WO2017181391A1 - 一种光学防伪元件及使用该光学防伪元件的光学防伪产品 - Google Patents

一种光学防伪元件及使用该光学防伪元件的光学防伪产品 Download PDF

Info

Publication number
WO2017181391A1
WO2017181391A1 PCT/CN2016/079899 CN2016079899W WO2017181391A1 WO 2017181391 A1 WO2017181391 A1 WO 2017181391A1 CN 2016079899 W CN2016079899 W CN 2016079899W WO 2017181391 A1 WO2017181391 A1 WO 2017181391A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
security element
sub
region
layer
Prior art date
Application number
PCT/CN2016/079899
Other languages
English (en)
French (fr)
Inventor
张丛
Original Assignee
深圳市樊溪电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市樊溪电子有限公司 filed Critical 深圳市樊溪电子有限公司
Priority to PCT/CN2016/079899 priority Critical patent/WO2017181391A1/zh
Priority to PCT/CN2016/080896 priority patent/WO2017181442A1/zh
Publication of WO2017181391A1 publication Critical patent/WO2017181391A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms

Definitions

  • the present invention relates to the field of optical security, and in particular to an optical security element and an optical security product using the optical security element.
  • optical anti-counterfeiting technology is widely used in various high-security or high-value-added printed matter such as banknotes, cards, and product packaging, and has achieved very good results.
  • multi-layer structure coating technology has been widely used for public anti-counterfeiting of high security securities such as banknotes. It can present various color features or can display different colors under different viewing angles for easy description. It is easy to identify by the public and cannot be copied or copied by electronic devices such as cameras, scanners, printers, etc., so it has high anti-counterfeiting capability.
  • Patterning and multi-coloring on the basis of multi-layer coating is the development direction to improve the anti-counterfeiting ability of multi-layer structure plating.
  • Swiss SICPA has developed a variable optical pigment (OVP) by pulverizing a five-layer optically altered coating structure with a symmetrical structure to obtain an optically variable ink (OVI), which can be combined with printing technology and has been widely used in various banknotes around the world. application.
  • OVI optically variable magnetic ink
  • an optically variable magnetic ink (OVMI) or SPARK technology is formed by adding a magnetic layer to the existing optically variable structure, which enables the OVMI particles to be aligned along the magnetic line direction by magnetic field induction. Thereby forming a specific graphic structure.
  • the particle arrangement in OVMI has a specific regular change, optical characteristics such as motion and zoom can be generated (see US Pat. No. 7,517,7878 B2).
  • the directional arrangement of the optically variable magnetic particles needs to rely on the magnetic field, it is restricted by the shape of the magnetic field, and the shape cannot be arbitrarily designed, and a specific orientation device and process are required.
  • interferometric multi-layer coatings combine with holographic, color matching and other technologies to provide new security features.
  • the integration of such technologies is complicated and the effect is not satisfactory.
  • the improvement of the anti-counterfeiting capability of the interference multi-layer coating is still limited.
  • the invention provides an optical security element, the optical security element comprising:
  • the sub-wavelength surface microstructure and the surface-covered multilayer structure coating form a first optical feature, and the coverage area is a first region;
  • optically reflective facet structure and the surface-covered multilayer structure coating form a second optical feature, the coverage area being the second region;
  • the optical characteristics of the first region are different from the optical features of the second region
  • the optical scattering features provided by the substantially random variations distributed in the two-dimensional plane in which they are located according to the orientation of the optical facets, and/or according to the orientation of the selected optical facets
  • the two regions can be perceived by the viewer as surfaces that protrude forward and/or backward relative to their actual spatial shape.
  • an optical security element includes:
  • the sub-wavelength surface microstructure and the surface-covered multilayer structure coating form a first optical feature, and the coverage area is a first region;
  • optically reflective facet structure and the surface-covered multilayer structure coating form a second optical feature, the coverage area being the second region;
  • the sub-wavelength surface microstructure and the optical reflective facet overlap each other, and form a third optical feature with the multi-layer coating covered by the surface, and the coverage area is the third region;
  • optical characteristics 1, the optical characteristic 2 and the optical characteristic 3 of the first region, the second region and the third region may be detected by naked eye observation or instrument and have distinguishing features from each other;
  • the distinguishing features include:
  • the optical characteristics of the first region are different from the optical features of the second region
  • optical characteristics of the third region are different from the optical features of the second region
  • the optical scattering features provided by the substantially random variations distributed in the two-dimensional plane in which they are located, and/or according to the selected optical facets, depending on the orientation of the optical facets
  • the orientation is such that the second region can be perceived by the viewer as a surface that protrudes forward and/or backward relative to its actual spatial shape.
  • the multi-layer structure coating forms a Fabry-Perot cavity, which selectively absorbs and reflects the incident white light, so that the emitted light only contains certain wavelength bands, thereby forming a specific color; when the light is incident or outgoing When the angle changes, the relative optical path changes, and the interference band also changes, so that the color presented to the observer also changes, thereby forming a light-changing effect of a specific color.
  • the optical security element according to the present invention can have a sub-wavelength surface microstructure and a multilayer structure under natural light illumination conditions.
  • the optical feature of the first region of the coating is distinguished from the optical feature of the second region with the optically reflective facet and the multilayered coating, which can be detected by naked eye or instrumentation.
  • the first area of the optical security element is different from the second area
  • the optical scattering features provided by the substantially random variations distributed in the two-dimensional plane in which they are located according to the orientation of the optical facets and/or according to the orientation of the selected optical facets
  • the second region can be perceived by the viewer as a surface that protrudes forward and/or backward relative to its actual spatial shape.
  • the matching parameters of the sub-wavelength surface microstructure and the multi-layer coating include the period of the sub-wavelength microstructure, the groove depth, the aspect ratio (ie, the ratio of the groove depth to the period), and the aspect ratio (ie, the ratio of the peak width of the grating to the period). ), the trough shape, and the thickness of each layer of the multi-layer structure plating, the refractive index of the material, and the like are determined together; the parameters of the optical reflective facet include depth, width, inclination angle, and azimuth angle.
  • the present invention also provides an optical security product using the above optical security element.
  • the sub-wavelength surface microstructure and the first region and the optical reflective facet structure of the multi-layer structure plating layer are The second region in which the multilayer structure coating is located forms an optical characteristic having contrast, so that the optical security element or the optical security product with the security element is easily recognized and has strong anti-counterfeiting ability.
  • FIG. 1 is a cross-sectional view of an optical security element in accordance with one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an optical security element in accordance with yet another embodiment of the present invention.
  • FIG. 4 is a top plan view of an optical security element in accordance with yet another embodiment of the present invention.
  • an optical security element 1 comprises: a substrate 101; a sub-wavelength surface microstructure 1021 and an optically reflective facet 1022 formed on the upper surface 102 of the substrate 101 and at least partially covering the upper surface 102, wherein The region where the sub-wavelength surface microstructure 1021 is located is the region A, the region where the optically reflective facet 1022 is located is the region B, and the multi-layer structure plating layer 103 at least partially covers the region A and the region B.
  • the sub-wavelength surface microstructure may be a one-dimensional grating, and the sub-wavelength surface microstructure may have a sinusoidal shape, a rectangular shape, a zigzag shape, or the like; in addition, the sub-wavelength surface microstructure may be two
  • the dimensional grating may have a sinusoidal shape, a rectangular shape, a zigzag shape, or the like, and the grating distribution of the two-dimensional grating may be an orthogonal structure, a honeycomb structure, a two-dimensional Brava lattice structure, a random structure, or the like.
  • the structure of the sub-wavelength surface microstructure is not limited to the structure described above, and a combination of these sub-wavelength surface microstructures may be employed in actual optical security elements.
  • patterns such as characters and logos required for anti-counterfeiting can be realized.
  • the subwavelength surface microstructure has a groove depth of from 10 nm to 500 nm, preferably from 50 nm to 300 nm.
  • the sub-wavelength surface microstructure has a feature size in the two-dimensional plane in which it is located in the range of 50 nm to 500 nm, preferably 200 nm to 400 nm, but when the feature size in one direction satisfies the requirement, the feature size in the other direction may be Unlimited.
  • the matching relationship can be expressed by the aspect ratio (ie, the ratio of the groove depth to the period), which is based on a specific reproduction.
  • the effect is calculated by a rigorous coupled wave theory design.
  • the aspect ratio is usually in the range of 0.3-2, preferably 0.4-1.
  • the aspect ratio of the sub-wavelength surface microstructure (ie, the ratio of the peak width of the grating to the period) is also an important parameter affecting the optical effect, which mainly affects the brightness and contrast of the optical security element, and generally requires a ratio of 0.3- 0.7, preferably 0.4-0.6.
  • the structure of the multilayer structure plating layer 103 employed in the optical security element 1 according to the present invention will be described below.
  • the multilayer structure plating layer 103 may have a multilayer dielectric film structure, that is, composed of different dielectric layers having high and low refractive indices. This structure is usually designed using a ⁇ /4 film system.
  • the material used for each dielectric layer may be one or more of inorganic coating materials such as MgF 2 , SiO 2 , Al 2 O 3 , MgO, HfO 2 , TiO 2 , ZnS, ZnO, etc., of course, high A molecular polymer, or a combination of an inorganic coating material and a high molecular polymer.
  • the structure of the multi-layer structure plating layer 103 may also be a metal/dielectric multilayer film structure, and generally adopts a three-layer structure or a five-layer structure.
  • the structure of the multilayer structure plating layer 103 may include at least one of the following:
  • first reflective layer formed on the sub-wavelength surface microstructure, a first dielectric layer formed on the first reflective layer, and a first absorption layer formed on the first dielectric layer, the above three layers are sequentially Can be reversed;
  • a fourth absorption layer formed on the sub-wavelength surface microstructure, a third dielectric layer formed on the fourth absorption layer, and a second reflective layer formed on the third dielectric layer, formed on a fourth dielectric layer on the second reflective layer and a fifth absorption layer formed on the fourth dielectric layer;
  • a sixth absorption layer formed on the sub-wavelength surface microstructure a fourth dielectric layer formed on the sixth absorption layer, and a seventh absorption layer formed on the fourth dielectric layer, formed on a fifth dielectric layer on the seventh absorption layer and an eighth absorption layer formed on the fifth dielectric layer.
  • the multi-layer structure of the three-layer structure is a reflective layer, a dielectric layer and an absorbing layer, or an absorbing layer, a dielectric layer and an absorbing layer.
  • the former can only observe the light-changing effect on one side, and the latter can be observed on both sides. Light change effect.
  • the five-layer structure of the multi-layer structure coating is an absorbing layer, a dielectric layer, a reflective layer, a dielectric layer and an absorbing layer, or an absorbing layer, a dielectric layer, an absorbing layer, a dielectric layer and an absorbing layer, and a five-layer structure of the multi-layer structure plating layer may Observing the light-changing effect on both sides, the light-changing effects observed on both sides can be designed to be the same or different, which is determined by the parameters and materials of the respective reflective layer, dielectric layer, and absorption layer.
  • Each of the above reflective layers is generally a metal layer having a relatively large thickness, and the thickness thereof is usually greater than 20 nm, and the material used may be one of gold, silver, copper, aluminum, iron, tin, zinc, nickel, chromium, or the like. More.
  • Each of the dielectric layers may be a single dielectric layer, and the dielectric material may be selected from inorganic coating materials such as MgF 2 , SiO 2 , Al 2 O 3 , MgO, PMMA, HfO 2 , TiO 2 , ZnS, ZnO, and the like.
  • the thickness of the high molecular polymer is determined by the optical effect to be achieved and the refractive index of the material, and may generally be from 10 nm to 1000 nm, preferably from 50 nm to 800 nm.
  • each of the above dielectric layers may also be a multi-layer dielectric layer, and the dielectric material used may be selected from the group consisting of MgF 2 , SiO 2 , Al 2 O 3 , MgO, PMMA, HfO 2 , TiO 2 , ZnS, ZnO, etc.
  • Inorganic coating materials, and multilayer dielectric films are usually designed with high and low refractive index ⁇ /4 film systems.
  • the material used in each of the above absorption layers may be one or more of metals such as gold, silver, copper, aluminum, iron, tin, zinc, nickel, chromium, or a metal compound, and the thickness is usually not more than 20 nm, preferably 5 -10 nm, the function of which is to partially reflect, partially transmit and partially absorb the illumination light.
  • the structure of the multilayer structure plating layer 103 according to the present invention is not limited to the structures described above, for example, a two-layer structure (ie, a reflective layer and a dielectric layer), a four-layer structure (ie, an absorption layer, a dielectric layer, Structures such as reflective layers and dielectric layers are also preferred.
  • the multi-layer structure plating layer 103 can form a Fabry-Perot cavity, which selectively absorbs and reflects the incident white light, so that the emitted light only contains certain wavelength bands, thereby forming a specific color; when the light is incident Or when the exit angle changes, the relative optical path changes, and the interference band also changes, so that the color presented to the observer also changes, thereby forming a light-changing effect of a specific color.
  • the parameter matching relationship, the specific principle and the optical characteristics are specifically defined by the Chinese patent CN102514443, and the contents of the specification are incorporated in the present invention.
  • the sub-wavelength surface microstructure 1021 is combined with the multi-layer structure plating 103 to form a color of the discoloration feature that occurs as the viewing angle changes, and which is distinguished from the color provided by the multi-layer coating of a flat or smooth surface.
  • optical feature 2 provided by the combination of the optically reflective facet 1022 and the multilayer structure plating layer 103 is described below in conjunction with FIG. 1, which is different from the optical feature provided by the sub-wavelength surface microstructure and the multilayer structure plating layer 103. the reason.
  • the feature size or period (the facet may be periodic or non-periodic) of the optically reflective facet 1022 in at least one dimension on its two-dimensional plane is between 1 ⁇ m and 300 ⁇ m, preferably at 3 ⁇ m. Between 100 ⁇ m, particularly preferably between 5 ⁇ m and 30 ⁇ m.
  • the depth of the optically reflective facets is less than 10 [mu]m, preferably between 1 [mu]m and 5 [mu]m. Thus, it does not have a diffractive effect on the visible wavelength range.
  • the orientation of the optically reflective facets can be determined by their angle of inclination and/or their azimuth.
  • the optical reflective surface 1022 is combined with the multilayer structure plating layer 103 to provide optical characteristics.
  • the specific parameter setting, principle and optical characteristics are defined by Chinese patents CN102712207, CN102905909, CN103282212 and CN103229078, and the contents of the manual are incorporated. this invention.
  • the features of the multilayer structure plating layer 103 on the flat surface include its color, and the characteristics of the color change caused by the change of the viewing angle.
  • the combination of the optical reflecting facet 1022 and the multilayer structure plating layer 103 is substantially
  • the color feature provided by the multilayer structure plating layer 103 is not changed, that is, the multilayer structure plating layer has the same selective absorption and reflection characteristics as the multilayer structure plating layer formed on the flat surface, and for a specific light source, only corresponding to each
  • the optically reflective facets change the direction of the exiting light, and thus substantially change the distribution of the viewing angle of the color change feature of the multilayer structure coating 103 over the two-dimensional surface on region B.
  • the sub-wavelength surface microstructure 1021 and the optically reflective facet 1022 can be made into a working plate by a holographic interferometry, a laser direct lithography technique, an electron beam etching technique, etc., and can be made into a working plate by an electroforming process, and then molded, UV.
  • the production process such as copying is transferred to the surface of the substrate 101. It should be pointed out that due to the large difference in the order of magnitude between the sub-wavelength surface microstructure and the optical reflection facet size, both of them have higher difficulty in the original preparation and batch copying process, in pursuit of high quality.
  • the optical master can use a plurality of devices to complete the plate making method or the engraving method, or use the imposition method to combine the two structures.
  • the multi-layer structure plating layer 103 can be generally realized by a vacuum coating process such as thermal evaporation, electron beam evaporation, high-frequency sputtering, magnetron sputtering, ion sputtering, reactive sputtering, ion plating, or electroless plating or electroplating. Processes such as coating, etc., achieve some of these layers.
  • optical scattering provided by the optically reflective facet 1022 having a substantially random variation distributed in the two-dimensional plane in which it is located.
  • Features, and features according to the orientation of the selected optically reflective facet 1022 enable the second region to be perceived by the viewer as a surface that protrudes forward and/or rearward relative to its actual spatial shape.
  • the structure of the optically reflective facets 1022 of different parameters shown in region B of Figure 2(a) has a random or pseudo-random arrangement in the two-dimensional plane in which it resides, including the depth and width of the optically reflective facets.
  • the B region in Fig. 2(B) shows the use of the optically reflective facet 1022 to simulate the curved surface 1022' to form features that protrude from the surface 102, in which case any optically reflective facet on the two dimensional plane has a 1022 simulated with that position. 'The surfaces have roughly the same normal direction.
  • FIG. 3 is an embodiment of further adding a region C and its anti-counterfeiting feature 3 based on the optical security element 1 according to the present invention in FIG. 1, wherein the sub-wavelength surface microstructure 1021 and the optically reflective facet 1022 are overlapped with each other to form a substrate.
  • the anti-counterfeiting feature 3 includes the feature 1 and the feature 2, that is, the color and color change characteristics formed by the sub-wavelength surface microstructure 1021 and the multi-layer structure plating layer 10 different from the multi-layer structure plating layer, and the optical reflective facet 1022
  • the optical scattering features brought about by the random distribution on the two-dimensional surface of the region C and/or the features that can be perceived by the observer as surfaces that protrude forward and/or backward relative to the surface of the region C.
  • the sub-wavelength surface microstructure 1021 is selected to be a sinusoidal groove type, a period of 300 nm, a depth of 100 nm, and an orthogonal two-dimensional grid distribution, and the multilayer structure plating layer 103 is sequentially selected to include Al (40 nm)/SiO2. (370 nm) / Cr (5 nm) (On a flat surface, the multilayer structure coating of this parameter has a feature of a golden color on the front side and a green color on the oblique side).
  • the area A has a red color on the front side and a yellow color on the left side;
  • the area B has a golden-green color feature provided by the multi-layer plating layer and a scattering characteristic provided by the optically reflective facet and/or protrudes from The characteristics of the surface;
  • the region C has a red-yellow color characteristic and an optical reflection facet formed by the sub-wavelength surface microstructure and the multi-layer structure plating layer Scattering features and/or features that protrude from the surface are provided. All in all, the three regions A, B, and C have their own visual characteristics, forming a strong visual contrast with each other, thereby ensuring that the optical security component 1 has strong anti-counterfeiting capability.
  • the coverage of the multilayer structure coating in the optical security element of the present invention is patterned to form a hollowed out feature.
  • the patterning may be performed by patterning the entire multilayer structure plating layer, or alternatively, one or several layers may be separately patterned.
  • a patterned protective layer is applied by printing after forming a multi-layered plating, and then the plating outside the protected area is etched by a chemical solvent such as an alkali solution.
  • the release layer is printed before the formation of the multilayer structure plating layer, and after the formation of the multilayer structure plating layer, the plating layer above the release layer is peeled off by a certain liquid immersion (for example, water) to form a hollow pattern.
  • the hollow pattern 1031 of the multilayer structure plating layer 103 (the area not covered by the multilayer structure plating layer) and the sub-wavelength surface microstructure 1021 and There is a strict positional correspondence between the optically reflective facets 1022, so that the optical security element of the present invention has stronger identifiability and anti-counterfeiting capability.
  • A, B, and C respectively correspond to the three regions A, B, and C in Fig. 3, that is, "CBPM" and "ZSST" are formed by subwavelength surface microstructures having a multi-layer structure coating formed on the surface.
  • the color characteristics of B and area C and the characteristics of discoloration with observation angle is the optical scattering characteristic of the optically reflective facet formed with the multi-layer structure coating on the surface and the discoloration characteristic with the observation angle, and the area C is the surface formation.
  • the optically reflective facets of the layered coating produce features that visually protrude forward relative to their actual spatial shape and at the same time have a characteristic that discolors with viewing angle.
  • a method of forming the hollow region 1031 is exemplarily given below: a sinusoidal grating is formed in the region of 1031, and has an arrangement period of 350 nm and a depth of 300 nm (the surface microstructure of the region having an aspect ratio larger than 1031 is set). Then, a 5 nm thick Al layer and a 250 nm thick SiO 2 layer are sequentially deposited on the 102 side, and then the optical security element 1 is immersed in a 10% concentration NaOH solution until the Al layer in the 1031 region completely disappears. The area other than 1031 is still covered with an Al layer and an SiO 2 layer.
  • a cylindrical mirror is formed in the region 1031, the width is 30 ⁇ m, the gap between the cylindrical mirrors is 2 ⁇ m wide, and the height of the cylindrical mirror is 10 ⁇ m (this value is set) a height of 1.5 ⁇ m larger than the optically reflective facet, and an Al layer of 40 nm thick (thickness of the flat region), a 250 nm thick SiO 2 layer, and a 5 nm thick Cr layer are sequentially deposited on the 102 side, and formed by a coating process.
  • the protective layer (polyester material) had a thickness (relative to the flat surface) of 1 ⁇ m.
  • the optical security element 40 °C NaOH solution was placed in 10% strength soaking until the Al / SiO 1031 region 2 / Cr plating just disappears completely, outside the area still covered with the 1031 Al / SiO 2 / Cr plating. That is, the preparation of the optical security element is completed. At this time, the observation direction is such that the optical security element is viewed from the 102-face side, and Al/SiO 2 /Cr which is sequentially stacked on a region other than 1031 provides a multilayer structure plating layer, and a hollow pattern is formed in the 1031 region.
  • diffractive light-changing features and micro-nanostructure features may also be formed in and on the substrate 101 and its upper and lower surfaces and/or sub-wavelength surface microstructures and optically reflective facets. , printed features, fluorescent features, and one or more of the magnetic, optical, electrical, and radioactive features for machine readable.
  • the optical security element according to the present invention can be used as a label, a logo, a wide strip, a transparent window, a film, etc., and can be adhered to various articles by various bonding mechanisms. For example, transfer to high security products such as banknotes and credit cards and high value-added products.
  • Another aspect of the invention provides a product with the optical security element, including but not limited to banknotes, credit cards,

Landscapes

  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

公开了一种光学防伪元件及使用该光学防伪元件的光学防伪产品。该光学防伪元件(1)及光学防伪产品包括:基材(101);形成于所述基材(101)的上表面(102)且至少部分覆盖所述基材上表面的亚波长表面微结构(1021)和光学反射小面(1022);以及形成于所述亚波长表面微结构(1021)和光学反射小面(1022)结构上,且至少部分覆盖所述亚波长表面微结构(1021)和光学反射小面(1022)结构上的多层结构镀层(103)。通过对亚波长表面微结构、光学反射小面结构与多层结构镀层的参数进行相互匹配设计,能够使得根据这种光学防伪元件在自然光照明条件下,有亚波长表面微结构和多层结构镀层的区域的光学特征区别于带有光学反射小面和多层结构镀层的区域的光学特征,所述光学特征可以通过裸眼观察或仪器检测。

Description

一种光学防伪元件及使用该光学防伪元件的光学防伪产品 技术领域
本发明涉及光学防伪领域,尤其涉及一种光学防伪元件以及使用该光学防伪元件的光学防伪产品。
背景技术
为了防止利用扫描和复印等手段产生的伪造,钞票、证卡和产品包装等各类高安全或高附加值印刷品中广泛采用了光学防伪技术,并且取得了非常好的效果。
多层结构镀层技术作为一种光学防伪技术已被广泛用于钞票等高防伪有价证券的公众防伪,其能够呈现各种颜色特征或在不同的观察角度下能够呈现不同的颜色,便于描述,易于公众识别,且无法利用照相机、扫描仪、打印机等电子设备模仿或复制,所以具有较高的防伪能力。
但是,由于多层结构镀层产品应用已经有数十年的时间,单纯的多层镀层技术已经不能很好地满足防伪领域的需求。在多层镀层基础上实现图案化和多色化是提高多层结构镀层防伪能力的发展方向。
瑞士SICPA公司通过粉碎具有对称结构的五层光变镀层结构来形成光变颜料(OVP),进而获得光变油墨(OVI),其能够与印刷技术结合,并在世界多种钞票中得到了广泛应用。作为OVI的进一步发展,在现有光变结构中增加一层磁性层就形成了光变磁性油墨(OVMI)即SPARK技术,该技术通过磁场诱导使得OVMI颗粒能够沿磁感线方向定向排布,从而形成特定的图文结构。当OVMI中颗粒排列具有特定规律变化时,能够产生动感、缩放等光学特征(请见专利US7517578B2)。但是由于光变磁性颗粒的定向排布需要依靠磁场,故受到磁场形状的制约,不能对形状进行任意设计,且需要特定的定向设备与工艺。
另外干涉型多层镀层与全息、颜色配对等技术相结合并提供了新的防伪特征。例如,专利申请US5766738、US6114018以及US7729026中提出通过选择适当的干涉型多层镀层厚度与颜色来实现颜色匹配特征。然而此类技术集成方式工艺较复杂,且效果不够理想,对干涉型多层镀层防伪能力的提升仍然有限。
发明内容
本发明的目的在于提供一种具有易识别且难伪造特点的光学防伪元件以及使用该光学防伪元件的光学防伪产品。
本发明提供一种光学防伪元件,该光学防伪元件包括:
基材;
形成于所述基材的上表面上,且至少部分覆盖所述基材上表面的亚波长表面微结构和光学反射小面结构;以及
形成于所述亚波长表面微结构和光学反射小面结构上,且至少部分覆盖所述亚波长表面微结构和光学反射小面结构上的多层结构镀层;
所述亚波长表面微结构与其表面覆盖的多层结构镀层形成第一光学特征,其覆盖区域为第一区域;
所述光学反射小面结构与其表面覆盖的多层结构镀层形成第二光学特征,其覆盖区域为第二区域;
a、所述第一区域的光学特征一与第二区域的光学特征二颜色不同;
b、所述第二区域中,根据光学小面的取向具有分布于其所在的二维平面内的大致随机的变化所提供的光学散射特征,和/或根据选择的光学小面的取向使得第二区域能够被观察者感觉为相对于其实际空间形状向前和/或向后突出的表面。
进一步,一种光学防伪元件,该光学防伪元件包括:
基材;
形成于所述基材的上表面上,且至少部分覆盖所述基材上表面的亚波长表面微结构和光学反射小面结构;以及
形成于所述亚波长表面微结构和光学反射小面结构上,且至少部分覆盖所述亚波长表面微结构和光学反射小面结构上的多层结构镀层;
所述亚波长表面微结构与其表面覆盖的多层结构镀层形成第一光学特征,其覆盖区域为第一区域;
所述光学反射小面结构与其表面覆盖的多层结构镀层形成第二光学特征,其覆盖区域为第二区域;
所述亚波长表面微结构与光学反射小面相互重叠,并与其表面覆盖的多层镀层形成第三光学特征,其覆盖区域为第三区域;
所述第一区域、第二区域和第三区域的光学特征一、光学特征二和光学特征三可以通过裸眼观察或仪器检测,并相互之间具有区别特征;
所述区别特征包括:
a、所述第一区域的光学特征一与第二区域的光学特征二颜色不同;
b、所述第三区域的光学特征三与第二区域的光学特征二颜色不同;
b、所述第二区域和第三区域中,根据光学小面的取向具有分布于其所在的二维平面内的大致随机的变化所提供的光学散射特征,和/或根据选择的光学小面的取向使得第二区域能够被观察者感觉为相对于其实际空间形状向前和/或向后突出的表面。
所述多层结构镀层形成法布里-泊罗谐振腔,其对入射的白光具有选择性的吸收及反射作用,使得出射光线只包含某些波段,从而形成特定的颜色;当光入射或出射角度变化时,与之相对的光程发生变化,干涉波段也发生变化,从而导致呈现给观测者的颜色也随之变化,从而形成特定颜色的光变效果。
通过对亚波长表面微结构、光学反射小面结构与多层结构镀层的参数进行相互匹配设计,能够使得根据本发明的光学防伪元件在自然光照明条件下,有亚波长表面微结构和多层结构镀层的第一区域的光学特征一区别于带有光学反射小面和多层结构镀层的第二区域的光学特征二,所述光学特征一和光学特征二可以通过裸眼观察或仪器检测。
通过亚波长表面微结构与多层结构镀层的参数匹配,以及通过改变所述光学反射小面的参数能够实现:
a、光学防伪元件中第一区域与第二区域颜色不同;
b、光学防伪元件中第二区域中,根据光学小面的取向具有分布于其所在的二维平面内的大致随机的变化所提供的光学散射特征和/或根据选择的光学小面的取向使得第二区域能够被观察者感觉为相对于其实际空间形状向前和/或向后突出的表面。
所述亚波长表面微结构与多层镀层的匹配参数包括亚波长微结构的周期、槽深、深宽比(即槽深与周期的比值)、占宽比(即光栅峰宽与周期的比值)、槽形,以及多层结构镀层的各层厚度、材料折射率等参数共同决定;所述光学反射小面的参数包括其深度、宽度、倾斜角、方位角。
本发明还提供一种使用上述光学防伪元件的光学防伪产品。
由于根据本发明的光学防伪元件和光学防伪产品中,在采用相同的多层结构镀层的情况下,亚波长表面微结构与所述多层结构镀层所在的第一区域与光学反射小面结构与所述多层结构镀层所在的第二区域形成了具有反差的光学特征,从而使该光学防伪元件或带有该防伪元件的光学防伪产品容易被识别且具有较强的防伪能力。
附图说明
图1为根据本发明一个实施方式的光学防伪元件的剖面图;
图2(a)、(b)为根据本发明另一实施方式的光学防伪元件的剖面图;
图3为根据本发明又一实施方式的光学防伪元件的剖面图;
图4为根据本发明又一实施方式的光学防伪元件的俯视图。
具体实施方式
下面结合附图来详细说明根据本发明的光学防伪元件及光学防伪产品。应当理解,所述附图和详细描述只是对本发明优选实施方式的描述,并非以任何方式来限制本发明的范围。
如图1所示,根据本发明的光学防伪元件1包括:基材101;形成于基材101上表面102且至少部分覆盖上表面102的亚波长表面微结构1021和光学反射小面1022,其中亚波长表面微结构1021所在区域为区域A,光学反射小面1022所在的区域为区域B;多层结构镀层103至少部分覆盖区域A和区域B。
所述亚波长微结构1021与其表面形成的多层结构镀层103共同形成光学特征一;所述光学反射小面1022与其表面形成的多层结构镀层103共同形成光学特征二。
在根据本发明的优选实施方式中,亚波长表面微结构可以为一维光栅,亚波长表面微结构的槽型可以是正弦形、矩形、锯齿形等;另外,亚波长表面微结构可以为二维光栅,其槽型可以是正弦形、矩形、锯齿形等,并且二维光栅的栅格分布可以是正交结构、蜂窝结构、二维布拉维点阵结构、随机结构等。应当理解的是,亚波长表面微结构的结构并不局限于以上描述的结构,而且实际的光学防伪元件中可以采用这些亚波长表面微结构的组合。通过对亚波长表面微结构进行设计,会实现防伪所需的文字、标识等图案。
优选地,亚波长表面微结构的槽深为10nm-500nm,优选为50nm-300nm。另外,亚波长表面微结构在其所在的二维平面内的特征尺寸为50nm-500nm,优选为200nm-400nm,但是,当一个方向上的特征尺寸满足要求时,另一个方向上的特征尺寸可以不受限制。
优选地,亚波长表面微结构的周期和槽深二者之间存在着一定的匹配关系,这种匹配关系可以用深宽比(即槽深与周期的比值)表示,其是根据具体的再现效果通过严格耦合波理论设计计算得到的,优选地,深宽比的范围通常为0.3-2,优选为0.4-1。
优选地,亚波长表面微结构的占宽比(即光栅峰宽与周期的比值)也是影响光学效果的一个重要参数,其主要影响光学防伪元件的亮度及对比度,通常要求占宽比为0.3-0.7,优选为0.4-0.6。
下面对根据本发明的光学防伪元件1中所采用的多层结构镀层103的结构进行描述。
多层结构镀层103可以采用多层介质膜结构,即由具有高、低折射率的不同介质层构成。这种结构通常采用λ/4膜系设计。而且,各个介质层所采用的材料可以为MgF2、SiO2、Al2O3、MgO、HfO2、TiO2、ZnS、ZnO等无机镀膜材料中的一种或多种,当然也可以采用高分子聚合物,或者无机镀膜材料与高分子聚合物的组合。
多层结构镀层103的结构还可以是金属/介质多层膜结构,通常采用三层结构或五层结构。例如,多层结构镀层103的结构可以包括以下中的至少一者:
a、形成于亚波长表面微结构上的第一反射层、形成于所述第一反射层上的第一介质层和形成于所述第一介质层上的第一吸收层,以上三层顺序可颠倒;
b、形成于所述亚波长表面微结构上的第二吸收层、形成于所述第二吸收层上的第二介质层和形成于所述第二介质层上的第三吸收层,以上三层顺序可颠倒;
c、形成于所述亚波长表面微结构上的第四吸收层、形成于所述第四吸收层上的第三介质层、形成于所述第三介质层上的第二反射层、形成于所述第二反射层上的第四介质层和形成于所述第四介质层上的第五吸收层;
d、形成于所述亚波长表面微结构上的第六吸收层、形成于所述第六吸收层上的第四介质层、形成于所述第四介质层上的第七吸收层、形成于所述第七吸收层上的第五介质层和形成于所述第五介质层上的第八吸收层。
简言之,三层结构的多层结构镀层为反射层、介质层和吸收层,或者为吸收层、介质层和吸收层,前者只能在一面观察光变效果,后者则可以在两面观察光变效果。五层结构的多层结构镀层为吸收层、介质层、反射层、介质层和吸收层,或者为吸收层、介质层、吸收层、介质层和吸收层,五层结构的多层结构镀层可以在两面观察光变效果,两面观察到的光变效果可以设计为相同,也可以设计为不同,这由各个反射层、介质层、吸收层的参数和材料决定。
上述的各个反射层一般为厚度较大的金属层,其厚度通常大于20nm,其所采用的材料可以为金、银、铜、铝、铁、锡、锌、镍、铬等中的一者或多者。上述的各个介质层可以是单层介质层,其所采用的介质材料可以选自MgF2、SiO2、Al2O3、MgO、PMMA、HfO2、TiO2、ZnS、ZnO等无机镀膜材料以及高分子聚合物,其厚度由要实现的光学效果及材料的折射率决定,一般厚度可以为10nm-1000nm,优选为50nm-800nm。当然,上述的各个介质层也可以是多层介质层,其所采用的介质材料可以选自MgF2、SiO2、Al2O3、MgO、PMMA、HfO2、TiO2、ZnS、ZnO等常见的无机镀膜材料,并且多层介质膜通常采用高、低折射率λ/4膜系设计。上述的各个吸收层所采用的材料可以为金、银、铜、铝、铁、锡、锌、镍、铬等金属或者金属化合物中 的一者或多者,厚度通常不超过20nm,优选为5-10nm,其作用是使照明光部分反射、部分透射和部分吸收。
应当理解的是,根据本发明的多层结构镀层103的结构并不局限于上面描述的结构,例如,二层结构(即反射层和介质层)、四层结构(即吸收层、介质层、反射层和介质层)等结构也是可取的。
所述多层结构镀层103可以形成法布里-泊罗谐振腔,其对入射的白光具有选择性的吸收及反射作用,使得出射光线只包含某些波段,从而形成特定的颜色;当光入射或出射角度变化时,与之相对的光程发生变化,干涉波段也发生变化,从而导致呈现给观测者的颜色也随之变化,从而形成特定颜色的光变效果。
关于亚波长表面微结构与多层结构镀层结合获得的光学特征一,其参数匹配关系、具体原理和光学特征由中国专利CN102514443具体定义,其说明书内容均纳入本发明。总之,亚波长表面微结构1021与多层结构镀层103结合,从而形成了随观察角度改变而出现的变色特征的颜色,且其区别于单纯由平坦或光滑的表面的多层结构镀层提供的颜色特征,进而形成独特的随观察角度的变色特征。
以下结合图1说明光学反射小面1022与所述多层结构镀层103的结合所提供的光学特征二,其不同于亚波长表面微结构与所述多层结构镀层103共同提供的光学特征一的原因。
所述光学反射小面1022在其所在的二维平面上的至少一个维度上的特征尺寸或者周期(小面可以形成周期性的或者非周期性的)在1μm-300μm之间,优选在3μm-100μm之间,特别优选在5μm-30μm之间。所述光学反射小面的深度小于10μm,优选在1μm-5μm之间。从而使得其对可见光波长范围不起衍射作用。
所述光学反射小面的取向可由它们的倾斜角和/或它们的方位角确定。
所述光学反射小面1022与所述多层结构镀层103结合提供的光学特征二,其具体参数设置、原理、光学特征由中国专利CN102712207、CN102905909、CN103282212和CN103229078所共同定义,其说明书内容均纳入本发明。
平坦表面上的多层结构镀层103的特征包括其颜色,以及随观察角度的变化而产生的颜色变化两方面的特征,相对地,所述光学反射小面1022与多层结构镀层103的结合实质上并未改变多层结构镀层103提供的颜色特征,即该多层结构镀层与在平坦表面形成的该多层结构镀层具有相同的选择性吸收和反射特性,而对于特定的光源,仅对应每个光学反射小面改变了其出射光的方向,因此实质上是改变了多层结构镀层103颜色变化特征的观察角度在区域B上的二维表面上的分布。
上述结果决定了所述区域A和区域B在采用相同的多层结构镀层103的情况下具有不同 的颜色特征和颜色变化特征。
所述亚波长表面微结构1021和光学反射小面1022可以通过全息干涉法、激光直刻技术、电子束刻蚀技术等方法制作母版,通过电铸工艺制成工作版、再通过模压、UV复制等生产工艺转移到基材101的表面上。需要指出的是,由于所述亚波长表面微结构与光学反射小面的尺寸参数在数量级上的巨大差异,二者在原版制备及批量复制过程中均有较高的难度,为追求高质量的光学原版可采用多次多台设备共同完成制版或加入套刻的制版方法,也可以利用拼版等方法将两种结构结合在一起。
所述多层结构镀层103通常可以通过热蒸发、电子束蒸发、高频溅射、磁控溅射、离子溅射、反应溅射、离子镀等真空镀膜工艺实现,也可以通过化学镀、电镀、涂布等工艺实现其中的某些层。
下面将结合图2(a)、(b)分别说明根据本发明的光学防伪元件1中,由于光学反射小面1022具有分布于其所在的二维平面内的大致随机的变化所提供的光学散射特征,和根据选择的光学反射小面1022的取向使得第二区域能够被观察者感觉为相对于其实际空间形状向前和/或向后突出的表面的特征。图2(a)中区域B所示的不同参数的光学反射小面1022的结构在其所在的二维平面内具有随机或伪随机的排列,所述结构参数包括光学反射小面的深度、宽度、倾斜角、方位角,从而使得入射光被光学反射小面表面的多层结构镀层选择性吸收和反射后,反射光具有随机或伪随机的出射方向,从而形成光学散射特征。图2(B)中B区域示出了利用光学反射小面1022模拟曲面1022’从而形成突出于表面102的特征,此时二维平面上任意一光学反射小面具有与该位置被模拟的1022’曲面具有大致相同的法线方向。
图3为在图1中根据本发明的光学防伪元件1的基础上进一步增加区域C及其防伪特征三的实施例,其中亚波长表面微结构1021和光学反射小面1022相互重叠形成于基材101的上表面102上的区域C。所述防伪特征三包括了所述特征一和特征二,即同时具有亚波长表面微结构1021与多层结构镀层103形成的区别于多层结构镀层的颜色及变色特征,以及光学反射小面1022在区域C的二维表面上的随机分布带来的光学散射特征和/或能够被观察者感觉为相对于区域C表面向前和/或向后突出的表面的特征。
例如,在图3中选取亚波长表面微结构1021为正弦槽型、周期为300nm、深度为100nm并呈正交的二维网格分布,选取多层结构镀层103依次包含Al(40nm)/SiO2(370nm)/Cr(5nm)(在平坦表面,该参数的多层结构镀层具有正面观察为金黄色,倾斜观察为绿色的特征)。那么,区域A由于1021的存在,其颜色为正面观察为红色,倾斜观察为黄色;区域B具有多层镀层提供的金黄变绿的颜色特征及光学反射小面提供的散射特征和/或突出于表面的特征;区域C具有由亚波长表面微结构与多层结构镀层共同形成的红变黄的颜色特征及光学反射小面 提供的散射特征和/或突出于表面的特征。总而言之,A、B、C三个区域具有各自的视觉特征,彼此形成强烈的视觉反差,从而保证了光学防伪元件1具有较强的防伪能力。
优选地,本发明的光学防伪元件中多层结构镀层的覆盖范围是图案化的,从而形成镂空特征。所述图案化可以通过对多层结构镀层整体进行图案化,也可选择对其中一层或几层分别进行图案化。例如,通过印刷方式在形成多层结构镀层后施加图案化的保护层,然后通过化学溶剂(例如碱液)对保护区域以外的镀层进行腐蚀。或者在形成多层结构镀层之前印刷剥离层,并在形成多层结构镀层后通过某种液体的浸泡(例如水)使剥离层以上的镀层脱落从而形成镂空图案。
优选地,如图4所示,本发明的光学防伪元件的一个实施例的俯视图中,多层结构镀层103的镂空图案1031(未覆盖多层结构镀层的区域)与亚波长表面微结构1021和/或光学反射小面1022之间具有严格的位置对应关系,从而使得本发明的光学防伪元件具有更强的易识别和防伪造能力。其中A、B、C分别对应图3中的A、B、C三个区域,即“CBPM”和“ZSST”为表面形成有多层结构镀层的亚波长表面微结构共同形成的具有区别于区域B及区域C的颜色特征及随观察角度变色的特征,区域B为表面形成有多层结构镀层的光学反射小面产生的光学散射特征及随观察角度的变色特征,区域C为表面形成有多层结构镀层的光学反射小面产生的视觉上相对于其实际空间形状向前突出的表面并同时具有随观察角度变色的特征。
下面示例性地给出形成镂空区域1031的一种方法:在1031所在区域形成有正弦型光栅,其排列周期为350nm,深300nm(设该结构深宽比大于1031以外区域的表面微结构)。然后在102一侧依次沉积5nm厚的Al层及250nm厚的SiO2层,然后将光学防伪元件1置于10%浓度的NaOH溶液中浸泡,直至1031区域的Al层恰好完全消失为止,此时1031以外的区域上仍覆盖有Al层及SiO2层。然后在SiO2层上沉积40nm厚的Al层,并在新沉积的Al层的表面上沉积50nm厚的SiO2层,然后将光学防伪元件1置于5%的NaOH溶液中浸泡,直至1031区域上的Al层恰好完全消失为止。此时,规定观察方向为从101的下表面一侧观察光学防伪元件1,在1031以外的区域提供了多层结构镀层。同时,1031上因无任何镀层而形成镂空图案。
下面示例性地给出形成镂空区域1031的另一种方法:在1031区域形成有柱面镜,其宽度为30μm、柱面镜之间的空隙宽2μm、柱面镜高度为10μm(设该值大于光学反射小面的高度1.5μm),在102面一侧依次沉积40nm厚(平坦区域的厚度)的Al层、250nm厚的SiO2层及5nm厚的Cr层,以及通过涂布工艺形成的保护层(聚酯材料),其厚度(相对于平坦表面而言)为1μm。将光学防伪元件置于40℃10%浓度的NaOH溶液中浸泡,直至1031区域的Al/SiO2/Cr镀层恰好完全消失为止,1031以外区域上仍覆盖有Al/SiO2/Cr镀层。即完成光学防伪元件的制备。此时,规定观察方向为从102面一侧观察光学防伪元件,在1031以外的区 域上依次堆叠的Al/SiO2/Cr提供了多层结构镀层,并在1031区域形成镂空图案。
在根据本发明的优选实施方式中,还可在所述基材101中及其上下表面和/或亚波长表面微结构及光学反射小面中及其上形成衍射光变特征、微纳结构特征、印刷特征、荧光特征以及用于机读的磁、光、电、放射性特征中的一种或多种特征。
根据本发明的光学防伪元件可用作标签、标识、宽条、透明窗口、覆膜等,可以通过各种粘结机理粘附在各种物品上。例如转移到钞票、信用卡等高安全产品和高附加值产品上。本发明另一方面提供了带有所述光学防伪元件的产品,所述产品包括但不限于钞票、信用卡、
护照、有价证券等各类高安全产品及高附加值产品,以及各类包装纸、包装盒等。
以上仅示例性地描述了本发明的优选实施方案。但是本领域技术人员可以理解,在不偏离本发明构思和精神的前提下,可以对本发明做出各种等同变换或修改,从而得到的技术方案也应属于本发明的保护范围。

Claims (15)

  1. 一种光学防伪元件,该光学防伪元件包括:
    基材;
    形成于所述基材的上表面上,且至少部分覆盖所述基材上表面的亚波长表面微结构和光学反射小面结构;以及
    形成于所述亚波长表面微结构和光学反射小面结构上,且至少部分覆盖所述亚波长表面微结构和光学反射小面结构上的多层结构镀层;
    所述亚波长表面微结构与其表面覆盖的多层结构镀层形成第一光学特征,其覆盖区域为第一区域;
    所述光学反射小面结构与其表面覆盖的多层结构镀层形成第二光学特征,其覆盖区域为第二区域;
    第一区域的光学特征一区别于第二区域的光学特征二,所述光学特征一和光学特征二可以通过裸眼观察或仪器检测;
    所述特征包括:
    a、所述第一区域的光学特征一与第二区域的光学特征二颜色不同;
    b、所述第二区域中,根据光学小面的取向具有分布于其所在的二维平面内的大致随机的变化所提供的光学散射特征,和/或根据选择的光学小面的取向使得第二区域能够被观察者感觉为相对于其实际空间形状向前和/或向后突出的表面。
  2. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述多层结构镀层形成法布里-泊罗谐振腔。
  3. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述多层镀层结构形成镂空图案。
  4. 根据权利要求3所述的光学防伪元件,所述特征在于:其中所述多层镀层形成的镂空图案与第一区域和第二区域具有严格的对位关系。
  5. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述亚波长表面微结构为一维光栅,其槽型为正弦型形、矩形、锯齿形和/或它们的拼接或组合。
  6. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述亚波长表面微结构为二维光栅,其槽型为正弦型形、矩形、锯齿形和/或它们的拼接或组合。
  7. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述亚波长表面微结构的槽深为10nm-500nm。
  8. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述亚波长表面微结构 的槽深为50nm-300nm。
  9. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述亚波长表面微结构在其所在的二维平面内的特征尺寸为50nm-500nm,
  10. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述亚波长表面微结构在其所在的二维平面内的特征尺寸为200nm-400nm。
  11. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述光学反射小面在其所在的二维平面上的至少一个维度上的特征尺寸在1μm-300μm之间。
  12. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述光学反射小面在其所在的二维平面上的至少一个维度上的特征尺寸在3μm-100μm之间。
  13. 根据权利要求1所述的光学防伪元件,所述特征在于:其中所述光学反射小面在其所在的二维平面上的至少一个维度上的特征尺寸在5μm-30μm之间。
  14. 根据权利要求1-13中任一项权利要求所述的光学防伪元件,所述特征在于:其中在所述基材中及其上下表面和/或亚波长表面微结构及光学反射小面中及其上形成衍射光变特征、微纳结构特征、印刷特征、荧光特征以及用于机读的磁、光、电、放射性特征中的一种或多种特征。
  15. 一种采用根据权利要求1-14中任一项权利要求所述的光学防伪元件的光学防伪产品。
PCT/CN2016/079899 2016-04-21 2016-04-21 一种光学防伪元件及使用该光学防伪元件的光学防伪产品 WO2017181391A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/079899 WO2017181391A1 (zh) 2016-04-21 2016-04-21 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
PCT/CN2016/080896 WO2017181442A1 (zh) 2016-04-21 2016-05-03 一种光学防伪元件及光学防伪产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079899 WO2017181391A1 (zh) 2016-04-21 2016-04-21 一种光学防伪元件及使用该光学防伪元件的光学防伪产品

Publications (1)

Publication Number Publication Date
WO2017181391A1 true WO2017181391A1 (zh) 2017-10-26

Family

ID=60115435

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/079899 WO2017181391A1 (zh) 2016-04-21 2016-04-21 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
PCT/CN2016/080896 WO2017181442A1 (zh) 2016-04-21 2016-05-03 一种光学防伪元件及光学防伪产品

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080896 WO2017181442A1 (zh) 2016-04-21 2016-05-03 一种光学防伪元件及光学防伪产品

Country Status (1)

Country Link
WO (2) WO2017181391A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590419A (zh) * 2020-11-24 2021-04-02 湖南大学 一种具有纳米复合结构的光学防伪标识
WO2022161102A1 (zh) * 2021-01-26 2022-08-04 中钞特种防伪科技有限公司 片状光学颜料及其制备方法、以及防伪元件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858010B (zh) * 2018-08-23 2021-08-06 中钞特种防伪科技有限公司 光学防伪元件及其设计方法、防伪产品
EP3778256A1 (de) * 2019-08-12 2021-02-17 Hueck Folien Gesellschaft m.b.H. Sicherheitselement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161482A (zh) * 2007-11-13 2008-04-16 公安部交通管理科学研究所 用于驾驶证的防伪结构及其识别方法
CN101563640A (zh) * 2006-06-28 2009-10-21 光学物理有限责任公司 微光学安全系统及影像表示系统
WO2010034420A1 (de) * 2008-09-29 2010-04-01 Giesecke & Devrient Gmbh Gitterbild mit achromatischen gitterfeldern
CN103068526A (zh) * 2010-07-01 2013-04-24 德国捷德有限公司 防伪元件及具有这种防伪元件的有价文件
CN104385800A (zh) * 2014-10-16 2015-03-04 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563640A (zh) * 2006-06-28 2009-10-21 光学物理有限责任公司 微光学安全系统及影像表示系统
CN101161482A (zh) * 2007-11-13 2008-04-16 公安部交通管理科学研究所 用于驾驶证的防伪结构及其识别方法
WO2010034420A1 (de) * 2008-09-29 2010-04-01 Giesecke & Devrient Gmbh Gitterbild mit achromatischen gitterfeldern
CN103068526A (zh) * 2010-07-01 2013-04-24 德国捷德有限公司 防伪元件及具有这种防伪元件的有价文件
CN104385800A (zh) * 2014-10-16 2015-03-04 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590419A (zh) * 2020-11-24 2021-04-02 湖南大学 一种具有纳米复合结构的光学防伪标识
WO2022161102A1 (zh) * 2021-01-26 2022-08-04 中钞特种防伪科技有限公司 片状光学颜料及其制备方法、以及防伪元件
CN114891367A (zh) * 2021-01-26 2022-08-12 中钞特种防伪科技有限公司 片状光学颜料及其制备方法、以及防伪元件

Also Published As

Publication number Publication date
WO2017181442A1 (zh) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016058465A1 (zh) 光学防伪元件及光学防伪产品
JP4420138B2 (ja) 表示体及び情報印刷物
US9415622B2 (en) Security element with optically variable element
US7864424B2 (en) Zero order pigments (ZOP)
CN104656167B (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
US10598833B2 (en) Display
US20160170219A1 (en) Optically Variable Areal Pattern
JP6878895B2 (ja) 表示体、および、表示体の製造方法
JP2008083599A (ja) 光学素子およびそれを用いた表示体
WO2013177829A1 (zh) 一种光学防伪元件及其制备方法
WO2017181391A1 (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
JP5082378B2 (ja) 表示体及び印刷物
CN104647936A (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
CN111823749B (zh) 光学防伪元件及其制作方法、光学防伪产品
CN110936750A (zh) 光学防伪元件及防伪产品
JP2012078447A (ja) 表示体及びラベル付き物品
WO2020187287A1 (zh) 光学防伪元件及光学防伪产品
JP7196859B2 (ja) 表示体及び表示体の製造方法
JP6379547B2 (ja) 画像表示体および情報媒体
JP2014215383A (ja) 表示体、表示体付き物品およびそれらの真偽判定方法
WO2020187286A1 (zh) 光学防伪元件及光学防伪产品
JP2010173220A (ja) 偽造防止媒体
CN112848744B (zh) 光学防伪元件及防伪产品
CN117485047A (zh) 光学防伪元件和光学防伪产品
CN111716935A (zh) 光学防伪元件及光学防伪产品

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898978

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898978

Country of ref document: EP

Kind code of ref document: A1