the planar infrared radiation heating layer in real time
- the temperature controller sets the planar infrared radiation
- the temperature controller detects that the internal temperature of the material or the surface temperature of the planar infrared radiation heating layer is higher than the set limit, and the planar infrared radiation heating layer is automatically shut down. jobs.
- the far-infrared box drying system as described above, wherein the humidity controller is composed of a humidity display and a humidity setter, and the humidity display receives and displays the humidity in the dry box in real time, the humidity setting Setting a minimum humidity limit and a maximum humidity limit in the drying box, the humidity controller automatically detecting that the water humidity in the functional food drying box is higher than a set value, automatically starting a humidifying fan for dehumidification, The humidity controller detects that the water humidity in the functional food drying cabinet is lower than the set value, it will automatically shut down the humidifying fan and automatically open the fresh air inlet to draw in fresh air.
- the far-infrared box drying system as described above, wherein the weight controller is composed of a weight display and a weight setter, and the weight display receives data of the weight sensor in real time and displays the weight of the dry material in the drying box.
- the weight setter sets the dry to wet ratio of the material to be dried to a dry state.
- the automatic shut-off controller receives the data of the weight sensor and automatically stops the far-infrared box drying system after the weight setter sets the dry weight of the material to be dried.
- the weight setter detects that the dry/wet ratio of the dry material reaches a set value, automatically shuts down the functional food drying system, and obtains the dried functional food dried product.
- the outer casing comprises: an inner layer, a heat insulating layer and an outer layer, wherein the inner layer is made of a stainless steel 304 plate having a thickness of 0.2-2 mm, and the insulating layer has a thickness of 10 -50mm, the insulating layer is one of a polyurethane-based insulating material, a ceramic-based insulating material, and a silicate-based insulating material, and the outer layer is made of a stainless steel 304 plate having a thickness of 1-4 mm.
- a far-infrared box drying method wherein the material to be dried is placed in a plastic tray, the plastic tray is placed in the main body of the drying box; the plastic tray is placed between the two-sided infrared electric heating material; and the peak wavelength of the material is used
- the wavelength of the differential value is controlled by the energization of the infrared electrothermal material, and the dried material is dried to generate a dry material.
- Chromatographic detection and analysis of nutrient components according to the analysis results to obtain the nutrients to be retained in the material to be dried; extract the nutrients to be retained, determine the infrared spectrum of the nutrient; determine the limit of the nutritional composition of the ring breaking temperature; The spectrum is analyzed to obtain the peak wavelength of the infrared spectrum of the nutrient component, and the peak temperature of the infrared spectrum of the nutrient component to be retained is further obtained by combining the ultimate breaking temperature.
- the far-infrared box drying method as described above, wherein if the infrared spectral wavelength peak range is an arbitrary integer range within 5 to 14 ⁇ m, a set difference is added or subtracted, and the set difference is 1 ⁇ m.
- a partial matching range if the infrared spectral wavelength peak range is 14 to 15 ⁇ m, only the set difference is 1 ⁇ m, and the partial matching range is 13 to 14 ⁇ m.
- the "bias matching” includes the following steps;
- step 4 determining the nutrient content to be retained by the material to be dried according to the result of the analysis in step 4);
- step 8) analyzing the infrared spectrum obtained in the above step 6), and selecting the peak wavelength of the infrared spectrum of the nutrient component, and further extracting the nutrient of the nutrient component obtained by the step 7) Infrared spectral wavelength peak of infrared drying of the component;
- the peak wavelength of the infrared spectrum obtained in step 8) is the "matching" value of the infrared drying, and the difference is set according to the peak range of the infrared spectrum wavelength to obtain the partial matching range;
- step 10 comprises the following steps;
- the box-shaped functional food dryer planar infrared electric heating material is matched to “peak”, thereby obtaining a “biased” infrared wavelength peak of the material to be dried;
- the present invention utilizes the far-infrared resonance effect to dry the agricultural product, and effectively retains the single product of the agricultural product through the "bias matching" of the infrared wavelength peak of the heating element with the infrared wavelength peak of the agricultural product to be dried.
- the far-infrared box drying system and drying method of the above scheme can be widely used for the initial processing of functional foods of crops and cash crops, such as ginkgo, rhodiola, ginseng, forest frog, antler, American ginseng, cordyceps, angelica, medlar Zi, Shouwu, Ejiao, Gynostemma pentaphyllum, medlar, medlar, black fungus, white fungus, wheat, corn, rice, red beans, mung beans, pepper, sea cucumber, peanut, buckwheat, oatmeal, millet, sesame, sunflower seeds, mushrooms, etc. .
- the system has the following excellent performance;
- the far-infrared box drying system and drying method of the present invention belong to the combination of the two fields of new materials and advanced agricultural machinery and equipment in the field of 2025 made in China, conforming to the action plan of the country's manufacturing power, and practicing the Fifth Plenary Session of the Fifth Plenary Session. "Developing agricultural modernization, accelerating the transformation of agricultural development mode, and embarking on relevant policies and guidelines for efficient, product safety, resource conservation, and environmentally friendly agricultural modernization," and filling the current technical gap in functional food drying in China.
- the heat-generating surface-like heat-generating material of the present invention is a low-temperature medium-long-wave far-infrared planar heat-generating body, the whole surface of which is a heat-generating surface, and the heat is uniform, the temperature difference is low, the material is heated uniformly during the drying process, and the temperature of the material is Controlling the denaturation temperature of the various nutrients of the material greatly preserves the nutrient content of the material.
- the invention adopts an infrared planar heating element, and utilizes the “biased matching” of the peak wavelength of the heating element and the peak wavelength of a certain nutrient component in the material to be dried, thereby greatly preserving the nutrition in the material to be dried.
- the essence of infrared radiation drying is the process of resonance absorption and heating of a material to be dried. The absorption of radiation by the surface of the material to be dried by the receiver of the material will cause “chain vibration” from the surface and inside, which is better than heat conduction due to temperature gradient. More effective.
- the infrared wavelengths and infrared wavelength peaks of different acceptors are quite different.
- the "matching" between the peak wavelength of the heating element and the peak wavelength of the material to be dried can greatly speed up the drying process, it will lead to the loss of nutrients, and the peak wavelength of the heating element and a certain nutrient in the material to be dried.
- the "bias matching" of the peak wavelength although the simple drying efficiency is reduced, the use of “biased matching” can accelerate the resonance of water molecules in the material under the premise of preserving nutrients, thereby achieving the purpose of rapid drying.
- FIG. 1 is a schematic structural view of a far-infrared box drying system of the present invention
- Figure 2 is a bottom plan view showing the structure of the far-infrared box drying system of the present invention.
- Figure 3 is a side elevational view showing the structure of the far infrared box drying system of the present invention.
- a far-infrared box drying system includes: a drying box body 1, an infrared drying layer 2, and an infrared control system, wherein the drying box body 1 is provided with an infrared drying layer 2, and an infrared drying layer 2 Connected to an infrared control system, the infrared drying layer 2 is mounted with a planar infrared radiation emitting layer.
- the drying box body 1 has a drying chamber therein, and the infrared drying layer 2 is installed in the drying chamber.
- the infrared drying layer 2 comprises: a planar infrared radiation emitting layer, a tray 3, a planar infrared radiation heating layer support frame and a U-shaped tray 3 supporting groove, and the planar infrared radiation emitting layer is: a planar infrared electric heating material.
- the tray 3 is slidably mounted in the support groove of the U-shaped tray 3.
- the opposite sides of the tray 3 are symmetrically provided with a sliding guide cymbal, and the opposite side walls of the support groove of the U-shaped tray 3 are matched with the mother raft, and the sliding ram is matched and slided into the female raft.
- the tray 3 adopts a food grade plastic tray 3.
- the material selected for the material tray is very critical. According to the black body radiation theory of Planck's law of radiation, the infrared radiation energy is affected by the material of the receiver, and different materials are used. There is a big difference in the infrared radiation pass rate. Food processing is generally made of stainless steel, but the infrared absorption rate of stainless steel is independent of the wavelength of the radiant energy projected onto the object, that is, the stainless steel is gray, and the infrared radiation energy is not transparent.
- the core of the invention is to achieve the transmission of the infrared wavelength to achieve a "biased match" between the infrared energy wavelength and the infrared wavelength peak of the material to be dried, and the above material is generally used, and the infrared transmittance is generally 85% or more. Therefore, the penetration of the infrared energy wavelength of the planar heating material can be better achieved.
- the tray 3 is one of high density polyethylene, polyethylene, heat resistant polyethylene, polypropylene, and polybutene.
- the bottom of the tray 3 and the side wall of the tray 3 are all provided with square holes; the length of the square holes is 2-10 mm.
- the planar infrared radiation heating layer support frame is a "field" type support frame; the planar infrared radiation heating layer support frame is made of stainless steel material.
- planar infrared electrothermal material are all surface heating materials which are heated by infrared radiation.
- planar heating material is: a planar infrared heating sheet prepared by using one or a combination of carbon fiber, carbon nanotube or graphene as a heating element; the infrared radiation wavelength of the planar infrared electric heating material is 4-18 ⁇ m, the surface infrared heat-sensitive material has a drying temperature of 30-120 ° C under steady state.
- the distance between the upper end of the tray 3 and the planar infrared electrothermal material is 10-50 mm, and the distance between the lower end of the tray 3 and the planar infrared electrothermal material is 5-50 mm.
- the infrared control system includes: a temperature sensor, a humidity sensor, a fan system, a self-weighing system, and an infrared radiation energy control system.
- the temperature sensor comprises: a chip-shaped thermal resistance type temperature sensor, a needle-shaped thermal resistance type temperature sensor, and a chip-shaped thermal resistance type temperature sensor is installed in the middle of the surface of the planar infrared electrothermal material, and the needle-shaped thermal resistance type temperature sensor is installed.
- the needle probe of the needle-shaped thermal resistance type temperature sensor is inserted into the material to be dried and placed in the middle of the plastic tray 3.
- the needle-shaped thermal resistance type temperature sensor collects the internal temperature of the dry material in real time and transmits the temperature data to the infrared radiation energy control system.
- the infrared drying layer 2 has a plurality of layers, and the plurality of infrared drying layers 2 are stacked on top of each other in the drying box main body 1.
- the temperature sensor has a plurality of, and an infrared drying layer 2 of any two adjacent infrared drying layers 2 is provided with a temperature sensor.
- the humidity sensor is disposed at an upper portion of the drying chamber, and the humidity sensor is connected to the infrared radiation energy control system.
- the position where the humidity sensor is placed is very critical.
- the drying process is essentially the dehydration process of the material. After the material to be dried receives the infrared radiation energy, the internal moisture is discharged to the drying chamber, so that the humidity in the drying chamber increases rapidly.
- the infrared heating body mainly transmits energy in the form of infrared radiation, and its wavelength is generally 4-18 ⁇ m, and the peak wavelength of water is generally in the range of 9-10 ⁇ m, so the peak of the wet air having a large humidity is also in this range, if not
- the humid air is quickly discharged, and the humid air in the drying chamber preferentially absorbs the infrared energy radiated by the planar infrared electric heating material, so that the material to be dried receives little infrared radiation energy, which greatly slows down the drying process.
- the humidity sensor is placed in the upper part of the drying chamber inside the structure of the main body of the drying box. This is because the drying process is also heated during the drying process of the material.
- the air in the drying box and the high-humidity water molecules discharged from the material are rapidly formed.
- the hot air with high humidity in the drying box, and the density of the hot air is relatively small, it will rise quickly to the upper part of the drying box, and the humidity sensor can be quickly placed on the top to quickly monitor the humidity in the oven, which is beneficial to timely dehumidification and accelerate Drying of the material.
- the fan system includes: an internal circulation fan and a dehumidification fan.
- the inner circulation fan is a centrifugal inner circulation fan, and the inner circulation fan is a centrifugal inner circulation fan. After the internal circulation fan is started, forced convection of forced hot air can be formed and the air temperature of each part in the box can be uniformly dried.
- the dehumidifying fan is a centrifugal dehumidifying fan, and the centrifugal dehumidifying fan is composed of a dehumidifying port and a fresh air port, and centrifugal dehumidification
- the fan is located at the top of the drying box, and the centrifugal dehumidification fan extracts the hot air with high humidity inside the drying box, and the air pressure inside the drying box is smaller than the air pressure outside the drying box, and the fresh air outlet of the centrifugal dehumidifying fan will externally fresh air. Drain into the inside of the drying oven. When the air pressure inside the drying box is lower than the air pressure outside the drying box, a pressure difference will be generated and the fresh air opening will be automatically opened to draw in fresh air.
- the centrifugal dehumidification fan comprises: a dehumidification port and a fresh air outlet, and the centrifugal dehumidification fan is installed at a top end of the main body of the drying box.
- the self-weighing system is a load cell, and the load cell is placed at the bottom of the infrared drying layer 2.
- the load cell monitors the weight of the material of the plastic tray 3 in real time and sends the data to the infrared radiation energy control system.
- the infrared radiation energy control system includes: an infrared wavelength controller, a temperature controller, a humidity controller, a weight controller, and an automatic shutdown controller.
- the infrared wavelength controller comprises: a voltage regulator, a voltage display and an infrared spectrum peak controller.
- the infrared radiation energy control system is an integrated control system with display and adjustment functions.
- the voltage regulator can adjust the voltage of the planar infrared electric heating material
- the voltage display shows the voltage of the current voltage and voltage regulator
- the infrared spectrum peak controller controls the wavelength peak of the infrared energy of the planar infrared electric heating material. Matches the value.
- the external spectral peak controller presets multiple peaks of infrared energy radiation wavelength, and presets multiple wavelength infrared radiation wavelength matching modes, and the matching mode peaks include 5-6 ⁇ m, 6-7 ⁇ m, 7-8 ⁇ m, 8-9 ⁇ m, and 9 -10 ⁇ m, 10-11 ⁇ m, 11-12 ⁇ m, 13-14 ⁇ m, 14-15 ⁇ m
- the preset multi-range infrared energy radiation wavelength matching peak is marked by the corresponding voltage, adjusted by the voltage regulator to the peak wavelength of the infrared energy radiation The corresponding voltage can reach the peak wavelength of the infrared energy radiated by the planar infrared electrothermal material.
- the partial matching mode of the multi-range infrared energy radiation wavelength peak is preset, and the infrared energy radiation wavelength in the partial matching mode is: the infrared energy radiation wavelength peak value is 5-6 ⁇ m, and the partial matching infrared energy radiation wavelength is 4-5 ⁇ m. Or 6-7 ⁇ m, the peak wavelength of infrared energy radiation is 6-7 ⁇ m, the wavelength of the biased infrared energy radiation is 5-6 ⁇ m or 7-8 ⁇ m, and the peak wavelength of infrared energy radiation is 7-8 ⁇ m.
- the wavelength of the biased infrared energy radiation is 6 -7 ⁇ m or 8-9 ⁇ m
- the peak wavelength of infrared energy radiation is 8-9 ⁇ m
- the wavelength of the matched infrared energy radiation is 7-8 ⁇ m or 9-10 ⁇ m
- the peak wavelength of infrared energy radiation is 9-10 ⁇ m.
- the wavelength of the matched infrared energy radiation is 9-10 ⁇ m or 11-12 ⁇ m
- the peak wavelength of infrared energy radiation is 11-12 ⁇ m.
- the radiation wavelength is 10-11 ⁇ m or 12-13 ⁇ m
- the peak of the infrared energy radiation wavelength is 12-13 ⁇ m.
- the external energy radiation wavelength is 11-12 ⁇ m or 13- ⁇ m
- the infrared energy radiation wavelength peak is 13-14 ⁇ m
- the bias matching infrared energy radiation wavelength is 12-13 ⁇ m or 14-15 ⁇ m
- the infrared energy radiation wavelength peak value is 11-12 ⁇ m.
- the partial matching infrared energy radiation wavelength is 10-11 ⁇ m or 12-13 ⁇ m
- the infrared energy radiation wavelength peak value is 14-15 ⁇ m
- the bias matching infrared energy radiation wavelength is 13-14 ⁇ m.
- infrared drying the most effective and fastest drying method is to achieve rapid drying by the "matching" of the infrared wavelength peak of the heating element and the infrared wavelength peak of the material to be dried.
- the infrared drying is essentially the absorption of the molecular vibration of the material to be dried.
- the electromagnetic wave energy accelerates the molecular motion and raises the temperature of the material to be dried to achieve the purpose of dehydration.
- the infrared frequency of the heating element is consistent with the vibration frequency of the molecules of the material to be dried, the infrared energy is converted into the vibration energy of the molecule, so that the temperature of the material to be dried rises, the infrared wavelength of the material to be dried and the far infrared wavelength emitted by the heating element.
- the peak of the infrared wavelength of the material to be dried and the peak of the infrared wavelength of the emitter it can achieve the purpose of rapid drying, which is a general conventional drying method.
- the solution is to realize functional foods, that is, to maximize the preservation of a nutrient component in the material to be dried by drying, such as the principle of "matching" by infrared wavelength, although the drying process is accelerated, but the infrared vibration effect is lost to be dried.
- the nutrient content of the material Therefore, the most effective way to achieve a functional food drying and maximize the complete preservation of a nutrient component of the material to be dried is to "bias match" the peak wavelength of the material to be dried with the peak wavelength of the emitter, although “biased” the dry material.
- the efficiency is lower than the efficiency of "matching" the dry material, but it can greatly preserve a nutrient in the material to achieve a functional food.
- the temperature controller comprises: a material temperature display, a planar infrared radiation heating layer temperature display and a temperature setting device, and the material temperature display receives and displays the internal temperature of the material measured by the temperature sensor inserted into the material to be dried in real time, and the planar infrared radiation is heated.
- the layer temperature display accepts and displays the temperature of the surface of the planar infrared radiation heating layer in real time, and the temperature controller sets the minimum temperature limit and the maximum temperature limit of the planar infrared radiation heating layer and the drying process inside the material to be dried, and the temperature controller Monitoring the internal temperature of the material or the surface temperature of the planar infrared radiation heating layer below the set limit will automatically start the planar infrared radiation heating layer to work, and the temperature controller monitors the internal temperature of the material or the planar infrared radiation heating layer. When the surface temperature is higher than the set limit, the planar infrared radiation heating layer is automatically shut down to work.
- the humidity controller includes: a humidity display, a humidity setter, the humidity display accepts and displays the humidity in the dry box in real time, the humidity setter sets the minimum humidity limit and the highest humidity limit in the dry box, and the humidity controller detects the function.
- the dehumidification fan When the water humidity in the dry food box is higher than the set value, the dehumidification fan will be automatically started. Dehumidification, the humidity controller detects that the water humidity in the functional food drying cabinet is lower than the set value, it will automatically shut down the humidifying fan and automatically open the fresh air inlet to draw in fresh air.
- the weight controller includes: a weight display, a weight setter, the weight display receives the data of the weight sensor in real time and displays the weight of the dry material in the dry box, and the weight setter sets the dry to wet ratio of the material to be dried to a dry state.
- the automatic shut-off controller accepts the data of the weight sensor and automatically stops the operation of the far-infrared box drying system after the weight setter sets the dry weight of the material to be dried, and the weight setter detects that the dry-wet ratio of the dry material reaches When the value is set, the functional food drying system is automatically shut down and the dried functional food dry product is obtained.
- a universal wheel 8 is attached to the bottom of the drying box main body 1, and four universal wheels 8 are provided, and the universal wheel 8 has a locking structure.
- the drying box body 1 is a rectangular parallelepiped, and the drying box body 1 comprises: a casing and an outer casing, the casing has an opening, and the movable door is mounted on the opening.
- the inner tank adopts a stainless steel 304 plate, and a plurality of air flow holes are uniformly distributed on the inner tank, and the air flow hole diameter is 2-15 mm.
- the outer casing comprises: an inner layer, an inner layer, an outer layer, an outer layer, a stainless steel 304 plate having a thickness of 0.2-2 mm, a heat insulating layer having a thickness of 10-50 mm, and a heat insulating layer using a polyurethane insulating material, a ceramic insulating material, and silicon.
- the acid salt insulation material is made of stainless steel 304 plate with a thickness of 1-4 mm.
- the distance between the inner liner and the inner layer is 5-20 mm, and the air flow holes uniformly distributed on the inner tank of the drying box main body 1 circulate the forced convection hot air formed by the inner circulation fan from the air flow holes to the infrared drying layers 2, Thereby, the air temperature between the infrared drying layers 2 is balanced to achieve the effect of simultaneous drying.
- the invention discloses a far-infrared box drying system and a drying method, wherein the material to be dried is placed in a plastic tray 3, the plastic tray 3 is placed in the main body 1 of the drying box; and the plastic tray 3 is placed in two-sided infrared radiation. Between the heating layers; using a wavelength having a set difference from the peak wavelength of the material, the infrared heating material is energized and controlled, and the dried material is dried to generate a dry material.
- the peak wavelength of the material is obtained before the material to be dried is placed in the plastic tray 3.
- the nutrient composition of the material to be dried is obtained; the nutrient component which is intentionally retained by the material to be dried is obtained; the nutrient component with intentional retention of the dry material is extracted, and the nutrient component is detected by liquid chromatography or gas chromatography; The nutrients to be retained in the material to be dried; The nutrient composition is extracted, the infrared spectrum of the nutrient component is determined; the limit breaking temperature of the nutrient component is determined; the infrared spectrum is analyzed to obtain the peak wavelength of the infrared spectrum of the nutrient component, and the ultimate breaking ring temperature is further obtained. The infrared spectrum of the infrared spectrum of the nutrients to be retained is peaked.
- a set difference is added or subtracted to obtain a partial matching range.
- the set difference is 1 ⁇ m.
- the infrared infrared spectrum wavelength peak range is an arbitrary integer range within 5 to 14 ⁇ m, a set difference is added or subtracted, and the set difference is 1 ⁇ m to obtain a partial matching range; if the infrared spectrum wavelength When the peak range is 14 to 15 ⁇ m, only the set difference of 1 ⁇ m is subtracted, and the partial matching range is 13 to 14 ⁇ m.
- the specific wavelength relationship is:
- infrared drying the most effective and fastest drying method is to achieve rapid drying by the "matching" of the infrared wavelength peak of the heating element and the infrared wavelength peak of the material to be dried.
- the infrared drying is essentially the absorption of the molecular vibration of the material to be dried.
- the electromagnetic wave energy accelerates the molecular motion and raises the temperature of the material to be dried to achieve the purpose of dehydration.
- the infrared frequency of the heating element and the vibration of the material to be dried When the dynamic frequencies are consistent, the infrared energy is converted into the vibrational energy of the molecules, so that the temperature of the material to be dried rises, and the infrared wavelength of the material to be dried is closer to the far-infrared wavelength emitted by the heating element, so that the more the cells in the body can be induced. Resonance absorption, and thus the thermal effect is significant.
- the peak of the infrared wavelength of the material to be dried and the peak of the infrared wavelength of the emitter it can achieve the purpose of rapid drying, which is a general conventional drying method.
- the solution is to realize functional foods, that is, to maximize the preservation of a nutrient component in the material to be dried by drying, such as the principle of "matching" by infrared wavelength, although the drying process is accelerated, but the infrared vibration effect is lost to be dried.
- the nutrient content of the material Therefore, the most effective way to achieve a functional food drying and maximize the complete preservation of a nutrient component of the material to be dried is to "bias match" the peak wavelength of the material to be dried with the peak wavelength of the emitter, although “biased” the dry material.
- the efficiency is lower than the efficiency of "matching" the dry material, but it can greatly preserve a nutrient in the material, thereby achieving nutrient retention of the functional food.
- the internal temperature limit of the material to be dried is set.
- the temperature limit of the planar infrared radiation heating layer is set.
- the humidity limit in the drying box main body 1 is set.
- the dry/wet ratio in the drying box main body 1 is set.
- the "bias matching” includes the following steps;
- step 4 determining the nutrient content to be retained by the material to be dried according to the result of the analysis in step 4);
- step 6 analyzing the infrared spectrum obtained in step 6), and selecting the peak wavelength of the infrared spectrum of the nutrient component, and combining the ultimate breaking temperature of the nutrient component obtained in step 7) to further obtain the infrared component of the nutrient component.
- the peak wavelength of the infrared spectrum obtained in step 8) is the "matching" value of the infrared drying, and the difference is set according to the peak range of the infrared spectrum wavelength to obtain the partial matching range;
- step 10 comprises the following steps;
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Solid Materials (AREA)
Abstract
一种远红外箱式干燥系统及干燥方法,所述的远红外箱式干燥系统包括:干燥箱主体(1)、红外干燥层(2)和红外控制系统组成,所述的红外干燥层(2)安装有面状红外辐射发热层,所述的红外干燥层(2)安装在所述箱式干燥主体(1)内,并与所述的红外控制系统相连接,将待干燥物料置于托盘(3)内,托盘(3)置于干燥箱主体(1)内,使用与物料峰值波长具有设定差值的波长,对待干燥物料进行干燥,生成干燥物料。利用远红外的共振效应干燥农产品,并通过发热体红外波长峰值与待干燥农产品红外波长峰值的"偏匹配"来有效的保留农产品的单一的营养成分,从而实现物料的干燥。
Description
本发明涉及一种远红外箱式干燥系统,特别地,涉及一种远红外箱式干燥系统及干燥方法。
功能性食品是指具有特定营养保健功能的食品,即适宜于特定人群食用,具有调节肌体功能,不易治疗为目的的食品。功能性食品有时也称为保健品食品。在学术与科研上,称“功能性食品”更科学些。它的范围包括:增强人体体质的食品、防止疾病的食品、恢复健康的食品、调节身体节律的食品和延缓衰老的食品。
欧洲范围内开始大规模研究功能食品是从1996年“尼斯”会议开始的。当时国际生命科学学会(ILSI)欧洲分部邀请了食品企业和学术界的50位专家到法国讨论有关“功能食品的科学概念及其功能成分应用的科学基础”,会上研讨了包括胃肠功能、行为心理功能、脂肪代谢功能等6个方面的食品功能学研究成果,并取得了显著的成果。1995年,英国农渔食品部(MAFF)为了将“功能食品”与强化维生素、矿物质的早餐谷物类营养强化食品相区分,提出了“功能食品”的概念:即含有某种具有医学和生理作用(而非仅仅营养功能)成分的食品。与此同时,英国营养基金会(BNF)还给出了“功能食品”的四大特征:1)具有食品的形状;2)天然成分;3)作为日常膳食的一部分,没有专业指导下服用也是安全的;4)具有促进健康的作用。
目前,功能性食品已经成全球食品生产领域最集中的部分。全球功能性食品市场年销售总额大约在100亿到400亿美元,而且还正以每年8%的速度增长;市场调研显示全球功能性食品销售额已经从1995年的113亿美元增至2004年的500亿美元,10年间增长了近4倍;2007年功能性食品市场已经超过1000亿美元,占全部农产品加工的5%,未来还将以每年超过10%的速度增长。国际上功能性食品研发、消费地区主要是美国、日本和欧盟。其中,美国是功能性食品市场发展最为重要和激烈的地区,约占据着全球功能性食品市场的50%以上的比重,
并且占据着美国本土食品市场的2%左右的份额。日本,是现代功能性食品的发源地,也是功能性食品的第二大研发与消费地区;其仅在1988年到1998年的这10年中就有约1700种功能性食品上市,市场总额约有14亿美元之多。在欧盟,功能性食品的市场总值截至1999年就已达到40—80亿美元,并且其增长速度更是惊人。同时,世界其他地区,尤其是新兴的发展中国家,功能性食品也正呈现良好的增长态势,并且所占比重正在逐年加大。国外功能性食品市场呈现以下特点:一是低脂肪、低热量、低胆固醇的保健食品品种多,销售量最大。二是植物性食品受宠,保健茶、中草药在国外崛起,销路看好。三是工艺先进、高科技制作,产品纯度高、性能好,多为软胶囊、片样造型,或制成运动饮料,易于吸收。
我国功能性食品起步较晚,比较规范的功能性食品厂家有4000多家,年销售额达到1亿元的不超过18家,在国际市场上功能性食品市场占有份额过低,仅占全球市场的4%左右。产品功能集中在免疫调解、抗疲劳和调节血脂上,应用最多的植物提取物和中药材等具有中国特色的基础原料。近年来我国功能性食品发展迅速,制约我国功能性食品发展的主要原因是对农作物的干燥方法较为传统,目前我国多采用传统的晾晒或热风干燥,虽然干燥了农作物,但是在干燥的过程中造成了农作物的天然营养成分的损失。如人工晾晒时间长并且收气候影响,农作物在堆积过程中极易发生营养成分的流失,热风干燥虽然干燥效率高,但是在干燥的过程中温度较高,极易造成农作物中的某种营养成分在高温时变质。
发明内容
本发明公开了一种远红外箱式干燥系统,用以解决现有技术中干燥过程中,由于温度较高极易造成农作物中的某些营养成分在高温时变质的问题。
本发明的上述目的是通过以下技术方案实现的:
一种远红外箱式干燥系统,由干燥箱主体、红外干燥层和红外控制系统组成,其特征在于,所述的红外干燥层安装有面状红外辐射发热层,所述的红外干燥层安装在所述箱式干燥主体内,并与所述的红外控制系统相连接,所述的面状红外辐射发热层以红外辐射的方式均匀的将红外能量辐射到待干燥物料并被待干燥物料接收,所述的红外控制系统根据待干燥物料的波长峰值实现红外干燥层红外
辐射能量的红外波长峰值的“偏匹配”,从而实现物料的干燥。
如上所述的远红外箱式干燥系统,其中,所述干燥箱主体内具有一个干燥室,所述红外干燥单元安装在所述干燥室内,所述红外干燥单元由多层组成。
如上所述的远红外箱式干燥系统,其中,所述的红外干燥单元由面状红外辐射发热层、托盘、面状红外辐射发热层支撑架和U型托盘支撑槽组成。
如上所述的远红外箱式干燥系统,其中,所述托盘滑动安装在所述U型托盘支撑槽内,所述托盘的相对两侧边外侧对称设有滑动公榫,所述U型托盘支撑槽相对两侧壁匹配的具有母榫,所述滑行公榫匹配滑动置于母榫内。
如上所述的远红外箱式干燥系统,其中,所述的托盘采用食品级的塑料托盘,所述的食品级的塑料托盘的材质可采用高密度聚乙烯、聚乙烯、耐热聚乙烯、聚丙烯、聚丁烯,所述的食品级的塑料托盘底部和四周有正方形孔,所述的食品级的塑料托盘底部和四周的正方形孔的长度为2‐10mm。对于红外辐射干燥物料,物料盘选用的材质非常关键,根据普朗克辐射定律的黑体辐射理论,红外辐射能量受接受体材质的影响,不同材质的红外辐射通过率会存在着较大的差异,食品加工一般采用的是不锈钢材质,但是不锈钢红外吸收率与投射到该物体的辐射能的波长无关,即不锈钢为灰体,红外辐射能量无法透过,而本发明最核心的就是要实现红外波长的透过从而实现红外能量波长与待干燥物料红外波长峰值的“偏匹配”,而选用上述材质,一般情况下红外透过率达到85%以上,故能较好的实现面状发热材料的红外能量波长的穿透。
如上所述的远红外箱式干燥系统,其中,所述的面状红外辐射发热层支撑架为“田”字型结构,用以固定面状红外辐射发热层,所述的面状红外辐射发热层支撑架采用不锈钢材质制作而成。
如上所述的远红外箱式干燥系统,其中,所述面状红外辐射发射层采用:在干燥室最上端的红外干燥单元和干燥室最下端的红外干燥单元采用单面红外辐射发热层,其它红外干燥单面采用上面和背面均为红外辐射发热的双面红外辐射发热层,所述单面红外辐射发热层和双面红外辐射发热层均采用面状红外电热材料,,所述的单面红外辐射发热层和双面红外辐射发热层红外辐射波长为4-18μm,所述的单面红外辐射发热层和双面红外辐射发热层工作温度为30-120℃,所述面状红外电热材料以碳纤维、碳纳米管或石墨烯中的一种或几种组合作为发热体制
备的面状红外发热片。
如上所述单面红外辐射发热层分别安装在干燥室最上端的红外干燥单元和干燥室最下端的红外干燥单元的面状红外辐射发热层支撑架上,所述双面红外辐射发热层安装在面状红外电热材料支撑架的上,所述干燥室最上端的红外干燥单元的单面红外辐射发热材料以红外辐射的方式均匀的将红外能量向该层托盘上部的待干燥物料辐射并被待干燥物料接收,所述干燥室最下端的红外干燥单元的单面红外辐射发热材料以红外辐射的方式均匀的将红外能量向该层托盘底部的待干燥物料辐射并被待干燥物料接收,所述的双面红外辐射发热层的上面向红外干燥层的托盘的底部以红外辐射的方式均匀的将红外能量辐射到托盘底部的待干燥物料并被待干燥物料接收,所述的双面红外辐射发热层的背面向红外干燥层下一层的托盘的上部以红外辐射的方式均匀的将红外能量辐射到红外干燥层下一层的托盘的上部的待干燥物料并被待干燥物料接收。
如上所述的远红外箱式干燥系统,其中,所述的托盘最上端与上层的面状红外辐射发热层间的距离为10‐50mm,所述的托盘底部与下层的面状红外辐射发热层间的距离为5‐50mm。
如上所述的远红外箱式干燥系统,其中,所述的红外控制系统由温度传感器、湿度传感器、风机系统、自称重系统、红外辐射能量控制系统组成。
如上所述的远红外箱式干燥系统,其中,所述温度传感器包括:片状热电阻式温度传感器、针状热电阻式温度传感器,所述片状热电阻式温度传感器安装在所述面状红外辐射发热层表面的中间位置,所述针状热电阻式温度传感器安装在所述托盘内。
如上所述的远红外箱式干燥系统,其中,所述红外干燥层有多层,多层所述红外干燥层上下叠放在所述干燥箱主体内,所述温度传感器具有多个,分布于红外干燥层的奇数层或偶数层。
如上所述的远红外箱式干燥系统,其中,所述的湿度传感器位于干燥箱主体结构内部的干燥室上部,并与红外辐射能量控制系统相连,所述的湿度传感器实时监测干燥箱内的湿度。
如上所述的远红外箱式干燥系统,其中,所述的风机系统由内循环风机和抽湿风机组成。所述的内循环风机为离心内循环风机,所述的内循环风机启动后能
形成强制热空气的强制对流并均匀干燥箱内各部位的空气温度;所述的抽湿风机为离心抽湿风机。
如上所述的远红外箱式干燥系统,其中,所述的离心抽湿风机由抽湿口和新风口组成,所述的离心抽湿风机位于干燥箱内的顶端,所述的离心抽湿风机抽湿口抽出干燥箱内的湿度高的热空气,并使得干燥箱内部的气压小于干燥箱外部的气压,所述的离心抽湿风机新风口将外部的新风抽入干燥箱内部,当干燥箱内部的气压小于干燥箱外部的气压时会产生压力差并自动打开新风口抽入新风。
如上所述的远红外箱式干燥系统,其中,所述的自称重系统为称重传感器,所述的称重传感器放置在红外干燥层的底部,并实时监测塑料托盘物料的重量,将数据发送到红外辐射能量控制系统。
如上所述的远红外箱式干燥系统,其中,所述的红外辐射能量控制系统由红外波长控制器、温度控制器、湿度控制器、重量控制器和自动关停控制器组成。
如上所述的远红外箱式干燥系统,其中,所述的外波长控制器由电压调压器、电压显示器和红外光谱峰值控制器组成。所述的红外光谱峰值控制器预设多档红外能量辐射波长峰值,所述的预设多档红外能量辐射波长“匹配”峰值包括5‐6μm、6‐7μm、7‐8μm、8‐9μm、9‐10μm、10‐11μm、11‐12μm、13‐14μm、14‐15μm,预设多档红外能量辐射波长匹配峰值上标识有相应的电压,通过电压调压器调整到与红外能量辐射波长峰值相对应的电压即可达到面状红外电热材料辐射红外能量的波长峰值。
红外干燥时,最有效最快速的干燥方法是通过发热体红外波长峰值与待干燥物料红外波长峰值的“匹配”来达到快速干燥的目的,红外干燥实质是待干燥物料的分子振动时吸收与其相应的电磁波能量,加速分子运动,使待干燥物料的温度升高从而达到脱水的目的。当发热体的红外线频率和待干燥物料分子的振动频率相一致时,红外线能量就转换为分子的振动能量,从而使待干燥物料温度上升,待干燥物料的红外波长与发热体发射的远红外波长越接近,就越能诱发接受体内细胞分子的共振吸收,因而热效应显著。采用待干燥物料红外波长峰值与发射体红外波长峰值相”匹配”,能达到快速干燥的目的,这是一般的传统的干燥方法。而本方案是要实现功能型食品,即通过干燥最大化保存待干燥物料中的一种营养成分,如采用红外波长“匹配“的原则,虽然会加快干燥过程,但是红外
振动效应会损失待干燥物料的营养成分。所以,实现功能性食品干燥并最大化的完整的保存待干燥物料的一种营养成分最有效的方法通过待干燥物料波长峰值与发射体波长峰值的”偏匹配”,虽然“偏匹配”干燥物料的效率低于“匹配”干燥物料的效率,但是可以极大的保存该物料中一种营养成分,从而实现功能性食品。
如上所述的远红外箱式干燥系统,其中,预设多档红外能量辐射波长峰值时的偏匹配模式,所述偏匹配模式的红外能量辐射波长分别为:红外能量辐射波长峰值为5-6μm时采用偏匹配红外能量辐射波长为4-5μm或6-7μm,红外能量辐射波长峰值为6-7μm时采用偏匹配红外能量辐射波长为5-6μm或7-8μm,红外能量辐射波长峰值为7-8μm时采用偏匹配红外能量辐射波长为6-7μm或8-9μm,红外能量辐射波长峰值为8-9μm时采用偏匹配红外能量辐射波长为7-8μm或9-10μm,红外能量辐射波长峰值为9-10μm时采用偏匹配红外能量辐射波长为8-9μm或10-11μm,红外能量辐射波长峰值为10-11μm时采用偏匹配红外能量辐射波长为9-10μm或11-12μm,红外能量辐射波长峰值为11-12μm时采用偏匹配红外能量辐射波长为10-11μm或12-13μm,红外能量辐射波长峰值为12-13μm时采用偏匹配红外能量辐射波长为11-12μm或13-μm,红外能量辐射波长峰值为13-14μm时采用偏匹配红外能量辐射波长为12-13μm或14-15μm,红外能量辐射波长峰值为11-12μm时采用偏匹配红外能量辐射波长为10-11μm或12-13μm,红外能量辐射波长峰值时为14-15μm时采用偏匹配红外能量辐射波长为13-14μm。
如上所述的远红外箱式干燥系统,其中,所述的温度控制器由物料温度显示器、面状红外辐射发热层温度显示器和温度控制器组成,所述的物料温度显示器实时接受并显示插入待干燥物料内部的温度传感器测得的物料内部温度,所述的面状红外辐射发热层温度显示器实时接受并显示面状红外辐射发热层表面的温度,所述的温度控制器设定面状红外辐射发热层和待干燥物料内部的干燥过程中的最低温度限值和最高温度限制,所述的温度控制器监测到物料内部温度或面状红外辐射发热层的表面温度低于设定限值是会自动启动面状红外辐射发热层进行工作,所述的温度控制器监测到物料内部温度或面状红外辐射发热层的表面温度高于设定限值是会自动关停面状红外辐射发热层进行工作。
如上所述的远红外箱式干燥系统,其中,所述的湿度控制器由湿度显示器和湿度设定器组成,所述的湿度显示器实时接受并显示干燥箱内的湿度,所述的湿度设定器设定干燥箱内的最低湿度限值和最高湿度限制,所述的湿度控制器检测到功能性食品干燥箱内水湿度高于设定值时会自动启动抽湿风机进行抽湿,所述的湿度控制器检测到功能性食品干燥箱内水湿度低于设定值时会自动关停抽湿风机并自动打开新风口抽入新风。
如上所述的远红外箱式干燥系统,其中,所述的重量控制器由重量显示器和重量设定器组成,所述的重量显示器实时接受重量传感器的数据并显示干燥箱内干燥物料的重量,所述的重量设定器设定待干燥物料达到干燥的干湿比。
如上所述的远红外箱式干燥系统,其中,所述的自动关停控制器接受重量传感器的数据并在重量设定器设定待干燥物料达到干燥的重量后自动停止远红外箱式干燥系统的运行,所述的重量设定器检测到干燥物料的干湿比达到设定值时会自动关停功能性食品干燥系统,并得到干燥完成的功能性食品干燥物。
如上所述的远红外箱式干燥系统,其中,所述干燥箱主体底部安装有万向轮,所述万向轮有四个,所述万向轮具有锁死结构。
如上所述的远红外箱式干燥系统,其中,所述内胆采用不锈钢304板,所述内胆上均匀分布有多个气流孔,所述气流孔直径为2-15mm。
如上所述的远红外箱式干燥系统,其中,所述外壳包括:内层、保温层、外层,所述内层采用厚度为0.2-2mm的不锈钢304板,所述保温层的厚度为10-50mm,所述保温层采用聚氨酯类保温材料、陶瓷类保温材料、硅酸盐类保温材料中的一种,所述外层采用厚度为1-4mm的不锈钢304板。
如上所述的远红外箱式干燥系统,其中,所述内胆与所述内层之间的距离为5-20mm。
一种远红外箱式干燥方法,其中,将待干燥物料置于塑料托盘内,塑料托盘置于干燥箱主体内;将塑料托盘置于两面状红外电热材料之间;使用与物料峰值波长具有设定差值的波长,对红外电热材料通电控制,对待干燥物料进行干燥,生成干燥物料。
如上所述的远红外箱式干燥方法,其中,在将待干燥物料置于塑料托盘内之前获取物料的峰值波长。
如上所述的远红外箱式干燥方法,其中,获取待干燥物料的营养成分组成;获取待干燥物料意向性保留的营养成分;提取带干燥物料意向性保留的营养成分,采用液相色谱或气相色谱检测分析营养成分;根据分析结果获取该待干燥物料要保留的营养成分;对要保留的营养成分进行提取,测定该种营养成分的红外光谱图;确定营养成分的极限破环温度;对红外光谱进行分析,获取该种营养成分的红外光谱波长峰值,结合极限破环温度进一步得出要保留的营养成分的红外干燥的红外光谱波长峰值。
如上所述的远红外箱式干燥方法,其中,根据红外光谱波长峰值范围,增加或减去一个设定的差值,获取一个偏匹配范围。
如上所述的远红外箱式干燥方法,其中,设定差值为1μm。
如上所述的远红外箱式干燥方法,其中,如果红外光谱波长峰值范围为5~14μm内的任意整数范围,则增加或减去一个设定的差值,设定的差值为1μm,获取一偏匹配范围;如果红外光谱波长峰值范围为14~15μm,则只减去设定的差值1μm,偏匹配范围为:13~14μm。
如上所述的远红外箱式干燥方法,其中,对待干燥物料进行干燥时,设定待干燥物料内部温度限值。
如上所述的远红外箱式干燥方法,其中,设定面状红外电热材料的温度限值。
如上所述的远红外箱式干燥方法,其中,设定干燥箱主体内的湿度限值。
如上所述的远红外箱式干燥方法,其中,设定干燥箱主体内的干湿比值。
如上所述的远红外箱式干燥方法,所述的“偏匹配”包括如下步骤;
1)选择新鲜的待干燥物料;
2)检索该带干燥物料的营养成分组成;
3)确定该待干燥物料意向性保留的营养成分;
4)提取该待干燥物料中的相应的营养成分并采用液相色谱或气相色谱检测分析营养成分;
5)根据步骤4)分析的结果确定该待干燥物料要保留的营养成分;
6)对上述步骤5)中的营养成分进行进一步的提取,并测定该种营养成分的红外光谱图;
7)对上述步骤5)中的营养成分进行进一步的分析,确定营养成分的极限破环温度;
8)对上述步骤6)得出的红外光谱进行分析,并选择该种营养成分的红外光谱波长峰值,并结合步骤7)得出的该种营养成分的极限破环温度进一步得出该种营养成分红外干燥的红外光谱波长峰值;
9)对步骤8)得出的红外光谱波长峰值即为红外干燥的“匹配”值,根据红外光谱波长峰值范围,设定差值,获取偏匹配范围;
10)根据步骤9)选择的“偏匹配”进行功能性食品的干燥。
远红外箱式干燥系统及干燥方法,其中,所述的步骤10包括以下步骤;
10.1将待干燥物料放入塑料托盘;
10.2将装有待干燥物料的塑料托盘插入红外干燥层;
10.3关闭箱式功能性食品干燥机的门;
10.4启动箱式功能性食品干燥机的总电源;
10.5根据待干燥物料的的波长峰值设定箱式功能性食品干燥机面状红外电热材料”匹配“峰值,从而得出待干燥物料“偏匹配”红外波长峰值;
10.6设定待干燥物料内部温度限值;
10.7设定面状红外电热材料的温度限制;
10.8设定干燥机内部湿度限值;
10.9设定待干燥物料的干湿比值;
10.10启动功能性食品干燥机并运行;
10.11完成功能性食品的干燥。
综上所述,由于采用了上述技术方案,本发明利用远红外的共振效应干燥农产品,并通过发热体红外波长峰值与待干燥农产品红外波长峰值的“偏匹配”来有效的保留农产品的单一的营养成分,从而实现功能性食品的基本要素。
上述方案的远红外箱式干燥系统及干燥方法可广泛用于农作物及经济作物的功能性食品的初加工上,如银杏、红景天、人参、林蛙、鹿茸、西洋参、虫草、当归、枸杞子、首乌、阿胶、绞股蓝、枇杷叶、枸杞、黑木耳、银耳、小麦、玉米、稻谷、红豆、绿豆、辣椒、海参、花生、荞麦、燕麦、小米、芝麻、葵花籽、菌菇类等。该系统具有以下优异的性能;
1)本发明远红外箱式干燥系统及干燥方法属于中国制造2025十大领域中的新材料和先进农机装备两大领域的结合,符合国家制造强国的行动纲领,是践行届五中全会的“大力推进农业现代化,加快转变农业发展方式,走出高效、产品安全、资源节约、环境友好的农业现代化道路”的相关政策方针,并填补了我国目前在功能性食品干燥上的技术空白。
2)本方案设备制造费用极低,使用方便,一键式智能操作,有利于在市场上大范围推广。
3)本发明的发热源面状发热材料是低温中长波远红外面状发热体,其整个面均为发热面,且发热均匀,温差低,在干燥过程中,物料受热均匀,并且物料的温度控制在物料各项营养成分变性温度之下,极大的保存了物料的营养成分。
4)本发明采用了红外面状发热体,利用发热体波长峰值与待干燥物料中的某种营养成分波长峰值的“偏匹配”,极大的完整的保存了该种待干燥物料中的营养成分,实现了真正功能性食品。红外辐射干燥的实质是一个待干燥物料接受体共振吸收加热的过程,待干燥物料接受体通过表层分子吸收辐射振动会引起由表及里的“链条式振动”,这比由于温度梯度引起的热传导更为有效。接受体的红外光谱波长与发射体发射的远红外波长越接近,就越能诱发接受体内细胞分子的共振吸收。不同接受体的红外波长和红外波长峰值存在着较大的不同。虽然采用发热体波长峰值与待干燥物料波长峰值的“匹配”的能极大地加快干燥的过程,但是会带来营养成分的流失,而采用发热体波长峰值与待干燥物料中的某种营养成分波长峰值的“偏匹配”,虽然单纯的干燥效率降低,但是在利用“偏匹配”在保存营养成分的前提下可以加快物料中水分子的共振,从而达到快速干燥的目的。
图1是本发明远红外箱式干燥系统的结构示意图;
图2是本发明远红外箱式干燥系统的结构仰视图示意图;
图3是本发明远红外箱式干燥系统的结构侧视示意图。
下面结合附图和实施例对本发明做进一步描述:
图1是本发明远红外箱式干燥系统的结构示意图,图2是本发明远红外箱式干燥系统的结构仰视图示意图,图3是本发明远红外箱式干燥系统的结构侧视示意图,请参见图1~3,一种远红外箱式干燥系统,包括:一个干燥箱主体1、红外干燥层2和红外控制系统,其中,干燥箱主体1内安装有红外干燥层2,红外干燥层2与一红外控制系统连接,红外干燥层2安装有面状红外辐射发射层。
进一步的,干燥箱主体1内具有一个干燥室,红外干燥层2安装在干燥室内。
红外干燥层2包括:面状红外辐射发射层、托盘3、面状红外辐射发热层支撑架和U型托盘3支撑槽,面状红外辐射发射层为:面状红外电热材料。
托盘3滑动安装在U型托盘3支撑槽内。
进一步的,托盘3的相对两侧边外侧对称设有滑行公榫,U型托盘3支撑槽的相对两侧壁匹配的具有母榫,滑行公榫匹配滑动置于母榫内。
进一步的,托盘3采用食品级塑料托盘3,对于红外辐射干燥物料,物料盘选用的材质非常关键,根据普朗克辐射定律的黑体辐射理论,红外辐射能量受接受体材质的影响,不同材质的红外辐射通过率会存在着较大的差异,食品加工一般采用的是不锈钢材质,但是不锈钢红外吸收率与投射到该物体的辐射能的波长无关,即不锈钢为灰体,红外辐射能量无法透过,而本发明最核心的就是要实现红外波长的透过从而实现红外能量波长与待干燥物料红外波长峰值的“偏匹配”,而选用上述材质,一般情况下红外透过率达到85%以上,故能较好的实现面状发热材料的红外能量波长的穿透。
进一步的,托盘3采用:高密度聚乙烯、聚乙烯、耐热聚乙烯、聚丙烯、聚丁烯中的一种。
进一步的,托盘3的底部、托盘3的侧壁均开设有方形孔;方形孔的长度为2-10mm。
面状红外辐射发热层支撑架为“田”字型支撑架;面状红外辐射发热层支撑架采用不锈钢材料制成。
进一步的,面状红外电热材料的正反两面均为红外辐射发热的面状发热材料。
进一步的,面状发热材料为:碳纤维、碳纳米管或石墨烯中的一种或几种组合作为发热体制备的面状红外发热片;面状红外电热材料红外辐射波长为
4-18μm,面状红外电热材料稳定状态下的干燥温度为30-120℃。
托盘3上端部与面状红外电热材料间距为10-50mm,托盘3下端部与面状红外电热材料间距为5-50mm。
红外控制系统包括:温度传感器、湿度传感器、风机系统、自称重系统、红外辐射能量控制系统。
进一步的,温度传感器包括:片状热电阻式温度传感器、针状热电阻式温度传感器,片状热电阻式温度传感器安装在面状红外电热材料表面的中间位置,针状热电阻式温度传感器安装在托盘3内。针状热电阻式温度传感器的针状探头插入待干燥物料内部并放置在塑料托盘3中间位置,针状热电阻式温度传感器实时收集干燥物料内部温度并将温度数据传送到红外辐射能量控制系统。
红外干燥层2有多层,多层红外干燥层2上下叠放在干燥箱主体1内,温度传感器具有多个,任意两相邻的红外干燥层2中有一红外干燥层2安装有一温度传感器。
进一步的,湿度传感器设置在干燥室上部,湿度传感器与红外辐射能量控制系统连接。湿度传感器放置的位置非常关键,干燥的过程实质上是物料的脱水过程,待干燥物料接收红外辐射能量加热后内部的水分会排出到干燥室,使得干燥室内湿度迅速增加。红外发热体主要以红外辐射形式传递能量,其波长一般在4-18μm,而水的波长峰值一般在9-10μm这个范围内,所以湿度较大的湿空气波长峰值也在这个范围内,如果不能迅速将湿空气排出,干燥室内的湿空气会优先吸收面状红外电热材料辐射的红外能量,使得待干燥物料接受红外辐射能量很少,会极大的减缓干燥的过程。湿度传感器放置在干燥箱主体1结构内部的干燥室上部,这是因为在物料的干燥过程中也是对干燥室加热的过程,干燥时会迅速加热干燥箱内空气以及物料排出的高湿度水分子形成干燥箱内湿度较大的热空气,而热空气的密度相对较小,会迅速上升到干燥箱内上部,将湿度传感器放置在顶部能迅速监测到烘箱内的湿度,有利于及时排湿从而加快物料的干燥。
风机系统包括:内循环风机和抽湿风机。
进一步的,内循环风机为离心内循环风机,内循环风机为离心内循环风机,内循环风机启动后能形成强制热空气的强制对流并均匀干燥箱内各部位的空气温度。
抽湿风机为离心抽湿风机,离心抽湿风机由抽湿口和新风口组成,离心抽湿
风机位于干燥箱内的顶端,离心抽湿风机抽湿口抽出干燥箱内的湿度高的热空气,并使得干燥箱内部的气压小于干燥箱外部的气压,离心抽湿风机新风口将外部的新风抽入干燥箱内部,当干燥箱内部的气压小于干燥箱外部的气压时会产生压力差并自动打开新风口抽入新风。
进一步的,离心抽湿风机包括:抽湿口和新风口,离心抽湿风机安装在干燥箱主体的顶端。
自称重系统为称重传感器,称重传感器放置在红外干燥层2的底部,称重传感器实时监测塑料托盘3物料的重量并将数据发送到红外辐射能量控制系统。
红外辐射能量控制系统包括:红外波长控制器、温度控制器、湿度控制器、重量控制器和自动关停控制器。
进一步的,红外波长控制器包括:电压调压器、电压显示器和红外光谱峰值控制器,进一步的,红外辐射能量控制系统为带有显示和调节功能的一体化控制系统。电压调压器可以调整供给面状红外电热材料的电压,电压显示器显示当前电压和电压调压器调压后的电压,红外光谱峰值控制器控制面状红外电热材料辐射红外能量的波长峰值的“匹配”值。
进一步的,外光谱峰值控制器预设多档红外能量辐射波长峰值,预设多档红外能量辐射波长匹配模式,匹配模式峰值包括5-6μm、6-7μm、7-8μm、8-9μm、9-10μm、10-11μm、11-12μm、13-14μm、14-15μm,预设多档红外能量辐射波长匹配峰值上标识由相应的电压,通过电压调压器调整到与红外能量辐射波长峰值相对应的电压即可达到面状红外电热材料辐射红外能量的波长峰值。
进一步的,预设多档红外能量辐射波长峰值时的偏匹配模式,偏匹配模式时红外能量辐射波长分别为:红外能量辐射波长峰值为5-6μm时采用偏匹配红外能量辐射波长为4-5μm或6-7μm,红外能量辐射波长峰值为6-7μm时采用偏匹配红外能量辐射波长为5-6μm或7-8μm,红外能量辐射波长峰值为7-8μm时采用偏匹配红外能量辐射波长为6-7μm或8-9μm,红外能量辐射波长峰值为8-9μm时采用偏匹配红外能量辐射波长为7-8μm或9-10μm,红外能量辐射波长峰值为9-10μm时采用偏匹配红外能量辐射波长为8-9μm或10-11μm,红外能量辐射波长峰值为10-11μm时采用偏匹配红外能量辐射波长为9-10μm或11-12μm,红外能量辐射波长峰值为11-12μm时采用偏匹配红外能量辐射波长为10-11μm或12-13μm,红外能量辐射波长峰值为12-13μm时采用偏匹配红
外能量辐射波长为11-12μm或13-μm,红外能量辐射波长峰值为13-14μm时采用偏匹配红外能量辐射波长为12-13μm或14-15μm,红外能量辐射波长峰值为11-12μm时采用偏匹配红外能量辐射波长为10-11μm或12-13μm,红外能量辐射波长峰值为14-15μm时采用偏匹配红外能量辐射波长为13-14μm。
红外干燥时,最有效最快速的干燥方法是通过发热体红外波长峰值与待干燥物料红外波长峰值的“匹配”来达到快速干燥的目的,红外干燥实质是待干燥物料的分子振动时吸收与其相应的电磁波能量,加速分子运动,使待干燥物料的温度升高从而达到脱水的目的。当发热体的红外线频率和待干燥物料分子的振动频率相一致时,红外线能量就转换为分子的振动能量,从而使待干燥物料温度上升,待干燥物料的红外波长与发热体发射的远红外波长越接近,就越能诱发接受体内细胞分子的共振吸收,因而热效应显著。采用待干燥物料红外波长峰值与发射体红外波长峰值相“匹配”,能达到快速干燥的目的,这是一般的传统的干燥方法。而本方案是要实现功能型食品,即通过干燥最大化保存待干燥物料中的一种营养成分,如采用红外波长“匹配”的原则,虽然会加快干燥过程,但是红外振动效应会损失待干燥物料的营养成分。所以,实现功能性食品干燥并最大化的完整的保存待干燥物料的一种营养成分最有效的方法通过待干燥物料波长峰值与发射体波长峰值的“偏匹配”,虽然“偏匹配”干燥物料的效率低于“匹配”干燥物料的效率,但是可以极大的保存该物料中一种营养成分,从而实现功能性食品。
温度控制器包括:物料温度显示器、面状红外辐射发热层温度显示器和温度设定器,物料温度显示器实时接受并显示插入待干燥物料内部的温度传感器测得的物料内部温度,面状红外辐射发热层温度显示器实时接受并显示面状红外辐射发热层表面的温度,温度控制器设定面状红外辐射发热层和待干燥物料内部的干燥过程中的最低温度限值和最高温度限制,温度控制器监测到物料内部温度或面状红外辐射发热层的表面温度低于设定限值是会自动启动面状红外辐射发热层进行工作,温度控制器监测到物料内部温度或面状红外辐射发热层的表面温度高于设定限值是会自动关停面状红外辐射发热层进行工作。
湿度控制器包括:湿度显示器、湿度设定器,湿度显示器实时接受并显示干燥箱内的湿度,湿度设定器设定干燥箱内的最低湿度限值和最高湿度限制,湿度控制器检测到功能性食品干燥箱内水湿度高于设定值时会自动启动抽湿风机进
行抽湿,湿度控制器检测到功能性食品干燥箱内水湿度低于设定值时会自动关停抽湿风机并自动打开新风口抽入新风。
重量控制器包括:重量显示器、重量设定器,重量显示器实时接受重量传感器的数据并显示干燥箱内干燥物料的重量,重量设定器设定待干燥物料达到干燥的干湿比。
自动关停控制器接受重量传感器的数据并在重量设定器设定待干燥物料达到干燥的重量后自动停止远红外箱式干燥系统的运行,重量设定器检测到干燥物料的干湿比达到设定值时会自动关停功能性食品干燥系统,并得到干燥完成的功能性食品干燥物。
干燥箱主体1底部安装有万向轮8,万向轮8有四个,万向轮8具有锁死结构。
进一步的,干燥箱主体1为一长方体,干燥箱主体1包括:内胆、外壳,外壳上具有开口,开口上安装有活动门。
进一步的,内胆采用不锈钢304板,内胆上均匀分布有多个气流孔,气流孔直径为2-15mm。
进一步的,外壳包括:内层、保温层、外层,内层采用0.2-2mm厚度的不锈钢304板,保温层可以厚度为10-50mm,保温层采用聚氨酯类保温材料、陶瓷类保温材料、硅酸盐类保温材料,外层采用1-4mm厚度的不锈钢304板。
进一步的,内胆与内层之间的距离为5-20mm,干燥箱主体1内胆上均匀分布的气流孔将内循环风机形成的强制对流热空气由气流孔循环至各红外干燥层2,从而使平衡各红外干燥层2间的空气温度,以便达到同步干燥的效果。
本发明公开了一种远红外箱式干燥系统及干燥方法,其中,将待干燥物料置于塑料托盘3内,塑料托盘3置于干燥箱主体1内;将塑料托盘3置于两面状红外辐射发热层之间;使用与物料峰值波长具有设定差值的波长,对红外电热材料通电控制,对待干燥物料进行干燥,生成干燥物料。
进一步的,在将待干燥物料置于塑料托盘3内之前获取物料的峰值波长。
进一步的,获待干燥物料的营养成分组成;获取待干燥物料意向性保留的营养成分;提取带干燥物料意向性保留的营养成分,采用液相色谱或气相色谱检测分析营养成分;根据分析结果获取该待干燥物料要保留的营养成分;对要保留
的营养成分进行提取,测定该种营养成分的红外光谱图;确定营养成分的极限破环温度;对红外光谱进行分析,获取该种营养成分的红外光谱波长峰值,结合极限破环温度进一步得出要保留的营养成分的红外干燥的红外光谱波长峰值。
进一步的,根据红外光谱波长峰值范围,增加或减去一个设定的差值,获取一偏匹配范围。
进一步的,设定的差值为1μm。
进一步的,如果红外红外光谱波长峰值范围为5~14μm内的任意整数范围,则增加或减去一设定的差值,设定的差值为1μm,获取一偏匹配范围;如果红外光谱波长峰值范围为14~15μm,则只减去设定的差值1μm,偏匹配范围为:13~14μm。
具体的,在本发明的一个实施例中,具体的波长关系为:
红外干燥时,最有效最快速的干燥方法是通过发热体红外波长峰值与待干燥物料红外波长峰值的“匹配”来达到快速干燥的目的,红外干燥实质是待干燥物料的分子振动时吸收与其相应的电磁波能量,加速分子运动,使待干燥物料的温度升高从而达到脱水的目的。当发热体的红外线频率和待干燥物料分子的振
动频率相一致时,红外线能量就转换为分子的振动能量,从而使待干燥物料温度上升,待干燥物料的红外波长与发热体发射的远红外波长越接近,就越能诱发接受体内细胞分子的共振吸收,因而热效应显著。采用待干燥物料红外波长峰值与发射体红外波长峰值相“匹配”,能达到快速干燥的目的,这是一般的传统的干燥方法。而本方案是要实现功能型食品,即通过干燥最大化保存待干燥物料中的一种营养成分,如采用红外波长“匹配”的原则,虽然会加快干燥过程,但是红外振动效应会损失待干燥物料的营养成分。所以,实现功能性食品干燥并最大化的完整的保存待干燥物料的一种营养成分最有效的方法通过待干燥物料波长峰值与发射体波长峰值的“偏匹配”,虽然“偏匹配”干燥物料的效率低于“匹配”干燥物料的效率,但是可以极大的保存该物料中一种营养成分,从而实现功能性食品的营养保留。
进一步的,对待干燥物料进行干燥时,设定待干燥物料内部温度限值。
进一步的,设定面状红外辐射发热层的温度限值。
进一步的,设定干燥箱主体1内的湿度限值。
进一步的,设定干燥箱主体1内的干湿比值。
本发明中涉及的远红外箱式干燥方法,所述的“偏匹配”包括如下步骤;
1)选择新鲜的待干燥物料;
2)检索该带干燥物料的营养成分组成;
3)确定该待干燥物料意向性保留的营养成分;
4)提取该待干燥物料中的相应的营养成分并采用液相色谱或气相色谱检测分析营养成分;
5)根据步骤4)分析的结果确定该待干燥物料要保留的营养成分;
6)对上述步骤5)中的营养成分进行进一步的提取,并测定该种营养成分的红外光谱图;
7)对上述步骤5)中的营养成分进行进一步的分析,确定营养成分的极限破环温度;
8)对步骤6)得出的红外光谱进行分析,并选择该种营养成分的红外光谱波长峰值,结合步骤7)得出的该种营养成分的极限破环温度进一步得出该种营养成分红外干燥的红外光谱波长峰值;
9)对步骤8)得出的红外光谱波长峰值即为红外干燥的“匹配”值,根据红外光谱波长峰值范围,设定差值,获取偏匹配范围;
10)根据步骤9)选择的“偏匹配”进行功能性食品的干燥。
如上所述的远红外箱式干燥方法,其中,所述的步骤10包括以下步骤;
10.1将待干燥物料放入塑料托盘;
10.2将装有待干燥物料的塑料托盘插入红外干燥层;
10.3关闭箱式功能性食品干燥机的门;
10.4启动箱式功能性食品干燥机的总电源;
10.5根据待干燥物料的的波长峰值设定箱式功能性食品干燥机面状红外电热材料“匹配”峰值,从而得出待干燥物料“偏匹配”红外波长峰值;
10.6设定待干燥物料内部温度限值;
10.7设定面状红外辐射发热层的温度限制;
10.8设定干燥机内部湿度限值;
10.9设定待干燥物料的干湿比值;
10.10启动功能性食品干燥机并运行;
10.11完成功能性食品的干燥。
上述内容为本发明一种远红外箱式干燥系统及干燥方法具体实施例的列举,对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。
Claims (44)
- 一种远红外箱式干燥系统,包括:干燥箱主体、红外干燥单元和红外控制系统,其特征在于,所述的红外干燥单元安装有面状红外辐射发热层,所述的红外干燥单元安装在所述箱式干燥主体内,并与所述的红外控制系统相连接,所述的面状红外辐射发热层以红外辐射的方式均匀的将红外能量辐射到待干燥物料并被待干燥物料接收,所述的红外控制系统根据待干燥物料的波长峰值实现红外干燥层红外辐射能量的红外波长峰值的“偏匹配”,从而实现待干燥物料的干燥。
- 根据权利要求1所述的远红外箱式干燥系统,其特征在于,所述干燥箱主体内具有一个干燥室,所述红外干燥单元安装在所述干燥室内,所述红外干燥单元由多层组成。
- 根据权利要求2所述的远红外箱式干燥系统,其特征在于,所述红外干燥单元包括:面状红外辐射发热层、托盘、面状红外辐射发热层支撑架和U型托盘支撑槽,所述面状红外辐射发射层为面状红外电热材料。所述的面状红外辐射发热层支撑架和U型托盘支撑槽固定在红外干燥箱主体的内胆上。
- 根据权利要求3所述的远红外箱式干燥系统,其特征在于,所述托盘滑动安装在所述U型托盘支撑槽内。
- 根据权利要求4所述的远红外箱式干燥系统,其特征在于,所述托盘的相对两侧边外侧对称设有滑行公榫,所述U型托盘支撑槽的相对两侧壁匹配的具有母榫,所述滑行公榫匹配滑动置于所述母榫内。
- 根据权利要求3所述的远红外箱式干燥系统,其特征在于,所述托盘采用食品级塑料托盘。
- 根据权利要求6所述的远红外箱式干燥系统,其特征在于,所述托盘采用:高密度聚乙烯、聚乙烯、耐热聚乙烯、聚丙烯、聚丁烯中的一种。
- 根据权利要求7所述的远红外箱式干燥系统,其特征在于,所述托盘的底部、所述托盘的侧壁均开设有方形孔,该方形孔的长度为2-10mm。
- 根据权利要求3所述的远红外箱式干燥系统,其特征在于,所述面状红外辐射发热层支撑架为“田”字型支撑架;所述面状红外辐射发热层支撑架采用不锈钢材料制成。
- 根据权利要求9所述的远红外箱式干燥系统,其特征在于,所述面状红外辐射发射层采用:在干燥室最上端的红外干燥单元和干燥室最下端的红外干燥单元 采用单面红外辐射发热层,其它红外干燥单面采用上面和背面均为红外辐射发热的双面红外辐射发热层,所述单面红外辐射发热层和双面红外辐射发热层均采用面状红外电热材料,,所述的单面红外辐射发热层和双面红外辐射发热层红外辐射波长为4-18μm,所述的单面红外辐射发热层和双面红外辐射发热层工作温度为30-120℃,所述面状红外电热材料以碳纤维、碳纳米管或石墨烯中的一种或几种组合作为发热体制备的面状红外发热片。
- 根据权利要求10所述的远红外箱式干燥系统,其特征在于,所述单面红外辐射发热层分别安装在干燥室最上端的红外干燥单元和干燥室最下端的红外干燥单元的面状红外辐射发热层支撑架上,所述双面红外辐射发热层安装在面状红外电热材料支撑架的上,所述干燥室最上端的红外干燥单元的单面红外辐射发热材料以红外辐射的方式均匀的将红外能量向该层托盘上部的待干燥物料辐射并被待干燥物料接收,所述干燥室最下端的红外干燥单元的单面红外辐射发热材料以红外辐射的方式均匀的将红外能量向该层托盘底部的待干燥物料辐射并被待干燥物料接收,所述的双面红外辐射发热层的上面向红外干燥层的托盘的底部以红外辐射的方式均匀的将红外能量辐射到托盘底部的待干燥物料并被待干燥物料接收,所述的双面红外辐射发热层的背面向红外干燥层下一层的托盘的上部以红外辐射的方式均匀的将红外能量辐射到红外干燥层下一层的托盘的上部的待干燥物料并被待干燥物料接收。
- 根据权利要求11所述的远红外箱式干燥系统,其特征在于,所述托盘上端部与所述面状红外电热材料间距为10-50mm,所述托盘下端部与所述面状红外电热材料间距为5-50mm。
- 根据权利要求12所述的远红外箱式干燥系统,其特征在于,所述红外控制系统包括:温度传感器、湿度传感器、风机系统、自称重系统、红外辐射能量控制系统。
- 根据权利要求13所述的远红外箱式干燥系统,其特征在于,所述温度传感器包括:片状热电阻式温度传感器、针状热电阻式温度传感器,所述片状热电阻式温度传感器安装在所述面状红外辐射发热层表面的中间位置用以监测面状红外辐射发热层的工作温度,所述针状热电阻式温度传感器安装在所述托盘内用以监测待干燥物料的温度。
- 根据权利要求14所述的远红外箱式干燥系统,其特征在于,所述红外干燥单元由多层组成,多层所述红外干燥单元上下叠放在所述干燥箱主体内,所述温度传感器具有多个,分布于红外干燥单元的奇数层或偶数层。
- 根据权利要求14所述的远红外箱式干燥系统,其特征在于,所述湿度传感器设置在所述干燥室上部用以监测干燥室内的湿度,所述湿度传感器与所述红外辐射能量控制系统连接。
- 根据权利要求14所述的远红外箱式干燥系统,其特征在于,所述风机系统包括:内循环风机和抽湿风机。
- 根据权利要求17所述的远红外箱式干燥系统,其特征在于,所述内循环风机为离心内循环风机,所述抽湿风机为离心抽湿风机。
- 根据权利要求18所述的远红外箱式干燥系统,其特征在于,所述离心抽湿风机包括:抽湿口和新风口,所述离心抽湿风机安装在所述干燥箱主体的顶端。
- 根据权利要求14所述的远红外箱式干燥系统,其特征在于,所述自称重系统为称重传感器,称重传感器放置在所述红外干燥层的底部。
- 根据权利要求14所述的远红外箱式干燥系统,其特征在于,所述红外辐射能量控制系统包括:红外波长控制器、温度控制器、湿度控制器、重量控制器和自动关停控制器。
- 根据权利要求21所述的远红外箱式干燥系统,其特征在于,所述红外波长控制器包括:电压调压器、电压显示器和红外光谱峰值控制器。
- 根据权利要求22所述的远红外箱式干燥系统,其特征在于,所述红外光谱峰值控制器预设多档红外能量辐射波长峰值,预设多档红外能量辐射波长匹配模式,所述匹配模式峰值包括5-6μm、6-7μm、7-8μm、8-9μm、9-10μm、10-11μm、11-12μm、13-14μm、14-15μm,预设多档红外能量辐射波长匹配峰值上标识有相应的电压,通过电压调压器调整到与红外能量辐射波长峰值相对应的电压即可达到面状红外电热材料辐射红外能量的波长峰值。
- 根据权利要求23所述的远红外箱式干燥系统,其特征在于,预设多档红外能量辐射波长峰值时的偏匹配模式,所述偏匹配模式的红外能量辐射波长分别为:红外能量辐射波长峰值为5-6μm时采用偏匹配红外能量辐射波长为4-5μm或6-7μm,红外能量辐射波长峰值为6-7μm时采用偏匹配红外能量辐射波长为 5-6μm或7-8μm,红外能量辐射波长峰值为7-8μm时采用偏匹配红外能量辐射波长为6-7μm或8-9μm,红外能量辐射波长峰值为8-9μm时采用偏匹配红外能量辐射波长为7-8μm或9-10μm,红外能量辐射波长峰值为9-10μm时采用偏匹配红外能量辐射波长为8-9μm或10-11μm,红外能量辐射波长峰值为10-11μm时采用偏匹配红外能量辐射波长为9-10μm或11-12μm,红外能量辐射波长峰值为11-12μm时采用偏匹配红外能量辐射波长为10-11μm或12-13μm,红外能量辐射波长峰值为12-13μm时采用偏匹配红外能量辐射波长为11-12μm或13-μm,红外能量辐射波长峰值为13-14μm时采用偏匹配红外能量辐射波长为12-13μm或14-15μm,红外能量辐射波长峰值为11-12μm时采用偏匹配红外能量辐射波长为10-11μm或12-13μm,红外能量辐射波长峰值为14-15μm时采用偏匹配红外能量辐射波长为13-14μm。
- 根据权利要求22所述的远红外箱式干燥系统,其特征在于,所述温度控制器包括:物料温度显示器、面状红外辐射发热层温度显示器和温度设定器。
- 根据权利要求22所述的远红外箱式干燥系统,其特征在于,所述湿度控制器包括:湿度显示器和湿度设定器。
- 根据权利要求22所述的远红外箱式干燥系统,其特征在于,所述重量控制器包括:重量显示器和重量设定器。
- 根据权利要求1所述的远红外箱式干燥系统,其特征在于,所述干燥箱主体的底部安装有万向轮,所述万向轮有四个,所述万向轮具有锁死结构。
- 根据权利要求1所述的远红外箱式干燥系统,其特征在于,所述干燥箱主体为一长方体,所述干燥箱主体包括:内胆、外壳,所述外壳上具有开口,所述开口上安装有活动门。
- 根据权利要求29所述的远红外箱式干燥系统,其特征在于,所述内胆采用不锈钢304板,所述内胆上均匀分布有多个气流孔,所述气流孔直径为2-15mm。
- 根据权利要求30所述的远红外箱式干燥系统,其特征在于,所述外壳包括:内层、保温层、外层,所述内层采用厚度为0.2-2mm的不锈钢304板,所述保温层的厚度为10-50mm,所述保温层采用聚氨酯类保温材料、陶瓷类保温材料、硅酸盐类保温材料中的一种,所述外层采用厚度为1-4mm的不锈钢304板。
- 根据权利要求31所述的远红外箱式干燥系统,其特征在于,所述内胆与所述 内层之间的距离为5-20mm。
- 根据权利要求1所述的一种远红外箱式干燥方法,其特征在于,将待干燥物料置于塑料托盘内,塑料托盘置于干燥箱主体内;将塑料托盘置于两面状红外电热材料之间;使用与物料峰值波长具有设定差值的波长,对红外电热材料通电控制,对待干燥物料进行干燥,生成干燥物料。
- 根据权利要求33所述的远红外箱式干燥方法,其特征在于,在将待干燥物料置于塑料托盘内之前获取物料的峰值波长。
- 根据权利要求34所述的远红外箱式干燥方法,其特征在于,获取待干燥物料的营养成分组成;获取待干燥物料意向性保留的营养成分;提取带干燥物料意向性保留的营养成分,采用液相色谱或气相色谱检测分析营养成分;根据分析结果获取该待干燥物料要保留的营养成分;对要保留的营养成分进行提取,测定该种营养成分的红外光谱图;确定营养成分的极限破环温度;对红外光谱进行分析,获取该种营养成分的红外光谱波长峰值,结合极限破环温度进一步得出要保留的营养成分的红外干燥的红外光谱波长峰值。
- 根据权利要求35所述的远红外箱式干燥方法,其特征在于,根据红外光谱波长峰值范围,增加或减去设定的差值,获取偏匹配范围。
- 根据权利要求36所述的远红外箱式干燥方法,其特征在于,设定的差值为1μm。
- 根据权利要求37所述的远红外箱式干燥方法,其特征在于,如果红外红谱波长峰值范围为5~14μm内的任意整数范围,则增加或减去设定的差值,设定的差值为1μm,获取一偏匹配范围;如果红外光谱波长峰值范围为14~15μm,则只减去设定的差值1μm,偏匹配范围为:13~14μm。
- 根据权利要求38所述的远红外箱式干燥方法,其特征在于,对待干燥物料进行干燥时,设定待干燥物料内部温度限值。
- 根据权利要求39所述的远红外箱式干燥方法,其特征在于,设定面状红外电热材料的温度限值。
- 根据权利要求39所述的远红外箱式干燥方法,其特征在于,设定干燥箱主体内的湿度限值。
- 根据权利要求39所述的远红外箱式干燥方法,其特征在于,设定干燥箱主体 内的干湿比值。
- 根据权利要求36所述的远红外箱式干燥方法,其特征在于,所述的“偏匹配”包括如下步骤:1)选择新鲜的待干燥物料;2)检索该带干燥物料的营养成分组成;3)确定该待干燥物料意向性保留的营养成分;4)提取该待干燥物料中的相应的营养成分并采用液相色谱或气相色谱检测分析营养成分;5)根据步骤4)分析的结果确定该待干燥物料要保留的营养成分;6)对步骤5)中的营养成分进行进一步的提取,并测定该种营养成分的红外光谱图;7)对步骤5)中的营养成分进行进一步的分析,确定营养成分的极限破环温度;8)对步骤6)得出的红外光谱进行分析,并选择该种营养成分的红外光谱波长峰值,结合步骤7)得出的该种营养成分的极限破环温度进一步得出该种营养成分红外干燥的红外光谱波长峰值;9)对步骤8)得出的红外光谱波长峰值即为红外干燥的“匹配”值,根据红外光谱波长峰值范围,设定差值,获取偏匹配范围;10)根据步骤9)选择的“偏匹配”进行待干燥物料的干燥。
- 根据权利要求43所述的远红外箱式干燥方法,其特征在于,所述的步骤10包括以下步骤:10.1将待干燥物料放入塑料托盘;10.2将装有待干燥物料的塑料托盘插入红外干燥层;10.3关闭箱式干燥机的门;10.4启动箱式干燥机的总电源;10.5根据待干燥物料的波长峰值设定箱式待干燥物料干燥机面状红外电热材料“匹配”峰值,从而得出待干燥物料“偏匹配”红外波长峰值;10.6设定待干燥物料内部温度限值;10.7设定面状红外电热材料的温度限制;10.8设定干燥机内部湿度限值;10.9设定待干燥物料的干湿比值;10.10启动待干燥物料干燥机并运行;10.11完成待干燥物料的干燥。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610236145.0 | 2016-04-18 | ||
CN201610236144.6 | 2016-04-18 | ||
CN201610236144.6A CN105851780A (zh) | 2016-04-18 | 2016-04-18 | 功能性食品远红外箱式干燥装置及方法 |
CN201610236145.0A CN105716390A (zh) | 2016-04-18 | 2016-04-18 | 功能性食品远红外箱式干燥系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017181922A1 true WO2017181922A1 (zh) | 2017-10-26 |
Family
ID=60115642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/080740 WO2017181922A1 (zh) | 2016-04-18 | 2017-04-17 | 远红外箱式干燥系统及干燥方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017181922A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108613496A (zh) * | 2018-05-31 | 2018-10-02 | 成都思达特电器有限公司 | 一种平面远红外喷射干燥流水线 |
CN109442888A (zh) * | 2018-03-07 | 2019-03-08 | 国网浙江省电力有限公司丽水供电公司 | 基于热泵的烘干系统 |
CN112212617A (zh) * | 2020-10-22 | 2021-01-12 | 河南省华中食品有限公司 | 用于真空冻干设备的红外辐射加热板 |
CN114608280A (zh) * | 2022-02-28 | 2022-06-10 | 常州佳成干燥设备有限公司 | 一种多层节能振动密闭式循环干燥设备 |
US20230043267A1 (en) * | 2019-05-21 | 2023-02-09 | Timothy Childs | System and method for infrared dehydrofreezing and dehydro freeze-drying |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010038002A1 (en) * | 2000-05-02 | 2001-11-08 | Noritake Co., Limited | Heating furnace including vertically spaced-apart double-sided far-infrared-radiation panel heaters defining multi-stage drying chambers |
CN105135851A (zh) * | 2015-09-25 | 2015-12-09 | 上海热丽科技集团有限公司 | 一种带式红外辐射干燥系统及其安装和干燥方法 |
CN105157366A (zh) * | 2015-09-10 | 2015-12-16 | 上海热丽科技集团有限公司 | 一种远红外多功能干燥系统及干燥方法 |
CN205048926U (zh) * | 2015-09-25 | 2016-02-24 | 上海热丽科技集团有限公司 | 带式红外辐射干燥系统 |
CN205048894U (zh) * | 2015-09-10 | 2016-02-24 | 上海热丽科技集团有限公司 | 远红外多功能干燥系统 |
CN105716390A (zh) * | 2016-04-18 | 2016-06-29 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥系统 |
CN105851780A (zh) * | 2016-04-18 | 2016-08-17 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥装置及方法 |
CN205641829U (zh) * | 2016-04-18 | 2016-10-12 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥系统 |
CN205641828U (zh) * | 2016-04-18 | 2016-10-12 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥装置 |
-
2017
- 2017-04-17 WO PCT/CN2017/080740 patent/WO2017181922A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010038002A1 (en) * | 2000-05-02 | 2001-11-08 | Noritake Co., Limited | Heating furnace including vertically spaced-apart double-sided far-infrared-radiation panel heaters defining multi-stage drying chambers |
CN105157366A (zh) * | 2015-09-10 | 2015-12-16 | 上海热丽科技集团有限公司 | 一种远红外多功能干燥系统及干燥方法 |
CN205048894U (zh) * | 2015-09-10 | 2016-02-24 | 上海热丽科技集团有限公司 | 远红外多功能干燥系统 |
CN105135851A (zh) * | 2015-09-25 | 2015-12-09 | 上海热丽科技集团有限公司 | 一种带式红外辐射干燥系统及其安装和干燥方法 |
CN205048926U (zh) * | 2015-09-25 | 2016-02-24 | 上海热丽科技集团有限公司 | 带式红外辐射干燥系统 |
CN105716390A (zh) * | 2016-04-18 | 2016-06-29 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥系统 |
CN105851780A (zh) * | 2016-04-18 | 2016-08-17 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥装置及方法 |
CN205641829U (zh) * | 2016-04-18 | 2016-10-12 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥系统 |
CN205641828U (zh) * | 2016-04-18 | 2016-10-12 | 上海热丽科技集团有限公司 | 功能性食品远红外箱式干燥装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109442888A (zh) * | 2018-03-07 | 2019-03-08 | 国网浙江省电力有限公司丽水供电公司 | 基于热泵的烘干系统 |
CN109442888B (zh) * | 2018-03-07 | 2020-06-05 | 国网浙江省电力有限公司丽水供电公司 | 基于热泵的烘干系统 |
CN108613496A (zh) * | 2018-05-31 | 2018-10-02 | 成都思达特电器有限公司 | 一种平面远红外喷射干燥流水线 |
US20230043267A1 (en) * | 2019-05-21 | 2023-02-09 | Timothy Childs | System and method for infrared dehydrofreezing and dehydro freeze-drying |
CN112212617A (zh) * | 2020-10-22 | 2021-01-12 | 河南省华中食品有限公司 | 用于真空冻干设备的红外辐射加热板 |
CN114608280A (zh) * | 2022-02-28 | 2022-06-10 | 常州佳成干燥设备有限公司 | 一种多层节能振动密闭式循环干燥设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017181922A1 (zh) | 远红外箱式干燥系统及干燥方法 | |
Fan et al. | Application of airborne ultrasound in the convective drying of fruits and vegetables: A review | |
El-Mesery et al. | Performance of a convective, infrared and combined infrared-convective heated conveyor-belt dryer | |
CN105716390A (zh) | 功能性食品远红外箱式干燥系统 | |
Hazervazifeh et al. | Novel hybridized drying methods for processing of apple fruit: Energy conservation approach | |
Yang et al. | Electrohydrodynamic (EHD) drying of the Chinese wolfberry fruits | |
Zhang et al. | Ultrasonic assisted far infrared drying characteristics and energy consumption of ginger slices | |
Yu et al. | Electrohydrodynamic drying of potato and process optimization | |
Khampakool et al. | Infrared assisted freeze-drying (IRAFD) to produce shelf-stable insect food from Protaetia brevitarsis (white-spotted flower chafer) larva | |
CN205641829U (zh) | 功能性食品远红外箱式干燥系统 | |
CN109869986A (zh) | 一种黄姜片真空微波干燥的方法 | |
CN103776258B (zh) | 一种用于制备中药饮片的烘盘及应用该烘盘的干燥设备和干燥方法 | |
Li et al. | Quality evaluation of probiotics enriched Chinese yam snacks produced using infrared‐assisted spouted bed drying | |
CN106235123A (zh) | 利用瞬时压差闪蒸工艺生产苹果脆片的方法 | |
Zhang et al. | Drying characteristics and color changes of infrared drying eggplant | |
CN103393096B (zh) | 冲泡型方便银耳及其制备方法 | |
Obajemihi et al. | Novel sequential and simultaneous infrared-accelerated drying technologies for the food industry: Principles, applications and challenges | |
CN205641828U (zh) | 功能性食品远红外箱式干燥装置 | |
CN104585849B (zh) | 一种木耳变温红外对流干燥装置及其干燥方法 | |
Witek et al. | Analysis of polymer foil heaters as infrared radiation sources | |
Huang et al. | Microwave vacuum drying properties and kinetics model of white fungus | |
Zhu et al. | Comparative study on the resveratrol extraction rate and antioxidant activity of peanut treated by different drying methods | |
CN102626135B (zh) | 低能耗低爆腰率颗粒状食源性物料真空微波振动干燥方法 | |
CN205425690U (zh) | 一种灵芝用的干燥装置 | |
CN203100364U (zh) | 实验室简易干燥箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17785407 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17785407 Country of ref document: EP Kind code of ref document: A1 |