WO2017181329A1 - 中央处理器cpu的调频方法、调频装置和处理设备 - Google Patents

中央处理器cpu的调频方法、调频装置和处理设备 Download PDF

Info

Publication number
WO2017181329A1
WO2017181329A1 PCT/CN2016/079604 CN2016079604W WO2017181329A1 WO 2017181329 A1 WO2017181329 A1 WO 2017181329A1 CN 2016079604 W CN2016079604 W CN 2016079604W WO 2017181329 A1 WO2017181329 A1 WO 2017181329A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
cpu
sub
operating
period
Prior art date
Application number
PCT/CN2016/079604
Other languages
English (en)
French (fr)
Inventor
黄犊子
康南波
况明强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/079604 priority Critical patent/WO2017181329A1/zh
Priority to CN201680057376.3A priority patent/CN108139960B/zh
Publication of WO2017181329A1 publication Critical patent/WO2017181329A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring

Definitions

  • the present invention relates to the field of communication technologies, and, more particularly, to a frequency modulation method, a frequency modulation apparatus, and a processing apparatus of a central processing unit CPU.
  • CPU Central Processing Unit
  • the CPU performance has been greatly improved, the operating frequency of the CPU has also increased significantly.
  • the increase in the operating frequency of the CPU directly leads to a significant increase in power consumption.
  • small-sized communication devices are limited by the slim design requirements, and the heat dissipation methods that can be used are very limited, resulting in CPU heat dissipation problems. The more prominent.
  • the CPU if the operating temperature of the CPU reaches the thermal protection threshold threshold, the CPU generates heat to reduce the operating temperature of the CPU by directly reducing the maximum operating frequency of the CPU.
  • the maximum operating frequency is 2.5 GHz.
  • the CPU can handle a variety of different services when operating at the highest operating frequency (2.5 GHz) during normal operation. In this case, the CPU can handle both. Low-power services (for example, browsing the web, etc.) can also handle high-power services (for example, handling large games, etc.). As the CPU continues to work longer, the CPU's operating temperature will gradually increase until the operating temperature reaches the thermal protection threshold.
  • the CPU can switch the maximum operating frequency from 2.5 GHz to 1.0 GHz to reduce CPU heat. .
  • the frequency modulation method can effectively reduce the operating temperature of the CPU, the frequency modulation method has a great influence on the working efficiency of the CPU, and the processing data is slowed down after the CPU is frequency-modulated, and the performance of the mobile phone and the like is greatly reduced, and the mobile phone operation response is slow. , game Caton and other situations.
  • the embodiment of the invention provides a frequency modulation method, a frequency modulation device and a processing device of a CPU of a central processing unit.
  • a thermal protection threshold threshold When the operating temperature of the CPU reaches a thermal protection threshold threshold, at least the frequency can be used as the highest working of the CPU in different sub-time periods. Frequency, in order to reduce the impact of frequency modulation on CPU efficiency.
  • a method for frequency modulation of a CPU includes: acquiring the CPU The working temperature; when the operating temperature is higher than or equal to the thermal protection threshold threshold, in each of the plurality of consecutive and equal duration frequency modulation periods, at least two frequencies are respectively used as the CPU Working at a highest operating frequency of at least two sub-periods of the plurality of sub-periods, the at least two frequencies being in one-to-one correspondence with the at least two sub-periods, wherein the at least two frequencies comprise a first frequency and a second frequency, The first frequency is lower than or equal to the highest operating frequency when the CPU is in normal operation, and the second frequency is lower than the first frequency.
  • the CPU may take at least two frequencies as the highest operating frequency of the CPU during the frequency modulation period.
  • the at least two frequencies include a first frequency (a relatively high frequency frequency), and a second frequency (a relatively low frequency frequency), and the at least two frequencies are taken as the highest frequency, which can reduce the influence of the frequency modulation on the CPU working efficiency. . In other words, the impact of CPU frequency modulation on the system can be reduced.
  • the frequency modulation method further includes: determining the at least two frequencies according to the service processed by the CPU or the operating temperature.
  • the most preferred frequency can be flexibly determined according to the service processed by the CPU or the operating temperature as the highest operating frequency of different sub-time periods in the FM period, so as to balance the operating temperature of the CPU and the working efficiency of the CPU during the frequency modulation process, thereby Reduce the impact of FM on CPU efficiency.
  • the most preferred first frequency can be flexibly determined according to the service processed by the CPU or the operating temperature for reducing the impact of the frequency modulation on the CPU operating efficiency, while flexibly determining the most preferred second frequency for use. Lower the temperature on the CPU.
  • determining the first frequency according to the service processed by the CPU includes: determining, according to the service processed by the CPU, The frequency at which the operating efficiency of the CPU is greater than or equal to 80% is taken as the first frequency.
  • the CPU uses the first frequency as the highest operating frequency, so that the CPU can work more than 80% in the sub-period, so that the CPU can efficiently process the service, thereby reducing the frequency modulation to work on the CPU.
  • the at least two frequencies are respectively used as at least two of the CPU in each of the frequency modulation periods Working at the highest working frequency of the time period, comprising: operating the second frequency as the highest operating frequency of the first sub-period of the CPU in the each frequency-modulating period, the first sub-period being the at least two sub-periods The first sub-period of ; in the first frequency as the CPU The highest operating frequency of the second sub-period operates in each of the frequency modulation periods.
  • the second frequency of the low frequency is first used as the highest operating frequency in the first sub-time period, and then the first frequency of the high frequency is taken as the highest in the second sub-time period.
  • the operating frequency can prevent the CPU from rising when the operating temperature exceeds the thermal protection threshold.
  • the frequency modulation method further includes: determining, according to the working temperature or the working efficiency of the CPU, the at least two sub- The duration of each sub-period in the time period.
  • the frequency of each frequency in the frequency modulation period can be flexibly adjusted as the maximum working frequency, so that the CPU can both cool down and reduce the impact of the frequency modulation on the CPU working efficiency in the frequency modulation process, thereby Improve the user experience.
  • the determining, according to the working temperature or the working efficiency of the CPU, determining each of the at least two sub-time periods The duration of the sub-period includes: if the cooling rate of the operating temperature is lower than the threshold of the cooling threshold, the duration of the second sub-period of the first frequency as the highest operating frequency and the second frequency are the highest in the frequency-modulating period
  • the ratio of the duration of the first sub-period of the operating frequency is adjusted by the first ratio to a second ratio, the second ratio being less than the first ratio; or the first ratio if the operating efficiency of the CPU is below an efficiency threshold threshold Adjusted to a third ratio, the third ratio being greater than the first ratio.
  • the first ratio is adjusted to the second ratio (ie, increasing the second frequency of the relatively low frequency as the highest operating frequency of the CPU), it is more advantageous for the CPU to cool down, if the first ratio is adjusted to The third ratio (ie, increasing the first frequency of the relatively high frequency as the highest operating frequency of the CPU) is more advantageous for the CPU to efficiently process the service.
  • the first ratio can be adjusted according to the current actual CPU requirement, thereby further balancing the operating temperature of the CPU and the working efficiency of the CPU.
  • a second aspect provides a frequency modulation method of a CPU, where the frequency modulation method includes: acquiring an operating temperature of the CPU; and when the operating temperature is higher than or equal to a thermal protection threshold threshold, each of the at least one frequency modulation period In the segment, the at least two frequencies are respectively operated as the highest operating frequency of the time segment of the CPU in at least two of the each of the frequency modulation periods, and the at least two frequencies are in one-to-one correspondence with the at least two sub-time segments, wherein
  • the at least two frequencies include a first frequency and a second frequency, the first frequency being lower than or equal to a highest operating frequency when the CPU is in normal operation, the second frequency being lower than the first frequency; when the operating temperature of the CPU is low At or equal to the temperature recovery threshold threshold When the CPU works normally, the highest operating frequency works as the highest operating frequency of the CPU.
  • the CPU rotates at least two frequencies as the CPU during the frequency modulation period from the time when the operating temperature is raised to be higher than or equal to the thermal protection threshold threshold and is lowered to be lower than or equal to the temperature recovery threshold threshold.
  • Work at the highest working frequency include a first frequency (ie, a relatively high frequency), the at least two frequencies further including a second frequency (ie, a relatively low frequency), and the at least two frequencies are rotated as the highest frequency, which may be reduced.
  • the effect of CPU frequency modulation on work efficiency In other words, the impact of CPU frequency modulation on the system can be reduced.
  • the frequency modulation method further includes: determining the at least two frequencies according to the service processed by the CPU or the operating temperature.
  • determining the first frequency according to the service processed by the CPU includes:
  • a frequency that enables the CPU to operate at 80% or more is determined as the first frequency.
  • each of the at least two sub time periods is determined according to the working temperature or the working efficiency of the CPU The length of the time period.
  • a frequency modulation device for a CPU for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the frequency modulation device comprises a module or unit for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a frequency modulation apparatus for a CPU for performing the method of any of the above-mentioned second aspect or any of the possible implementations of the second aspect.
  • the frequency modulation device comprises a module or unit for performing the method of any of the above-described second or second aspects of the second aspect.
  • a processing apparatus comprising: a bus system, a memory, a processor, and a temperature sensor.
  • the memory, the processor and the temperature sensor are connected by a bus system, the temperature sensor is configured to detect an operating temperature of the CPU, the memory is used to store an instruction, the processor is configured to execute the instruction stored in the memory, and the instruction stored in the memory is Executing the method of causing the processor to perform the first aspect or any one of the implementations of the first aspect.
  • a processing apparatus comprising: a bus system, a memory, a processor, and a temperature sensor.
  • the memory, the processor and the temperature sensor are connected by a bus system for detecting an operating temperature of the CPU, the memory is for storing an instruction, the processor is configured to execute the instruction of the memory storage, and the instruction stored in the memory Execution
  • the processor is configured to perform the method of any of the second aspect or the second aspect of the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram showing the relationship between the highest operating frequency of the CPU and time in the frequency modulation method of the CPU.
  • FIG. 2 is a schematic flowchart of a frequency modulation method of a CPU according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the relationship between the highest operating frequency of a CPU and time in a frequency modulation method of a CPU according to an embodiment of the present invention.
  • FIG 4 is another schematic diagram of the relationship between the highest operating frequency of the CPU and the time in the frequency modulation method of the CPU according to an embodiment of the present invention.
  • FIG. 5 is still another schematic diagram of the relationship between the highest operating frequency of the CPU and the time in the frequency modulation method of the CPU according to an embodiment of the present invention.
  • FIG. 6 is still another schematic diagram of the relationship between the highest operating frequency of the CPU and the time in the frequency modulation method of the CPU according to an embodiment of the present invention.
  • FIG. 7 is still another schematic diagram of the relationship between the highest operating frequency of the CPU and the time in the frequency modulation method of the CPU according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a frequency modulation apparatus of a CPU according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a processing device in accordance with an embodiment of the present invention.
  • FIG. 1 is a diagram showing the relationship between the highest operating frequency of a CPU and time in a CPU frequency modulation method.
  • the highest operating frequency of the CPU during normal operation is f 1 , wherein the highest operating frequency refers to the highest operating frequency that can be achieved when the CPU processes different services.
  • the maximum operating frequency of the CPU is f 1
  • the operating frequency of the CPU changes as the processing service changes, but the maximum operating frequency of the CPU does not exceed f 1 .
  • the operating temperature of the CPU exceeds a certain maximum set value T 1 , and the CPU adjusts the maximum operating frequency of the CPU from f 1 to f 2 .
  • the operating frequency of the CPU also changes with the processing service, but the maximum operating frequency of the CPU does not exceed f 2 . Maintaining f 2 as the highest operating frequency of the CPU to lower the operating temperature of the CPU until after the time t 2 -t 1 , the operating temperature of the CPU is lowered to the temperature recovery threshold threshold T 2 , and the CPU has its highest operating frequency From f 2 to f 1 .
  • the working efficiency of the CPU depends on the operating frequency of the CPU.
  • the frequency modulation has a great influence on the working efficiency of the CPU. For example, some high-power businesses cannot be processed.
  • the maximum operating frequency of the CUP may rise from f 2 to f 1 until after t 2 -t 1 time.
  • the length of the t 2 -t 1 time depends on how fast the CPU temperature drops. If the operating temperature of the CPU cannot be reduced to T 2 , the CPU will continue to use f 2 as the highest operating frequency.
  • the direct frequency modulation method has a large impact on the CPU's working efficiency, which causes the CPU to process the data rate slow down, and there may be a phenomenon that the CPU cannot handle certain services (such as large games).
  • the embodiment of the invention provides a frequency modulation method of the CPU, which can reduce the influence of the frequency modulation on the working efficiency of the CPU.
  • FIG. 2 is a schematic flowchart of a frequency modulation method of a CPU according to an embodiment of the present invention.
  • the frequency modulation method 100 may be executed by the CPU, or may be performed by the frequency modulation device of the control CPU.
  • the CPU performs the frequency modulation method 100 as an example.
  • the frequency modulation method 100 may include:
  • the time period may include a highest operating frequency of at least two sub-time periods, the at least two frequencies corresponding to the at least two sub-time periods, wherein the at least two frequencies may be The first frequency and the second frequency are included, and the first frequency is lower than or equal to a highest operating frequency when the CPU is in normal operation, and the second frequency is lower than the first frequency.
  • the highest operating frequency of the CPU during normal operation is f 1
  • the CPU can process a variety of services with f 1 as the highest operating frequency. While the CPU processes the service, the CPU acquires its own operating temperature. When the operating temperature of the CPU reaches the thermal protection threshold threshold, the CPU can perform periodic frequency modulation.
  • the unit period of the periodic frequency modulation may be the frequency modulation time period.
  • the CPU may sequentially use the at least two frequencies as the highest operating frequency of the CPU in different sub-periods in the frequency modulation period during the frequency modulation period (unit period).
  • the CPU is at the highest operating frequency in the corresponding sub-period, and the CPU is in the corresponding sub-time because the first frequency is higher than the second frequency.
  • the segment uses the first frequency as the highest operating frequency, which can relatively reduce the impact of the frequency modulation on the CPU efficiency.
  • the CPU can reduce the impact of the frequency modulation on the CPU operating efficiency by using the first frequency of the relatively high frequency as the highest operating frequency, and the CPU can achieve the cooling of the CPU by using the second frequency of the relatively low frequency as the highest operating frequency.
  • the CPU can work normally (ie, efficiently process the service) in a certain sub-period of each FM time period during the entire frequency modulation process. Thereby further reducing the impact of frequency modulation on CPU efficiency.
  • the prior art adopts a "one-size-fits-off" method to directly frequency-modulate. That is, the CPU maintains a lower operating frequency (eg, f 2 ) as the highest operating frequency of the CPU from the operating temperature of the CPU to the thermal protection threshold threshold until the operating temperature drops to the temperature recovery threshold threshold. At this time, the CPU regardless of the business process will not exceed the operating frequency f 2, resulting in a greater impact on the efficiency of the CPU after the CPU FM.
  • the CPU may use the at least two frequencies as the highest operating frequency of the CPU in each of the plurality of frequency modulation periods. Work (processing business).
  • the CPU may use the first frequency of the relatively high frequency as the highest operating frequency or the second frequency of the relatively low frequency as the highest operating frequency in each of the frequency modulation periods, so that the CPU can balance its own work. Temperature and own working efficiency (work performance).
  • the operating at the highest operating frequency of the CPU in at least two sub-periods of each of the FM time periods by using at least two frequencies may include:
  • the second frequency as the highest of the first sub-period of the CPU in each of the frequency modulation periods Working frequency, wherein the first sub-period is the first sub-period of each of the FM time periods;
  • the first frequency is used as the highest operating frequency of the second sub-period of the CPU in each of the frequency modulation periods.
  • the CPU processes the service with the highest operating frequency (f 1 ) during normal operation as the highest operating frequency.
  • the CPU can set its maximum operating frequency from f. 1 switching the second frequency, and using the second frequency as the highest operating frequency in the first sub-period of the first frequency-modulating period, and using the first frequency as the highest operating frequency in the second sub-period.
  • the first frequency and the second frequency are respectively used as the highest working frequency of the corresponding sub-period of each of the frequency modulation time periods.
  • the first sub-period is the first sub-period of each FM time period, so that when the operating temperature of the CPU is higher than or equal to the thermal protection threshold threshold, the CPU can reduce the frequency and cool down in time to avoid the CPU. The operating temperature continues to rise.
  • the at least two frequencies include only the first frequency and the second frequency, the first frequency being equal to the highest operating frequency (ie, f 1 ) when the CPU is operating normally, and the second frequency is f 2
  • the duration of the frequency modulation period is t x
  • the t x may include the first sub-time period t x1 and the second sub-time period t x2 .
  • the CPU sets the maximum operating frequency of the CPU by f 1 is switched to f 2, and the f 2 as t x1 highest operating frequency; elapsed time t x1 length Thereafter, the CPU switches the highest operating frequency from f 2 to f 1 and f 1 as the highest operating frequency in t x2 .
  • the first frequency f 1 is 2.5 GHz
  • the second frequency f 2 is 1.0 GHz
  • the frequency of the CPU in the first sub-period can be up to 1.0 GHz
  • the CPU can reduce the work in the first sub-time period.
  • the consumption further reduces the operating temperature; the frequency of the CPU in the second sub-period can be up to 2.5 GHz, and the CPU can run some high-power software programs such as large games in the second sub-time period. Thereby reducing the impact of frequency modulation on CPU efficiency.
  • the duration of the first sub-period t x1 and the duration of the second sub-period t x2 may or may not be equal.
  • the CPU can use the low frequency f 2 as the highest operating frequency in the first sub-time period, which can reduce the operating temperature of the CPU or delay the rise of the CPU operating temperature; f 2 is the highest operating frequency, and the CPU can use the high frequency f 1 as the highest operating frequency in the second sub-time period, which can reduce the influence of the frequency modulation on the CPU working efficiency.
  • the at least two frequencies include only the first frequency, the second frequency, and the third frequency, the first frequency being equal to a maximum operating frequency (f 1 ) when the CPU is in normal operation, the second The frequency is f 2 and the third frequency is f 3 , wherein the third frequency is lower than the first frequency and higher than the second frequency.
  • the duration of the frequency modulation period is t x
  • the t x may include a first sub-period of time t x1 , a second sub-period of time t x2 , and a third sub-period of time t x3 .
  • the operating at at least two frequencies as the highest operating frequency of the CPU in different sub-periods in each of the frequency modulation periods may include: when the operating temperature of the CPU is higher than or equal to a thermal protection threshold threshold, the CPU may the maximum operating frequency of f 1 is switched to f 2, and f 2 as the T x1 maximum operating frequency processing service; x1 after the duration t, the maximum operating frequency of the CPU from the switch to f 2 f 3, and t f 3 as a maximum operating frequency of the processing operations x3; x3 after the duration t, the maximum operating frequency of the CPU is switched from f 3 to f 1, and f 1 t X2 as the highest operating frequency of the processing operations.
  • the CPU may use three or more frequencies one by one as the highest operating frequency of different sub-periods within the frequency modulation period.
  • the CPU may use the gradient frequency modulation method according to the frequency of the three or more frequencies, or may randomly select the three or more frequencies as the highest operating frequency of different sub-time periods.
  • the CPU may also adopt a frequency modulation manner as shown in FIG. 5.
  • the frequency modulation method shown in FIG. 5 there are two sub-time periods (t x1 and t x4 ) in one frequency modulation period with f 2 as the highest operating frequency. That is, the number of at least two frequencies may be less than or equal to the number of at least two sub-periods, and at least two sub-periods in at least two sub-periods of one FM period are respectively used as the first frequency and the second frequency.
  • the highest operating frequency of the CPU falls within the scope of protection of the present invention.
  • the frequency modulation method 100 provided by the embodiment of the present invention may be activated to perform frequency modulation, or may be firstly modulated by using a prior art method, when the temperature is lowered or the CPU works. The efficiency is severely affected, and the frequency modulation method 100 provided by the embodiment of the present invention is further activated to perform frequency modulation.
  • the frequency modulation method 100 provided by the embodiment of the present invention can be applied to the frequency modulation of the CPU, the frequency modulation of other processors such as a digital signal processor, and the frequency modulation of other devices. As long as the at least two operating frequencies are taken as the highest operating frequency of a certain device to balance the operating temperature of the device and the working efficiency of the device, it falls within the protection scope of the present invention.
  • At least two frequencies are respectively used as the maximum operating frequency of the CPU in different sub-periods in each of the frequency modulation periods (or the CPU is in each It is understood that the CPU operates the different frequencies of the at least two frequencies as the CPU at a certain sub-time of the FM time period. The highest working frequency that can be achieved in the segment.
  • the duration of the frequency modulation of the CPU by using the frequency modulation method 100 may also be that the operating temperature of the CPU reaches the thermal protection threshold threshold and decreases to the temperature recovery threshold threshold (ie, after t 3 , the operating temperature of the CPU decreases to temperature recovery). Threshold threshold).
  • the t 3 is the time when the frequency modulation method 100 of the embodiment of the present invention ends and the CPU uses the highest working frequency when the CPU is working as the highest operating frequency of the CPU for processing the subsequent service.
  • the frequency modulation method 100 may further include: the CPU may determine the at least two frequencies according to the service processed by the CPU or the operating temperature.
  • the at least two frequencies may be determined according to the service processed by the CPU or the operating temperature.
  • the current operating temperature of the CPU is much higher than the temperature thermal protection threshold, and one of the at least two frequencies can be set so that the CPU can cool the CPU when the frequency is the highest operating frequency.
  • the service currently processed by the CPU is an emergency service, and one of the at least two frequencies may be set, so that when the CPU is used as the highest operating frequency, the influence of the frequency modulation on the CPU working efficiency may be reduced or The CPU is capable of handling the emergency service relatively efficiently.
  • determining the first frequency according to the service processed by the CPU may include: determining, according to the service processed by the CPU, a frequency that can make the working efficiency of the CPU greater than or equal to 80% as the first frequency.
  • the first frequency may be determined according to the service processed by the CPU, so that when the CPU uses the first frequency as the highest working frequency in the corresponding sub-time period, the efficiency of the CPU processing service may reach 80% or more, so as to facilitate the CPU. Efficient processing of services, thereby reducing the impact of frequency modulation on CPU efficiency.
  • the CPU determines, according to the processed service, a frequency that enables the working efficiency of the CPU to be greater than or equal to 80% as the first frequency, which is only a preferred embodiment of the present invention, and the first frequency may also be to make the CPU work.
  • the efficiency is greater than or equal to 60%, 70% or 90%.
  • the second frequency may be lower than or equal to a frequency threshold threshold.
  • the frequency threshold threshold can be used to determine whether the CPU can use a certain frequency as the highest operating frequency, and the CPU can efficiently reduce power consumption or efficiently lower the temperature.
  • the frequency threshold threshold can be used to determine whether the second operating frequency of the at least two frequencies can be used to lower the operating temperature of the CPU (or whether the increase in CPU operating temperature can be suppressed).
  • the frequency threshold threshold may be 1.5 GHz.
  • the CPU needs to use at least one frequency lower than or equal to 1.5 GHz as the highest operating frequency in a sub-time period of the frequency modulation period to ensure the CPU.
  • the temperature can be cooled efficiently during the frequency modulation period.
  • the second frequency is below the frequency threshold threshold, the second frequency can still handle some basic services such as browsing web pages and the like.
  • the first frequency may be higher than or equal to a working frequency threshold threshold
  • the working frequency threshold threshold may be used to determine whether the CPU can process when a certain frequency is used as the highest operating frequency. Or handle some high-power business normally.
  • the operating frequency threshold threshold may be 2.0 GHz.
  • the CPU needs to use at least one frequency higher than or equal to 2.0 GHz as the highest operating frequency in a sub-period of the frequency modulation period to ensure the The CPU can handle some high-power services during the FM period.
  • the length of the frequency modulation period in the embodiment of the present invention may be determined by a software algorithm or may be random, which is not limited by the present invention.
  • thermal protection threshold threshold or the temperature recovery threshold threshold mentioned in the embodiments of the present invention is merely illustrative, and the present invention should not be limited in any way, and the present invention should not be limited thereto. Any threshold or parameter that can be used to start or stop the FM method 100 can be used as a thermal protection threshold threshold or a temperature recovery threshold threshold, all falling within the scope of the present invention.
  • the operating temperature of the CPU is obtained, and the method is also applicable to the operating temperature of the acquiring device (for example, the mobile phone casing).
  • a temperature sensor is disposed on the mobile phone casing, and the CPU monitors the operating temperature of the mobile phone casing in real time through the temperature sensor.
  • the CPU can also adopt the same.
  • the CPU may be disposed inside the mobile phone case.
  • the frequency modulation method 100 may further include determining a duration of each of the at least two sub-periods according to the operating temperature or the working efficiency of the CPU.
  • the CPU may determine the each according to the working temperature or the working efficiency of the CPU.
  • the duration of the adjustment sub-time period may include the following situations:
  • Case 1 When the operating temperature of the CPU is higher than or equal to the temperature thermal protection threshold threshold, the duration of the sub-time period occupied by each of the at least two frequencies may be set according to the current temperature of the CPU. That is, before the frequency modulation method 100 is started, the duration of the sub-time period occupied by the at least two frequencies is determined first.
  • the CPU uses the frequency modulation method 100 provided by the embodiment of the present invention to perform frequency modulation. After a period of time, according to the current working temperature of the CPU or the working efficiency of the CPU, the duration of each sub-time period in the subsequent frequency modulation period is determined. .
  • the CPU first performs the frequency modulation by using the method of the prior art. If the temperature is lowered or the CPU working efficiency is seriously affected after the adjustment for a period of time, the frequency modulation method provided by the embodiment of the present invention may be used, and may be based on the current CPU. The working temperature or the working efficiency of the CPU determines the duration of each sub-period in the FM period.
  • Case 4 The CPU can detect the working temperature or the working efficiency in real time, so as to adjust the length of each frequency in the frequency modulation period as the highest working frequency in real time.
  • the frequency modulation method 100 is used for CPU frequency modulation. After a period of time, the operating temperature decreases slowly or the operating temperature still rises, and the CPU can reduce the higher frequency of the at least two different frequencies.
  • the duration of the highest operating frequency of the CPU that is, the length of the lower one of the at least two different frequencies as the highest operating frequency of the CPU. For example, the duration of the sub-period with the first frequency as the highest operating frequency in each frequency modulation period is reduced, and the duration of the sub-period with the second frequency as the highest operating frequency in each frequency modulation period is increased.
  • the CPU works at a maximum operating frequency of the CPU for different periods of time in different sub-periods in each of the frequency-modulating periods, and the CPU is significantly reduced in efficiency (severely), the CPU
  • the higher of the at least two different frequencies may be increased as the duration of the highest operating frequency of the CPU, ie, the lower of the at least two different frequencies is used as the duration of the highest operating frequency of the CPU.
  • the duration of the sub-period with the first frequency as the highest operating frequency in each frequency modulation period is increased, and the duration of the sub-period with the second frequency as the highest operating frequency in each frequency modulation period is reduced.
  • the higher frequency mentioned in the embodiment of the present invention as the maximum operating frequency of the CPU may refer to the duration of the sub-time period in which the higher frequency is the highest operating frequency.
  • determining the duration of each of the at least two sub-periods according to the operating temperature or the working efficiency of the CPU may include: if the cooling rate of the operating temperature is lower than a threshold of a cooling threshold, a ratio of a duration of the first frequency as the second sub-period of the highest operating frequency and a duration of the second frequency as the first sub-period of the highest operating frequency in the frequency modulation period is adjusted from the first ratio to the second ratio, The second ratio is less than the first ratio; or if the operating efficiency of the CPU is lower than the efficiency threshold threshold, the first ratio is adjusted to a third ratio, the third ratio being greater than the first ratio.
  • the ratio of the duration of the second sub-period and the duration of the first sub-period in the FM period is defined as the duty ratio of the operating frequency of the CPU.
  • the cooling rate can be obtained according to formula (1):
  • T N is the operating temperature of the CPU after N seconds
  • T 0 is the operating temperature of the CPU that triggers the CPU to start the frequency modulation (T 0 is higher than or equal to the thermal protection threshold threshold).
  • the at least two frequencies may only include a first frequency and a second frequency, the first frequency being equal to a maximum operating frequency (ie, f 1 ) when the CPU is in normal operation,
  • the second frequency is f 2 ,
  • the duty cycle of the CPU can include the following three cases:
  • the duty ratio is 1, that is, the duration of the first sub-period and the duration of the second sub-period are equal.
  • the average value of the highest operating frequency of the CPU during the frequency modulation period is This average is between f 1 and f 2 . Therefore, the CPU can reduce power consumption and reduce heat generation during the frequency modulation period, and can reduce the influence of frequency modulation on system performance.
  • the duty ratio is less than 1, that is, the duration of the second sub-period is shorter than the duration of the second sub-period.
  • the average value of the highest operating frequency of the CPU is between f 2 and between. Relative to the situation, the second situation can be more focused on the CPU frequency modulation, thereby reducing the heat generated by the CPU work.
  • the duty ratio is greater than 1, that is, the time of the second sub-period is longer than the duration of the first sub-period.
  • the average value of the highest operating frequency of the CPU is between the frequency modulation period Between f 1 .
  • the situation III focuses on reducing the impact of frequency modulation on CPU efficiency.
  • the CPU can reduce the duty ratio.
  • the duration of the frequency modulation period is 2 s
  • the current duty ratio is 3, that is, the CPU operates at the first frequency for 1.5 s, and the CPU operates at the second frequency for 0.5 s.
  • the temperature drop rate is lower than or equal to the temperature drop threshold (the operating temperature is still rising rapidly or the CPU is slow to cool), and the CPU can The ratio is adjusted to 1.
  • the time when the CPU takes the first frequency as the highest operating frequency is 1 s
  • the time when the second frequency is the highest operating frequency is 1 s. Turning the duty cycle down makes the CPU cool down.
  • the frequency modulation method 100 when the frequency modulation method 100 is adopted, the duty ratio of the operating frequency of the CPU is 1, and the frequency modulation method 100 directly switches the operating frequency to Compared with the method, although the two effects are similar in cooling, when the frequency modulation method 100 is adopted, the CPU can periodically process the high-power consumption service with the higher first frequency as the highest operating frequency, thereby reducing The effect of FM on CPU efficiency.
  • the CPU may increase the duty ratio.
  • the duration of the frequency modulation period is 2 s
  • the current duty ratio is 1, that is, during the frequency modulation period, the CPU operates at the first frequency for 1 s, and the CPU operates at the second frequency for 1 s.
  • the duty ratio can be adjusted to 3. After the adjustment, the time when the CPU takes the first frequency as the highest operating frequency is 1.5 s, and the time when the second frequency is the highest operating frequency is 0.5 s. After the duty cycle is adjusted, the effect of frequency modulation on CPU efficiency can be reduced.
  • the temperature drop threshold may be used to determine whether the operating temperature drop rate of the CPU reaches a standard. If the CPU operating temperature has a low cooling rate If the threshold of the cooling threshold is equal to or lower than the threshold value of the cooling threshold, it may indicate that the operating temperature of the CPU is slow, and the heat dissipation problem of the CPU is not solved, and the duration of the frequency modulation period occupied by the different frequencies of the at least two frequencies needs to be adjusted.
  • the efficiency threshold threshold can be used to determine whether the CPU's operating efficiency meets the standard.
  • the working efficiency of the CPU is lower than or equal to the efficiency threshold threshold, it may indicate that the frequency modulation has an excessive influence on the working efficiency of the CPU (which seriously affects the working performance of the CPU), and the frequency modulation time needs to be occupied separately for different frequencies of the at least two frequencies.
  • the length of the segment is adjusted.
  • the duty cycle of the operating frequency of the CPU can be flexibly set according to the specific situation and the specific requirements of the CPU, and can further balance the influence of the frequency modulation on the CPU operating temperature and the CPU working efficiency.
  • the above describes a frequency modulation method 100 that uses at least two frequencies as the highest operating frequency of the frequency modulation period over a plurality of consecutive and equal duration frequency modulation periods. Further, if the frequency modulation period is discontinuous or the duration is not equal, at least two frequencies may be used as the highest operating frequency of the frequency modulation period.
  • the frequency modulation method may include: acquiring an operating temperature of the CPU; and when the operating temperature is higher than or equal to a thermal protection threshold threshold, each of the at least one frequency modulation period During the frequency modulation period, at least two frequencies are respectively used as the highest operating frequency of the CPU in at least two sub-time periods in each of the frequency modulation periods, and the at least two frequencies are in one-to-one correspondence with the at least two sub-time periods.
  • the highest operating frequency when the CPU is working normally is taken as the highest operating frequency of the CPU, wherein the at least two frequencies may include the first frequency and the second frequency, The first frequency is lower than or equal to the highest operating frequency when the CPU is in normal operation, and the second frequency is lower than the first frequency.
  • the CPU may take at least two frequencies in turn as the highest operating frequency of the CPU.
  • the CPU may use one of the at least two frequencies as the highest operating frequency in one sub-period of the FM time period, and another The other one of the at least two frequencies is used as the highest operating frequency during the sub-period until the operating temperature of the CPU decreases to the temperature recovery threshold threshold.
  • the at least two frequencies may include a first frequency and a second frequency that is lower than or equal to a highest operating frequency at which the CPU is operating normally, the second frequency being lower than the first frequency.
  • the CPU may take at least two frequencies in turn as the CPU during the frequency modulation period from the time when the operating temperature is raised to be higher than or equal to the thermal protection threshold threshold to be lower than or equal to the temperature recovery threshold threshold.
  • the highest working frequency At least two frequencies have a relative
  • the high frequency (first frequency) also has a relatively low frequency (second frequency), and the at least two frequencies are taken as the highest frequency, which can reduce the influence of CPU frequency modulation on the working efficiency. In other words, the impact of CPU frequency modulation on the system can be reduced.
  • the at least two frequencies are determined according to the service processed by the CPU or the operating temperature.
  • determining the first frequency according to the service processed by the CPU may include: determining, according to the service processed by the CPU, a frequency that can make the working efficiency of the CPU greater than or equal to 80% as the first frequency.
  • determining a duration of each of the at least two sub-periods according to the operating temperature or the working efficiency of the CPU.
  • thermal protection threshold threshold the temperature recovery threshold threshold, the temperature threshold threshold, the frequency threshold threshold, and the sub-period can be referred to the related description in the foregoing embodiment, and details are not described herein again.
  • the frequency modulation method of the CPU has been described above with reference to Figs. 2 to 7, and the frequency modulation apparatus 200 of the CPU according to the embodiment of the present invention will be described in detail below with reference to Fig. 8.
  • the frequency modulation device 200 can include:
  • the obtaining module 210 is configured to obtain an operating temperature of the CPU
  • the processing module 220 is configured to: when the operating temperature is higher than or equal to the thermal protection threshold threshold, in each of the plurality of consecutive and equal duration frequency modulation periods, at least two frequencies are respectively used as the CPU Working at a highest operating frequency of at least two sub-periods of each of the frequency-modulating periods, the at least two frequencies corresponding to the at least two sub-periods, wherein the at least two frequencies may include the first frequency and the second Frequency, the first frequency is lower than or equal to a maximum operating frequency when the CPU is in normal operation, and the second frequency is lower than the first frequency.
  • the frequency modulation device 200 can cause the CPU to take at least two frequencies in turn as the highest operating frequency of the CPU during the frequency modulation period.
  • the at least two frequencies may include a first frequency (a relatively high frequency frequency), and may further include a second frequency (a relatively low frequency frequency), the CPU taking the at least two frequencies as the highest frequency, and the frequency modulation pair CPU may be reduced.
  • the impact of work efficiency In other words, the impact of CPU frequency modulation on the system can be reduced.
  • the processing module 220 is further configured to determine the at least two frequencies according to the service processed by the CPU or the operating temperature.
  • the processing module 220 is specifically configured to determine, according to the service processed by the CPU, a frequency that can make the working efficiency of the CPU greater than or equal to 80% as the first frequency.
  • the processing module 220 is configured to: use the second frequency as the maximum operating frequency of the first sub-period of the CPU in each of the FM time periods, where the first sub-period is the at least two sub-periods The first sub-period of the time period; operating at the first frequency as the highest operating frequency of the second sub-period of the CPU in each of the frequency-modulated time periods.
  • the processing module 220 is further configured to determine a duration of each of the at least two sub-periods according to the operating temperature or the working efficiency of the CPU.
  • the processing module 220 is configured to: if the temperature drop rate of the operating temperature is lower than or equal to a temperature drop threshold, the first frequency in the frequency modulation period is used as the duration of the second sub-time period of the highest operating frequency, and The ratio of the second frequency as the duration of the first sub-period of the highest operating frequency is adjusted from the first ratio to the second ratio, the second ratio being less than the first ratio, or if the operating efficiency of the CPU is below the efficiency threshold threshold, The first ratio is adjusted to a third ratio, the third ratio being greater than the first ratio.
  • thermal protection threshold threshold the temperature threshold threshold, the frequency threshold threshold, and the sub-time period can be referred to the related description in the foregoing embodiment, and details are not described herein again.
  • the frequency modulation device 200 may be the CPU that needs to be frequency modulated.
  • the frequency modulation apparatus 200 of the CPU may correspond to the frequency modulation method of the CPU of the embodiment of the present invention, and the above and other operations or functions of the respective modules in the frequency modulation apparatus 200 are respectively implemented to implement FIG. 2 to The corresponding processes of the respective methods in FIG. 7 are not described herein again for the sake of brevity.
  • FIG. 9 shows a schematic diagram of a processing device in accordance with an embodiment of the present invention.
  • the processing device 300 can include:
  • Memory 310 Memory 310, processor 320, bus system 330, and temperature sensor 340.
  • the memory 310 and the processor 320 are connected by a bus system, the temperature sensor 340 is configured to detect an operating temperature of the CPU, the memory 310 is configured to store an instruction, and the processor 320 is configured to execute an instruction stored in the memory 310. Used for:
  • the operating temperature is higher than or equal to the thermal protection threshold threshold
  • at least two frequencies are respectively used as the CPU in each of the frequency modulation periods.
  • the processing device can cause the CPU to take at least two frequencies in turn as the highest operating frequency of the CPU during the FM period.
  • the at least two frequencies may include a first frequency (a relatively high frequency frequency), and may further include a second frequency (a relatively low frequency frequency), and the at least two frequencies are taken as the highest frequency, which may reduce the frequency modulation to the CPU operating efficiency. Impact. In other words, the impact of CPU frequency modulation on the system can be reduced.
  • the processor 320 is further configured to determine the at least two frequencies according to the service processed by the CPU or the operating temperature.
  • the processor 320 is specifically configured to determine, according to the service processed by the CPU, a frequency that can make the working efficiency of the CPU greater than or equal to 80% as the first frequency.
  • the processor 320 is specifically configured to use the second frequency as the highest operating frequency of the first sub-period of the CPU in each of the frequency modulation periods, where the first sub-time period is the at least two sub-times The first sub-period of the segment;
  • the first frequency is used as the CPU operating at the highest operating frequency of the second sub-period in each of the frequency modulation periods.
  • the processor 320 is further configured to determine a duration of each of the at least two sub-periods according to the operating temperature or the working efficiency of the CPU.
  • the processor 320 is specifically configured to: if the temperature drop rate of the operating temperature is lower than or equal to a temperature drop threshold, the first frequency in the frequency modulation period is used as the duration of the second sub-time period of the highest operating frequency.
  • the ratio of the second frequency as the duration of the first sub-period of the highest operating frequency is adjusted from the first ratio to the second ratio, the second ratio being less than the first ratio; or
  • the first ratio is adjusted to a third ratio, and the third ratio is greater than the first ratio.
  • thermal protection threshold threshold the temperature threshold threshold, the frequency threshold threshold, and the sub-time period can be referred to the related description in the foregoing embodiment, and details are not described herein again.
  • the processor 320 may be the CPU that needs to be frequency-modulated, that is, the processor adjusts its own frequency (in this case, the processing device is any device including the CPU), and the processing is performed.
  • the device 320 can also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components. Wait.
  • the general purpose processor may be a microprocessor or the processor 320 may be any conventional processor or the like.
  • the memory 310 can include read only memory 310 and random access memory 310 and provides instructions and data to processor 320. A portion of memory 310 may also include non-volatile random access memory 310. For example, the memory 310 can also store information of the device type.
  • the bus system 330 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 330 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 320 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented by the hardware processor 320, or may be performed by a combination of hardware and software modules in the processor 320.
  • the software modules can be located in random memory 310, flash memory, read only memory 310, programmable read only memory 310 or electrically erasable programmable memory 310, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 310, and the processor 320 reads the information in the memory 310 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrated into another system System, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described above as separate components may or may not be physically separated.
  • the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the foregoing storage medium may include: a USB flash drive, a mobile hard disk, a read-only memory 310 (ROM), a random access memory 310 (RAM, Random Access Memory), a magnetic disk, or an optical disk, and the like.
  • a USB flash drive a mobile hard disk
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk, and the like.
  • optical disk and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

一种中央处理器CPU的调频方法、调频装置和处理设备,可以减小调频对CPU工作效率的影响。该调频方法包括:获取该CPU的工作温度(S110);当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率(S120)。

Description

中央处理器CPU的调频方法、调频装置和处理设备 技术领域
本发明涉及通信技术领域,并且更具体地,涉及一种中央处理器CPU的调频方法、调频装置和处理设备。
背景技术
智能手机的快速发展促使中央处理器(Central Processing Unit,简称为“CPU”)性能不断提升,从最初的单核CPU逐步演变到双核、四核,一直到目前主流的八核CPU。CPU性能大幅提升的同时,CPU的工作频率也大幅增加。CPU的工作频率的增加直接导致其功耗的大幅上扬,对于某些设备例如手机等小体积通信设备,受限于纤薄的设计要求,能使用的散热手段非常有限,导致CPU散热问题越来越突出。
现有技术中,如果CPU的工作温度达到热保护门限阈值,通过直接降低CPU的最高工作频率来减少CPU的发热量从而降低CPU的工作温度。例如,CPU正常工作时的最高工作频率为2.5GHz,该CPU以该正常工作时的最高工作频率(2.5GHz)作为最高工作频率工作时可以处理多种不同业务,此时,该CPU既可以处理低功耗的业务(例如,浏览网页等),也可以处理高功耗的业务(例如,处理大型游戏等)。随着CPU持续工作时间的延长,该CPU的工作温度会逐渐升高,直到该工作温度达到热保护门限阈值时,该CPU可以将该最高工作频率由2.5GHz切换为1.0GHz来减少CPU发热量。该调频方法虽然可以有效的降低CPU的工作温度,但是该调频方法对CPU的工作效率有较大影响,导致CPU调频后处理数据变慢,手机等设备性能大幅度下降,出现手机操作反应变慢,游戏卡顿等情况。
发明内容
本发明实施例提供一种中央处理器CPU的调频方法、调频装置和处理设备,当CPU的工作温度达到热保护门限阈值时,可以采用至少种频率轮流作为该CPU在不同子时间段的最高工作频率,以便于减小调频对CPU工作效率的影响。
一方面,提供一种CPU的调频方法,该调频方法包括:获取该CPU 的工作温度;当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
当该工作温度高于或等于热保护门限阈值时,该CPU可以将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。该至少两种频率包括第一频率(相对高频的频率),还包括第二频率(相对低频的频率),以该至少两种频率轮流作为最高频率,可以减小调频对CPU工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
结合第一方面,在第一方面的第一种可能的实现方式中,该调频方法还包括:根据该CPU处理的业务或该工作温度确定该至少两种频率。
可以根据CPU处理的业务或该工作温度灵活地确定出最优选的频率作为调频时间段内不同子时间段的最高工作频率,以便于在调频过程中平衡CPU的工作温度和CPU的工作效率,从而减小调频对CPU工作效率的影响。进一步地,可以根据CPU处理的业务或该工作温度,灵活地确定出最优选的第一频率以用于减小调频对CPU工作效率的影响,同时灵活地确定出最优选的第二频率以用于CPU降低温度。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第二种可能的实现方式中,根据该CPU处理的业务确定该第一频率,包括:根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
在相应的子时间段内该CPU以第一频率作为最高工作频率,可以使该CPU在该子时间段内工作效率达到80%以上,以便于CPU高效的处理业务,从而减小调频对CPU工作效率的影响。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第三种可能的实现方式中,该以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,包括:以该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高工作频率工作,该第一子时间段为该至少两个子时间段中的第一个子时间段;以第一频率作为该CPU 在该每个调频时间段中第二子时间段的最高工作频率工作。
当温度高于或等于热保护门限阈值时,先在第一子时间段内将低频的第二频率作为该最高工作频率,然后在第二子时间段内将高频的第一频率作为该最高工作频率,可以避免该CPU的工作温度超过热保护门限时依然上升。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第四种可能的实现方式中,该调频方法还包括:根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
可以根据CPU的实际需求,灵活地对调频时间段中的每种频率作为该最高工作频率占用的时长进行调节,使得CPU在调频过程中既可以降温又可以降低调频对CPU工作效率的影响,从而提高用户体验。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第五种可能的实现方式中,该根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长,包括:若该工作温度的降温率低于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值;或若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
CPU在调频过程中,如果将第一比值调节至第二比值(即增大相对低频的第二频率作为该CPU的最高工作频率的时间),更有利于CPU降温,如果将第一比值调节至第三比值(即增大相对高频的第一频率作为该CPU的最高工作频率的时间),更有利于CPU高效的处理业务。可以根据CPU当前的实际求对第一比值进行调节,从而进一步平衡CPU的工作温度和CPU的工作效率。
第二方面,提供一种CPU的调频方法,该调频方法包括:获取该CPU的工作温度;当该工作温度高于或等于热保护门限阈值时,在至少一个调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子中时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率;当该CPU的工作温度低于或等于温度恢复门限阈值 时,将CPU正常工作时的最高工作频率作为该CPU的最高工作频率工作。
该工作温度从升高到高于或等于热保护门限阈值开始至降低到低于或等于温度恢复门限阈值为止这段时间内,该CPU以至少两种频率轮流作为该CPU在调频时间段内的最高工作频率工作。至少两种频率包括第一频率(即相对高频的频率),该至少两种频率还包括第二频率(即相对低频的频率),以该至少两种频率轮流作为最高频率工作,可以减小CPU调频对工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
结合第二方面,在第二方面第一种可能的实现方式中,该调频方法还包括:根据该CPU处理的业务或该工作温度确定该至少两种频率。
结合第二方面或第二方面上述可能的实现方式,在第二方面的第二种可能的实现方式中,根据该CPU处理的业务确定该第一频率,包括:
根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
结合第二方面或第二方面上述可能的实现方式,在第二方面的第三种可能的实现方式中,根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
第三方面,提供一种CPU的调频装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该调频装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块或单元。
第四方面,提供一种CPU的调频装置,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该调频装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块或单元。
第五方面,提供一种处理设备,该处理设备包括:总线系统、存储器、处理器和温度传感器。其中,该存储器、处理器和温度传感器通过总线系统相连,温度传感器用于检测该CPU的工作温度,存储器用于存储指令,处理器用于执行存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面或第一方面的任一种实现方式中的方法。
第六方面,提供一种处理设备,该处理设备包括:总线系统、存储器、处理器和温度传感器。其中,该存储器、处理器和温度传感器通过总线系统相连,该温度传感器用于检测该CPU的工作温度,存储器用于存储指令,处理器用于执行存储器存储的指令,并且对该存储器中存储的指令的执行使 得该处理器执行第二方面或第二方面的任二种实现方式中的方法。
第七方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是CPU的调频方法中CPU的最高工作频率与时间的关系的示意图。
图2是根据本发明实施例的CPU的调频方法的示意性流程图。
图3是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的示意图。
图4是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的另一种示意图。
图5是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的又一种示意图。
图6是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的再一种示意图。
图7是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的再一种示意图。
图8是根据本发明实施例的CPU的调频装置的示意图。
图9是根据本发明实施例的处理设备的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1示出了一种CPU调频方法中CPU的最高工作频率与时间的关系的示意图。如图1所示,该CPU正常工作时的最高工作频率为f1,其中该最高工作频率是指该CPU处理的不同的业务时可以达到的最高工作频率。换句话说,当该CPU的最高工作频率为f1时,该CPU的工作频率会随着处理业务的变化而变化,但该CPU的最高工作频率不会超过f1。经过t1时间后,该CPU的工作温度超过某一个最大设定值T1,该CPU将该CPU的最高工作频率从f1调节至f2。此时,该CPU的工作频率也会随着处理业务的变化而变化,但该CPU的最高工作频率不会超过f2。维持f2作为该CPU的最高工作频率来降低该CPU的工作温度,直到经过t2-t1时间后,该CPU的工作温度降低到温度恢复门限阈值T2,该CPU将其最高工作频率由从f2升至f1
CPU的工作效率取决于该CPU的工作频率,当该CPU的工作温度高于或等于热保护门限阈值时,由于最高工作频率降至在f2,该调频对CPU的工作效率影响较大。例如,无法处理某些高功耗的业务。直到经过t2-t1时间后,该CUP的最高工作频率可以从f2上升至f1。该t2-t1时间的长短取决于CPU温度下降的快慢。如果CPU的工作温度无法降低至T2,该CPU会持续以f2作为最高工作频率。该直接调频的调频方法对该CPU的工作效率冲击较大,会导致CPU处理数据速率减慢,并且可能出现CPU无法处理某些业务(例如大型游戏)的现象。
因此,本发明实施例提出一种CPU的调频方法,可以减小调频对CPU工作效率的影响。
以下,结合图2至图7,详细说明根据本发明实施例的CPU的调频方法。
图2是根据本发明实施例的CPU的调频方法的示意性流程图。该调频方法100可以由CPU执行,也可以由控制CPU的调频装置执行,以该CPU执行该调频方法100为例,如图2所示,该调频方法100可以包括:
S110、获取该CPU的工作温度;
S120、当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段可以包括的至少两个子时间段中的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率可 以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
具体地,CPU正常工作时的最高工作频率为f1,该CPU可以在f1作为最高工作频率的情况下处理多种业务。在CPU处理业务的同时,该CPU获取自身的工作温度,当该CPU的工作温度达到热保护门限阈值以上时,该CPU可以进行周期性地调频。其中该周期性调频的单位周期可以是该调频时间段。该CPU可以在该调频时间段(单位周期)内将至少两种频率依次作为该CPU在该调频时间段中不同子时间段的最高工作频率。若该第一频率小于该CPU的正常工作时的最高频率,相比于CPU在相应子时间段以第二频率作为最高工作频率,由于第一频率高于第二频率,该CPU在相应子时间段以第一频率作为最高工作频率,可以相对减小调频对CPU工作效率的影响。换句话说,CPU以相对高频的第一频率作为最高工作频率可以减小调频对CPU工作效率的影响,而CPU以相对低频的第二频率作为最高工作频率可以实现CPU的降温。进一步地,若该第一频率等于CPU正常工作时的最高工作频率,在整个调频过程中,CPU可以在每个调频时间段中的某一个子时间段内正常工作(即高效的处理业务),从而进一步减小调频对CPU工作效率的影响。
本发明实施例与现有技术的不同点在于,现有技术采用“一刀切”的方式直接调频。即从CPU的工作温度达到热保护门限阈值开始该CPU均维持较低的工作频率(例如f2)作为该CPU的最高工作频率,直到该工作温度降低到温度恢复门限阈值为止。此时,该CPU不论处理何种业务其工作频率都不会超过f2,导致该CPU调频后对CPU工作效率的影响较大。而本发明实施例中,当该CPU的工作温度达到热保护门限阈值时,该CPU可以在多个调频时间段中的每个调频时间段内以至少两种频率逐个作为该CPU的最高工作频率工作(处理业务)。此时,该CPU在该每个调频时间段中既可以采用相对高频的第一频率作为该最高工作频率,也可以采用相对低频的第二频率作为最高工作频率,以便于CPU平衡自身的工作温度和自身的工作效率(工作性能)。
可选地,该以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,可以包括:
将该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高 工作频率,其中,该第一子时间段为每个调频时间段中的第一个子时间段;
将该第一频率作为该CPU在该每个调频时间段中的第二子时间段的最高工作频率。
具体地,该CPU以正常工作时的最高工作频率(f1)作为最高工作频率处理业务,当该CPU的工作温度高于或等于热保护门限阈值时,该CPU可以将其最高工作频率由f1切换第二频率,并在第一调频时间段的第一子时间段内以该第二频率作为最高工作频率,在第二子时间段内以该第一频率作为最高工作频率。并且在后续的调频时间段内将第一频率和第二频率分别作为该每个调频时间段相应的子时间段的最高工作频率。其中,该第一子时间段为每个调频时间段中的第一个子时间段,以便于CPU的工作温度高于或等于热保护门限阈值时,该CPU可以及时降频降温,避免CPU的工作温度持续上升。
例如,如图3所示,假设该至少两种频率仅包括第一频率和第二频率,该第一频率等于CPU正常工作时的最高工作频率(即f1),该第二频率为f2,该调频时间段的时长为tx,该tx可以包括第一子时间段tx1和第二子时间段tx2。当CPU的工作温度高于或等于热保护门限阈值时,该CPU将该CPU的最高工作频率由f1切换至f2,并将将f2作为tx1中的最高工作频率;经过tx1时长后,该CPU将该最高工作频率由f2切换至f1,将f1作为tx2中的最高工作频率。例如,第一频率f1是2.5GHz,第二频率f2是1.0GHz,该CPU在第一子时间段内的频率最高可以达到1.0GHz,该CPU在该第一子时间段内可以降低功耗进而降低该工作温度;该CPU在第二子时间段内的频率最高可以达到2.5GHz,此时该CPU在该第二子时间段内可以运行一些大型游戏等高功耗的软件程序等,从而减小调频对CPU工作效率的影响。
其中,第一子时间段tx1的时长和第二子时间段tx2的时长可以相等也可以不相等。相比持续以f1作为最高工作频率,该CPU可以在第一子时间段内以低频的f2作为最高工作频率,可以降低CPU的工作温度或延缓CPU工作温度上升的时间;相比持续以f2作为最高工作频率,该CPU可以在第二子时间段内以高频的f1作为最高工作频率,可以减小调频对CPU工作效率的影响。
又例如,如图4所示,假设该至少两种频率仅包括第一频率、第二频率和第三频率,该第一频率等于CPU正常工作时的最高工作频率(f1),该第 二频率为f2,该第三频率为f3,其中,第三频率低于第一频率且高于第二频率。该调频时间段的时长为tx,该tx可以包括第一子时间段tx1、第二子时间段tx2和第三子时间段tx3。该以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作,可以包括:当CPU的工作温度高于或等于热保护门限阈值时,该CUP可以将该最高工作频率由f1切换至f2,并将f2作为tx1中的最高工作频率处理业务;经过tx1时长后,该CPU将该最高工作频率由f2切换至f3,并将f3作为tx3中的最高工作频率处理业务;经过tx3时长后,该CPU将该最高工作频率由f3切换至f1,并将f1作为tx2中最高工作频率处理业务。
应理解,该CPU可以将三种或三种以上的频率逐个作为该调频时间段内不同子时间段的最高工作频率。其中,该CPU可以将该三种或三种以上的频率按照频率的高低采用梯度式调频方式,也可以将该三种或三种以上的频率随机的作为不同子时间段的最高工作频率。
应理解,本发明实施例中至少两种频率和至少两个时间段是一一对应的仅仅是本发明优选的实施方式,实际应用中,该CPU还可以采用如图5所示的调频方式。对于图5所示的调频方式而言,在一个调频时间段内有两个子时间段(tx1和tx4)以f2作为最高工作频率。即至少两种频率的数量可以小于或等于至少两个子时间段的数量,在一个调频时间段中的至少两个子时间段内只要有两个子时间段分别以该第一频率和该第二频率作为该CPU的最高工作频率即落入本发明保护的范围。
应理解,一旦该CPU的工作温度超过热保护门限阈值,可以即刻启动本发明实施例提供的调频方法100进行调频,也可以首先采用现有技术的方法进行调频,当温度有所降低或CPU工作效率受到严重的影响,再启动本发明实施例提供的调频方法100进行调频。
还应理解,本发明实施例提供的调频方法100,既可以应用于CPU的调频,还可以应用于其他处理器例如数字信号处理器的调频,还可以应用于其他设备的调频。只要将至少两种工作频率轮流作为某一个设备的最高工作频率,以平衡该设备的工作温度和该设备的工作效率,均落入本发明的保护范围之内。
需要说明书的是,本发明实施例中以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作(或该CPU在每个 调频时间段内以至少两种工作频率作为该CPU的最高工作频率工作),可以理解为该CPU将该至少两种频率中的不同频率分别作为该CPU在该调频时间段中的某一个子时间段内所能达到的最高工作频率。
在本发明实施例中,作为示例而非限定,采用该调频方法100对CPU进行调频的持续时间可以是CPU设定的。例如,一旦该工作温度超过温度热保护门限阈值,可以设定以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作的时间为20s(t3-t1=20s)。采用该调频方法100对CPU进行调频的持续时间还可以是该CPU的工作温度达到热保护门限阈值开始至降低到温度恢复门限阈值为止(即经过t3后,该CPU的工作温度降低到温度恢复门限阈值)。其中,t3为本发明实施例的调频方法100结束且该CPU采用正常工作时的最高工作频率作为该CPU处理后续业务的最高工作频率的时间。
可选地,该调频方法100还可以包括:该CPU可以根据自身处理的业务或该工作温度确定该至少两种频率。
具体地,为了平衡CPU的工作温度和CPU的工作效率,可以根据该CPU处理的业务或该工作温度确定该至少两种频率。例如,CPU当前的工作温度很高远超过温度热保护门限,可以设置至少两种频率中的一种频率,以使得CPU以该一种频率作为最高工作频率时可以实现CPU降温。又例如,CPU当前处理的业务为紧急业务,可以设置至少两种频率中的一种频率,以使得CPU以该一种频率作为最高工作频率时,可以减少调频对CPU工作效率的影响或可以使该CPU能够相对高效的处理该紧急业务。
可选地,根据该CPU处理的业务确定该第一频率,可以包括:根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
具体地,可以根据该CPU处理的业务确定第一频率,以便于该CPU在相应的子时间段内以第一频率作为最高工作频率时,CPU处理业务的效率可以达到80%以上,以便于CPU高效的处理业务,从而减小调频对CPU工作效率的影响。
应理解,该CPU根据处理的业务,确定能使该CPU的工作效率大于或等于80%的频率作为第一频率仅仅是本发明优选的实施方式,该第一频率还可以是使该CPU的工作效率大于或等于60%、70%或90%等的频率。
在本发明实施例中,作为示例而非限定,该第二频率可以低于或等于频率门限阈值。该频率门限阈值可以用于确定CPU以某一个频率作为最高工作频率时,该CPU可以高效降低功耗或高效降低温度。换句话说,该频率门限阈值可以用于确定至少两种频率中的第二频率作为最高工作频率时,是否可以高效降低CPU的工作温度(或是否可以抑制CPU工作温度的升高)。例如,该频率门限阈值可以为1.5GHz,在调频时间段内,该CPU需要将至少一个低于或等于1.5GHz的频率作为调频时间段的一个子时间段中的最高工作频率,以保证该CPU在该调频时间段内可以高效降温。
应理解,虽然第二频率低于频率门限阈值,但是该第二频率依然可以处理一些基本业务例如浏览网页等。
在本发明实施例中,作为示例而非限定,该第一频率可以高于或等于工作频率门限阈值,该工作频率门限阈值可以用于确定CPU以某一个频率作为最高工作频率时,是否可以处理或正常处理一些高功耗的业务。例如,该工作频率门限阈值可以为2.0GHz,在调频时间段内,该CPU需要至少将一个高于或等于2.0GHz的频率作为调频时间段的一个子时间段中的最高工作频率,以保证该CPU在该调频时间段内可以处理一些高功耗业务。
还应理解,本发明实施例中的调频时间段的长短可以是软件算法确的,也可以是随机的,本发明不做限定。
还应理解,本发明实施例提及的热保护门限阈值或温度恢复门限阈值仅为示例性说明,不应对本发明构成任何限定,本发明也不应限于此。任何可以用于启动或停止该调频方法100的阈值或参数等均可以作为热保护门限阈值或温度恢复门限阈值,均落入本发明的保护范围。
需要说明的是,本发明实施例中获取的是CPU的工作温度,本方法还适用于获取设备(例如手机壳体)的工作温度。例如,在手机壳体上设置温度传感器,CPU通过该温度传感器实时监控该手机壳体的工作温度,当手机壳体的工作温度超过手机壳体温度的最大设定值时,该CPU同样可以采用上述调频方法100。其中,该CPU可以设置于该手机壳体内部。
可选地,该调频方法100还可以包括:根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
具体地,该CPU可以根据该工作温度或该CPU的工作效率,确定该每 个调频时间段中每种频率作为最高工作频率的时长。其中,调节子时间段的时长可以包括以下几种情况:
情况一、当该CPU的工作温度高于或等于温度热保护门限阈值时,可以根据该CPU当前的温度,设定该至少两种频率中每种频率占用的子时间段的时长。即启动调频方法100前,先对该至少两种频率占用的子时间段的时长进行确定。
情况二、该CPU采用本发明实施例提供的调频方法100进行调频,经过一段时间后,根据当前该CPU的工作温度或该CPU的工作效率,确定后续调频时间段中的每个子时间段的时长。
情况三、该CPU先采用现有技术的方法进行调频,调节一段时间后如果温度有所降低或者CPU工作效率受到严重的影响可以采用本发明实施例提供的调频方法,并且可以根据当前该CPU的工作温度或该CPU的工作效率,确定调频时间段中的每个子时间段的时长。
情况四、该CPU可以实时检测该工作温度或该工作效率,从而实时调整调频时间段内每种频率作为最高工作频率的时长。
以情况二为例,采用该调频方法100进行CPU调频,经过一段时间后,该工作温度的下降较慢或该工作温度依然上升,该CPU可以减少该至少两种不同频率中较高的频率作为该CPU的最高工作频率的时长,即增大该至少两种不同频率中较低的频率作为该CPU的最高工作频率的时长。例如,减小每个调频时间段内以第一频率作为最高工作频率的子时间段的时长,增大每个调频时间段内以第二频率作为最高工作频率的子时间段的时长。
或者是,该CPU以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作一段时间后,该CPU的工作效率明显降低(卡顿严重),该CPU可以增大该至少两种不同频率中较高的频率作为该CPU的最高工作频率的时长,即降低该至少两种不同频率中较低的频率作为该CPU的最高工作频率的时长。例如,增大每个调频时间段内以第一频率作为最高工作频率的子时间段的时长,减小每个调频时间段内以第二频率作为最高工作频率的子时间段的时长。
应理解,本发明实施例提及的较高的频率作为该CPU的最高工作频率的时长可以是指:在该调频时间段内,该较高频率作为最高工作频率的子时间段的时长。
可选地,该根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长,可以包括:若该工作温度的降温率低于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值;或若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
具体地,由于第一频率比第二频率高,将第一比值调节至第二比值有利于CPU降温,将第一比值调节至第三比值有利于减小调频对CPU工作效率的影响。为了简化说明,定义该调频时间段内第二子时间段的时长和第一子时间段的时长的比值为该CPU的工作频率的占空比。该降温率可以根据公式(1)获得:
Figure PCTCN2016079604-appb-000001
其中,P为该降温率,TN为经过N秒后,该CPU的工作温度,T0为触发CPU启动调频的CPU的工作温度(T0高于或等于热保护门限阈值)。
在本发明实施例中,作为示例而非限定,假设该至少两种频率仅可以包括第一频率和第二频率,该第一频率等于CPU正常工作时的最高工作频率(即f1),该第二频率为f2
该CPU的占空比可以包括下述三种情况:
情况一:
如图3所示,占空比为1,即第一子时间段的时长和第二子时间段的时长相等。此时,在该调频时间段内,该CPU的最高工作频率的平均值为
Figure PCTCN2016079604-appb-000002
该平均值介于f1和f2之间。因此该CPU在该调频时间段内,既可以减少功耗降低热量的产生,又可以减少调频对系统性能的影响。
情况二:
如图6所示,占空比小于1,即第二子时间段的时长短于第二子时间段的时长。此时,在该调频时间段内,该CPU的最高工作频率的平均值介于f2
Figure PCTCN2016079604-appb-000003
之间。相对于情况一该情况二可以更侧重于CPU调频,从而减少CPU工作产生的热量。
情况三:
如图7所示,占空比大于1,即第二子时间段的时长长于第一子时间段的时长。此时,在该调频时间段内,该CPU的最高工作频率的平均值介于
Figure PCTCN2016079604-appb-000004
与f1之间。相对于情况一该情况三更侧重于减小调频对CPU工作效率的影响。
该CPU以该第一频率和该第二频率交替作为该最高工作频率经过一段时间后,若该工作温度的降温率低于或等于降温门限阈值,该CPU可以将占空比调小。例如,该调频时间段的时长为2s,当前占空比为3,即该CPU以第一频率工作的时间为1.5s,该CPU以第二频率工作的时间为0.5s。该CPU工作一段时间(例如可以经过5个调频时间段)后,该降温率低于或等于降温门限阈值(该工作温度依然上升很快或该CPU的降温很慢),该CPU可以将该占空比调整为1。调整后,在该调频时间段内该CPU以第一频率作为最高工作频率的时间为1s,以第二频率作为最高工作频率的时间为1s。将占空比调小更有利于CPU降温。
应理解,如果采用该调频方法100,该CPU的工作频率的占空比为1,此时该调频方法100与直接将工作频率切换为
Figure PCTCN2016079604-appb-000005
的方法相比,虽然二者在降温方面效果类似,但是采用该调频方法100时,可以使该CPU周期性的以较高的第一频率作为最高工作频率去处理高功耗的业务,从而减少调频对CPU工作效率的影响。
该CPU以该第一频率和该第二频率交替作为该最高工作频率经过一段时间后,若该CPU的工作效率低于或等于效率门限阈值时,该CPU可以将占空比调大。例如,该调频时间段的时长为2s,当前占空比为1,即在该调频时间段内,该CPU以第一频率工作的时间为1s,该CPU以第二频率工作的时间为1s。若经过一段时间(例如可以经过6个调频时间段)后,该CPU工作效率大幅度降低(例如,游戏卡顿现象严重),可以将该占空比调整为3。调整后,在该调频时间段内该CPU以第一频率作为最高工作频率的时间为1.5s,以第二频率作为最高工作频率的时间为0.5s。占空比调整后可以减小调频对CPU工作效率的影响。
在本发明实施例中,作为示例而非限定,该降温门限阈值可以用于判断该CPU的工作温度降温率是否达到标准。如果该CPU工作温度的降温率低 于或等于该降温门限阈值,可以表示该CPU的工作温度降温缓慢,该CPU的散热问题未得到解决,需要对该至少两种频率中不同频率分别占用调频时间段的时长进行调整。该效率门限阈值可以用于判断该CPU的工作效率是否达到标准。如果该CPU的工作效率低于或等于效率门限阈值,可以表示该调频对CPU的工作效率影响过大(严重影响了CPU的工作性能),需要对该至少两种频率中不同频率分别占用调频时间段的时长进行调整。
该CPU的工作频率的占空比可以根据具体情况以及CPU的具体需求进行灵活设置,能够进一步平衡调频对CPU工作温度和CPU工作效率的影响。
上文描述了一种调频方法100,该调频方法100在多个连续且时长相等的调频时间段内,将至少两种频率作为该调频时间段的最高工作频率。进一步地,如果该调频时间段不连续或时长不相等依然可以将至少两种频率作为该调频时间段的最高工作频率。
在本发明另一实施例提供的调频方法中,该调频方法可以包括:获取该CPU的工作温度;当该工作温度高于或等于热保护门限阈值时,在至少一个调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,当该CPU的工作温度低于或等于温度恢复门限阈值时,将CPU正常工作时的最高工作频率作为该CPU的最高工作频率,其中,该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
具体地,在该调频方法中,该CPU可以将至少两种频率轮流作为该CPU的最高工作频率。换句话说,只要该工作温度达到热保护门限阈值温度以上时,该CPU可以在调频时间段中的一个子时间段内将至少两种频率中的一个频率作为该最高工作频率,而在另外一个子时间段内将至少两种频率中的另外一个频率作为该最高工作频率,直至该CPU的工作温度降低到温度恢复门限阈值。该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
该工作温度从升高到高于或等于热保护门限阈值开始至降低到低于或等于温度恢复门限阈值为止这段时间内,该CPU可以将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。至少两种频率用有一个相对 高频的频率(第一频率)也有一个相对低频的频率(第二频率),以该至少两种频率轮流作为最高频率,可以减小CPU调频对工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
可选地,根据该CPU处理的业务或该工作温度确定该至少两种频率。
可选地,根据该CPU处理的业务确定该第一频率,可以包括:根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
可选地,根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
需要指出的是,上述热保护门限阈值、温度恢复门限阈值、降温门限阈值、频率门限阈值和子时间段等可以参见上述实施例中的相关描述,此处不再赘述。
上文中结合图2至图7描述了CPU的调频方法,下面将结合图8详细描述根据本发明实施例的CPU的调频装置200。该调频装置200可以包括:
获取模块210,用于获取该CPU的工作温度;
处理模块220,用于当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
因此,当该工作温度高于或等于热保护门限阈值时,该调频装置200可以使该CPU将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。该至少两种频率可以包括第一频率(相对高频的频率),还可以包括第二频率(相对低频的频率),该CPU以该至少两种频率轮流作为最高频率,可以减小调频对CPU工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
可选地,该处理模块220还用于根据该CPU处理的业务或该工作温度确定该至少两种频率。
可选地,该处理模块220具体用于根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
可选地,该处理模块220具体用于:以该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高工作频率工作,该第一子时间段为该至少两个子时间段中的第一个子时间段;以该第一频率作为该CPU在该每个调频时间段中第二子时间段的最高工作频率工作。
可选地,该处理模块220还用于根据该工作温度或该CPU的工作效率,,确定该至少两个子时间段中每个子时间段的时长。
可选地,该处理模块220具体于:若该工作温度的降温率低于或等于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值,或若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
需要指出的是,上述热保护门限阈值、降温门限阈值、频率门限阈值和子时间段等可以参见上述实施例中的相关描述,此处不再赘述。
应理解,该调频装置200可以是需要调频的该CPU。
还应理解,根据本发明实施例的CPU的调频装置200可对应于本发明实施例的CPU的调频方法,并且该调频装置200中的各个模块的上述和其它操作或功能分别为了实现图2至图7中的各个方法的相应流程,为了简洁,在此不再赘述。
图9示出了本发明实施例的处理设备的示意图。如图9所示,该处理设备300可以包括:
存储器310、处理器320、总线系统330和温度传感器340。其中,该存储器310、处理器320通过总线系统相连,该温度传感器340用于检测该CPU的工作温度,存储器310用于存储指令,处理器320用于执行存储器310存储的指令,该处理器320用于:
获取该温度传感器340检测的CPU的工作温度;
当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率, 该第二频率低于该第一频率。
因此,当该工作温度高于或等于热保护门限阈值时,该处理设备可以使该CPU将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。该至少两种频率可以包括第一频率(相对高频的频率),还可以包括第二频率(相对低频的频率),以该至少两种频率轮流作为最高频率,可以减小调频对CPU工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
可选地,该处理器320还用于根据该CPU处理的业务或该工作温度确定该至少两种频率。
可选地,该处理器320具体用于根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
可选地,该处理器320具体用于以该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高工作频率工作,该第一子时间段为该至少两个子时间段中的第一个子时间段;
以该第一频率作为该CPU在该每个调频时间段中第二子时间段的最高工作频率工作。
可选地,该处理器320还用于根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
可选地,该处理器320具体用于:若该工作温度的降温率低于或等于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值;或
若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
需要指出的是,上述热保护门限阈值、降温门限阈值、频率门限阈值和子时间段等可以参见上述实施例中的相关描述,此处不再赘述。
应理解,在本发明实施例中,该处理器320可以是该需要调频的CPU,即该处理器对自己的频率进行调节(此时,该处理设备为包括该CPU的任何设备),该处理器320还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器320也可以是任何常规的处理器等。
该存储器310可以包括只读存储器310和随机存取存储器310,并向处理器320提供指令和数据。存储器310的一部分还可以包括非易失性随机存取存储器310。例如,存储器310还可以存储设备类型的信息。
该总线系统330除可以包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统330。
在实现过程中,上述方法的各步骤可以通过处理器320中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器320执行完成,或者用处理器320中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器310,闪存、只读存储器310,可编程只读存储器310或者电可擦写可编程存储器310、寄存器等本领域成熟的存储介质中。该存储介质位于存储器310,处理器320读取存储器310中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件与硬件二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系 统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述方法中的步骤或功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该通信方法的全部或部分步骤。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器310(ROM,Read-Only Memory)、随机存取存储器310(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内,因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种中央处理器CPU的调频方法,其特征在于,所述调频方法包括:
    获取所述CPU的工作温度;
    当所述工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,所述至少两种频率和所述至少两个子时间段一一对应,其中,所述至少两种频率包括第一频率和第二频率,所述第一频率低于或等于CPU正常工作时的最高工作频率,所述第二频率低于所述第一频率。
  2. 根据权利要求1所述的调频方法,其特征在于,所述调频方法还包括:
    根据所述CPU处理的业务或所述工作温度确定所述至少两种频率。
  3. 根据权利要求2所述的调频方法,其特征在于,根据所述CPU处理的业务确定所述第一频率,包括:
    根据所述CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为所述第一频率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,包括:
    以所述第二频率作为所述CPU在所述每个调频时间段中的第一子时间段的最高工作频率工作,所述第一子时间段为所述至少两个子时间段中的第一个子时间段;
    以所述第一频率作为所述CPU在所述每个调频时间段中的第二子时间段的最高工作频率工作。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述调频方法还包括:
    根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段中的每个子时间段的时长。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段中的每个子时间段的时长,包括:
    若所述工作温度的降温率低于降温门限阈值,将所述调频时间段内所述第一频率作为最高工作频率的第二子时间段的时长和所述第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,所述第二比值小于所述第一比值;
    或若所述CPU的工作效率低于效率门限阈值,将所述第一比值调节至第三比值,所述第三比值大于所述第一比值。
  7. 一种中央处理器CPU的调频装置,其特征在于,所述调频装置包括:
    获取模块,用于获取所述CPU的工作温度;
    处理模块,用于当所述工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,所述至少两种频率和所述至少两个子时间段一一对应,其中,所述至少两种频率包括第一频率和第二频率,所述第一频率低于或等于CPU正常工作时的最高工作频率,所述第二频率低于所述第一频率。
  8. 根据权利要求7所述的调频装置,其特征在于,所述处理模块还用于根据所述CPU处理的业务或所述工作温度确定所述至少两种频率。
  9. 根据权利要求8所述的调频装置,其特征在于,所述处理模块具体用于根据所述CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为所述第一频率。
  10. 根据权利要求7至9中任一项所述的调频装置,所述处理模块具体用于:
    以所述第二频率作为所述CPU在所述每个调频时间段中第一子时间段的最高工作频率工作,所述第一子时间段为所述至少两个子时间段中的第一个子时间段;
    以所述第一频率作为所述CPU在所述每个调频时间段中第二子时间段的最高工作频率工作。
  11. 根据权利要求7至10中任一项所述的调频装置,其特征在于,所述处理模块还用于根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段中每个子时间段的时长。
  12. 根据权利要求11所述的调频装置,其特征在于,所述处理模块具体于:
    若所述工作温度的降温率低于降温门限阈值,将所述调频时间段内所述第一频率作为最高工作频率的第二子时间段的时长和所述第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,所述第二比值小于所述第一比值,或若所述CPU的工作效率低于效率门限阈值,将所述第一比值调节至第三比值,所述第三比值大于所述第一比值。
  13. 一种处理设备,其特征在于,所述处理设备包括:
    存储器、处理器、总线系统和温度传感器。其中,所述存储器、处理器和温度传感器通过总线系统相连,所述温度传感器用于检测CPU的工作温度,存储器用于存储指令,处理器用于执行存储器存储的指令;所述处理器用于:
    获取所述温度传感器检测的所述CPU的工作温度;
    当所述工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,所述至少两种频率和所述至少两个子时间段一一对应,其中,所述至少两种频率包括第一频率和第二频率,所述第一频率低于或等于CPU正常工作时的最高工作频率,所述第二频率低于所述第一频率。
  14. 根据权利要求13所述的处理设备,其特征在于,所述处理器还用于根据所述CPU处理的业务或所述工作温度确定所述至少两种频率。
  15. 根据权利要求14所述的处理设备,其特征在于,所述处理器具体用于根据所述CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为所述第一频率。
  16. 根据权利要求13至15中任一项所述的处理设备,其特征在于,所述处理器具体用于:
    以所述第二频率作为所述CPU在所述每个调频时间段中第一子时间段的最高工作频率工作,所述第一子时间段为所述至少两个子时间段中的第一个子时间段;
    以所述第一频率作为所述CPU在所述每个调频时间段中第二子时间段的最高工作频率工作。
  17. 根据权利要求13至16中任一项所述的处理设备,所述处理器还用于根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段 中的每个子时间段的时长。
  18. 根据权利要求17所述的处理设备,其特征在于,所述处理器具体用于:
    若所述工作温度的降温率低于降温门限阈值,将所述调频时间段内所述第一频率作为最高工作频率的第二子时间段的时长和所述第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,所述第二比值小于所述第一比值;或
    若所述CPU的工作效率低于效率门限阈值,将所述第一比值调节至第三比值,所述第三比值大于所述第一比值。
PCT/CN2016/079604 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备 WO2017181329A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/079604 WO2017181329A1 (zh) 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备
CN201680057376.3A CN108139960B (zh) 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079604 WO2017181329A1 (zh) 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备

Publications (1)

Publication Number Publication Date
WO2017181329A1 true WO2017181329A1 (zh) 2017-10-26

Family

ID=60115479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079604 WO2017181329A1 (zh) 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备

Country Status (2)

Country Link
CN (1) CN108139960B (zh)
WO (1) WO2017181329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240880A (zh) * 2018-08-27 2019-01-18 北京比特大陆科技有限公司 一种数字货币挖矿机的控制方法、装置及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490059A (en) * 1994-09-02 1996-02-06 Advanced Micro Devices, Inc. Heuristic clock speed optimizing mechanism and computer system employing the same
CN1936858A (zh) * 2005-09-22 2007-03-28 技嘉科技股份有限公司 在符合温度要求下提升处理器效能的装置及方法
CN104202180A (zh) * 2014-08-20 2014-12-10 浪潮(北京)电子信息产业有限公司 一种管理服务器集群的方法和服务器
CN104394675A (zh) * 2014-10-23 2015-03-04 深圳市金立通信设备有限公司 一种终端
CN104808717A (zh) * 2015-02-12 2015-07-29 广东欧珀移动通信有限公司 一种温度控制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340393A1 (de) * 2003-09-02 2005-04-07 Micro-Star International Co., Ltd., Jung He Taktimpuls-Einstellvorrichtung
WO2011011668A1 (en) * 2009-07-24 2011-01-27 Advanced Micro Devices, Inc. Determining performance sensitivities of computational units
CN104199727B (zh) * 2014-08-14 2018-11-20 北京金山安全软件有限公司 降低终端温度的方法、装置及终端
CN107341089A (zh) * 2017-06-29 2017-11-10 联想(北京)有限公司 调节电子设备的cpu频率的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490059A (en) * 1994-09-02 1996-02-06 Advanced Micro Devices, Inc. Heuristic clock speed optimizing mechanism and computer system employing the same
CN1936858A (zh) * 2005-09-22 2007-03-28 技嘉科技股份有限公司 在符合温度要求下提升处理器效能的装置及方法
CN104202180A (zh) * 2014-08-20 2014-12-10 浪潮(北京)电子信息产业有限公司 一种管理服务器集群的方法和服务器
CN104394675A (zh) * 2014-10-23 2015-03-04 深圳市金立通信设备有限公司 一种终端
CN104808717A (zh) * 2015-02-12 2015-07-29 广东欧珀移动通信有限公司 一种温度控制方法及装置

Also Published As

Publication number Publication date
CN108139960B (zh) 2020-07-07
CN108139960A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
AU2012379690B2 (en) Scheduling tasks among processor cores
US9509293B2 (en) Method and apparatus for controlling chip performance
TWI448889B (zh) 具有動態調整運作模式機制之電子裝置及其方法
WO2016101099A9 (en) Techniques for power management associated with processing received packets at a network device
KR20180121531A (ko) 최적의 퍼포먼스 및 전력 절약을 위한 적응적 주변 컴포넌트 상호접속 익스프레스 링크 하위상태 개시
EP3137965A1 (en) Cpu/gpu dcvs co-optimization for reducing power consumption in graphics frame processing
KR101720202B1 (ko) 전력 및 성능을 위한 슬립 상태들의 적응성 디스에이블링 및 인에이블링
US20140025208A1 (en) Distributed Thermal Management System for Servers
US11886262B2 (en) Power management in a multiple-processor computing device
KR101707096B1 (ko) 일반 호스트 기반 제어기 레이턴시 방법 및 장치
US11181969B2 (en) Method and system for graphics processor unit busy state detection
US20090198979A1 (en) Processor performance state optimization
WO2020233435A1 (zh) 数据处理方法、装置和系统
US10651734B2 (en) System and method for robust body braking control to suppress transient voltage overshoot
US9310872B2 (en) Processor frequency mainly depending on a target frame rate while processing a graphics application
US9223379B2 (en) Intelligent receive buffer management to optimize idle state residency
WO2017181329A1 (zh) 中央处理器cpu的调频方法、调频装置和处理设备
WO2014105133A1 (en) Table driven multiple passive trip platform passive thermal management
EP2939081B1 (en) Periodic activity alignment
JP2017502325A (ja) 動的バックライト制御能力を利用した適応性部分画面更新
US20150220371A1 (en) Energy aware information processing framework for computation and communication devices coupled to a cloud
TWI624756B (zh) 具有多核心處理器的電子裝置以及多核心處理器的管理方法
CN110928587A (zh) 控制方法和控制装置
CN110825199A (zh) 信息处理方法及其装置、电子设备和介质
US9860741B2 (en) Environmental configuration for improving wireless communication performance

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898919

Country of ref document: EP

Kind code of ref document: A1