WO2017181395A1 - 一种可适应变径管道的磁铁探头结构 - Google Patents

一种可适应变径管道的磁铁探头结构 Download PDF

Info

Publication number
WO2017181395A1
WO2017181395A1 PCT/CN2016/079904 CN2016079904W WO2017181395A1 WO 2017181395 A1 WO2017181395 A1 WO 2017181395A1 CN 2016079904 W CN2016079904 W CN 2016079904W WO 2017181395 A1 WO2017181395 A1 WO 2017181395A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
probe
probe structure
pipe
diameter pipe
Prior art date
Application number
PCT/CN2016/079904
Other languages
English (en)
French (fr)
Inventor
张丛
Original Assignee
深圳市樊溪电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市樊溪电子有限公司 filed Critical 深圳市樊溪电子有限公司
Priority to PCT/CN2016/079904 priority Critical patent/WO2017181395A1/zh
Priority to PCT/CN2016/080900 priority patent/WO2017181446A1/zh
Publication of WO2017181395A1 publication Critical patent/WO2017181395A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the invention relates to the technical field of measurement and pipeline system of defects, in particular to a magnet probe structure which can adapt to a variable diameter pipeline.
  • variable diameter pipelines In order to ensure the safe transportation of pipelines, it is necessary to carry out pipeline cleaning and internal inspection operations on a regular basis.
  • some or all of the pipeline sections are designed as variable diameter pipelines, which increases the inspection and internal inspection work. Difficulties.
  • the mechanical pig is generally used for the pigging. If there is a variable diameter section in the pipeline, the cup of the ordinary pig does not have sufficient reducing capacity, and the pigging requirements of the variable diameter pipeline cannot be met at all.
  • the probe of the intelligent pig has a limited amount of deformation, which is difficult to meet the requirements of the detection in the variable diameter pipeline.
  • variable-diameter equipment At present, foreign countries have successfully developed variable-diameter equipment, but there are few reports on the key technologies of variable-diameter equipment on the public information. However, there are few researches and applications on the variable-path detection technology in China. At present, there is no mature pipeline pigging. ,Testing Equipment.
  • the inventors have proposed a magnet probe structure that can adapt to a variable diameter pipe by overcoming the experience and practice of related industries for many years to overcome the defects of the prior art.
  • the technical problem to be solved by the present invention is to provide a magnet probe structure that can accommodate a variable diameter pipe.
  • the present invention provides a magnet probe structure that can accommodate a variable diameter pipe, and the magnet probe structure includes:
  • slotted housing the slotted housing is internally filled with a core
  • a magnet steel brush mechanism comprising a magnet and a steel brush, the magnet steel brush mechanism being respectively disposed at a front end of the iron core and a rear end of the iron core, the magnet steel brush mechanism and the pipe of the variable diameter pipe a wall contact for removing dirt of the reduced diameter pipe wall;
  • An anti-collision wheel mechanism is disposed on the outer wall of the slotted housing for preventing the magnet probe structure from colliding in the variable diameter pipe.
  • the magnet probe structure further includes:
  • the material of the grooved casing is stainless steel or titanium.
  • the collecting probe mechanism is composed of a probe shell, a probe arm, a supporting spring, and a fiber belt;
  • the fiber ribbon and the support spring are fixed to the detector frame.
  • the support spring compresses or recovers, ensuring that the probe shell is always in contact with the inner wall of the pipe.
  • the anti-collision wheel of the anti-collision wheel mechanism is made of a non-metallic elastic material coated with a rigid outer hub.
  • the anti-collision wheel of the anti-collision wheel mechanism is entirely composed of the non-metallic elastic material.
  • non-metallic elastic material is a high-strength polyurethane material or a high-strength nylon material.
  • the outer surface of the iron core is in a " ⁇ " shape.
  • a corrosion detector adaptable to a reduced diameter pipeline comprising: a detector skeleton, a spring linkage structure, a torsion spring support structure, and any one of the above magnet probe structures adapted to the variable diameter pipeline;
  • the spring link structure is disposed on the detector frame for fixing the magnet probe structure
  • the torsion spring supporting structure is disposed on the detector frame for fixing the magnet probe structure
  • magnet probe structure is respectively connected to the spring link structure and the torsion spring support structure for cleaning dirt in the reducer pipe.
  • the spring link structure is composed of a first connecting arm, a support, a pull rod and a compression spring;
  • the support is connected by a screw and the detector skeleton for supporting the spring link structure
  • the compression spring is sleeved on the pull rod and connected to the support by the pull rod;
  • One end of the first connecting arm is connected to the support, and the other end of the first connecting arm is connected to the first connecting shaft for fixing the magnet probe structure to the detector frame on.
  • the torsion spring support structure is composed of a fixed seat, a second connecting arm and a torsion spring;
  • the fixing base and the torsion spring are mounted on the detector frame for fixing the torsion spring support structure
  • One end of the second connecting arm is connected to the fixing base and is in contact with the torsion spring, and the other end of the second connecting arm is connected to the second connecting shaft for the magnet probe structure It is fixed on the detector skeleton.
  • the collecting probe is mounted on the iron core, and when the pipe weld or the diameter of the pipe changes, the collecting probe deforms or recovers under the action of the supporting spring, so that the probe is closely attached to the inner wall of the pipe.
  • the iron core is installed in the fixed casing, and the anti-collision wheel mechanism is installed at the front and rear ends of the fixed casing to prevent the magnet probe mechanism from colliding with the pipe wall.
  • the front end of the fixed housing is connected with the spring support mechanism, and the torsion spring support mechanism is connected to the middle end and the rear end to ensure that the magnet probe mechanism changes with the diameter of the pipe, and compression and reset motion occur.
  • the steel brush When the detector is running in the reducing pipe, the steel brush is in close contact with the pipe wall, and the pipe diameter becomes small, forcing the magnet probe structure to be radially compressed. At this time, the collecting probe is also compressed, because the collecting probe is mounted on the adjacent magnet probe structure.
  • the pipe is arranged in a stepped manner in the axial direction, so as to ensure that the magnet probe mechanism passes through the small-diameter pipe, the collecting probes overlap in the axial direction of the pipe, and the interference squeeze phenomenon between the collecting probes is avoided.
  • Figure 1 is a cross-sectional view of the magnet probe structure
  • the present invention provides a magnet probe structure that can adapt to a variable diameter pipe.
  • the probe structure is mounted on a skeleton of a variable diameter detector, and a plurality of the probes can be mounted on the pipe diameter reducer detector.
  • Structure the probe structure is arranged in a row.
  • a plurality of acquisition probes are arranged on each probe structure, and the acquisition probes arranged on adjacent probe structures are arranged in a stepwise manner in the axial direction of the pipeline, that is, as shown in FIG. 2, which is equivalent to all the acquisition probes being intermittent.
  • the structure of the magnet probe and the number of acquisition probes arranged on the variable diameter detector are determined by the probe detection sensitivity, the measured pipe diameter and the pipe diameter range.
  • the entire variable diameter detector is arranged with a total of 8 magnet probe structures arranged in a row, and 15 acquisition probes are arranged on each probe structure to ensure 100% signal coverage of the circumference of the largest diameter of the variable diameter pipe. rate.
  • the magnet probe structure When the detector passes through the small-diameter pipe, the magnet probe structure generates radial compression under the action of the front end spring support mechanism, the middle and the tail end torsion spring support mechanism, and the acquisition probe can also adapt to the pipe diameter change due to the use of the support spring form. Appropriate deformation, compression probes on the adjacent magnet probe structure are compressed.
  • the acquisition probes on the adjacent probe structure are arranged in a stepped manner, some probes will overlap in the axial direction of the pipe, which ensures that the probe signal is
  • the 100% coverage of the pipe in the circumferential direction ensures that the pipe axis is reduced due to the smaller pipe diameter between the collection probes. The size is reduced without interference squeeze, ensuring the integrity and accuracy of signal acquisition.
  • the magnet probe structure of the present invention comprises a magnet steel brush mechanism, an acquisition probe mechanism and an anti-collision wheel mechanism.
  • the front end of the magnet probe structure is fixed on the skeleton of the variable diameter detector by a spring linkage mechanism, and the middle and the rear end of the magnet probe structure are fixed on the skeleton by the torsion spring supporting mechanism;
  • the magnet steel brush mechanism and the collecting probe mechanism include a fixed shell
  • the inner part of the fixed casing is iron core, the upper surface of the iron core is inverted "V" shape, two magnets are installed on the front and rear ends of the iron core, and the steel brush is mounted on the magnet;
  • the collecting probe mechanism is installed on the front and rear ends of the iron core.
  • the anti-collision wheel mechanism is mounted on the fixed housing.
  • the collecting probe 11 is mounted on the iron core 12, and two magnets 9 and a steel brush 10 are respectively mounted on the front and rear ends of the iron core, and the iron core is installed in the fixed casing 8.
  • An anti-collision wheel mechanism 7 is mounted on the front and rear ends of the fixed casing, and the front end of the fixed casing is connected to the connecting arm 5 through the shaft, the connecting arm 5, the fixing seat 3, the pull rod 15 and the compression spring 16 constitute a spring connecting rod mechanism, and the spring connecting rod
  • the mechanism is fixed to the skeleton 1, and the spring link mechanism serves as a support.
  • the middle and the rear end of the fixed housing are connected with the connecting arm 213, and the connecting arm 213, the torsion spring 14 and the fixed seat 2 constitute a torsion spring supporting mechanism, and the torsion spring supporting mechanism plays a supporting role.
  • the front, middle and rear spring support mechanisms serve to support and stabilize the structure of the magnet probe.
  • the fixed casing 8 is a slotted structure with an open end, and the fixed casing material is a stainless steel or titanium having a high strength and a non-magnetic material.
  • the anti-collision wheel mechanism 7 is made of a non-metallic elastic material coated with a rigid outer hub, or the anti-collision wheel is completely made of a non-metallic elastic material, which is a high-strength polyurethane material or a high-strength nylon material.
  • the collecting probe 11 is composed of a probe shell, a probe arm, a supporting spring, and a fiber ribbon.
  • the probe tip is connected to the probe arm, the rear end is connected to the support spring, the probe arm is connected to the fiber band, and the fiber band and the support spring are fixed on the detector frame.
  • the support spring compresses or recovers, ensuring that the probe shell is always in contact with the inner wall of the pipe.
  • the collecting probe is mounted on the iron core, and when the pipe weld or the diameter of the pipe changes, the collecting probe is deformed or restored under the action of the supporting spring, so that the probe is in close contact with the inner wall of the pipe.
  • the iron core is installed in the fixed casing, and the anti-collision wheel mechanism is installed at the front and rear ends of the fixed casing to prevent the magnet probe mechanism from colliding with the pipe wall.
  • the front end of the fixed housing is connected with the spring support mechanism, and the torsion spring support mechanism is connected to the middle end and the rear end to ensure that the magnet probe mechanism changes with the diameter of the pipe, and compression and reset motion occur.
  • the steel brush When the detector is running in the reducing pipe, the steel brush is in close contact with the pipe wall, and the pipe diameter becomes small, forcing the magnet probe structure to be radially compressed. At this time, the collecting probe is also compressed, because the collecting probe is mounted on the adjacent magnet probe structure. It is arranged in a stepped manner in the axial direction of the pipe, so as to ensure that the magnet probe mechanism passes through the small-diameter pipe, the collecting probes overlap in the axial direction of the pipe, and the interference squeeze phenomenon between the collecting probes is avoided.

Abstract

一种可适应变径管道的磁铁探头结构,所述磁铁探头结构包括:槽型壳体(8),所述槽型壳体(8)内部填充有铁芯(12);磁铁钢刷机构,由磁铁(9)和钢刷(10)构成,所述磁铁钢刷机构分别设置在所述铁芯(12)的前端和所述铁芯(12)的后端,所述磁铁钢刷机构和所述变径管道的管壁接触,用于清除所述变径管道管壁的污垢;采集探头机构,设置在所述铁芯(12)的中端;防撞轮机构(7),设置在所述槽型壳体(8)的外壁上,用于防止所述磁铁探头结构在所述变径管道内发生磕碰。该可适应变径管道的磁铁探头结构在通过管道焊缝或管道直径发生变化时,采集探头能够发生变形或恢复动作,使探头紧贴管道内壁,同时还能够清除管道管壁的污垢和防止磕碰。

Description

一种可适应变径管道的磁铁探头结构 技术领域
本发明涉及缺陷的测量和管道系统技术领域,特别涉及一种可适应变径管道的磁铁探头结构。
背景技术
为保证管道的输送安全,需要定期对管道进行清管和内检测作业,但由于管道修复、经济性等原因,管道的部分甚至全部管段被设计成变径管线,增加了清管及内检测工作的困难。现在普遍采用机械式清管器进行清管,如果管线存在变径段,普通清管器的皮碗没有足够的变径能力,根本无法满足变径管线的清管要求。同时,智能清管器的探头其变形量有限,难以胜任变径管道内检测的要求。
目前,国外已成功研制出变径设备,但其公开资料上对变径设备的关键技术鲜有报道,而我国对变径检测技术的研究及应用还很少,目前还没有成熟的管道清管、检测设备。
由此,本发明人凭借多年从事相关行业的经验与实践,提出一种可适应变径管道的磁铁探头结构,以克服现有技术的缺陷。
发明内容
本发明所要解决的技术问题是提供一种可适应变径管道的磁铁探头结构。
为解决上述技术问题,本发明提供了一种可适应变径管道的磁铁探头结构,所述磁铁探头结构包括:
槽型壳体,所述槽型壳体内部填充有铁芯;
磁铁钢刷机构,由磁铁和钢刷构成,所述磁铁钢刷机构分别设置在所述铁芯的前端和所述铁芯的后端,所述磁铁钢刷机构和所述变径管道的管壁接触,用于用于清除所述所述变径管道管壁的污垢;
采集探头机构,设置在所述铁芯的中端;
防撞轮机构,设置在所述槽型壳体的外壁上,用于防止所述磁铁探头结构在所述变径管道内发生磕碰。
进一步,所述磁铁探头结构还包括:
第一连接轴和第二连接轴,分别设置在所述槽型壳体的外壁上,用于将所述磁铁探头结 构固定在腐蚀检测器上。
进一步,所述槽型壳体的材料为不锈钢或钛。
进一步,所述采集探头机构由探头壳、探头臂、支撑弹簧、纤维带组成;
进一步,纤维带与支撑弹簧固定在检测器骨架上。遇到焊缝或管道直径变化时,支撑弹簧压缩或恢复,保证探头壳始终与管道内壁接触。
进一步,所述防撞轮机构的防撞轮由刚性轮毂外镀非金属弹性材料构成。
进一步,所述防撞轮机构的防撞轮全部由所述非金属弹性材料构成。
进一步,所述非金属弹性材料为高强度聚氨酯材料或高强度尼龙材料。
进一步,所述铁芯的外表面呈“∧”型。
一种可适应变径管道的腐蚀检测器,包括:检测器骨架,弹簧连杆结构,扭簧支撑结构,可适应变径管道的上述任一磁铁探头结构;
进一步,所述弹簧连杆结构,设置于所述检测器骨架上,用于固定所述磁铁探头结构;
进一步,所述扭簧支撑结构,设置于所述检测器骨架上,用于固定所述磁铁探头结构;
进一步,所述磁铁探头结构,分别和所述弹簧连杆结构和所述扭簧支撑结构连接,用于清洗所述变径管道内的污垢。
进一步,所述弹簧连杆结构由第一连接臂,支座,拉杆和压簧组成;
其中,所述支座通过螺钉和所述检测器骨架连接,用于支撑所述弹簧连杆结构;
所述压簧套在所述拉杆上,并由所述拉杆连接于所述支座;
所述第一连接臂的一端连接在所述支座上,所述第一连接臂的另一端连接在所述第一连接轴上,用于将所述磁铁探头结构固定在所述检测器骨架上。
进一步,所述的扭簧支撑结构由固定座、第二连接臂与扭簧构成;
所述固定座与所述扭簧安装于所述检测器骨架上,用于固定所述扭簧支撑结构;
所述第二连接臂的一端连接在所述固定座上并且和所述扭簧接触,所述第二连接臂的另一端连接在所述第二连接轴上,用于将所述磁铁探头结构固定在所述检测器骨架上。
在本发明中所述采集探头安装在铁芯上,通过管道焊缝或管道直径发生变化时,采集探头在支撑弹簧作用下发生变形或恢复动作,使探头紧贴管道内壁。铁芯安装于固定壳体内,固定壳体前后端安装防撞轮机构,防止磁铁探头机构与管壁发生磕碰。固定壳体前端连接弹簧支撑机构,中部与尾端连接有扭簧支撑机构,保证磁铁探头机构随管道直径变化,发生压缩、复位运动。检测器在变径管中运行时,钢刷与管壁紧贴,管道直径变小时,迫使磁铁探头结构径向压缩,此时采集探头也要压缩,由于相邻磁铁探头结构上安装的采集探头,其在 管道轴向上呈阶梯式布置,从而保证磁铁探头机构通过小口径管道时,采集探头在管道轴向方向发生重叠,避免采集探头间发生干涉挤压现象。
附图说明
图1磁铁探头结构剖视图
图2相邻磁铁探头结构采集探头位置布置图
图3铁芯剖视图
其中
1-检测器骨架              2-螺钉
3-支座一                  4-轴一
5-连接臂一                6-轴二
7-防撞轮                  8-固定壳体
9-磁铁                    10-钢刷
11-采集探头               12-铁芯
13-连接臂二               14-扭簧
15-拉杆                   16-压簧
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
如图1、图2所示,本发明提出一种可适应变径管道的磁铁探头结构,该探头结构安装在变径检测器的骨架上,在管道变径检测器上可安装多个该探头结构,该探头结构布置在一排上。每个探头结构上布置多个采集探头,且相邻探头结构上布置的采集探头,其在管道轴向方向上呈阶梯式布置,即如图2所示,相当于所有的采集探头间断式的分布在两排上。每个采集探头均独立的采集管壁缺陷数据。在变径检测器上布置的磁铁探头结构及采集探头数量由探头检测灵敏度、被测管径及管径范围所确定。在本实施方式中,整个变径检测器共布置8个磁铁探头结构,布置在一排上,每个探头结构上布置15个采集探头,保证变径管道最大管径时圆周100%的信号覆盖率。当检测器通过小口径管道时,磁铁探头结构在前端弹簧支撑机构,中部与尾端扭簧支撑机构的作用下产生径向压缩,同时采集探头由于采用支撑弹簧形式,也可适应管径变化发生适当变形量,相邻磁铁探头结构上的采集探头均发生压缩变形,由于相邻探头结构上的采集探头采用阶梯式布置,所以部分探头在管道轴向方向将发生重叠,既保证了探头信号在管道周向上100%覆盖率,又确保采集探头间由于管径变小导致管道轴向 尺寸缩小而不发生干涉挤压现象,确保信号采集的完整性及精确性。
本发明的磁铁探头结构包括磁铁钢刷机构、采集探头机构与防撞轮机构。磁铁探头结构的前端通过弹簧连杆机构固定在变径检测器的骨架上,磁铁探头结构的中部与后端通过扭簧支撑机构固定在骨架上;磁铁钢刷机构与采集探头机构包括一固定壳体,固定壳体内部安装铁芯,铁芯上表面呈倒“V”形,铁芯前后端各安装两块磁铁,磁铁上安装钢刷;采集探头机构安装在铁芯的前后端钢刷之间,防撞轮机构安装在固定壳体上。在本实施例中,如图1、图3所示,采集探头11安装在铁芯12上,铁芯前后端各安装两块磁铁9及钢刷10,铁芯安装于固定壳体8内,固定壳体前后端安装防撞轮机构7,固定壳体前端通过轴与连接臂一5连接,连接臂一5,固定座一3,拉杆15和压簧16组成弹簧连杆机构,弹簧连杆机构固定在骨架1上,此弹簧连杆机构起到支撑作用。固定壳体中部与尾端靠轴与连接臂二13连接,连接臂二13,扭簧14与固定座二组成扭簧支撑机构,此扭簧支撑机构起到支撑作用。前、中、后三个弹簧支撑机构起到支撑、稳定磁铁探头结构的作用。
本发明中固定壳体8为一端开口的槽型结构,固定壳体材料为强度较高、非导磁性材料不锈钢或钛。
本发明中防撞轮机构7由刚性轮毂外镀非金属弹性材料组成,或防撞轮完全采用非金属弹性材料加工制造,所述非金属弹性材料为高强度聚氨酯材料或高强度尼龙材料。
本发明中采集探头11由探头壳、探头臂、支撑弹簧、纤维带组成。采集探头前端连接探头臂,后端连接支撑弹簧,探头臂连接纤维带,纤维带与支撑弹簧固定在检测器骨架上。遇到焊缝或管道直径变化时,支撑弹簧压缩或恢复,保证探头壳始终与管道内壁接触。
由上所述,在本发明中所述采集探头安装在铁芯上,通过管道焊缝或管道直径发生变化时,采集探头在支撑弹簧作用下发生变形或恢复动作,使探头紧贴管道内壁。铁芯安装于固定壳体内,固定壳体前后端安装防撞轮机构,防止磁铁探头机构与管壁发生磕碰。固定壳体前端连接弹簧支撑机构,中部与尾端连接有扭簧支撑机构,保证磁铁探头机构随管道直径变化,发生压缩、复位运动。检测器在变径管中运行时,钢刷与管壁紧贴,管道直径变小时,迫使磁铁探头结构径向压缩,此时采集探头也要压缩,由于相邻磁铁探头结构上安装的采集探头,其在管道轴向上呈阶梯式布置,从而保证磁铁探头机构通过小口径管道时,采集探头在管道轴向方向发生重叠,避免采集探头间发生干涉挤压现象。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

  1. 一种可适应变径管道的磁铁探头结构,其特征在于,所述磁铁探头结构包括:
    槽型壳体,所述槽型壳体内部填充有铁芯;
    磁铁钢刷机构,由磁铁和钢刷构成,所述磁铁钢刷机构分别设置在所述铁芯的前端和所述铁芯的后端,所述磁铁钢刷机构和所述变径管道的管壁接触,用于用于清除所述所述变径管道管壁的污垢;
    采集探头机构,设置在所述铁芯的中端;
    防撞轮机构,设置在所述槽型壳体的外壁上,用于防止所述磁铁探头结构在所述变径管道内发生磕碰。
  2. 如权利要求1所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述磁铁探头结构还包括:
    第一连接轴和第二连接轴,分别设置在所述槽型壳体的外壁上,用于将所述磁铁探头结构固定在腐蚀检测器上。
  3. 如权利要求1所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述槽型壳体的材料为不锈钢或钛。
  4. 如权利要求1所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述采集探头机构由探头壳、探头臂、支撑弹簧、纤维带组成;
    其中,采集探头前端连接探头臂,后端连接支撑弹簧,探头臂连接纤维带,纤维带与支撑弹簧固定在检测器骨架上。遇到焊缝或管道直径变化时,支撑弹簧压缩或恢复,保证探头壳始终与管道内壁接触。
  5. 如权利要求1所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述防撞轮机构的防撞轮由刚性轮毂外镀非金属弹性材料构成。
  6. 如权利要求1所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述防撞轮机构的防撞轮全部由所述非金属弹性材料构成。
  7. 如权利要求6所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述非金属弹性材料为高强度聚氨酯材料或高强度尼龙材料。
  8. 如权利要求1所述的一种可适应变径管道的磁铁探头结构,其特征在于,所述铁芯的外表面呈“∧”型。
PCT/CN2016/079904 2016-04-21 2016-04-21 一种可适应变径管道的磁铁探头结构 WO2017181395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/079904 WO2017181395A1 (zh) 2016-04-21 2016-04-21 一种可适应变径管道的磁铁探头结构
PCT/CN2016/080900 WO2017181446A1 (zh) 2016-04-21 2016-05-03 一种可适应变径管道的腐蚀检测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079904 WO2017181395A1 (zh) 2016-04-21 2016-04-21 一种可适应变径管道的磁铁探头结构

Publications (1)

Publication Number Publication Date
WO2017181395A1 true WO2017181395A1 (zh) 2017-10-26

Family

ID=60115502

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/079904 WO2017181395A1 (zh) 2016-04-21 2016-04-21 一种可适应变径管道的磁铁探头结构
PCT/CN2016/080900 WO2017181446A1 (zh) 2016-04-21 2016-05-03 一种可适应变径管道的腐蚀检测器

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080900 WO2017181446A1 (zh) 2016-04-21 2016-05-03 一种可适应变径管道的腐蚀检测器

Country Status (1)

Country Link
WO (2) WO2017181395A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006988A (zh) * 2019-05-22 2019-07-12 吕政� 油气管道渗漏高精度浮动式磁化检测装置
CN110376276A (zh) * 2019-08-08 2019-10-25 中国石油天然气股份有限公司 管道漏磁检测装置
CN110857930A (zh) * 2018-08-24 2020-03-03 中国石油天然气集团有限公司 管道漏磁检测装置
CN111537697A (zh) * 2020-05-12 2020-08-14 西南石油大学 一种超临界水与页岩反应的室内模拟装置和方法
CN112881514A (zh) * 2021-01-22 2021-06-01 北京埃彼咨能源科技有限公司 一种油气管道用漏磁成像内检测仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202837248U (zh) * 2012-08-01 2013-03-27 中国石油天然气集团公司 油气管道裂纹检测器的探头机构
CN103604022A (zh) * 2013-11-23 2014-02-26 清华大学 海底油气管道缺陷高精度内检测装置
CN204374170U (zh) * 2014-12-25 2015-06-03 中国石油天然气集团公司 一种可适应变径管道的磁铁探头结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0414672D0 (en) * 2004-06-03 2004-08-04 Pii Ltd In-line pipe inspection tool
CN101685062B (zh) * 2008-09-28 2012-09-05 中国石油化工股份有限公司 管道变径检测装置
CN101819181B (zh) * 2010-04-09 2012-07-04 新疆三叶管道技术有限责任公司 管道缺陷漏磁检测装置
CN203657734U (zh) * 2014-01-24 2014-06-18 中国石化集团胜利石油管理局海上石油工程技术检验中心 石油管道内可变径漏磁检测装置
CN105465551B (zh) * 2016-01-25 2017-09-29 武汉大学 一种柔性自适应的支撑式管道内检测机器人

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202837248U (zh) * 2012-08-01 2013-03-27 中国石油天然气集团公司 油气管道裂纹检测器的探头机构
CN103604022A (zh) * 2013-11-23 2014-02-26 清华大学 海底油气管道缺陷高精度内检测装置
CN204374170U (zh) * 2014-12-25 2015-06-03 中国石油天然气集团公司 一种可适应变径管道的磁铁探头结构

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110857930A (zh) * 2018-08-24 2020-03-03 中国石油天然气集团有限公司 管道漏磁检测装置
CN110857930B (zh) * 2018-08-24 2023-08-22 中国石油天然气集团有限公司 管道漏磁检测装置
CN110006988A (zh) * 2019-05-22 2019-07-12 吕政� 油气管道渗漏高精度浮动式磁化检测装置
CN110376276A (zh) * 2019-08-08 2019-10-25 中国石油天然气股份有限公司 管道漏磁检测装置
CN110376276B (zh) * 2019-08-08 2022-11-04 中国石油天然气股份有限公司 管道漏磁检测装置
CN111537697A (zh) * 2020-05-12 2020-08-14 西南石油大学 一种超临界水与页岩反应的室内模拟装置和方法
CN111537697B (zh) * 2020-05-12 2022-03-11 西南石油大学 一种超临界水与页岩反应的室内模拟装置和方法
CN112881514A (zh) * 2021-01-22 2021-06-01 北京埃彼咨能源科技有限公司 一种油气管道用漏磁成像内检测仪
CN112881514B (zh) * 2021-01-22 2023-08-29 北京埃彼咨能源科技有限公司 一种油气管道用漏磁成像内检测仪

Also Published As

Publication number Publication date
WO2017181446A1 (zh) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2017181395A1 (zh) 一种可适应变径管道的磁铁探头结构
CN102903407B (zh) 核电站蒸汽发生器传热管柔性涡流检测探头
US6232773B1 (en) Consistent drag floating backing bar system for pipeline pigs and method for using the same
CN102788848B (zh) 油气管道裂纹检测器的探头机构
US20180045680A1 (en) Magnetizers for pigging tools
CN103899921B (zh) 用于管道检测的超声导波探头固定装置
CN102486470A (zh) 无损探伤超声探头万向节托盘
JP2004264285A (ja) ダクトの内壁用検査プローブ
JP2015525357A (ja) 渦電流探傷プローブ
CN201884941U (zh) 一种管道漏磁腐蚀检测器磁路结构
CN202837248U (zh) 油气管道裂纹检测器的探头机构
CN206036676U (zh) 管道腐蚀在线检测装置
CN204374170U (zh) 一种可适应变径管道的磁铁探头结构
JPH0257974A (ja) 管内走行装置
CN202974944U (zh) 一种管道检测器探头浮动架机构
JP3040641B2 (ja) 管内挿型超音波探触子
KR101784637B1 (ko) 배관검사 피그
CN208313271U (zh) 一种可调节的管道变形检测设备
CN203758959U (zh) 地面高压管汇内表面损伤检测装置
RU24548U1 (ru) Носитель датчиков для внутритрубного инспекционного снаряда (варианты)
CN216307097U (zh) 一种大孔径管道的无损检测装置
CN202735303U (zh) 综合传感器特种钢管检测装置
CN208313905U (zh) 小径管超声无损检测扫查装置
RU25593U1 (ru) Носитель датчиков для внутритрубного инспекционного снаряда (варианты)
CN215823847U (zh) 一种清管器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898982

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898982

Country of ref document: EP

Kind code of ref document: A1