WO2017181454A1 - 一种带能量传输的无线通信系统 - Google Patents

一种带能量传输的无线通信系统 Download PDF

Info

Publication number
WO2017181454A1
WO2017181454A1 PCT/CN2016/081766 CN2016081766W WO2017181454A1 WO 2017181454 A1 WO2017181454 A1 WO 2017181454A1 CN 2016081766 W CN2016081766 W CN 2016081766W WO 2017181454 A1 WO2017181454 A1 WO 2017181454A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
module
capacitor
unit
signal
Prior art date
Application number
PCT/CN2016/081766
Other languages
English (en)
French (fr)
Inventor
邱纯鑫
刘乐天
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to US16/095,328 priority Critical patent/US10476553B2/en
Publication of WO2017181454A1 publication Critical patent/WO2017181454A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the invention belongs to the technical field of wireless communications, and in particular relates to a wireless communication system with energy transmission.
  • wireless energy transmission can realize power transmission without using a medium such as a cable in a non-contact state.
  • wireless energy transmission has been successfully applied in fields such as wireless charging, and there has been some exploration in the field of wireless energy and simultaneous transmission of information.
  • wireless energy and information are transmitted simultaneously, and there are two methods of magnetic field resonance and microwave radiation transmission, which correspond to narrowband and broadband communication systems, respectively.
  • non-radiative magnetic coupling resonance has a weak coupling to the receiving end of the surrounding non-resonant frequency by making two resonant components of the same frequency generate strong mutual coupling.
  • the magnetically coupled resonant system includes a transmitting resonant coil, a secondary receiving resonant coil, and a load.
  • Wireless power supply applications usually require wireless communication. According to the implementation of energy flow and information flow, they are mainly divided into single-flow mode and dual-flow mode.
  • the dual-stream mode uses energy flow and information flow separately, such as wireless devices such as Bluetooth to implement information flow. This method is relatively expensive and the circuit is complicated.
  • the single stream mode uses the same set of devices to achieve multiplexing of energy flow and information flow.
  • the present invention is implemented in the form of a wireless communication system with energy transmission, the wireless communication system including a control module, a MOS drive module, a MOS power amplification module, an electromagnetic conversion module, a magnetoelectric conversion module, a rectification voltage regulator module, and a voltage An output module, an LVDS signal conversion module, a TTL signal conversion module, a receiving module, a magnetic ring coupling module and a power supply, wherein the output end of the control module is respectively connected to an input end of the LVDS signal conversion module and an input end of the MOS drive module, An output end of the MOS driving module is connected to the input end of the MOS power amplifying module, the MOS power amplifying module is electrically connected to the power supply, and an output end of the MOS power amplifying module is connected to an input end of the electromagnetic converting module An input end of the electromagnetic conversion module is further connected to an output end of the LVDS signal conversion module, an output end of the electromagnetic conversion module is connected to an input end of the magnetic
  • the electromagnetic conversion module includes an energy electromagnetic conversion unit and a signal electromagnetic conversion unit, and an input end of the energy electromagnetic conversion unit is connected to an output end of the MOS power amplification module, and the signal electromagnetic conversion unit The input terminal is connected to the output of the LVDS signal conversion module.
  • the magnetic ring coupling module includes an energy magnetic ring unit and a signal magnetic ring unit, and an input end of the energy magnetic ring unit is connected to an output end of the energy electromagnetic conversion unit, and the signal magnetic ring The input of the unit is connected to the output of the signal electromagnetic conversion unit.
  • the magnetoelectric conversion module includes an energy magnetoelectric conversion unit and a signal magnetoelectric conversion unit, and an input end of the energy magnetoelectric conversion unit is connected to an output end of the energy magnetic ring unit, An output end of the energy magnetoelectric conversion unit is connected to an input end of the rectification voltage regulator module, an input end of the signal magnetic ring unit is connected to an output end of the signal magnetic ring unit, and an input end of the signal magnetoelectric conversion unit is connected An output end of the signal magnetic ring, an output end of the signal magnetoelectric conversion unit is connected to an input end of the TTL signal conversion module.
  • the MOS driving module includes a first driving unit and a second driving unit, and the first driving unit is the same as the second driving unit, and includes a resistor R1, a resistor R2, and a capacitor C1.
  • the seventh leg of the chip U1 connects the capacitor C2 to the eighth leg of the chip U1 and outputs the other end of the resistor R6 through the pad, and the other end of the resistor R3 is grounded via the pad.
  • the sixth leg of the chip U1 is respectively One end of the capacitor C1 is connected and the power supply VCC + 5V, the other end of the capacitor C1, the other end of the resistor R1, the other end of the resistor R2, chip U1 4 feet are grounded.
  • the MOS power amplification module includes a first amplifying unit and a second amplifying unit, and the first amplifying unit is the same as the second amplifying unit, and includes a MOS transistor Q1, a MOS transistor Q2, and a resistor R14. a resistor R10, a resistor R13, a capacitor C4, a resistor R12, a resistor R9, a resistor R11, and a capacitor C3.
  • the gate of the MOS transistor Q1 is connected to the other end of the resistor R8 and the other end of the resistor R7.
  • the poles are respectively connected to one end of the resistor R10, one end of the resistor R11 and one end of the capacitor C3.
  • the drain of the MOS transistor Q1 is respectively connected to one end of the resistor R9 and the power source VCC, and the other end of the resistor R9 is connected to the capacitor C3.
  • the other end of the resistor R10 is connected to one end of the chip U1 and one end of the capacitor C2 via a pad, and the other end of the resistor R11 is respectively connected to one end of the resistor R12 and the drain of the MOS transistor Q2.
  • One end of the resistor R14 and one end of the resistor R13 are respectively connected, the other end of the resistor R13 is grounded, and the other end of the resistor R14 is grounded via a pad.
  • control module uses an FPGA
  • the FPGA includes an energy output control signal processing unit and a digital signal processing unit.
  • the rectification and voltage stabilizing module includes a rectifying and filtering unit and a voltage stabilizing unit, and an output end of the rectifying and filtering unit is connected to an input end of the voltage stabilizing unit.
  • the rectifying and filtering unit includes a capacitor C9, a capacitor C10, a diode D5, a diode D6, a diode D7, and a diode D8.
  • the anode of the diode D5 is connected to the cathode of the diode D7 and the magnetoelectric conversion
  • the anode of the diode D6 is respectively connected to the cathode of the diode D8 and the output end of the magnetoelectric conversion module.
  • the cathode of the diode D5 is respectively connected to the cathode of the diode D6, one end of the capacitor C10 and one end of the capacitor C9.
  • the anode of the diode D7 is connected to the anode of the diode D8, the other end of the capacitor C10, and the other end of the capacitor C9 are grounded.
  • the voltage stabilizing unit includes a voltage regulator chip U2, a capacitor C11, and a capacitor C12.
  • the first leg of the voltage regulator chip U2 is respectively connected to the cathode of the diode D5, the cathode of the diode D6, and the capacitor.
  • One end of the C10 and one end of the capacitor C9, the third leg of the voltage stabilizing chip U2 is respectively connected to one end of the capacitor C11, One end of the capacitor C12 and the output, the second leg of the voltage regulator chip U2, the other end of the capacitor C11, and the other end of the capacitor C12 are grounded.
  • the invention has the beneficial effects that: the FPGA control can simultaneously describe the power and the high-speed digital signal, and the power and the data signal can be completely transmitted independently during the transmission process; the system has the advantages of simple structure, convenient use and high efficiency.
  • FIG. 1 is a structural block diagram of a wireless communication system with energy transmission according to an embodiment of the present invention.
  • FIG. 2 is an electrical schematic diagram of a MOS driving module and a MOS power amplifying module according to an embodiment of the present invention.
  • FIG. 3 is an electrical schematic diagram of a rectifying and filtering unit according to an embodiment of the present invention.
  • FIG. 4 is an electrical schematic diagram of a voltage stabilizing unit according to an embodiment of the present invention.
  • the present invention provides a wireless communication system with energy transmission, which includes a control module, a MOS drive module, a MOS power amplification module, an electromagnetic conversion module, a magnetoelectric conversion module, and a rectifier voltage regulator.
  • a module a voltage output module, an LVDS signal conversion module, a TTL signal conversion module, a receiving module, a magnetic ring coupling module and a power supply
  • the output end of the control module is respectively connected to the input end of the LVDS signal conversion module and the MOS drive module
  • An output end of the MOS driving module is connected to the input end of the MOS power amplifying module, the MOS power amplifying module is electrically connected to the power supply, and an output end of the MOS power amplifying module is connected to the electromagnetic converting module
  • the input end of the electromagnetic conversion module is further connected to an output end of the LVDS signal conversion module, and an output end of the electromagnetic conversion module is connected to an input end of the magnetic ring coupling module, and the magnetic ring coupling module is The output end is connected to the input end of the magnetoelectric conversion module, and the output end of the magnetoelectric conversion module is respectively connected to the rectifier
  • the electromagnetic conversion module includes an energy electromagnetic conversion unit and a signal electromagnetic conversion unit, an input end of the energy electromagnetic conversion unit is connected to an output end of the MOS power amplification module, and an input end of the signal electromagnetic conversion unit is connected to the LVDS signal The output of the conversion module.
  • the magnetic ring coupling module includes an energy magnetic ring unit and a signal magnetic ring unit, an input end of the energy magnetic ring unit is connected to an output end of the energy electromagnetic conversion unit, and an input end of the signal magnetic ring unit is connected to the signal The output of the electromagnetic conversion unit.
  • the magnetoelectric conversion module includes an energy magnetoelectric conversion unit and a signal magnetoelectric conversion unit, and an input end of the energy magnetoelectric conversion unit is connected to an output end of the energy magnetic ring unit, and an output end of the energy magnetoelectric conversion unit Connected to an input end of the rectification voltage regulator module, an input end of the signal magnetic ring unit is connected to an output end of the signal magnetic ring unit, and an input end of the signal magnetoelectric conversion unit is connected to an output end of the signal magnetic ring The output end of the signal magnetoelectric conversion unit is connected to the input end of the TTL signal conversion module.
  • the MOS driving module includes a first driving unit and a second driving unit, and the first driving unit is the same as the second driving unit, and includes a resistor R1, a resistor R2, a capacitor C1, a resistor R3, a resistor R4, and a resistor R5. a resistor R6, a resistor R7, a resistor R8, a chip U1, a diode D1, and a diode D2.
  • the second leg of the chip U1 is connected to one end of the resistor R1 and the signal PWMHII, and the third leg of the chip U1 is connected to the second leg.
  • the eighth leg of the chip U1 is connected to one end of the resistor R6, one end of the resistor R7 and the cathode of the diode D1, and the fifth leg of the chip U1 is respectively connected to the resistor R3.
  • One end, one end of the resistor R4 and the cathode of the diode D2 the anode of the diode D1 is connected to one end of the resistor R8, the second The anode of the pole D2 is connected to one end of the resistor R5, the seventh leg of the chip U1 connects the capacitor C2 with the eighth leg of the chip U1 and outputs, and the other end of the resistor R6 is grounded via the pad.
  • the other end of the resistor R3 is grounded via a pad, and the sixth leg of the chip U1 is connected to one end of the capacitor C1 and the power source VCC+5V, the other end of the capacitor C1, the other end of the resistor R1, and the resistor.
  • the other end of R2 and the fourth pin of chip U1 are grounded.
  • the MOS power amplification module includes a first amplifying unit and a second amplifying unit, and the first amplifying unit is the same as the second amplifying unit, and includes a MOS transistor Q1, a MOS transistor Q2, a resistor R14, a resistor R10, a resistor R13, and a capacitor. C4, a resistor R12, a resistor R9, a resistor R11, and a capacitor C3.
  • the gate of the MOS transistor Q1 is respectively connected to the other end of the resistor R8 and the other end of the resistor R7.
  • the sources of the MOS transistor Q1 are respectively connected to the One end of the resistor R10, one end of the resistor R11 and one end of the capacitor C3, the drain of the MOS transistor Q1 is connected to one end of the resistor R9 and the power source VCC, and the other end of the resistor R9 is connected to the other end of the capacitor C3.
  • the resistor R10 is connected to one end of the chip U1 and one end of the capacitor C2 via a pad, and the other end of the resistor R11 is connected to one end of the resistor R12, the drain of the MOS transistor Q2, and the first of the chip U1.
  • the gate of the MOS transistor Q2 is respectively connected to the other end of the resistor R4 and the other end of the resistor R5, and the source of the MOS transistor Q2 is respectively connected to the resistor One end of R14 and one end of resistor R13, and the other of resistor R13 Grounded, the other end of the resistor R14 is grounded through the pad.
  • the control module uses an FPGA, and the FPGA includes an energy output control signal processing unit and a digital signal processing unit.
  • the rectifier voltage stabilizing module includes a rectifying and filtering unit and a voltage stabilizing unit, and an output end of the rectifying and filtering unit is connected to an input end of the voltage stabilizing unit.
  • the rectifying and filtering unit comprises a capacitor C9, a capacitor C10, a diode D5, a diode D6, a diode D7 and a diode D8.
  • the anode of the diode D5 is connected to the cathode of the diode D7 and the output of the magnetoelectric conversion module.
  • the anode of the diode D6 is respectively connected to the cathode of the diode D8 and the output end of the magnetoelectric conversion module.
  • the cathode of the diode D5 is respectively connected to the cathode of the diode D6, one end of the capacitor C10 and one end of the capacitor C9.
  • the anode of the diode D7 is connected to the anode of the diode D8, the other end of the capacitor C10, and the other end of the capacitor C9 are grounded.
  • the voltage stabilizing unit comprises a voltage stabilizing chip U2, a capacitor C11 and a capacitor C12.
  • the first leg of the voltage stabilizing chip U2 is respectively connected to the cathode of the diode D5, the cathode of the diode D6, one end of the capacitor C10 and one end of the capacitor C9.
  • the third leg of the voltage regulator chip U2 is respectively connected to one end of the capacitor C11, one end of the capacitor C12, and an output.
  • the second pin of the voltage regulator chip U2, the other end of the capacitor C11, and the other end of the capacitor C12 are respectively connected. Ground.
  • the working mode of the communication system the data signal transmission system FPGA scrambles the data data so that the data does not contain the spectral components of the lower frequency band. For example, when the data rate is 50 Mbps, the equivalent physical frequency is 25 MHz, and the data is scrambled so that it is not Contains frequency components below 5MHz, while power transmission and interference can be distributed between LF-5MHz. Displaced from the operating frequency of the subsequent wireless energy transmission system, through the LVDS level signal output, after externally converting the LVDS level signal into a TTL signal and performing power enhancement, the electromagnetic conversion driver is driven to drive the magnetic ring coil to emit a high frequency externally.
  • the wireless digital signal the receiving end senses the magnetic field signal emitted by the transmitting coil through the magnetic loop coil, converts the magnetic field change into an electrical signal change, and then converts the converted electrical signal into high-pass filtering, amplifying, shaping and reducing to the original LVDS signal feeding.
  • the FPGA at the receiving end performs signal restoration. Due to the combination of the power transmission system, it is necessary to introduce interference or even damage the original signal when the signal and energy are transmitted simultaneously. Therefore, the frequency of data transmission and energy transmission should be staggered as much as possible over a large frequency range. If necessary, a filter is introduced to filter out the negative interference caused by the energy transmission system. Guarantee the stability and reliability of data signal transmission.
  • Low-frequency energy transmission radiates electrical energy into the air by using a low-frequency oscillating electromagnetic signal and receives it.
  • the specific process is: generating low frequency through the FPGA (the main energy band of the square wave spectrum)
  • the PWM control signal (with dead band control) below 2MHz drives the power MOSFET through the MOSFET drive circuit to perform power amplification and drive the electromagnetic converter coil magnetic ring to radiate power outward.
  • the receiving end converts the magnetic energy into electrical energy after being coupled to the electromagnetic signal radiated by the transmitting end with a magnetic loop coil. Then, a constant voltage and current are output through the rectifier voltage regulator circuit, and then supplied to other circuits for use.
  • the data signal and the energy signal are transmitted in different frequency bands in the same magnetic link, and the operating frequency of the energy transmission system is maximized in consideration of efficiency and interference. To make the system the most efficient.
  • the FPGA simultaneously issues a control signal, wherein one of the outputs is output to the LVDS signal conversion module to convert the LVDA signal into a TTL signal and output to the electromagnetic conversion module, the electromagnetic conversion module receives the TTL signal, and converts the electrical signal into a magnetic signal output to
  • the magnetic ring coupling module wirelessly converts the magnetic signal into a magnetoelectric conversion module through a coupling method, and the magnetoelectric conversion module restores the received magnetic signal to a TTL signal and outputs the signal to the TTL signal conversion module, and the TTL signal conversion module receives the TTL.
  • the signal After the signal is converted into the LVDS signal, it is output to the receiving module to complete the signal transmission; the other output signal enters the MOS driving module, and the MOS driving module drives the MOS tube of the MOS power amplifying module to perform power amplification and drives the electromagnetic conversion coil magnetic ring to radiate electric energy outward.
  • the receiving end converts the magnetic energy into electrical energy after being coupled to the electromagnetic signal radiated by the transmitting end with a magnetic loop coil.
  • the rectifier voltage regulator module outputs a constant voltage and current, which is then supplied to other circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本发明涉及一种带能量传输的无线通信系统,控制模块的输出端分别连接LVDS信号转换模块的输入端及MOS驱动模块的输入端,MOS驱动模块的输出端连接MOS功率放大模块输入端,MOS功率放大模块电性连接供电电源,MOS功率放大模块的输出端连接电磁转换模块的输入端,电磁转换模块的输入端还连接LVDS信号转换模块的输出端,电磁转换模块的输出端连接磁环耦合模块的输入端,磁环耦合模块的输出端连接磁电转换模块的输入端,磁电转换模块的输出端分别连接整流稳压模块的输入端及TTL信号转换模块的输入端,TTL信号转换的输出端连接接收模块的输入端,整流稳压模块的输出端连接电压输出模块的输入端。结构简单、效率高。

Description

一种带能量传输的无线通信系统 技术领域
本发明属于无线通信技术领域,尤其涉及一种带能量传输的无线通信系统。
背景技术
无线能量传输作为一种能量传输手段,可以在非接触的状态下,不借助线缆等媒介实现电能传输。近年来无线能量传输在无线充电等领域等获得了成功应用,而在无线能量和信息同时传输等结合领域也有了一定探索。目前无线能量和信息同时传输,有采用磁场共振和微波辐射传输两种方法,分别对应于窄带和宽带通信系统。
非辐射性磁耦合谐振作为新型无线供电技术,通过使两个相同频率的谐振物体产生很强的相互耦合,而对周围非谐振频率的接受端只有较弱的耦合。磁耦合谐振系统包括发射谐振线圈、次级接受谐振线圈和负载。无线供电应用场合通常需要无线通信,按照能量流与信息流的实现方式,主要分为单流模式和双流模式。其中双流模式采用能量流与信息流分开实现,如采用蓝牙等无线装置实现信息流。这种方式成本相对较高,电路复杂。而单流模式利用同一套装置实现能量流与信息流的复用。
目前对无线能量和信息传输的研究主要集中在天线和射频单元的物理设计,以提高设备间点对点传输时无线能量和信息同时传输的效率。但是在多个设备进行分布式组网时,如何基于时分方式控制各个设备在无线能量和信息传输之间的转换仍未有相关研究。而传统的基于时分方式的分布式通信协议CSMA协议显然也不能直接用于采用无线能量和信息传输技术的新型设备的分布式组网。因此需要对此类场景的设备组网协议进行设计,通过将无线能量和信息传输引入能量受限的分布式无线网络(如无线传感器网络),以延长这些网络中设备的电池使用时间。
发明内容
本发明的目的在于提供一种带能量传输的无线通信系统,旨在解决上述的技术问题。
本发明是这样实现的,一种带能量传输的无线通信系统,所述无线通信系统包括控制模块、MOS驱动模块、MOS功率放大模块、电磁转换模块、磁电转换模块、整流稳压模块、电压输出模块、LVDS信号转换模块、TTL信号转换模块、接收模块、磁环耦合模块及供电电源,所述控制模块的输出端分别连接所述LVDS信号转换模块的输入端及MOS驱动模块的输入端,所述MOS驱动模块的输出端连接所述MOS功率放大模块输入端,所述MOS功率放大模块电性连接所述供电电源,所述MOS功率放大模块的输出端连接所述电磁转换模块的输入端,所述电磁转换模块的输入端还连接所述LVDS信号转换模块的输出端,所述电磁转换模块的输出端连接所述磁环耦合模块的输入端,所述磁环耦合模块的输出端连接所述磁电转换模块的输入端,所述磁电转换模块的输出端分别连接所述整流稳压模块的输入端及TTL信号转换模块的输入端,所述TTL信号转换的输出端连接所述接收模块的输入端,所述整流稳压模块的输出端连接所述电压输出模块的输入端。
本发明的进一步技术方案是:所述电磁转换模块包括能量电磁转换单元及信号电磁转换单元,所述能量电磁转换单元的输入端连接所述MOS功率放大模块的输出端,所述信号电磁转换单元的输入端连接所述LVDS信号转换模块的输出端。
本发明的进一步技术方案是:所述磁环耦合模块包括能量磁环单元及信号磁环单元,所述能量磁环单元的输入端连接所述能量电磁转换单元的输出端,所述信号磁环单元的输入端连接所述信号电磁转换单元的输出端。
本发明的进一步技术方案是:所述磁电转换模块包括能量磁电转换单元及信号磁电转换单元,所述能量磁电转换单元的输入端连接所述能量磁环单元的输出端,所述能量磁电转换单元的输出端连接所述整流稳压模块的输入端,所述信号磁环单元的输入端连接所述信号磁环单元的输出端,所述信号磁电转换单元的输入端连接所述信号磁环的输出端,所述信号磁电转换单元的输出端连接所述TTL信号转换模块的输入端。
本发明的进一步技术方案是:所述MOS驱动模块包括第一驱动单元及第二驱动单元,所述第一驱动单元与所述第二驱动单元相同,其包括电阻R1、电阻R2、电容C1、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、芯片U1、二极管D1及二极管D2,所述芯片U1的第2脚分别连接所述电阻R1的一端及信号PWMHII,所述芯片U1的第3脚分别连接所述电阻R2的一端及信号PWNLII,所述芯片U1的第8脚分别连接所述电阻R6的一端、电阻R7的一端及二极管D1的阴极,所述芯片U1的第5脚分别连接所述电阻R3的一端、电阻R4的一端及二极管D2的阴极,所述二极管D1的阳极连接所述电阻R8的一端,所述二极管D2的阳极连接所述电阻R5的一端,所述芯片U1的第7脚将所述电容C2与所述芯片U1的第8脚连接并输出,所述电阻R6的另一端经焊盘接地,所述电阻R3的另一端经焊盘接地,所述芯片U1的第6脚分别连接所述电容C1的一端及电源VCC+5V,所述电容C1的另一端、电阻R1的另一端、电阻R2的另一端、芯片U1的第4脚均接地。
本发明的进一步技术方案是:所述MOS功率放大模块包括第一放大单元及第二放大单元,所述第一放大单元与第二放大单元相同,其包括MOS管Q1、MOS管Q2、电阻R14、电阻R10、电阻R13、电容C4、电阻R12、电阻R9、电阻R11及电容C3,所述MOS管Q1的栅极分别连接所述电阻R8的另一端及电阻R7的另一端,所述MOS管Q1的源 极分别连接所述电阻R10的一端、电阻R11的一端及电容C3的一端,所述MOS管Q1的漏极分别连接电阻R9的一端及电源VCC,所述电阻R9的另一端连接所述电容C3的另一端,所述电阻R10经焊盘分别连接所述芯片U1的第1脚及电容C2的一端,所述电阻R11的另一端分别连接所述电阻R12的一端、MOS管Q2的漏极、芯片U1的第1脚、电容C2的一端及所述电磁转换模块,所述MOS管Q2的栅极分别连接所述电阻R4的另一端及电阻R5的另一端,所述MOS管Q2的源极分别连接所述电阻R14的一端及电阻R13的一端,所述电阻R13的另一端接地,所述电阻R14的另一端经焊盘接地。
本发明的进一步技术方案是:所述控制模块采用FPGA,所述FPGA中包括能量输出控制信号处理单元及数字信号处理单元。
本发明的进一步技术方案是:所述整流稳压模块包括整流滤波单元及稳压单元,所述整流滤波单元的输出端连接所述稳压单元的输入端。
本发明的进一步技术方案是:所述整流滤波单元包括电容C9、电容C10、二极管D5、二极管D6、二极管D7及二极管D8,所述二极管D5的阳极分连接所述二极管D7的阴极及磁电转换模块的输出端,所述二极管D6的阳极分别连接所述二极管D8的阴极及磁电转换模块的输出端,所述二极管D5的阴极分别连接二极管D6的阴极、电容C10的一端及电容C9的一端,所述二极管D7的阳极分别连接二极管D8的阳极、电容C10的另一端及电容C9的另一端均接地。
本发明的进一步技术方案是:所述稳压单元包括稳压芯片U2、电容C11及电容C12,所述稳压芯片U2的第一脚分别连接所述二极管D5的阴极、二极管D6的阴极、电容C10的一端及电容C9的一端,所述稳压芯片U2的第3脚分别连接所述电容C11的一端、 电容C12的一端及输出,所述稳压芯片U2的第2脚、电容C11的另一端及电容C12的另一端均接地。
本发明的有益效果是:采用FPGA控制,能同时传说电力和高速数字信号,在传输的过程中能保证电力与数据信号完全独立传输;该系统的结构简单、使用方便、效率高。
附图说明
图1是本发明实施例提供的带能量传输的无线通信系统的结构框图。
图2是本发明实施例提供的MOS驱动模块与MOS功率放大模块的电气原理图。
图3是本发明实施例提供的整流滤波单元的电气原理图。
图4是本发明实施例提供的稳压单元的电气原理图。
具体实施方式
如图1所示,本发明提供的一种带能量传输的无线通信系统,所述无线通信系统包括控制模块、MOS驱动模块、MOS功率放大模块、电磁转换模块、磁电转换模块、整流稳压模块、电压输出模块、LVDS信号转换模块、TTL信号转换模块、接收模块、磁环耦合模块及供电电源,所述控制模块的输出端分别连接所述LVDS信号转换模块的输入端及MOS驱动模块的输入端,所述MOS驱动模块的输出端连接所述MOS功率放大模块输入端,所述MOS功率放大模块电性连接所述供电电源,所述MOS功率放大模块的输出端连接所述电磁转换模块的输入端,所述电磁转换模块的输入端还连接所述LVDS信号转换模块的输出端,所述电磁转换模块的输出端连接所述磁环耦合模块的输入端,所述磁环耦合模块的输出端连接所述磁电转换模块的输入端,所述磁电转换模块的输出端分别连接所述整流稳压模块的输入端及TTL信号转换模块的输入端,所述TTL信 号转换的输出端连接所述接收模块的输入端,所述整流稳压模块的输出端连接所述电压输出模块的输入端。采用FPGA控制,能同时传说电力和高速数字信号,在传输的过程中能保证电力与数据信号完全独立传输;该系统的结构简单、使用方便、效率高。
所述电磁转换模块包括能量电磁转换单元及信号电磁转换单元,所述能量电磁转换单元的输入端连接所述MOS功率放大模块的输出端,所述信号电磁转换单元的输入端连接所述LVDS信号转换模块的输出端。
所述磁环耦合模块包括能量磁环单元及信号磁环单元,所述能量磁环单元的输入端连接所述能量电磁转换单元的输出端,所述信号磁环单元的输入端连接所述信号电磁转换单元的输出端。
所述磁电转换模块包括能量磁电转换单元及信号磁电转换单元,所述能量磁电转换单元的输入端连接所述能量磁环单元的输出端,所述能量磁电转换单元的输出端连接所述整流稳压模块的输入端,所述信号磁环单元的输入端连接所述信号磁环单元的输出端,所述信号磁电转换单元的输入端连接所述信号磁环的输出端,所述信号磁电转换单元的输出端连接所述TTL信号转换模块的输入端。
所述MOS驱动模块包括第一驱动单元及第二驱动单元,所述第一驱动单元与所述第二驱动单元相同,其包括电阻R1、电阻R2、电容C1、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、芯片U1、二极管D1及二极管D2,所述芯片U1的第2脚分别连接所述电阻R1的一端及信号PWMHII,所述芯片U1的第3脚分别连接所述电阻R2的一端及信号PWNLII,所述芯片U1的第8脚分别连接所述电阻R6的一端、电阻R7的一端及二极管D1的阴极,所述芯片U1的第5脚分别连接所述电阻R3的一端、电阻R4的一端及二极管D2的阴极,所述二极管D1的阳极连接所述电阻R8的一端,所述二 极管D2的阳极连接所述电阻R5的一端,所述芯片U1的第7脚将所述电容C2与所述芯片U1的第8脚连接并输出,所述电阻R6的另一端经焊盘接地,所述电阻R3的另一端经焊盘接地,所述芯片U1的第6脚分别连接所述电容C1的一端及电源VCC+5V,所述电容C1的另一端、电阻R1的另一端、电阻R2的另一端、芯片U1的第4脚均接地。
所述MOS功率放大模块包括第一放大单元及第二放大单元,所述第一放大单元与第二放大单元相同,其包括MOS管Q1、MOS管Q2、电阻R14、电阻R10、电阻R13、电容C4、电阻R12、电阻R9、电阻R11及电容C3,所述MOS管Q1的栅极分别连接所述电阻R8的另一端及电阻R7的另一端,所述MOS管Q1的源极分别连接所述电阻R10的一端、电阻R11的一端及电容C3的一端,所述MOS管Q1的漏极分别连接电阻R9的一端及电源VCC,所述电阻R9的另一端连接所述电容C3的另一端,所述电阻R10经焊盘分别连接所述芯片U1的第1脚及电容C2的一端,所述电阻R11的另一端分别连接所述电阻R12的一端、MOS管Q2的漏极、芯片U1的第1脚、电容C2的一端及所述电磁转换模块,所述MOS管Q2的栅极分别连接所述电阻R4的另一端及电阻R5的另一端,所述MOS管Q2的源极分别连接所述电阻R14的一端及电阻R13的一端,所述电阻R13的另一端接地,所述电阻R14的另一端经焊盘接地。
所述控制模块采用FPGA,所述FPGA中包括能量输出控制信号处理单元及数字信号处理单元。
所述整流稳压模块包括整流滤波单元及稳压单元,所述整流滤波单元的输出端连接所述稳压单元的输入端。
所述整流滤波单元包括电容C9、电容C10、二极管D5、二极管D6、二极管D7及二极管D8,所述二极管D5的阳极分连接所述二极管D7的阴极及磁电转换模块的输出 端,所述二极管D6的阳极分别连接所述二极管D8的阴极及磁电转换模块的输出端,所述二极管D5的阴极分别连接二极管D6的阴极、电容C10的一端及电容C9的一端,所述二极管D7的阳极分别连接二极管D8的阳极、电容C10的另一端及电容C9的另一端均接地。
所述稳压单元包括稳压芯片U2、电容C11及电容C12,所述稳压芯片U2的第一脚分别连接所述二极管D5的阴极、二极管D6的阴极、电容C10的一端及电容C9的一端,所述稳压芯片U2的第3脚分别连接所述电容C11的一端、电容C12的一端及输出,所述稳压芯片U2的第2脚、电容C11的另一端及电容C12的另一端均接地。
通信系统工作方式:数据信号传输系统FPGA将数据数据进行加扰,令数据不包含较低频带的频谱分量,比如数据率50Mbps时,等效物理频率25MHz,而通过对数据加扰,令其不包含5MHz以下频率分量,而电源传输及其干扰,便可分布于LF-5MHz之间。与之后的无线电能传输系统的工作频率错开,通过LVDS电平信号输出,在外部通过将LVDS电平信号转换为TTL信号并进行功率增强之后,进入电磁转换驱动器,驱动磁环线圈对外发射高频无线数字信号;接收端通过磁环线圈感应到发射线圈发射的磁场信号后将磁场变化转换为电信号变化,再将转换出来的电信号进行高通滤波、放大、整形还原为原始的LVDS信号馈入接收端的FPGA进行信号还原。由于结合了电能传输系统,因此在信号与能量同时传输时必将引入干扰甚至对原始信号造成破坏。因此,数据传输与能量传输的频率应尽量错开较大的频率范围。必要时引入滤波器滤除能量传输系统带来的负面干扰。保证数据信号传输的稳定性和可靠性。
能量(电力)系统工作方式:低频能量传输通过使用低频率振荡电磁信号将电能辐射到空气中,并接收。具体流程为:通过FPGA生成低频率(方波频谱主要能量频带 在2MHz以下)的PWM控制信号(带死区控制),通过MOSFET驱动电路驱动功率MOSFET,进行功率放大并驱动电磁转换线圈磁环向外辐射电能。接收端通过带磁环线圈耦合到发射端辐射的电磁信号之后,将磁能转换为电能。再通过整流稳压电路输出恒定的电压电流,然后提供给其他电路使用。由于能量传输系统与信号传输系统的磁耦合一体化设计,数据信号和能量信号在同一磁链路中的不同频带范围内进行传输,在考虑效率以及干扰的情况下尽量提高能量传输系统的工作频率,以使系统效能最高。
在控制模块中FPGA同时发出控制信号,其中一路输出给LVDS信号转换模块进行将LVDA信号转换成TTL信号后输出给电磁转换模块,电磁转换模块接收TTL信号,并将电信号转换成磁信号输出给磁环耦合模块将磁信通过耦合方式无线转换后输出给磁电转换模块,磁电转换模块将接收到的磁信号还原成TTL信号后输出给TTL信号转换模块,TTL信号转换模块将接收的TTL信号转换成LVDS信号后输出给接收模块完成信号传输;另一路输出信号进入MOS驱动模块,通过MOS驱动模块驱动MOS功率放大模块的MOS管进行功率放大并驱动电磁转换线圈磁环向外辐射电能,接收端通过带磁环线圈耦合到发射端辐射的电磁信号之后,将磁能转换为电能。再通过整流稳压模块输出恒定的电压电流,然后提供给其他电路使用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种带能量传输的无线通信系统,其特征在于,所述无线通信系统包括控制模块、MOS驱动模块、MOS功率放大模块、电磁转换模块、磁电转换模块、整流稳压模块、电压输出模块、LVDS信号转换模块、TTL信号转换模块、接收模块、磁环耦合模块及供电电源,所述控制模块的输出端分别连接所述LVDS信号转换模块的输入端及MOS驱动模块的输入端,所述MOS驱动模块的输出端连接所述MOS功率放大模块输入端,所述MOS功率放大模块电性连接所述供电电源,所述MOS功率放大模块的输出端连接所述电磁转换模块的输入端,所述电磁转换模块的输入端还连接所述LVDS信号转换模块的输出端,所述电磁转换模块的输出端连接所述磁环耦合模块的输入端,所述磁环耦合模块的输出端连接所述磁电转换模块的输入端,所述磁电转换模块的输出端分别连接所述整流稳压模块的输入端及TTL信号转换模块的输入端,所述TTL信号转换的输出端连接所述接收模块的输入端,所述整流稳压模块的输出端连接所述电压输出模块的输入端。
  2. 根据权利要求1所述的无线通信系统,其特征在于,所述电磁转换模块包括能量电磁转换单元及信号电磁转换单元,所述能量电磁转换单元的输入端连接所述MOS功率放大模块的输出端,所述信号电磁转换单元的输入端连接所述LVDS信号转换模块的输出端。
  3. 根据权利要求2所述的无线通信系统,其特征在于,所述磁环耦合模块包括能量磁环单元及信号磁环单元,所述能量磁环单元的输入端连接所述能量电磁转换单元的输出端,所述信号磁环单元的输入端连接所述信号电磁转换单元的输出端。
  4. 根据权利要求3所述的无线通信系统,其特征在于,所述磁电转换模块包括能量磁电转换单元及信号磁电转换单元,所述能量磁电转换单元的输入端连接所述能量磁环单元的输出端,所述能量磁电转换单元的输出端连接所述整流稳压模块的输入端,所述信号磁环单元的输入端连接所述信号磁环单元的输出端,所述信号磁电转换单元的输入端连接所述信号磁环的输出端,所述信号磁电转换单元的输出端连接所述TTL信号转换模块的输入端。
  5. 根据权利要求4所述的无线通信系统,其特征在于,所述MOS驱动模块包括第一驱动单元及第二驱动单元,所述第一驱动单元与所述第二驱动单元相同,其包括电阻R1、电阻R2、电容C1、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、芯片U1、二极管D1及二极管D2,所述芯片U1的第2脚分别连接所述电阻R1的一端及信号PWMHII,所述芯片U1的第3脚分别连接所述电阻R2的一端及信号PWNLII,所述芯片U1的第8脚分别连接所述电阻R6的一端、电阻R7的一端及二极管D1的阴极,所述芯片U1的第5脚分别连接所述电阻R3的一端、电阻R4的一端及二极管D2的阴极,所述二极管D1的阳极连接所述电阻R8的一端,所述二极管D2的阳极连接所述电阻R5的一端,所述芯片U1的第7脚将所述电容C2与所述芯片U1的第8脚连接并输出,所述电阻R6的另一端经焊盘接地,所述电阻R3的另一端经焊盘接地,所述芯片U1的第6脚分别连接所述电容C1的一端及电源VCC+5V,所述电容C1的另一端、电阻R1的另一端、电阻R2的另一端、芯片U1的第4脚均接地。
  6. 根据权利要求5所述的无线通信系统,其特征在于,所述MOS功率放大模块包括第一放大单元及第二放大单元,所述第一放大单元与第二放大单元相同,其包括MOS管Q1、MOS管Q2、电阻R14、电阻R10、电阻R13、电容C4、电阻R12、电阻R9、电阻 R11及电容C3,所述MOS管Q1的栅极分别连接所述电阻R8的另一端及电阻R7的另一端,所述MOS管Q1的源极分别连接所述电阻R10的一端、电阻R11的一端及电容C3的一端,所述MOS管Q1的漏极分别连接电阻R9的一端及电源VCC,所述电阻R9的另一端连接所述电容C3的另一端,所述电阻R10经焊盘分别连接所述芯片U1的第1脚及电容C2的一端,所述电阻R11的另一端分别连接所述电阻R12的一端、MOS管Q2的漏极、芯片U1的第1脚、电容C2的一端及所述电磁转换模块,所述MOS管Q2的栅极分别连接所述电阻R4的另一端及电阻R5的另一端,所述MOS管Q2的源极分别连接所述电阻R14的一端及电阻R13的一端,所述电阻R13的另一端接地,所述电阻R14的另一端经焊盘接地。
  7. 根据权利要求6所述的无线通信系统,其特征在于,所述控制模块采用FPGA,所述FPGA中包括能量输出控制信号处理单元及数字信号处理单元。
  8. 根据权利要求7所述的无线通信系统,其特征在于,所述整流稳压模块包括整流滤波单元及稳压单元,所述整流滤波单元的输出端连接所述稳压单元的输入端。
  9. 根据权利要求8所述的无线通信系统,其特征在于,所述整流滤波单元包括电容C9、电容C10、二极管D5、二极管D6、二极管D7及二极管D8,所述二极管D5的阳极分连接所述二极管D7的阴极及磁电转换模块的输出端,所述二极管D6的阳极分别连接所述二极管D8的阴极及磁电转换模块的输出端,所述二极管D5的阴极分别连接二极管D6的阴极、电容C10的一端及电容C9的一端,所述二极管D7的阳极分别连接二极管D8的阳极、电容C10的另一端及电容C9的另一端均接地。
  10. 根据权利要求9所述的无线通信系统,其特征在于,所述稳压单元包括稳压芯片U2、电容C11及电容C12,所述稳压芯片U2的第一脚分别连接所述二极管D5的 阴极、二极管D6的阴极、电容C10的一端及电容C9的一端,所述稳压芯片U2的第3脚分别连接所述电容C11的一端、电容C12的一端及输出,所述稳压芯片U2的第2脚、电容C11的另一端及电容C12的另一端均接地。
PCT/CN2016/081766 2016-04-20 2016-05-11 一种带能量传输的无线通信系统 WO2017181454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/095,328 US10476553B2 (en) 2016-04-20 2016-05-11 Energy transmission using wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610250794.6A CN105813183B (zh) 2016-04-20 2016-04-20 一种带能量传输的无线通信系统
CN201610250794.6 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017181454A1 true WO2017181454A1 (zh) 2017-10-26

Family

ID=56457329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081766 WO2017181454A1 (zh) 2016-04-20 2016-05-11 一种带能量传输的无线通信系统

Country Status (3)

Country Link
US (1) US10476553B2 (zh)
CN (1) CN105813183B (zh)
WO (1) WO2017181454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383155A (zh) * 2020-11-27 2021-02-19 成都斯普奥汀科技有限公司 一种基于磁共振耦合的小微功率无线充电装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018212957B3 (de) 2018-08-02 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Übertragung von daten von einem benutzerendgerät zu einem anderen gerät
CN110350944B (zh) * 2018-09-28 2023-09-15 深圳市速腾聚创科技有限公司 无线通讯装置及无线通讯方法
CN110350943B (zh) * 2018-09-28 2023-09-15 深圳市速腾聚创科技有限公司 带能量传输的无线通讯装置及带能量传输的无线通讯方法
CN112104109B (zh) * 2020-09-11 2022-08-23 浙江大学 一种用于无线电能传输系统的控制器电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595145A (zh) * 2013-10-31 2014-02-19 浙江大学 一种基于公共电感耦合实现高速通讯和无线能量传输的系统
CN104158305A (zh) * 2014-07-30 2014-11-19 华南理工大学 基于自适应磁耦合谐振匹配的能量与信息同步传输系统
CN104283239A (zh) * 2013-07-01 2015-01-14 比亚迪股份有限公司 用于移动终端的车载无线充电系统
CN104283238A (zh) * 2013-07-01 2015-01-14 比亚迪股份有限公司 用于移动终端的车载无线充电系统
CN105141045A (zh) * 2015-10-22 2015-12-09 毛茂军 磁耦合谐振式无线电能传输控制系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003983A1 (en) * 2003-06-26 2005-01-13 Inquam (Uk) Limited Mobile telephone adapter
CN101154955A (zh) * 2006-09-27 2008-04-02 华硕电脑股份有限公司 具有无线通讯功能的充电座及应用其的无线通讯系统
JP5099493B2 (ja) * 2007-09-28 2012-12-19 独立行政法人情報通信研究機構 無線通信ネットワークシステム
US20170331333A1 (en) * 2009-03-31 2017-11-16 Brendan Edward Clark Wireless Energy Sharing Management
JP6219285B2 (ja) * 2011-09-07 2017-10-25 ソラス パワー インコーポレイテッドSolace Power Inc. 電界を用いたワイヤレス電力送信システムおよび電力送信方法
CN103151906B (zh) * 2011-12-06 2015-04-22 上海儒竞电子科技有限公司 无需额外电源的自举驱动电路
TWI459418B (zh) * 2012-03-23 2014-11-01 Lg伊諾特股份有限公司 無線功率接收器以及包含有其之可攜式終端裝置
CN103093729B (zh) * 2013-02-28 2015-07-29 深圳市华星光电技术有限公司 具有双boost升压线路的背光驱动电路
KR101750345B1 (ko) * 2014-06-05 2017-07-03 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
CN104158304B (zh) * 2014-07-30 2017-02-08 华南理工大学 移动式自适应能量与信息同步无线传输方法与传输装置
CN104701955B (zh) * 2015-03-03 2017-03-22 惠州Tcl移动通信有限公司 一种无线充电装置
CN104852442B (zh) * 2015-04-23 2017-12-05 同济大学 一种市电至车载电池包的无线电能传输系统及其控制方法
JP2019004691A (ja) * 2017-06-13 2019-01-10 ローム株式会社 送電装置及び非接触給電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283239A (zh) * 2013-07-01 2015-01-14 比亚迪股份有限公司 用于移动终端的车载无线充电系统
CN104283238A (zh) * 2013-07-01 2015-01-14 比亚迪股份有限公司 用于移动终端的车载无线充电系统
CN103595145A (zh) * 2013-10-31 2014-02-19 浙江大学 一种基于公共电感耦合实现高速通讯和无线能量传输的系统
CN104158305A (zh) * 2014-07-30 2014-11-19 华南理工大学 基于自适应磁耦合谐振匹配的能量与信息同步传输系统
CN105141045A (zh) * 2015-10-22 2015-12-09 毛茂军 磁耦合谐振式无线电能传输控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383155A (zh) * 2020-11-27 2021-02-19 成都斯普奥汀科技有限公司 一种基于磁共振耦合的小微功率无线充电装置

Also Published As

Publication number Publication date
CN105813183B (zh) 2019-03-26
CN105813183A (zh) 2016-07-27
US10476553B2 (en) 2019-11-12
US20190140698A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2017181454A1 (zh) 一种带能量传输的无线通信系统
KR101967340B1 (ko) 무선 전력 수신기
CN108923800B (zh) 一种无线携能通信系统及方法
CN102593964A (zh) 一种具有方向适应性的磁耦合谐振式无线供电方法及装置
KR101548810B1 (ko) 무선 충전 장치 및 그 제어방법
KR20120011956A (ko) 무선 전력 송신기, 무선 전력 수신기, 및 그것들을 이용한 무선 전력 전송 방법
CN104953682B (zh) 具有无线充电发射功能与无线充电接收功能的电路及其装置
CN204423325U (zh) 一种无线鼠标
CN107370252B (zh) 无线互充装置及无线充电装置
JP2011004479A (ja) ワイヤレス電源装置
WO2018188268A1 (zh) 远距离无线充电系统
CN103455177B (zh) 基于无线电能传输的无源无线鼠标及键盘
KR101022760B1 (ko) 무선 전자파 발전 시스템
CN104124777A (zh) 无线电能传输方法及系统
CN106487105B (zh) 一种变线圈结构的磁耦合谐振式无线电能传输装置
CN206237176U (zh) 一种基于九方形发射线圈的背包内嵌式无线充电系统
CN202014138U (zh) 无线电能传输装置
KR102042020B1 (ko) 무선 전력 수신기
CN116404625A (zh) 一种用于射频能量控制装置的电压转换电路
CN109884380A (zh) 一种数字无线检测变换器及输电线路监测设备
EP3393008A3 (en) Wireless charging delivery module for adapting wireless charging type between transmitter and receiver
US9819215B2 (en) Wireless charging system
TWI794795B (zh) 感應諧振式無線充電系統、諧振式無線充電發射裝置、無線充電中繼裝置及感應式無線充電接收裝置
CN207518361U (zh) 一种可双向无线充电的收发电路
CN203761431U (zh) 一种用于手机无线充电的手机外壳

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899041

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16899041

Country of ref document: EP

Kind code of ref document: A1