WO2017181654A1 - 电致发光器件及其制作方法以及显示装置 - Google Patents

电致发光器件及其制作方法以及显示装置 Download PDF

Info

Publication number
WO2017181654A1
WO2017181654A1 PCT/CN2016/104968 CN2016104968W WO2017181654A1 WO 2017181654 A1 WO2017181654 A1 WO 2017181654A1 CN 2016104968 W CN2016104968 W CN 2016104968W WO 2017181654 A1 WO2017181654 A1 WO 2017181654A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
transport layer
layer
electroluminescent device
electron transport
Prior art date
Application number
PCT/CN2016/104968
Other languages
English (en)
French (fr)
Inventor
孟虎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/539,764 priority Critical patent/US10186677B2/en
Publication of WO2017181654A1 publication Critical patent/WO2017181654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/167Electron transporting layers between the light-emitting layer and the anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • Embodiments of the present invention relate to an electroluminescent device, a method of fabricating the same, and a display device.
  • quantum dot material As a kind of zero-dimensional nanomaterial, quantum dot material has the advantages of adjustable band gap, large specific surface area and superior photoelectric performance.
  • quantum dot materials have received extensive attention in the fields of light-emitting diodes, solar cells, photodetectors, displays, and the like.
  • electroluminescent quantum dot devices have achieved high luminous efficiency, and industrialization has gradually made progress.
  • the core-shell quantum dot luminescent materials such as CdSe/ZnS and CdS/ZnS are taken as examples.
  • the widely used electroluminescent quantum device structure is anode/hole injection layer/hole transport. Layer/quantum dot luminescent layer/electron transport layer/cathode.
  • the present invention provides an electroluminescent device, a method for fabricating the same, and a display device for solving the problem that material selection of the hole transport layer is limited when the electron mobility of the electron transport layer is different from the hole mobility of the hole transport layer. The problem.
  • At least one embodiment of the present invention provides an electroluminescent device comprising: a substrate and an electron transport layer disposed on the substrate, the electron transport layer including a first film layer for transporting electrons and A film layer is disposed in contact with the adjustment structure for adjusting the electron mobility of the electron transport layer.
  • At least one embodiment of the present invention provides a display device including the electroluminescent device as described above.
  • At least one embodiment of the present invention provides a method of fabricating an electroluminescent device, comprising: forming an electron transport layer on a substrate, comprising: forming a first film layer for transporting electrons on the substrate; and forming and The first film layer contacts the disposed adjustment structure for adjusting the electron mobility of the electron transport layer.
  • the electron mobility of the electron transport layer of the electroluminescent device is adjustable, which is convenient for real Now matching the hole mobility of the hole transport layer, the material selection of the hole transport layer is not limited, the production cost is reduced, and the luminous efficiency of the device is ensured.
  • FIG. 1 is a schematic structural diagram of an electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another electroluminescent device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another electroluminescent device according to an embodiment of the present invention.
  • an electron transport layer is produced by using an inorganic material such as zinc oxide (ZnO) quantum dots, for example, by spin coating, and thus the electron transport is performed.
  • the electron mobility of the layer is much larger than that of the electron transport layer made of organic materials.
  • the mobility (or electron mobility of the hole transport layer) is about 2-3 orders of magnitude.
  • the electron current in the electroluminescent device far exceeds the hole current. That is, in an electroluminescent device using an inorganic material such as zinc oxide (ZnO) quantum dots as an electron transport layer, the electron mobility of the electron transport layer is much larger than that of the hole transport layer.
  • the hole transport layer must have a lower LUMO energy level, and the electron barrier of the hole transport layer/quantum dot layer interface allows excess electrons to be confined to the quantum dot light-emitting layer;
  • the hole transport layer must also select certain materials, such as Poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzi(4-butyl- N,N-diphenylaniline homopolymer referred to as poly-TBD), Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl) Diphenylamine)] (abbreviated as TFB), etc., which limits the material selection of the hole transport layer.
  • TFB Poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzi(4-butyl- N
  • Embodiments of the present invention provide an electroluminescent device, a method of fabricating the same, and a display device.
  • the electroluminescent device includes: a substrate and an electron transport layer disposed on the substrate; the electron transport layer includes a first film layer for transporting electrons and an adjustment structure disposed in contact with the first film layer, wherein the adjustment structure is Adjusting the electron mobility of the electron transport layer.
  • the electroluminescent device can adjust the electron mobility of the electron transport layer by adjusting the structure, thereby matching the electron transport layer with the hole transport layer to ensure the luminous efficiency of the electroluminescent device.
  • the hole transport layer of the electroluminescent device can also select a wider variety of materials, solving the problem of limited material selection of the hole transport layer, thereby reducing the cost of the electroluminescent device.
  • the electroluminescent device comprises a substrate 100 and an electron transport layer 4 disposed on the substrate 100; the electron transport layer 4 includes a first film for transporting electrons.
  • the layer 40 and the adjustment structure 41 disposed in contact with the first film layer 40 are used to adjust the electron mobility of the electron transport layer 4.
  • the electroluminescent device further includes an anode 1, a hole transport layer 2, a light-emitting layer 3, and a cathode 5 which are sequentially disposed on the substrate 100.
  • the electron transport layer 4 is disposed between the light-emitting layer 3 and the cathode 5.
  • the light-emitting layer 3 can be made of an electroluminescent material such as a quantum dot material or an organic light-emitting material, and the recombination of electrons and holes in the light-emitting layer 3 can excite the light-emitting layer 3 to emit light.
  • a hole injection layer (not shown) may be disposed between the anode 1 and the hole transport layer 2, and an electron injection layer (not shown) is disposed between the electron transport layer 4 and the cathode 5.
  • the electroluminescent device can adjust the electron mobility of the electron transport layer 4 through the adjustment structure 41, so that the electron mobility of the electron transport layer 4 can be adjusted.
  • the transport of the electron transport layer 4 and the hole transport layer 2 can be achieved by the adjustment of the adjustment structure 41.
  • the carrier mobility matching can ensure the luminous efficiency of the electroluminescent device; on the other hand, the electroluminescent device can also make the material of the hole transport layer 2 due to the adjustment structure 41 of the adjustable electron transport layer 4. The choice is not limited, which reduces production costs.
  • the first film layer of the electron transport layer is made of an inorganic material such as a quantum dot
  • the material of the first film layer may be selected from zinc oxide (ZnO) quantum dots or magnesium zinc oxide (ZnMgO) quantum dots
  • ZnO zinc oxide
  • ZnMgO magnesium zinc oxide
  • the electron mobility of the point material is much larger than the hole mobility of the hole transport layer, resulting in electron current far exceeding the hole current.
  • the hole transport layer must have a low LUMO energy level.
  • the electron barrier at the interface between the light-emitting layer and the hole transport layer causes excess electrons to be confined in the light-emitting layer to ensure luminous efficiency.
  • the electroluminescent device can reduce the electron mobility of the electron transport layer by the above adjustment structure to match the hole mobility of the hole transport layer, and overcome the limitation of material selection of the hole transport layer. The problem.
  • the material of the adjustment structure may be graphene oxide. Since the sp 2 hybridization in the graphene oxide is severely damaged, the graphene oxide has lost conductivity, and its conductivity and electron mobility are low, and the electron mobility of the entire electron transport layer can be lowered to make it and the hole.
  • the hole mobility of the transport layer matches.
  • graphene oxide has a LUMO energy level of only 1.29 eV, which makes it have excellent electron blocking ability.
  • the material of the adjustment structure is not limited to graphene oxide, and other materials having poor conductivity and low electron mobility are not limited herein.
  • the electron transport layer 4 includes a first film layer 40 for transporting electrons and an adjustment structure disposed in contact with the first film layer 40.
  • the adjustment structure is a second film layer 41 disposed in contact with the first film layer 40 for adjusting the electron mobility of the first film layer 41. That is, the electron transport layer 4 includes a first film layer 40 for transporting electrons and a second film layer 41 disposed in contact with the first film layer 40.
  • the second film layer 41 can be used to adjust the electron mobility of the electron transport layer 4 (by acting with the first film layer).
  • the above first film layer may be used. It is made of organic materials and can also be made of inorganic materials such as quantum dots. Thereby, the electron mobility of the electron transport layer 4 can be adjusted by the second film layer 41 provided in contact with the first film layer 40.
  • the electron mobility of the second film layer 41 may be greater than (or less than) the electron mobility of the first film layer 40 for increasing (or decreasing) the electron mobility of the first transport layer, that is, by The electron mobility of the electron transport layer 4 is increased (or decreased) in a manner superimposed on the electron mobility of the first film layer.
  • the adjustment structure (second film layer) may also select a material having poor conductivity and low electron mobility to effectively reduce the electron mobility of the first film layer.
  • the thickness of the second film layer 41 ranges from 1 to 2 nm.
  • the second film layer can be made of a material having poor conductivity and low electron mobility. It should be noted that when the thickness of the second film layer 41 made of a material having poor conductivity and low electron mobility is 1-2 nm, since the thickness of the second film layer is extremely thin, a tunneling effect can be utilized. Adjustability enables continuous adjustment of conductivity and electron mobility of the electron transport layer, resulting in better carrier balance and device performance. For example, the electron mobility of the electron transport layer can be changed by changing the thickness or barrier of the second film layer.
  • the material of the second film layer may be graphene oxide.
  • the LUMO level of graphene oxide is only 1.29 eV, which makes it have excellent electron blocking ability; on the other hand, graphene oxide is formed by a film formation process because its structure is layered. Thinner thickness (1-2 nm).
  • a plurality of extremely thin graphene oxide layers ie, a second film layer
  • the conductivity of the electron transport layer and the electron mobility can be continuously adjusted by utilizing the adjustability of the tunneling effect. Get better carrier balance and device performance.
  • the electron transport layer 4 may include two first film layers 40, and a second film layer 41 may be disposed between two adjacent first film layers 40.
  • the electron mobility is continuously adjustable more effectively, that is, the electron mobility of the electron transport layer can be adjusted by setting the number of the second film layers sandwiched between the adjacent first film layers .
  • the electron transport layer 4 may include two first film layers 40 with a second film layer disposed between the two first film layers 40.
  • the embodiments of the present invention include but are not limited thereto, and the electron transport layer may further include more first film layers.
  • the electron transport layer 4 may include three first film layers 40, adjacent to two. A second film layer 41 is disposed between the first film layers 40.
  • the electron transmission Layer 4 includes a first film layer 40 for transporting electrons and an adjustment structure disposed in contact with the first film layer 40.
  • the adjustment structure is constituted by a regulator (not shown) doped in the first film layer, thereby adjusting the electron mobility of the first film layer 41, that is, the electron mobility of the electron transport layer 4.
  • the above-mentioned regulator is the adjusting material doped in the first film layer.
  • the structure of the modifier doped in the first film layer 40 may be fine particles uniformly distributed in the first film layer 40.
  • embodiments of the invention include, but are not limited to, as long as the conditioning agent in the doped first film layer can adjust (increase or decrease) the electron mobility of the electron transport layer.
  • the electron mobility of the electron transport layer can be adjusted by doping graphene oxide in the electron transport layer (ie, the first film layer), that is, The regulator may be graphene oxide. Since the sp 2 hybridization in graphene oxide is severely destroyed, the graphene oxide alkenyl group loses its conductivity, its conductivity and electron mobility are low, and the electron mobility of the electron transport layer can be reduced to cause hole transport.
  • the hole mobility of the layer matches.
  • the LUMO level of graphene oxide is only 1.29 eV, which makes it have excellent electron blocking ability, and the adjustment structure is made of graphene oxide doped in the electron transport layer, which can reduce the conductivity of the electron transport layer. And electron mobility. It should be noted that the electron mobility of the electron transport layer can be continuously adjusted by doping different ratios of graphene oxide, thereby obtaining better carrier balance and device performance.
  • the specific structures of the above two adjustment structures may exist separately, that is, the adjustment structure may be a second film layer or a modifier doped in the first film layer, thereby separately respectively electrons to the electron transport layer. The mobility is adjusted.
  • the specific structures of the above two adjustment structures may also exist simultaneously, that is, the adjustment structure includes a second film layer and a modifier doped in the first film layer, thereby adjusting the electron mobility of the electron transport layer together.
  • the material of the light emitting layer includes quantum dots.
  • the electroluminescent device may be of a top emission type, a bottom emission type or a double-sided emission type.
  • the electroluminescent device when the electroluminescent device is a top emission type electroluminescent device, light is emitted from the top of the electroluminescent device (ie, the side where the cathode 5 is located), and the anode 1 can be made of a reflective metal material, such as silver. Etc.; the cathode 5 is made of a transparent conductive material such as ZnO, IGO, IZO, ITO or IGZO.
  • the electroluminescent device When the electroluminescent device is a bottom emission type electroluminescent device, light is emitted from the top of the electroluminescent device (ie, the side on which the anode 1 is located),
  • the anode 1 is made of a transparent conductive material, such as ZnO, IGO, IZO, ITO or IGZO, etc.
  • the cathode 5 is made of a reflective metal material, such as silver, etc.
  • the substrate 100 is a transparent substrate, such as a glass substrate or a transparent resin substrate. Wait.
  • the electroluminescent device When the electroluminescent device is a double-sided emission type electroluminescent device, light is emitted from the top of the device (ie, the side where the cathode 5 is located) and also from the bottom of the device (ie, the side where the anode 1 is located).
  • a portion of the anode 1 and the cathode 5 are made of a transparent conductive material, another portion is made of a reflective metal material, and the substrate 100 may be a transparent substrate.
  • the electroluminescent device further includes an encapsulation layer.
  • the package has been designed to prevent water oxygen in the environment from affecting the performance of the electroluminescent device.
  • the encapsulation layer includes an inorganic insulating layer that blocks water oxygen, such as a silicon nitride layer, a silicon oxide layer, or a composite layer of both.
  • the embodiment further provides a display device comprising the above electroluminescent device. Since the above electroluminescent device overcomes the material selection of the hole transport layer by the difference of carrier mobility, the performance of the device is ensured, and the production cost of the display device can be reduced.
  • the display device includes a display substrate that can be formed on a substrate of the display substrate, and the display is realized by controlling the electroluminescence device to emit light autonomously, such as an organic light emitting diode display device.
  • the present embodiment provides a method of fabricating an electroluminescent device as described in the first embodiment, comprising forming an electron transport layer on a substrate.
  • Forming the electron transport layer on the substrate includes: forming a first film layer for transporting electrons on the substrate; and forming an adjustment structure disposed in contact with the first film layer, the adjustment structure being used for electron mobility of the electron transport layer.
  • the electron mobility of the electron transport layer is adjusted by adjusting the structure to adjust the electron mobility of the electron transport layer.
  • the electroluminescent device can also make the material selection of the hole transport layer not limited due to the adjustment structure of the adjustable electron transport layer. Thereby reducing production costs.
  • the method for fabricating the electroluminescent device provided in the example of the embodiment further includes sequentially forming an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode on the substrate.
  • An electron transport layer is formed between the light emitting layer and the cathode.
  • the light-emitting layer may be made of a quantum dot material, for example, a core-shell quantum dot such as CdSe/ZnS or CdS/ZnS, or may be made of an organic light-emitting material such as a fluorescent material or a phosphorescent material.
  • a quantum dot material for example, a core-shell quantum dot such as CdSe/ZnS or CdS/ZnS
  • an organic light-emitting material such as a fluorescent material or a phosphorescent material.
  • the first film layer may be made of an organic material or may be made of an inorganic material such as a quantum dot for transporting electrons.
  • the electron mobility of the conditioning structure can be greater than (or less than) the electron mobility of the first film layer for increasing (or decreasing) the electron mobility of the first film layer.
  • the adjustment structure may also select a material having poor conductivity and low electron mobility to effectively reduce the electron mobility of the first film layer.
  • the method further includes: forming a hole injection layer between the anode and the hole transport layer, and forming an electron injection between the electron transport layer and the cathode. a layer to increase the luminous efficiency of the electroluminescent device.
  • forming the adjustment structure disposed in contact with the first film layer may include: forming a second film layer in contact with the first film layer, and the adjusting structure includes Two layers.
  • the second film layer forms an adjustment structure.
  • the thickness of the second film layer is 1-2 nm.
  • the adjustment structure (the second film layer) is made of a material having poor conductivity and low electron mobility, since the thickness of the second film layer is extremely thin, the conductivity of the electron transport layer is achieved by the adjustability of the tunneling effect and The electron mobility is continuously adjustable, resulting in better carrier balance and device performance.
  • the electron transport layer may include at least two first film layers, and the manufacturing method may include: forming between the adjacent two first film layers The second film layer is used to more effectively achieve continuous adjustment of electron mobility.
  • the forming the adjustment structure disposed in contact with the first film layer may include: doping the adjusting agent in the first film layer, and adjusting the structure including doping in A regulator of the first film layer.
  • forming the electron transport layer may include: dissolving the conductive material, preparing a conductive solution for forming the first film layer; dissolving the adjusting agent to prepare the adjusting solution; adding the adjusting solution to the conductive solution in a certain ratio to form the mixed solution; The electron transport layer is formed using the mixed solution.
  • the conditioning solution and the conductive solution may be mixed in a volume ratio of 1:1, 1:5, 1:10, and uniformly mixed by ultrasonication.
  • the above two specific embodiments for forming the adjustment structure provide two specific structural forms for forming the adjustment structure in the electron transport layer, which are easy to implement in the process and can reduce the production cost.
  • the structural form of forming the adjustment structure in the electron transport layer is not limited to the above two types, and the electron mobility of the first film layer can be adjusted as long as it is in contact with the first film layer of the electron transport layer.
  • the first film layer of the electron transport layer is made of an inorganic material such as a quantum dot (for example, ZnO quantum dot, ZnMgO), graphite oxide is used.
  • a quantum dot for example, ZnO quantum dot, ZnMgO
  • the olefin forms the adjustment structure, and since the conductivity and electron mobility of the graphene oxide are low, the electron mobility of the first film layer can be lowered to match the hole mobility of the hole transport layer.
  • the fabrication method may further include: preparing a graphene oxide solution.
  • the graphene oxide solution may be added to the conductive solution for preparing the first film layer in a certain ratio to form a mixed solution, and utilized.
  • the mixed solution forms an electron transport layer;
  • the adjustment structure is formed of a graphene oxide layer provided in contact with the first film layer, a graphene oxide layer may be formed on the first film layer by spin coating or the like, and is formed by lamination
  • the first film layer and the graphene oxide layer form an electron transport layer.
  • graphene oxide is a single atomic layer, it can be extended to several tens of micrometers in the lateral dimension at any time, which is advantageous for forming an extremely thin film layer, and the thickness of the formed graphene oxide layer can reach 1-2 nm.
  • a graphene oxide layer may be formed between two adjacent first film layers, and the conductivity of the electron transport layer and the electron mobility are continuously adjustable by utilizing the adjustability of the tunneling effect.
  • preparing the graphene oxide solution may include: mixing graphite powder, sodium nitrate, and concentrated sulfuric acid in a low temperature environment, for example, an environment of less than 200 degrees; adding a catalyst; separating graphite oxide after completion of the reaction; and preparing by using graphite oxide Graphene oxide solution.
  • the low temperature environment of the above preparation method can be provided by an ice water bath, that is, a container in which graphite powder, sodium nitrate and concentrated sulfuric acid are mixed is placed in ice water.
  • the catalyst used may be potassium permanganate. After the reaction is completed, the remaining potassium permanganate is reduced to manganese dioxide by adding hydrogen peroxide, and the graphite oxide is separated by multiple filtration washing.
  • the graphene oxide solution can then be prepared by dispersing the crushed graphite oxide in a liquid phase system using the cavitation effect of the ultrasonic wave.
  • the liquid phase system can be water because graphene oxide has superior dispersibility in water.
  • the graphene oxide solution and the conductive solution are mixed in a volume ratio of 1:1, 1:5, 1:10, and uniformly mixed by ultrasonic to form a mixture.
  • a solution is used to form an electron transport layer using the mixed solution.
  • a graphene oxide layer is formed between two adjacent first film layers, and the graphene oxide layer has a thickness of 1-2 nm.
  • the method for fabricating the electroluminescent device provided in the example of the embodiment further includes: sequentially cleaning a substrate with acetone, alcohol, deionized water, and irradiating with UV light for 10 min; forming an anode 1 on the substrate 100; at the anode 1 A hole injecting layer (not shown) is formed thereon.
  • the thickness of the hole injecting layer may be about 40 nm.
  • the material for forming the hole injecting layer may be obtained by using 3,4-ethylenedioxythiophene.
  • the polymer and polystyrene sulfonate are dissolved in water, and the polymer of 3,4-ethylenedioxythiophene monomer and polystyrene sulfonate are mixed together to greatly improve 3,4-
  • the polymer of the ethylenedioxythiophene monomer has high solubility and conductivity; the hole transport layer 2, the light-emitting layer 3 are sequentially formed on the hole injection layer, and dried; and an electron transport layer is formed on the light-emitting layer 3.
  • the technical solution of the present invention is particularly suitable for the first film layer of the electron transport layer being made of an inorganic material such as a quantum dot, because the electron mobility of the quantum dot material is much larger than the hole mobility of the hole transport layer, resulting in the electron current far exceeding The hole current, for this reason, the hole transport layer must have a low LUMO energy level, so that the electron barrier at the interface between the light-emitting layer and the hole transport layer allows excess electrons to be confined in the light-emitting layer, ensuring luminous efficiency.
  • the present invention can reduce the electron mobility of the first film layer by the above-mentioned adjustment structure to match the hole mobility of the hole transport layer, and overcome the problem that the material selection of the hole transport layer is limited as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电致发光器件及其制作方法以及显示装置。该电致发光器件包括基底(100)以及设置在基底(100)上的电子传输层(4);电子传输层(4)包括用于传输电子的第一膜层(40)以及与第一膜层(40)接触设置的调节结构(41),调节结构(41)用于调节电子传输层(4)的电子迁移率。该电致发光器件可实现与空穴传输层(2)的空穴迁移率匹配,使空穴传输层(2)的材料选择不会受到限制,降低生产成本,保证器件的发光效率。

Description

电致发光器件及其制作方法以及显示装置 技术领域
本发明实施例涉及一种电致发光器件及其制作方法以及显示装置。
背景技术
量子点材料作为一种零维纳米材料,具有带隙可调,比表面积大,光电性能优越等优点。近年来,量子点材料在发光二极管、太阳能电池、光探测器、显示等领域受到广泛关注。特别在显示领域,电致发光的量子点器件获得了较高的发光效率,产业化逐渐取得进展。
对于电致发光的量子点器件,以CdSe/ZnS、CdS/ZnS等核壳结构量子点发光材料为例,目前广泛采用的电致发光的量子器件结构为阳极/空穴注入层/空穴传输层/量子点发光层/电子传输层/阴极。
发明内容
本发明提供一种电致发光器件及其制作方法以及显示装置,用以解决电子传输层的电子迁移率与空穴传输层的空穴迁移率不同时,导致空穴传输层的材料选择受到限制的问题。
本发明至少一实施例提供一种电致发光器件,其包括:基底和设置在所述基底上的电子传输层,所述电子传输层包括用于传输电子的第一膜层以及与所述第一膜层接触设置的调节结构,所述调节结构用于调节所述电子传输层的电子迁移率。
本发明至少一实施例提供一种显示装置,包括如上所述的电致发光器件。
本发明至少一实施例提供一种电致发光器件的制作方法,其包括:在基底上形成电子传输层,其包括:在基底上形成用于传输电子的第一膜层;以及形成与所述第一膜层接触设置的调节结构,所述调节结构用于调节所述电子传输层的电子迁移率。
本发明的上述技术方案的有益效果如下:
上述技术方案中,电致发光器件的电子传输层的电子迁移率可调,便于实 现与空穴传输层的空穴迁移率匹配,使空穴传输层的材料选择不会受到限制,降低生产成本,保证器件的发光效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电致发光器件的结构示意图;
图2为本发明实施例提供的另一种电致发光器件的结构示意图;以及
图3为本发明实施例提供的另一种电致发光器件的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。另外,附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在研究中,本申请的发明人注意到:在通常的电致发光器件中,电子传输层通过采用氧化锌(ZnO)量子点等无机材料制得,例如采用旋涂的方法,因此该电子传输层的电子迁移率远远大于由有机材料制得的电子传输层的电子 迁移率(或空穴传输层的电子迁移率),大约为2-3个数量级。从而造成了电致发光器件中电子电流远超过空穴电流。也就是说,在采用氧化锌(ZnO)量子点等无机材料作为电子传输层的电致发光器件中,电子传输层的电子迁移率远远大于空穴传输层的空穴迁移率。由此,一方面,空穴传输层必须具有较低的LUMO能级,空穴传输层/量子点层界面的电子势垒使得多余的电子被限制在量子点发光层;另一方面,考虑到溶剂互溶的问题,空穴传输层还必须选择某些特定的材料,比如Poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzi(4-丁基-N,N-二苯基苯胺均聚物简称poly-TBD)、Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)](简称TFB)等,这使得空穴传输层的材料选择也受到限制。
本发明实施例一种电致发光器件及其制作方法以及显示装置。该电致发光器件包括:基底和设置在基底上的电子传输层;电子传输层包括用于传输电子的第一膜层以及与所述第一膜层接触设置的调节结构,所述调节结构用于调节所述电子传输层的电子迁移率。该电致发光器件可通过调节结构调节电子传输层的电子迁移率,从而使的电子传输层与空穴传输层匹配,以保证该电致发光器件的发光效率。另一方面,该电致发光器件的空穴传输层还可选择更多种类的材料,解决空穴传输层的材料选择受到限制的问题,从而可降低该电致发光器件的成本。
下面结合附图对本发明实施例提供的电致发光器件及其制作方法以及显示装置进行说明。
实施例一
本实施例提供一种电致发光器件,如图1所示,该电致发光器件包括基底100和设置在基底100上的电子传输层4;电子传输层4包括用于传输电子的第一膜层40以及与第一膜层40接触设置的调节结构41,调节结构41用于调节电子传输层4的电子迁移率。
例如,如图1所示,该电致发光器件还包括依次设置在基底100上的阳极1、空穴传输层2、发光层3和阴极5。电子传输层4设置在发光层3和阴极5之间。发光层3可由量子点材料、有机发光材料等电致发光材料制得,电子和空穴在发光层3中的复合能够激发发光层3发光。需要说明的是,为了提高发 光效率,还可以在阳极1和空穴传输层2之间设置空穴注入层(图中未示出),在电子传输层4和阴极5之间设置电子注入层(图中未示出)。
在本实施例提供的电致发光器件中,该电致发光器件可通过调节结构41调节电子传输层4的电子迁移率,使电子传输层4的电子迁移率可调。当电子传输层和空穴传输层的载流子(包括电子和空穴)迁移率差别较大时,通过所述调节结构41的调节作用能够实现电子传输层4与空穴传输层2的载流子迁移率匹配,可保证该电致发光器件的发光效率;另一方面,该电致发光器件由于设置了可调节电子传输层4的调节结构41,还可使得空穴传输层2的材料选择不会受到限制,从而降低生产成本。例如,当电子传输层的第一膜层由量子点等无机材料制得(例如,第一膜层的材料可以选择氧化锌(ZnO)量子点或氧化镁锌(ZnMgO)量子点),因为量子点材料的电子迁移率远大于空穴传输层的空穴迁移率,导致电子电流远超过空穴电流,为此,空穴传输层必须具有低的LUMO能级。发光层和空穴传输层界面的电子势垒使得多余的电子被限制在发光层中,以保证发光效率。而本实施例提供电致发光器件可以通过上述调节结构来降低电子传输层的电子迁移率,使其与空穴传输层的空穴迁移率匹配,克服了空穴传输层的材料选择受到上述限制的问题。
例如,在本实施例一示例提供的电致发光器件中,调节结构的材料可为氧化石墨烯。由于氧化石墨烯中的sp2杂化被严重破坏,使得氧化石墨烯基本丧失了导电性,其导电性及电子迁移率很低,能够降低电子传输层整体的电子迁移率,使其与空穴传输层的空穴迁移率匹配。例如,氧化石墨烯的LUMO能级仅为1.29eV,这使得其具有极好的电子阻挡能力。当然,调节结构的材料并不局限为氧化石墨烯,也可以为其他导电性差,电子迁移率低的材料,本发明实施例在此不作限制。
例如,在本实施例一示例提供的电致发光器件中,如图1所示,电子传输层4包括用于传输电子的第一膜层40和与第一膜层40接触设置的调节结构。调节结构为与第一膜层40接触设置的第二膜层41,用于调节第一膜层41的电子迁移率。也就是说,电子传输层4包括用于传输电子的第一膜层40和与第一膜层40接触设置的第二膜层41。第二膜层41可用于调节电子传输层4的电子迁移率(通过与第一膜层作用)。需要说明的是,上述的第一膜层可采用有 机材料制得,也可采用量子点等无机材料制得。由此,通过设置于第一膜层40接触设置的第二膜层41,可使电子传输层4的电子迁移率可调。
例如,第二膜层41的电子迁移率可以大于(或小于)第一膜层40的电子迁移率,用于增加(或降低)所述第一传输层的电子迁移率,也就是说,通过与第一膜层的电子迁移率叠加的方式来增加(或降低)电子传输层4的电子迁移率。值得注意的是,所述调节结构(第二膜层)也可以选择导电性很差、电子迁移率很低的材料,以有效降低所述第一膜层的电子迁移率。
例如,在本实施例一示例提供的电致发光器件中,第二膜层41的厚度范围为1-2nm。由此,第二膜层可采用导电性很差、电子迁移率很低的材料制得。需要说明的是,当采用导电性很差,电子迁移率很低的材料制的第二膜层41的厚度为1-2nm时,由于第二膜层的厚度极薄,可利用隧穿效应的可调节性实现电子传输层导电性及电子迁移率的连续可调,进而得到更好的载流子平衡度和器件性能。例如,可通过改变第二膜层的厚度或势垒来改变电子传输层的电子迁移率。
例如,第二膜层的材料可为氧化石墨烯。由此,一方面,氧化石墨烯的LUMO能级仅为1.29eV,这使得其具有极好的电子阻挡能力;另一方面,氧化石墨烯由于其结构为层状,从而可以通过成膜工艺形成较薄的厚度(1-2nm)。例如,可通过在电子传输层中引入若干极薄的氧化石墨烯层(即第二膜层),利用隧穿效应的可调节性实现电子传输层导电性及电子迁移率的连续可调,进而得到更好的载流子平衡度和器件性能。
例如,在本实施例一示例提供的电致发光器件中,电子传输层4可包括失少两个第一膜层40,相邻两个第一膜层40之间可设置第二膜层41,从而更有效地实现电子迁移率的连续可调,也就是说,可通过设置夹设在相邻的第一膜层之间的第二膜层的个数来调节电子传输层的电子迁移率。例如,如图1所示,电子传输层4可包括两个第一膜层40,两个第一膜层40之间设置有第二膜层。当然,本发明实施例包括但不限于此,电子传输层还可包括更多第一膜层,例如,如图2所示,电子传输层4可包括三个第一膜层40,相邻两个第一膜层40之间设置有第二膜层41。
例如,在本实施例一示例提供的电致发光器件中,如图3所示,电子传输 层4包括用于传输电子的第一膜层40和与第一膜层40接触设置的调节结构。调节结构由掺杂在第一膜层中的调节剂(图中未示出)构成,从而调节第一膜层41的电子迁移率,即电子传输层4的电子迁移率。需要说明的是,上述的调节剂即为掺杂在第一膜层中的调节材料。
例如,掺杂在第一膜层40中的调节剂的结构可为均匀分布在第一膜层40中的细小颗粒。当然,本发明实施例包括但不限于此,只要掺杂的第一膜层中的调节剂可调节(增加或降低)电子传输层的电子迁移率即可。
例如,在本实施例一示例提供的电致发光器件中,可通过在电子传输层(也即第一膜层)中掺杂氧化石墨烯来实现调节电子传输层的电子迁移率,也就是说,调节剂可为氧化石墨烯。因为氧化石墨烯中的sp2杂化被严重破坏,使得氧化石墨烯基本丧失了导电性,其导电性及电子迁移率很低,能够降低电子传输层的电子迁移率,使其与空穴传输层的空穴迁移率匹配。例如,氧化石墨烯的LUMO能级仅为1.29eV,这使得其具有极好的电子阻挡能力,调节结构由掺杂在电子传输层中的氧化石墨烯制得,可以降低电子传输层的导电性及电子迁移率。需要说明的是,通过掺杂不同比例的氧化石墨烯可实现电子传输层导的电子迁移率的连续可调,进而得到更好的载流子平衡度和器件性能。
需要说明的是,上述的两种调节结构的具体结构可分别单独存在,即调节结构可为第二膜层或者掺杂在第一膜层中的调节剂,从而分别单独对电子传输层的电子迁移率进行调节。当然,上述的两种调节结构的具体结构也可同时存在,即调节结构包括第二膜层和掺杂在第一膜层中的调节剂,从而一起对电子传输层的电子迁移率进行调节。
例如,在本实施例一示例提供的电致发光器件中,发光层的材料包括量子点。
例如,在本实施例一示例提供的电致发光器件中,如图1所示,电致发光器件可以为顶发射型,底发射型或双面发射型。例如,当该电致发光器件为顶发射型电致发光器件时,光线从电致发光器件的顶部(即阴极5所在的一侧)射出,阳极1可采用反射金属材料制得,例如:银等;阴极5由透明导电材料制得,例如:ZnO、IGO、IZO、ITO或IGZO等。当该电致发光器件为底发射型电致发光器件时,光线从电致发光器件的顶部(即阳极1所在的一侧)射出, 阳极1由透明导电材料制得,例如:ZnO、IGO、IZO、ITO或IGZO等,阴极5由反射金属材料制得,例如:银等,基底100为透明基底,例如:玻璃基底或透明树脂基底等。当该电致发光器件为双面发射型电致发光器件时,光线既从器件的顶部(即阴极5所在的一侧)射出,也从器件的底部(即阳极1所在的一侧)射出,阳极1和阴极5的一部分由透明导电材料制得,另一部分由反射金属材料制得,基底100可以为透明基底。
例如,在本实施例一示例提供的电致发光器件中,该电致发光器件还包括封装层。封装曾可防止环境中的水氧影响电致发光器件的性能。
例如,封装层包括阻隔水氧的无机绝缘层,例如:氮化硅层、氧化硅层或两者的复合层。
实施例二
本实施例还提供一种显示装置,包括上述的电致发光器件。由于上述的电致发光器件克服了空穴传输层的材料选择受到载流子迁移率不同的限制,从而保证了器件的性能,并可降低了该显示装置的生产成本。
例如,显示装置包括显示基板,该电致发光器件可形成在显示基板的基底上,通过控制电致发光器件自主发光来实现显示,如:有机发光二极管显示装置。
实施例三
基于同一发明构思,本实施例提供一种如实施例一中所描述的电致发光器件的制作方法,其包括在基底上形成电子传输层。在基底上形成电子传输层包括:在基底上形成用于传输电子的第一膜层;以及形成与第一膜层接触设置的调节结构,调节结构用于所述电子传输层的电子迁移率。由此,通过调节结构调节电子传输层的电子迁移率,使电子传输层的电子迁移率可调。当电子传输层和空穴传输层的载流子(包括电子和空穴)迁移率差别较大时,通过所述调节结构的调节作用能够实现电子传输层与空穴传输层的载流子迁移率匹配,可保证该电致发光器件的发光效率;另一方面,该电致发光器件由于设置了可调节电子传输层的调节结构,还可使得空穴传输层的材料选择不会受到限制,从而降低生产成本。具体可参见实施例一中的相关描述,本发明实施例在此不再赘述。
例如,在本实施例一示例提供的电致发光器件的制作方法还包括:在基底上依次形成阳极、空穴传输层、发光层、电子传输层和阴极。电子传输层形成在发光层和阴极之间。
例如,发光层可以由量子点材料制得,例如:CdSe/ZnS、CdS/ZnS等核壳结构量子点,也可以由荧光材料、磷光材料等有机发光材料制得。
例如,第一膜层可以由有机材料制得,也可以由量子点等无机材料制得,用于传输电子。
例如,调节结构的电子迁移率可以大于(或小于)所述第一膜层的电子迁移率,用于增加(或降低)第一膜层的电子迁移率。调节结构也可以选择导电性很差、电子迁移率很低的材料,以有效降低所述第一膜层的电子迁移率。
例如,在本实施例一示例提供的电致发光器件的制作方法中,还可包括:在在阳极和空穴传输层之间形成空穴注入层,在电子传输层和阴极之间形成电子注入层,以提高电致发光器件的发光效率。
例如,在本实施例一示例提供的电致发光器件的制作方法中,形成与第一膜层接触设置的调节结构可包括:形成与第一膜层接触的第二膜层,调节结构包括第二膜层。第二膜层形成调节结构。
例如,第二膜层的厚度为1-2nm。当调节结构(第二膜层)由导电性很差、电子迁移率很低的材料制得时,由于第二膜层厚度极薄,利用隧穿效应的可调节性实现电子传输层导电性及电子迁移率的连续可调,进而得到更好的载流子平衡度和器件性能。
例如,在本实施例一示例提供的电致发光器件的制作方法中,电子传输层可包括至少两个第一膜层,该制作方法可包括:在相邻两个第一膜层之间形成第二膜层,以更有效实现电子迁移率的连续可调。
例如,在本实施例一示例提供的电致发光器件的制作方法中,形成与第一膜层接触设置的调节结构可包括:在第一膜层中掺杂调节剂,调节结构包括掺杂在第一膜层的调节剂。
例如,形成电子传输层的可以包括:溶解导电材料,制备导电溶液,用于形成第一膜层;溶解调节剂,制备调节溶液;按一定比例在导电溶液中加入调节溶液,形成混合溶液;以及利用混合溶液形成电子传输层。
例如,调节溶液和导电溶液可以以1:1、1:5、1:10等体积比进行混合,并通过超声使其混合均匀。
需要说明的是,上述两个形成调节结构的具体实施方式给出了在电子传输层中形成调节结构的两种具体结构形式,在工艺上便于实现,能够降低生产成本。实际应用过程中,在电子传输层中形成调节结构的结构形式并不局限于上述两种,只要与电子传输层的第一膜层接触设置,能够调节第一膜层的电子迁移率即可。
例如,在本实施例一示例提供的电致发光器件的制作方法中,当电子传输层的第一膜层由量子点(例如:ZnO量子点、ZnMgO)等无机材料制得时,利用氧化石墨烯形成所述调节结构,由于氧化石墨烯的导电性和电子迁移率很低,能够降低第一膜层的电子迁移率,使其与空穴传输层的空穴迁移率匹配。
例如,当采用氧化石墨烯形成调节结构时,该制作方法还可包括:制备氧化石墨烯溶液。由此,当调节结构由掺杂在第一膜层中的氧化石墨烯制得时,可以在按一定比例在制备第一膜层的导电溶液中加入氧化石墨烯溶液,形成混合溶液,并利用混合溶液形成电子传输层;当调节结构由与第一膜层接触设置的氧化石墨烯层形成时,可通过旋涂等成膜工艺在第一膜层上形成氧化石墨烯层,由层叠设置的第一膜层和氧化石墨烯层形成电子传输层。由于氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,有利于形成极薄的膜层,形成的氧化石墨烯层的厚度可以达到1-2nm。例如,可在相邻的两个第一膜层之间均形成氧化石墨烯层,利用隧穿效应的可调节性有效实现电子传输层导电性及电子迁移率的连续可调。
例如,制备氧化石墨烯溶液可包括:在低温环境下,例如,小于200度的环境,混合石墨粉、硝酸钠和浓硫酸;加入催化剂;反应完成后,分离出氧化石墨;以及利用氧化石墨制备氧化石墨烯溶液。需要说明的是,上述制备方法的低温环境可以通过冰水浴来提供,即将混合有石墨粉、硝酸钠和浓硫酸的容器置入冰水中。使用的所述催化剂可以为高锰酸钾,反应完成后,加入双氧水将剩余的高锰酸钾还原为二氧化锰,经过多次过滤洗涤,分离出氧化石墨。然后可以在液相体系中利用超声的空化效应,分散破碎氧化石墨,制备氧化石墨烯溶液。所述液相体系可以为水,因为氧化石墨烯在水中具有优越的分散性。
在制备完成氧化石墨烯溶液和导电溶液后,将所述氧化石墨烯溶液和导电溶液以1:1、1:5、1:10等体积比进行混合,并通过超声使其混合均匀,形成混合溶液,利用所述混合溶液形成电子传输层。也可以利用所述导电溶液形成第一膜层,利用氧化石墨烯溶液形成与第一膜层接触设置的氧化石墨烯层,由层叠设置的第一膜层和氧化石墨烯层形成电子传输层。例如,在相邻两个第一膜层之间均形成一氧化石墨烯层,氧化石墨烯层的厚度为1-2nm。
例如,在本实施例一示例提供的电致发光器件的制作方法还包括:依次用丙酮,酒精,去离子水清洗一基底,并用UV光线照射10min;在基底100上形成阳极1;在阳极1上形成空穴注入层(图中未示出),例如,空穴注入层的厚度可约为40nm,又例如,制作空穴注入层的材料可以通过将3,4-乙撑二氧噻吩单体的聚合物、聚苯乙烯磺酸盐溶解在水中制得,3,4-乙撑二氧噻吩单体的聚合物和聚苯乙烯磺酸盐混合在一起极大的提高了3,4-乙撑二氧噻吩单体的聚合物的溶解性,导电性很高;在空穴注入层上依次形成空穴传输层2、发光层3,并烘干;在发光层3上形成电子传输层4,包括形成用于传输电子的第一膜层和与第一膜层接触设置的调节结构,调节结构用于调节所述第一膜层的电子迁移率;以及在电子传输层4上形成依次形成电子注入层(图中未示出)、阴极5。至此完成电致发光器件的制作。
本发明的技术方案尤其适用于电子传输层的第一膜层由量子点等无机材料制得,因为量子点材料的电子迁移率远大于空穴传输层的空穴迁移率,导致电子电流远超过空穴电流,为此,空穴传输层必须具有低的LUMO能级,从而发光层和空穴传输层界面的电子势垒使得多余的电子被限制在发光层中,保证发光效率。而本发明可以通过上述调节结构降低第一膜层的电子迁移率,使其与空穴传输层的空穴迁移率匹配,克服了空穴传输层的材料选择受到上述限制的问题。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
本申请要求于2016年04月20日递交的中国专利申请第201610247744.2 号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种电致发光器件,包括:
    基底;以及
    电子传输层,设置在所述基底上;
    其中,所述电子传输层包括用于传输电子的第一膜层以及与所述第一膜层接触设置的调节结构,所述调节结构用于调节所述电子传输层的电子迁移率。
  2. 根据权利要求1所述的电致发光器件,其中,所述调节结构包括:
    第二膜层,与所述第一膜层接触设置,
    其中,所述第二膜层的电子迁移速率大于或小于所述第一膜层的电子迁移率。
  3. 根据权利要求2所述的电致发光器件,其中,所述电子传输层包括至少两个所述第一膜层,所述第二膜层设置在相邻两个所述第一膜层之间。
  4. 根据权利要求2所述的电致发光器件,其中,所述第二膜层的厚度为1-2nm。
  5. 根据权利要求1-4任一项所述的电致发光器件,其中,所述第二膜层的材料包括氧化石墨烯。
  6. 根据权利要求1所述的电致发光器件,其中,所述调节结构包括掺杂在所述第一膜层中的调节剂。
  7. 根据权利要求6所述的电致发光器件,其中,所述调节剂的材料包括氧化石墨烯。
  8. 根据权利要求1所述的电致发光器件,其中,所述第一膜层的材料包括无机材料。
  9. 根据权利要求7所述的电致发光器件,其中,所述第一膜层的材料包括氧化锌(ZnO)量子点或氧化镁锌(ZnMgO)量子点。
  10. 根据权利要求1所述的电致发光器件,还包括:
    设置在所述基底上的阳极;
    设置在所述阳极上的空穴传输层;
    设置在所述空穴传输层上的发光层;以及
    设置在所述电子传输层上的阴极,
    其中,所述电子传输层位于所述发光层和所述阴极之间。
  11. 根据权利要求10所述的电致发光器件,其中,所述发光层的材料包括量子点。
  12. 一种显示装置,包括权利要求1-11任一项所述的电致发光器件。
  13. 一种电致发光器件的制作方法,包括:
    在基底上形成电子传输层,
    其中,所述电子传输层包括用于传输电子的第一膜层以及与所述第一膜层接触设置的调节结构,所述调节结构用于调节所述电子传输层的电子迁移率。
  14. 根据权利要求13所述的制作方法,还包括:
    形成与所述第一膜层接触的第二膜层,其中,所述调节结构包括所述第二膜层。
  15. 根据权利要求14所述的制作方法,其中,所述电子传输层包括至少两个所述第一膜层,所述制作方法包括:
    在相邻两个所述第一膜层之间形成所述第二膜层。
  16. 根据权利要求13所述的制作方法,还包括:
    在所述第一膜层中掺杂调节剂,其中,所述调节结构包括掺杂在所述第一膜层的调节剂。
  17. 根据权利要求16所述的制作方法,还包括:
    溶解导电材料以制备导电溶液,用于形成所述第一膜层;
    溶解所述调节剂以制备调节溶液;
    在所述导电溶液中加入所述调节溶液,形成混合溶液;以及
    利用所述混合溶液形成所述电子传输层。
  18. 根据权利要求13所述的制作方法,还包括:
    利用氧化石墨烯形成所述调节结构。
  19. 根据权利要求18所述的制作方法,还包括:
    混合石墨粉、硝酸钠和浓硫酸;
    加入催化剂;
    反应完成后,分离出氧化石墨;以及
    利用所述氧化石墨制备氧化石墨烯溶液
    将所述氧化石墨烯溶液加入所述导电溶液以形成所述混合溶液。
  20. 根据权利要求19所述的制作方法,其中,所述催化剂为高锰酸钾,并且,反应完成后,加入双氧水将剩余的高锰酸钾还原为二氧化锰;以及,经过多次过滤洗涤,分离出氧化石墨。
PCT/CN2016/104968 2016-04-20 2016-11-08 电致发光器件及其制作方法以及显示装置 WO2017181654A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/539,764 US10186677B2 (en) 2016-04-20 2016-11-08 Electroluminescent device and manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610247744.2A CN105679958B (zh) 2016-04-20 2016-04-20 电致发光器件及其制作方法、显示装置
CN201610247744.2 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017181654A1 true WO2017181654A1 (zh) 2017-10-26

Family

ID=56215460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104968 WO2017181654A1 (zh) 2016-04-20 2016-11-08 电致发光器件及其制作方法以及显示装置

Country Status (3)

Country Link
US (1) US10186677B2 (zh)
CN (1) CN105679958B (zh)
WO (1) WO2017181654A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679958B (zh) 2016-04-20 2018-03-13 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN106654026B (zh) * 2016-11-22 2018-12-28 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置及照明装置
CN108172689B (zh) * 2017-12-15 2021-09-17 浙江海洋大学 一种基于ZnMgO纳米柱薄膜作为电子传输层的有机太阳能电池
CN109980108A (zh) * 2017-12-28 2019-07-05 Tcl集团股份有限公司 电致发光器件及其制造方法、显示装置
US11121339B2 (en) * 2018-05-11 2021-09-14 Nanosys, Inc. Quantum dot LED design based on resonant energy transfer
CN110739404B (zh) * 2018-07-18 2021-04-02 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
KR102572134B1 (ko) * 2018-07-24 2023-08-28 삼성전자주식회사 양자점 소자와 표시 장치
CN111146346A (zh) * 2018-11-02 2020-05-12 Tcl集团股份有限公司 顶发光型量子点电致发光二极管及其制备方法
US20220052284A1 (en) * 2018-12-17 2022-02-17 Sharp Kabushiki Kaisha Electroluminescence element and display device
CN111384254B (zh) * 2018-12-27 2021-09-14 Tcl科技集团股份有限公司 一种量子点发光二极管
CN111384298B (zh) * 2018-12-28 2021-07-06 Tcl科技集团股份有限公司 复合材料、薄膜及其制备方法、量子点发光二极管
CN111384279B (zh) * 2018-12-29 2021-06-22 Tcl科技集团股份有限公司 一种量子点发光二极管
CN109728179A (zh) * 2019-01-02 2019-05-07 京东方科技集团股份有限公司 量子点发光二极管器件及其制备方法
KR102629349B1 (ko) * 2019-01-15 2024-01-24 삼성전자주식회사 양자점 소자와 표시 장치
CN110289364B (zh) * 2019-06-28 2021-11-30 京东方科技集团股份有限公司 量子点杂化纳米材料及其制备方法和发光二极管
CN114026703B (zh) * 2020-05-12 2023-06-16 京东方科技集团股份有限公司 量子点发光结构及其制作方法、阵列基板和显示装置
CN111653678B (zh) * 2020-06-12 2023-10-24 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、显示面板、显示装置
CN113871542B (zh) * 2020-06-30 2023-10-24 京东方科技集团股份有限公司 发光二极管器件及其制备方法、显示面板
CN112670422B (zh) * 2020-12-04 2022-04-15 昆山国显光电有限公司 显示面板及显示面板的蒸镀方法
US20240172469A1 (en) * 2021-05-31 2024-05-23 Beijing Boe Technology Development Co., Ltd. Quantum dot light emitting diode, method for manufacturing the same, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556988A (zh) * 2009-05-21 2009-10-14 电子科技大学 一种具有非掺杂增益层的有机光电子器件及其制备方法
CN103824975A (zh) * 2014-02-27 2014-05-28 上海和辉光电有限公司 提升ito层空穴注入效率的方法和显示器件的阳极结构
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105449112A (zh) * 2016-01-12 2016-03-30 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置与照明装置
CN105679958A (zh) * 2016-04-20 2016-06-15 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN205564819U (zh) * 2016-04-20 2016-09-07 京东方科技集团股份有限公司 电致发光器件、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806812B1 (ko) * 2005-07-25 2008-02-25 엘지.필립스 엘시디 주식회사 유기 el 소자 및 그 제조방법
JP4605235B2 (ja) * 2008-03-25 2011-01-05 富士ゼロックス株式会社 有機電界発光素子およびその表示媒体
JP5479009B2 (ja) * 2009-09-24 2014-04-23 キヤノン株式会社 有機発光素子
GB201008142D0 (en) * 2010-05-14 2010-06-30 Imp Innovations Ltd Device comprising graphene oxide film
CN103730589A (zh) * 2012-10-11 2014-04-16 海洋王照明科技股份有限公司 顶发射有机电致发光器件及其制备方法
JP6438946B2 (ja) * 2013-06-21 2018-12-19 メルク パテント ゲーエムベーハー 共役ポリマー
KR102257780B1 (ko) * 2013-09-11 2021-05-28 라이너지 테크 인코포레이션 사이클로헥사디엔 풀러렌 유도체
CN103762318B (zh) * 2013-12-31 2017-01-18 昆山工研院新型平板显示技术中心有限公司 一种顶发射oled器件
CN104134754A (zh) * 2014-07-14 2014-11-05 京东方科技集团股份有限公司 有机电致发光器件及其制备方法
WO2018051207A1 (en) * 2016-09-14 2018-03-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556988A (zh) * 2009-05-21 2009-10-14 电子科技大学 一种具有非掺杂增益层的有机光电子器件及其制备方法
CN103824975A (zh) * 2014-02-27 2014-05-28 上海和辉光电有限公司 提升ito层空穴注入效率的方法和显示器件的阳极结构
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105449112A (zh) * 2016-01-12 2016-03-30 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置与照明装置
CN105679958A (zh) * 2016-04-20 2016-06-15 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN205564819U (zh) * 2016-04-20 2016-09-07 京东方科技集团股份有限公司 电致发光器件、显示装置

Also Published As

Publication number Publication date
CN105679958B (zh) 2018-03-13
US20180205030A1 (en) 2018-07-19
US10186677B2 (en) 2019-01-22
CN105679958A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017181654A1 (zh) 电致发光器件及其制作方法以及显示装置
Jiang et al. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays
US10784457B2 (en) Fabricating method of QLED device and QLED device
CN103904178B (zh) 量子点发光器件
KR101658691B1 (ko) 안정적이고 모든 용액에 처리 가능한 양자점 발광 다이오드
US11581503B2 (en) Light-emitting diode and method for preparing the same
KR101149703B1 (ko) 나노-도트를 갖는 유기 발광 다이오드 및 그 제조 방법
CN109148704B (zh) 量子点电致发光器件及其制备方法
Nguyen et al. Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs
KR20100017024A (ko) 단일 활성층 구조를 가지는 교류 구동형 발광소자 및 그제조방법
Lin et al. Interfacial engineering with ultrathin poly (9, 9-di-n-octylfluorenyl-2, 7-diyl)(PFO) layer for high efficient perovskite light-emitting diodes
CN205564819U (zh) 电致发光器件、显示装置
KR101450858B1 (ko) 그래핀 산화물을 이용한 유기전계 발광소자 및 그 제조방법
CN111162183B (zh) 量子点发光二极管及其制备方法与光源结构
Gao et al. Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer
Yang et al. Optimized TFB-based perovskite quantum dot light emitting diode
CN112349853A (zh) 电致发光器件及其制备方法和显示装置
Vasanthi et al. Metal oxide charge transport materials for light emitting diodes-An overview
CN111276584B (zh) 一种量子点发光器件、显示装置及电子传输材料溶液
WO2023142570A1 (zh) 一种掺杂材料及其制备方法、发光二极管
WO2022135405A1 (zh) 发光二极管及其制备方法
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
Oner et al. White Light Electroluminescence by Organic-Inorganic Heterostructures with CdSe Quantum Dots as Red Light Emitters
CN109037467B (zh) 一种电致发光器件、显示面板及显示装置
CN115249727A (zh) 显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15539764

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899237

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16899237

Country of ref document: EP

Kind code of ref document: A1