CN108139960A - 中央处理器cpu的调频方法、调频装置和处理设备 - Google Patents

中央处理器cpu的调频方法、调频装置和处理设备 Download PDF

Info

Publication number
CN108139960A
CN108139960A CN201680057376.3A CN201680057376A CN108139960A CN 108139960 A CN108139960 A CN 108139960A CN 201680057376 A CN201680057376 A CN 201680057376A CN 108139960 A CN108139960 A CN 108139960A
Authority
CN
China
Prior art keywords
frequency
cpu
sub
time period
frequency modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680057376.3A
Other languages
English (en)
Other versions
CN108139960B (zh
Inventor
黄犊子
康南波
况明强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN108139960A publication Critical patent/CN108139960A/zh
Application granted granted Critical
Publication of CN108139960B publication Critical patent/CN108139960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

一种中央处理器CPU的调频方法、调频装置和处理设备,可以减小调频对CPU工作效率的影响。该调频方法包括:获取该CPU的工作温度(S110);当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率(S120)。

Description

中央处理器CPU的调频方法、调频装置和处理设备 技术领域
本发明涉及通信技术领域,并且更具体地,涉及一种中央处理器CPU的调频方法、调频装置和处理设备。
背景技术
智能手机的快速发展促使中央处理器(Central Processing Unit,简称为“CPU”)性能不断提升,从最初的单核CPU逐步演变到双核、四核,一直到目前主流的八核CPU。CPU性能大幅提升的同时,CPU的工作频率也大幅增加。CPU的工作频率的增加直接导致其功耗的大幅上扬,对于某些设备例如手机等小体积通信设备,受限于纤薄的设计要求,能使用的散热手段非常有限,导致CPU散热问题越来越突出。
现有技术中,如果CPU的工作温度达到热保护门限阈值,通过直接降低CPU的最高工作频率来减少CPU的发热量从而降低CPU的工作温度。例如,CPU正常工作时的最高工作频率为2.5GHz,该CPU以该正常工作时的最高工作频率(2.5GHz)作为最高工作频率工作时可以处理多种不同业务,此时,该CPU既可以处理低功耗的业务(例如,浏览网页等),也可以处理高功耗的业务(例如,处理大型游戏等)。随着CPU持续工作时间的延长,该CPU的工作温度会逐渐升高,直到该工作温度达到热保护门限阈值时,该CPU可以将该最高工作频率由2.5GHz切换为1.0GHz来减少CPU发热量。该调频方法虽然可以有效的降低CPU的工作温度,但是该调频方法对CPU的工作效率有较大影响,导致CPU调频后处理数据变慢,手机等设备性能大幅度下降,出现手机操作反应变慢,游戏卡顿等情况。
发明内容
本发明实施例提供一种中央处理器CPU的调频方法、调频装置和处理设备,当CPU的工作温度达到热保护门限阈值时,可以采用至少种频率轮流作为该CPU在不同子时间段的最高工作频率,以便于减小调频对CPU工作效率的影响。
一方面,提供一种CPU的调频方法,该调频方法包括:获取该CPU 的工作温度;当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
当该工作温度高于或等于热保护门限阈值时,该CPU可以将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。该至少两种频率包括第一频率(相对高频的频率),还包括第二频率(相对低频的频率),以该至少两种频率轮流作为最高频率,可以减小调频对CPU工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
结合第一方面,在第一方面的第一种可能的实现方式中,该调频方法还包括:根据该CPU处理的业务或该工作温度确定该至少两种频率。
可以根据CPU处理的业务或该工作温度灵活地确定出最优选的频率作为调频时间段内不同子时间段的最高工作频率,以便于在调频过程中平衡CPU的工作温度和CPU的工作效率,从而减小调频对CPU工作效率的影响。进一步地,可以根据CPU处理的业务或该工作温度,灵活地确定出最优选的第一频率以用于减小调频对CPU工作效率的影响,同时灵活地确定出最优选的第二频率以用于CPU降低温度。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第二种可能的实现方式中,根据该CPU处理的业务确定该第一频率,包括:根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
在相应的子时间段内该CPU以第一频率作为最高工作频率,可以使该CPU在该子时间段内工作效率达到80%以上,以便于CPU高效的处理业务,从而减小调频对CPU工作效率的影响。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第三种可能的实现方式中,该以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,包括:以该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高工作频率工作,该第一子时间段为该至少两个子时间段中的第一个子时间段;以第一频率作为该CPU 在该每个调频时间段中第二子时间段的最高工作频率工作。
当温度高于或等于热保护门限阈值时,先在第一子时间段内将低频的第二频率作为该最高工作频率,然后在第二子时间段内将高频的第一频率作为该最高工作频率,可以避免该CPU的工作温度超过热保护门限时依然上升。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第四种可能的实现方式中,该调频方法还包括:根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
可以根据CPU的实际需求,灵活地对调频时间段中的每种频率作为该最高工作频率占用的时长进行调节,使得CPU在调频过程中既可以降温又可以降低调频对CPU工作效率的影响,从而提高用户体验。
结合第一方面或第一方面上述可能的实现方式,在第一方面的第五种可能的实现方式中,该根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长,包括:若该工作温度的降温率低于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值;或若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
CPU在调频过程中,如果将第一比值调节至第二比值(即增大相对低频的第二频率作为该CPU的最高工作频率的时间),更有利于CPU降温,如果将第一比值调节至第三比值(即增大相对高频的第一频率作为该CPU的最高工作频率的时间),更有利于CPU高效的处理业务。可以根据CPU当前的实际求对第一比值进行调节,从而进一步平衡CPU的工作温度和CPU的工作效率。
第二方面,提供一种CPU的调频方法,该调频方法包括:获取该CPU的工作温度;当该工作温度高于或等于热保护门限阈值时,在至少一个调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子中时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率;当该CPU的工作温度低于或等于温度恢复门限阈值 时,将CPU正常工作时的最高工作频率作为该CPU的最高工作频率工作。
该工作温度从升高到高于或等于热保护门限阈值开始至降低到低于或等于温度恢复门限阈值为止这段时间内,该CPU以至少两种频率轮流作为该CPU在调频时间段内的最高工作频率工作。至少两种频率包括第一频率(即相对高频的频率),该至少两种频率还包括第二频率(即相对低频的频率),以该至少两种频率轮流作为最高频率工作,可以减小CPU调频对工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
结合第二方面,在第二方面第一种可能的实现方式中,该调频方法还包括:根据该CPU处理的业务或该工作温度确定该至少两种频率。
结合第二方面或第二方面上述可能的实现方式,在第二方面的第二种可能的实现方式中,根据该CPU处理的业务确定该第一频率,包括:
根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
结合第二方面或第二方面上述可能的实现方式,在第二方面的第三种可能的实现方式中,根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
第三方面,提供一种CPU的调频装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该调频装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块或单元。
第四方面,提供一种CPU的调频装置,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该调频装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块或单元。
第五方面,提供一种处理设备,该处理设备包括:总线系统、存储器、处理器和温度传感器。其中,该存储器、处理器和温度传感器通过总线系统相连,温度传感器用于检测该CPU的工作温度,存储器用于存储指令,处理器用于执行存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面或第一方面的任一种实现方式中的方法。
第六方面,提供一种处理设备,该处理设备包括:总线系统、存储器、处理器和温度传感器。其中,该存储器、处理器和温度传感器通过总线系统相连,该温度传感器用于检测该CPU的工作温度,存储器用于存储指令,处理器用于执行存储器存储的指令,并且对该存储器中存储的指令的执行使 得该处理器执行第二方面或第二方面的任二种实现方式中的方法。
第七方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是CPU的调频方法中CPU的最高工作频率与时间的关系的示意图。
图2是根据本发明实施例的CPU的调频方法的示意性流程图。
图3是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的示意图。
图4是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的另一种示意图。
图5是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的又一种示意图。
图6是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的再一种示意图。
图7是根据本发明实施例的CPU的调频方法中CPU的最高工作频率与时间的关系的再一种示意图。
图8是根据本发明实施例的CPU的调频装置的示意图。
图9是根据本发明实施例的处理设备的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1示出了一种CPU调频方法中CPU的最高工作频率与时间的关系的示意图。如图1所示,该CPU正常工作时的最高工作频率为f1,其中该最高工作频率是指该CPU处理的不同的业务时可以达到的最高工作频率。换句话说,当该CPU的最高工作频率为f1时,该CPU的工作频率会随着处理业务的变化而变化,但该CPU的最高工作频率不会超过f1。经过t1时间后,该CPU的工作温度超过某一个最大设定值T1,该CPU将该CPU的最高工作频率从f1调节至f2。此时,该CPU的工作频率也会随着处理业务的变化而变化,但该CPU的最高工作频率不会超过f2。维持f2作为该CPU的最高工作频率来降低该CPU的工作温度,直到经过t2-t1时间后,该CPU的工作温度降低到温度恢复门限阈值T2,该CPU将其最高工作频率由从f2升至f1
CPU的工作效率取决于该CPU的工作频率,当该CPU的工作温度高于或等于热保护门限阈值时,由于最高工作频率降至在f2,该调频对CPU的工作效率影响较大。例如,无法处理某些高功耗的业务。直到经过t2-t1时间后,该CUP的最高工作频率可以从f2上升至f1。该t2-t1时间的长短取决于CPU温度下降的快慢。如果CPU的工作温度无法降低至T2,该CPU会持续以f2作为最高工作频率。该直接调频的调频方法对该CPU的工作效率冲击较大,会导致CPU处理数据速率减慢,并且可能出现CPU无法处理某些业务(例如大型游戏)的现象。
因此,本发明实施例提出一种CPU的调频方法,可以减小调频对CPU工作效率的影响。
以下,结合图2至图7,详细说明根据本发明实施例的CPU的调频方法。
图2是根据本发明实施例的CPU的调频方法的示意性流程图。该调频方法100可以由CPU执行,也可以由控制CPU的调频装置执行,以该CPU执行该调频方法100为例,如图2所示,该调频方法100可以包括:
S110、获取该CPU的工作温度;
S120、当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段可以包括的至少两个子时间段中的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率可 以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
具体地,CPU正常工作时的最高工作频率为f1,该CPU可以在f1作为最高工作频率的情况下处理多种业务。在CPU处理业务的同时,该CPU获取自身的工作温度,当该CPU的工作温度达到热保护门限阈值以上时,该CPU可以进行周期性地调频。其中该周期性调频的单位周期可以是该调频时间段。该CPU可以在该调频时间段(单位周期)内将至少两种频率依次作为该CPU在该调频时间段中不同子时间段的最高工作频率。若该第一频率小于该CPU的正常工作时的最高频率,相比于CPU在相应子时间段以第二频率作为最高工作频率,由于第一频率高于第二频率,该CPU在相应子时间段以第一频率作为最高工作频率,可以相对减小调频对CPU工作效率的影响。换句话说,CPU以相对高频的第一频率作为最高工作频率可以减小调频对CPU工作效率的影响,而CPU以相对低频的第二频率作为最高工作频率可以实现CPU的降温。进一步地,若该第一频率等于CPU正常工作时的最高工作频率,在整个调频过程中,CPU可以在每个调频时间段中的某一个子时间段内正常工作(即高效的处理业务),从而进一步减小调频对CPU工作效率的影响。
本发明实施例与现有技术的不同点在于,现有技术采用“一刀切”的方式直接调频。即从CPU的工作温度达到热保护门限阈值开始该CPU均维持较低的工作频率(例如f2)作为该CPU的最高工作频率,直到该工作温度降低到温度恢复门限阈值为止。此时,该CPU不论处理何种业务其工作频率都不会超过f2,导致该CPU调频后对CPU工作效率的影响较大。而本发明实施例中,当该CPU的工作温度达到热保护门限阈值时,该CPU可以在多个调频时间段中的每个调频时间段内以至少两种频率逐个作为该CPU的最高工作频率工作(处理业务)。此时,该CPU在该每个调频时间段中既可以采用相对高频的第一频率作为该最高工作频率,也可以采用相对低频的第二频率作为最高工作频率,以便于CPU平衡自身的工作温度和自身的工作效率(工作性能)。
可选地,该以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,可以包括:
将该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高 工作频率,其中,该第一子时间段为每个调频时间段中的第一个子时间段;
将该第一频率作为该CPU在该每个调频时间段中的第二子时间段的最高工作频率。
具体地,该CPU以正常工作时的最高工作频率(f1)作为最高工作频率处理业务,当该CPU的工作温度高于或等于热保护门限阈值时,该CPU可以将其最高工作频率由f1切换第二频率,并在第一调频时间段的第一子时间段内以该第二频率作为最高工作频率,在第二子时间段内以该第一频率作为最高工作频率。并且在后续的调频时间段内将第一频率和第二频率分别作为该每个调频时间段相应的子时间段的最高工作频率。其中,该第一子时间段为每个调频时间段中的第一个子时间段,以便于CPU的工作温度高于或等于热保护门限阈值时,该CPU可以及时降频降温,避免CPU的工作温度持续上升。
例如,如图3所示,假设该至少两种频率仅包括第一频率和第二频率,该第一频率等于CPU正常工作时的最高工作频率(即f1),该第二频率为f2,该调频时间段的时长为tx,该tx可以包括第一子时间段tx1和第二子时间段tx2。当CPU的工作温度高于或等于热保护门限阈值时,该CPU将该CPU的最高工作频率由f1切换至f2,并将将f2作为tx1中的最高工作频率;经过tx1时长后,该CPU将该最高工作频率由f2切换至f1,将f1作为tx2中的最高工作频率。例如,第一频率f1是2.5GHz,第二频率f2是1.0GHz,该CPU在第一子时间段内的频率最高可以达到1.0GHz,该CPU在该第一子时间段内可以降低功耗进而降低该工作温度;该CPU在第二子时间段内的频率最高可以达到2.5GHz,此时该CPU在该第二子时间段内可以运行一些大型游戏等高功耗的软件程序等,从而减小调频对CPU工作效率的影响。
其中,第一子时间段tx1的时长和第二子时间段tx2的时长可以相等也可以不相等。相比持续以f1作为最高工作频率,该CPU可以在第一子时间段内以低频的f2作为最高工作频率,可以降低CPU的工作温度或延缓CPU工作温度上升的时间;相比持续以f2作为最高工作频率,该CPU可以在第二子时间段内以高频的f1作为最高工作频率,可以减小调频对CPU工作效率的影响。
又例如,如图4所示,假设该至少两种频率仅包括第一频率、第二频率和第三频率,该第一频率等于CPU正常工作时的最高工作频率(f1),该第 二频率为f2,该第三频率为f3,其中,第三频率低于第一频率且高于第二频率。该调频时间段的时长为tx,该tx可以包括第一子时间段tx1、第二子时间段tx2和第三子时间段tx3。该以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作,可以包括:当CPU的工作温度高于或等于热保护门限阈值时,该CUP可以将该最高工作频率由f1切换至f2,并将f2作为tx1中的最高工作频率处理业务;经过tx1时长后,该CPU将该最高工作频率由f2切换至f3,并将f3作为tx3中的最高工作频率处理业务;经过tx3时长后,该CPU将该最高工作频率由f3切换至f1,并将f1作为tx2中最高工作频率处理业务。
应理解,该CPU可以将三种或三种以上的频率逐个作为该调频时间段内不同子时间段的最高工作频率。其中,该CPU可以将该三种或三种以上的频率按照频率的高低采用梯度式调频方式,也可以将该三种或三种以上的频率随机的作为不同子时间段的最高工作频率。
应理解,本发明实施例中至少两种频率和至少两个时间段是一一对应的仅仅是本发明优选的实施方式,实际应用中,该CPU还可以采用如图5所示的调频方式。对于图5所示的调频方式而言,在一个调频时间段内有两个子时间段(tx1和tx4)以f2作为最高工作频率。即至少两种频率的数量可以小于或等于至少两个子时间段的数量,在一个调频时间段中的至少两个子时间段内只要有两个子时间段分别以该第一频率和该第二频率作为该CPU的最高工作频率即落入本发明保护的范围。
应理解,一旦该CPU的工作温度超过热保护门限阈值,可以即刻启动本发明实施例提供的调频方法100进行调频,也可以首先采用现有技术的方法进行调频,当温度有所降低或CPU工作效率受到严重的影响,再启动本发明实施例提供的调频方法100进行调频。
还应理解,本发明实施例提供的调频方法100,既可以应用于CPU的调频,还可以应用于其他处理器例如数字信号处理器的调频,还可以应用于其他设备的调频。只要将至少两种工作频率轮流作为某一个设备的最高工作频率,以平衡该设备的工作温度和该设备的工作效率,均落入本发明的保护范围之内。
需要说明书的是,本发明实施例中以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作(或该CPU在每个 调频时间段内以至少两种工作频率作为该CPU的最高工作频率工作),可以理解为该CPU将该至少两种频率中的不同频率分别作为该CPU在该调频时间段中的某一个子时间段内所能达到的最高工作频率。
在本发明实施例中,作为示例而非限定,采用该调频方法100对CPU进行调频的持续时间可以是CPU设定的。例如,一旦该工作温度超过温度热保护门限阈值,可以设定以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作的时间为20s(t3-t1=20s)。采用该调频方法100对CPU进行调频的持续时间还可以是该CPU的工作温度达到热保护门限阈值开始至降低到温度恢复门限阈值为止(即经过t3后,该CPU的工作温度降低到温度恢复门限阈值)。其中,t3为本发明实施例的调频方法100结束且该CPU采用正常工作时的最高工作频率作为该CPU处理后续业务的最高工作频率的时间。
可选地,该调频方法100还可以包括:该CPU可以根据自身处理的业务或该工作温度确定该至少两种频率。
具体地,为了平衡CPU的工作温度和CPU的工作效率,可以根据该CPU处理的业务或该工作温度确定该至少两种频率。例如,CPU当前的工作温度很高远超过温度热保护门限,可以设置至少两种频率中的一种频率,以使得CPU以该一种频率作为最高工作频率时可以实现CPU降温。又例如,CPU当前处理的业务为紧急业务,可以设置至少两种频率中的一种频率,以使得CPU以该一种频率作为最高工作频率时,可以减少调频对CPU工作效率的影响或可以使该CPU能够相对高效的处理该紧急业务。
可选地,根据该CPU处理的业务确定该第一频率,可以包括:根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
具体地,可以根据该CPU处理的业务确定第一频率,以便于该CPU在相应的子时间段内以第一频率作为最高工作频率时,CPU处理业务的效率可以达到80%以上,以便于CPU高效的处理业务,从而减小调频对CPU工作效率的影响。
应理解,该CPU根据处理的业务,确定能使该CPU的工作效率大于或等于80%的频率作为第一频率仅仅是本发明优选的实施方式,该第一频率还可以是使该CPU的工作效率大于或等于60%、70%或90%等的频率。
在本发明实施例中,作为示例而非限定,该第二频率可以低于或等于频率门限阈值。该频率门限阈值可以用于确定CPU以某一个频率作为最高工作频率时,该CPU可以高效降低功耗或高效降低温度。换句话说,该频率门限阈值可以用于确定至少两种频率中的第二频率作为最高工作频率时,是否可以高效降低CPU的工作温度(或是否可以抑制CPU工作温度的升高)。例如,该频率门限阈值可以为1.5GHz,在调频时间段内,该CPU需要将至少一个低于或等于1.5GHz的频率作为调频时间段的一个子时间段中的最高工作频率,以保证该CPU在该调频时间段内可以高效降温。
应理解,虽然第二频率低于频率门限阈值,但是该第二频率依然可以处理一些基本业务例如浏览网页等。
在本发明实施例中,作为示例而非限定,该第一频率可以高于或等于工作频率门限阈值,该工作频率门限阈值可以用于确定CPU以某一个频率作为最高工作频率时,是否可以处理或正常处理一些高功耗的业务。例如,该工作频率门限阈值可以为2.0GHz,在调频时间段内,该CPU需要至少将一个高于或等于2.0GHz的频率作为调频时间段的一个子时间段中的最高工作频率,以保证该CPU在该调频时间段内可以处理一些高功耗业务。
还应理解,本发明实施例中的调频时间段的长短可以是软件算法确的,也可以是随机的,本发明不做限定。
还应理解,本发明实施例提及的热保护门限阈值或温度恢复门限阈值仅为示例性说明,不应对本发明构成任何限定,本发明也不应限于此。任何可以用于启动或停止该调频方法100的阈值或参数等均可以作为热保护门限阈值或温度恢复门限阈值,均落入本发明的保护范围。
需要说明的是,本发明实施例中获取的是CPU的工作温度,本方法还适用于获取设备(例如手机壳体)的工作温度。例如,在手机壳体上设置温度传感器,CPU通过该温度传感器实时监控该手机壳体的工作温度,当手机壳体的工作温度超过手机壳体温度的最大设定值时,该CPU同样可以采用上述调频方法100。其中,该CPU可以设置于该手机壳体内部。
可选地,该调频方法100还可以包括:根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
具体地,该CPU可以根据该工作温度或该CPU的工作效率,确定该每 个调频时间段中每种频率作为最高工作频率的时长。其中,调节子时间段的时长可以包括以下几种情况:
情况一、当该CPU的工作温度高于或等于温度热保护门限阈值时,可以根据该CPU当前的温度,设定该至少两种频率中每种频率占用的子时间段的时长。即启动调频方法100前,先对该至少两种频率占用的子时间段的时长进行确定。
情况二、该CPU采用本发明实施例提供的调频方法100进行调频,经过一段时间后,根据当前该CPU的工作温度或该CPU的工作效率,确定后续调频时间段中的每个子时间段的时长。
情况三、该CPU先采用现有技术的方法进行调频,调节一段时间后如果温度有所降低或者CPU工作效率受到严重的影响可以采用本发明实施例提供的调频方法,并且可以根据当前该CPU的工作温度或该CPU的工作效率,确定调频时间段中的每个子时间段的时长。
情况四、该CPU可以实时检测该工作温度或该工作效率,从而实时调整调频时间段内每种频率作为最高工作频率的时长。
以情况二为例,采用该调频方法100进行CPU调频,经过一段时间后,该工作温度的下降较慢或该工作温度依然上升,该CPU可以减少该至少两种不同频率中较高的频率作为该CPU的最高工作频率的时长,即增大该至少两种不同频率中较低的频率作为该CPU的最高工作频率的时长。例如,减小每个调频时间段内以第一频率作为最高工作频率的子时间段的时长,增大每个调频时间段内以第二频率作为最高工作频率的子时间段的时长。
或者是,该CPU以至少两种频率分别作为该CPU在该每个调频时间段中不同子时间段的最高工作频率工作一段时间后,该CPU的工作效率明显降低(卡顿严重),该CPU可以增大该至少两种不同频率中较高的频率作为该CPU的最高工作频率的时长,即降低该至少两种不同频率中较低的频率作为该CPU的最高工作频率的时长。例如,增大每个调频时间段内以第一频率作为最高工作频率的子时间段的时长,减小每个调频时间段内以第二频率作为最高工作频率的子时间段的时长。
应理解,本发明实施例提及的较高的频率作为该CPU的最高工作频率的时长可以是指:在该调频时间段内,该较高频率作为最高工作频率的子时间段的时长。
可选地,该根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长,可以包括:若该工作温度的降温率低于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值;或若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
具体地,由于第一频率比第二频率高,将第一比值调节至第二比值有利于CPU降温,将第一比值调节至第三比值有利于减小调频对CPU工作效率的影响。为了简化说明,定义该调频时间段内第二子时间段的时长和第一子时间段的时长的比值为该CPU的工作频率的占空比。该降温率可以根据公式(1)获得:
其中,P为该降温率,TN为经过N秒后,该CPU的工作温度,T0为触发CPU启动调频的CPU的工作温度(T0高于或等于热保护门限阈值)。
在本发明实施例中,作为示例而非限定,假设该至少两种频率仅可以包括第一频率和第二频率,该第一频率等于CPU正常工作时的最高工作频率(即f1),该第二频率为f2
该CPU的占空比可以包括下述三种情况:
情况一:
如图3所示,占空比为1,即第一子时间段的时长和第二子时间段的时长相等。此时,在该调频时间段内,该CPU的最高工作频率的平均值为该平均值介于f1和f2之间。因此该CPU在该调频时间段内,既可以减少功耗降低热量的产生,又可以减少调频对系统性能的影响。
情况二:
如图6所示,占空比小于1,即第二子时间段的时长短于第二子时间段的时长。此时,在该调频时间段内,该CPU的最高工作频率的平均值介于f2之间。相对于情况一该情况二可以更侧重于CPU调频,从而减少CPU工作产生的热量。
情况三:
如图7所示,占空比大于1,即第二子时间段的时长长于第一子时间段的时长。此时,在该调频时间段内,该CPU的最高工作频率的平均值介于与f1之间。相对于情况一该情况三更侧重于减小调频对CPU工作效率的影响。
该CPU以该第一频率和该第二频率交替作为该最高工作频率经过一段时间后,若该工作温度的降温率低于或等于降温门限阈值,该CPU可以将占空比调小。例如,该调频时间段的时长为2s,当前占空比为3,即该CPU以第一频率工作的时间为1.5s,该CPU以第二频率工作的时间为0.5s。该CPU工作一段时间(例如可以经过5个调频时间段)后,该降温率低于或等于降温门限阈值(该工作温度依然上升很快或该CPU的降温很慢),该CPU可以将该占空比调整为1。调整后,在该调频时间段内该CPU以第一频率作为最高工作频率的时间为1s,以第二频率作为最高工作频率的时间为1s。将占空比调小更有利于CPU降温。
应理解,如果采用该调频方法100,该CPU的工作频率的占空比为1,此时该调频方法100与直接将工作频率切换为的方法相比,虽然二者在降温方面效果类似,但是采用该调频方法100时,可以使该CPU周期性的以较高的第一频率作为最高工作频率去处理高功耗的业务,从而减少调频对CPU工作效率的影响。
该CPU以该第一频率和该第二频率交替作为该最高工作频率经过一段时间后,若该CPU的工作效率低于或等于效率门限阈值时,该CPU可以将占空比调大。例如,该调频时间段的时长为2s,当前占空比为1,即在该调频时间段内,该CPU以第一频率工作的时间为1s,该CPU以第二频率工作的时间为1s。若经过一段时间(例如可以经过6个调频时间段)后,该CPU工作效率大幅度降低(例如,游戏卡顿现象严重),可以将该占空比调整为3。调整后,在该调频时间段内该CPU以第一频率作为最高工作频率的时间为1.5s,以第二频率作为最高工作频率的时间为0.5s。占空比调整后可以减小调频对CPU工作效率的影响。
在本发明实施例中,作为示例而非限定,该降温门限阈值可以用于判断该CPU的工作温度降温率是否达到标准。如果该CPU工作温度的降温率低 于或等于该降温门限阈值,可以表示该CPU的工作温度降温缓慢,该CPU的散热问题未得到解决,需要对该至少两种频率中不同频率分别占用调频时间段的时长进行调整。该效率门限阈值可以用于判断该CPU的工作效率是否达到标准。如果该CPU的工作效率低于或等于效率门限阈值,可以表示该调频对CPU的工作效率影响过大(严重影响了CPU的工作性能),需要对该至少两种频率中不同频率分别占用调频时间段的时长进行调整。
该CPU的工作频率的占空比可以根据具体情况以及CPU的具体需求进行灵活设置,能够进一步平衡调频对CPU工作温度和CPU工作效率的影响。
上文描述了一种调频方法100,该调频方法100在多个连续且时长相等的调频时间段内,将至少两种频率作为该调频时间段的最高工作频率。进一步地,如果该调频时间段不连续或时长不相等依然可以将至少两种频率作为该调频时间段的最高工作频率。
在本发明另一实施例提供的调频方法中,该调频方法可以包括:获取该CPU的工作温度;当该工作温度高于或等于热保护门限阈值时,在至少一个调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,当该CPU的工作温度低于或等于温度恢复门限阈值时,将CPU正常工作时的最高工作频率作为该CPU的最高工作频率,其中,该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
具体地,在该调频方法中,该CPU可以将至少两种频率轮流作为该CPU的最高工作频率。换句话说,只要该工作温度达到热保护门限阈值温度以上时,该CPU可以在调频时间段中的一个子时间段内将至少两种频率中的一个频率作为该最高工作频率,而在另外一个子时间段内将至少两种频率中的另外一个频率作为该最高工作频率,直至该CPU的工作温度降低到温度恢复门限阈值。该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
该工作温度从升高到高于或等于热保护门限阈值开始至降低到低于或等于温度恢复门限阈值为止这段时间内,该CPU可以将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。至少两种频率用有一个相对 高频的频率(第一频率)也有一个相对低频的频率(第二频率),以该至少两种频率轮流作为最高频率,可以减小CPU调频对工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
可选地,根据该CPU处理的业务或该工作温度确定该至少两种频率。
可选地,根据该CPU处理的业务确定该第一频率,可以包括:根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
可选地,根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
需要指出的是,上述热保护门限阈值、温度恢复门限阈值、降温门限阈值、频率门限阈值和子时间段等可以参见上述实施例中的相关描述,此处不再赘述。
上文中结合图2至图7描述了CPU的调频方法,下面将结合图8详细描述根据本发明实施例的CPU的调频装置200。该调频装置200可以包括:
获取模块210,用于获取该CPU的工作温度;
处理模块220,用于当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率,该第二频率低于该第一频率。
因此,当该工作温度高于或等于热保护门限阈值时,该调频装置200可以使该CPU将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。该至少两种频率可以包括第一频率(相对高频的频率),还可以包括第二频率(相对低频的频率),该CPU以该至少两种频率轮流作为最高频率,可以减小调频对CPU工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
可选地,该处理模块220还用于根据该CPU处理的业务或该工作温度确定该至少两种频率。
可选地,该处理模块220具体用于根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
可选地,该处理模块220具体用于:以该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高工作频率工作,该第一子时间段为该至少两个子时间段中的第一个子时间段;以该第一频率作为该CPU在该每个调频时间段中第二子时间段的最高工作频率工作。
可选地,该处理模块220还用于根据该工作温度或该CPU的工作效率,,确定该至少两个子时间段中每个子时间段的时长。
可选地,该处理模块220具体于:若该工作温度的降温率低于或等于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值,或若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
需要指出的是,上述热保护门限阈值、降温门限阈值、频率门限阈值和子时间段等可以参见上述实施例中的相关描述,此处不再赘述。
应理解,该调频装置200可以是需要调频的该CPU。
还应理解,根据本发明实施例的CPU的调频装置200可对应于本发明实施例的CPU的调频方法,并且该调频装置200中的各个模块的上述和其它操作或功能分别为了实现图2至图7中的各个方法的相应流程,为了简洁,在此不再赘述。
图9示出了本发明实施例的处理设备的示意图。如图9所示,该处理设备300可以包括:
存储器310、处理器320、总线系统330和温度传感器340。其中,该存储器310、处理器320通过总线系统相连,该温度传感器340用于检测该CPU的工作温度,存储器310用于存储指令,处理器320用于执行存储器310存储的指令,该处理器320用于:
获取该温度传感器340检测的CPU的工作温度;
当该工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为该CPU在该每个调频时间段中的至少两个子时间段的最高工作频率工作,该至少两种频率和该至少两个子时间段一一对应,其中,该至少两种频率可以包括第一频率和第二频率,该第一频率低于或等于CPU正常工作时的最高工作频率, 该第二频率低于该第一频率。
因此,当该工作温度高于或等于热保护门限阈值时,该处理设备可以使该CPU将至少两种频率轮流作为该CPU在调频时间段内的最高工作频率。该至少两种频率可以包括第一频率(相对高频的频率),还可以包括第二频率(相对低频的频率),以该至少两种频率轮流作为最高频率,可以减小调频对CPU工作效率的影响。换句话说,可以减小CPU调频对系统的冲击。
可选地,该处理器320还用于根据该CPU处理的业务或该工作温度确定该至少两种频率。
可选地,该处理器320具体用于根据该CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为该第一频率。
可选地,该处理器320具体用于以该第二频率作为该CPU在该每个调频时间段中第一子时间段的最高工作频率工作,该第一子时间段为该至少两个子时间段中的第一个子时间段;
以该第一频率作为该CPU在该每个调频时间段中第二子时间段的最高工作频率工作。
可选地,该处理器320还用于根据该工作温度或该CPU的工作效率,确定该至少两个子时间段中的每个子时间段的时长。
可选地,该处理器320具体用于:若该工作温度的降温率低于或等于降温门限阈值,将该调频时间段内该第一频率作为最高工作频率的第二子时间段的时长和该第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,该第二比值小于该第一比值;或
若该CPU的工作效率低于效率门限阈值,将该第一比值调节至第三比值,该第三比值大于该第一比值。
需要指出的是,上述热保护门限阈值、降温门限阈值、频率门限阈值和子时间段等可以参见上述实施例中的相关描述,此处不再赘述。
应理解,在本发明实施例中,该处理器320可以是该需要调频的CPU,即该处理器对自己的频率进行调节(此时,该处理设备为包括该CPU的任何设备),该处理器320还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器320也可以是任何常规的处理器等。
该存储器310可以包括只读存储器310和随机存取存储器310,并向处理器320提供指令和数据。存储器310的一部分还可以包括非易失性随机存取存储器310。例如,存储器310还可以存储设备类型的信息。
该总线系统330除可以包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统330。
在实现过程中,上述方法的各步骤可以通过处理器320中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器320执行完成,或者用处理器320中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器310,闪存、只读存储器310,可编程只读存储器310或者电可擦写可编程存储器310、寄存器等本领域成熟的存储介质中。该存储介质位于存储器310,处理器320读取存储器310中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件与硬件二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系 统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述方法中的步骤或功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该通信方法的全部或部分步骤。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器310(ROM,Read-Only Memory)、随机存取存储器310(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内,因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种中央处理器CPU的调频方法,其特征在于,所述调频方法包括:
    获取所述CPU的工作温度;
    当所述工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,所述至少两种频率和所述至少两个子时间段一一对应,其中,所述至少两种频率包括第一频率和第二频率,所述第一频率低于或等于CPU正常工作时的最高工作频率,所述第二频率低于所述第一频率。
  2. 根据权利要求1所述的调频方法,其特征在于,所述调频方法还包括:
    根据所述CPU处理的业务或所述工作温度确定所述至少两种频率。
  3. 根据权利要求2所述的调频方法,其特征在于,根据所述CPU处理的业务确定所述第一频率,包括:
    根据所述CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为所述第一频率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,包括:
    以所述第二频率作为所述CPU在所述每个调频时间段中的第一子时间段的最高工作频率工作,所述第一子时间段为所述至少两个子时间段中的第一个子时间段;
    以所述第一频率作为所述CPU在所述每个调频时间段中的第二子时间段的最高工作频率工作。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述调频方法还包括:
    根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段中的每个子时间段的时长。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段中的每个子时间段的时长,包括:
    若所述工作温度的降温率低于降温门限阈值,将所述调频时间段内所述第一频率作为最高工作频率的第二子时间段的时长和所述第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,所述第二比值小于所述第一比值;
    或若所述CPU的工作效率低于效率门限阈值,将所述第一比值调节至第三比值,所述第三比值大于所述第一比值。
  7. 一种中央处理器CPU的调频装置,其特征在于,所述调频装置包括:
    获取模块,用于获取所述CPU的工作温度;
    处理模块,用于当所述工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,所述至少两种频率和所述至少两个子时间段一一对应,其中,所述至少两种频率包括第一频率和第二频率,所述第一频率低于或等于CPU正常工作时的最高工作频率,所述第二频率低于所述第一频率。
  8. 根据权利要求7所述的调频装置,其特征在于,所述处理模块还用于根据所述CPU处理的业务或所述工作温度确定所述至少两种频率。
  9. 根据权利要求8所述的调频装置,其特征在于,所述处理模块具体用于根据所述CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为所述第一频率。
  10. 根据权利要求7至9中任一项所述的调频装置,所述处理模块具体用于:
    以所述第二频率作为所述CPU在所述每个调频时间段中第一子时间段的最高工作频率工作,所述第一子时间段为所述至少两个子时间段中的第一个子时间段;
    以所述第一频率作为所述CPU在所述每个调频时间段中第二子时间段的最高工作频率工作。
  11. 根据权利要求7至10中任一项所述的调频装置,其特征在于,所述处理模块还用于根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段中每个子时间段的时长。
  12. 根据权利要求11所述的调频装置,其特征在于,所述处理模块具体于:
    若所述工作温度的降温率低于降温门限阈值,将所述调频时间段内所述第一频率作为最高工作频率的第二子时间段的时长和所述第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,所述第二比值小于所述第一比值,或若所述CPU的工作效率低于效率门限阈值,将所述第一比值调节至第三比值,所述第三比值大于所述第一比值。
  13. 一种处理设备,其特征在于,所述处理设备包括:
    存储器、处理器、总线系统和温度传感器。其中,所述存储器、处理器和温度传感器通过总线系统相连,所述温度传感器用于检测CPU的工作温度,存储器用于存储指令,处理器用于执行存储器存储的指令;所述处理器用于:
    获取所述温度传感器检测的所述CPU的工作温度;
    当所述工作温度高于或等于热保护门限阈值时,在多个连续且时长相等的调频时间段中的每个调频时间段内,以至少两种频率分别作为所述CPU在所述每个调频时间段中的至少两个子时间段的最高工作频率工作,所述至少两种频率和所述至少两个子时间段一一对应,其中,所述至少两种频率包括第一频率和第二频率,所述第一频率低于或等于CPU正常工作时的最高工作频率,所述第二频率低于所述第一频率。
  14. 根据权利要求13所述的处理设备,其特征在于,所述处理器还用于根据所述CPU处理的业务或所述工作温度确定所述至少两种频率。
  15. 根据权利要求14所述的处理设备,其特征在于,所述处理器具体用于根据所述CPU处理的业务,确定能使CPU的工作效率大于或等于80%的频率作为所述第一频率。
  16. 根据权利要求13至15中任一项所述的处理设备,其特征在于,所述处理器具体用于:
    以所述第二频率作为所述CPU在所述每个调频时间段中第一子时间段的最高工作频率工作,所述第一子时间段为所述至少两个子时间段中的第一个子时间段;
    以所述第一频率作为所述CPU在所述每个调频时间段中第二子时间段的最高工作频率工作。
  17. 根据权利要求13至16中任一项所述的处理设备,所述处理器还用于根据所述工作温度或所述CPU的工作效率,确定所述至少两个子时间段 中的每个子时间段的时长。
  18. 根据权利要求17所述的处理设备,其特征在于,所述处理器具体用于:
    若所述工作温度的降温率低于降温门限阈值,将所述调频时间段内所述第一频率作为最高工作频率的第二子时间段的时长和所述第二频率作为最高工作频率的第一子时间段的时长的比值由第一比值调节至第二比值,所述第二比值小于所述第一比值;或
    若所述CPU的工作效率低于效率门限阈值,将所述第一比值调节至第三比值,所述第三比值大于所述第一比值。
CN201680057376.3A 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备 Active CN108139960B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079604 WO2017181329A1 (zh) 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备

Publications (2)

Publication Number Publication Date
CN108139960A true CN108139960A (zh) 2018-06-08
CN108139960B CN108139960B (zh) 2020-07-07

Family

ID=60115479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680057376.3A Active CN108139960B (zh) 2016-04-18 2016-04-18 中央处理器cpu的调频方法、调频装置和处理设备

Country Status (2)

Country Link
CN (1) CN108139960B (zh)
WO (1) WO2017181329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240880A (zh) * 2018-08-27 2019-01-18 北京比特大陆科技有限公司 一种数字货币挖矿机的控制方法、装置及相关设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490059A (en) * 1994-09-02 1996-02-06 Advanced Micro Devices, Inc. Heuristic clock speed optimizing mechanism and computer system employing the same
US20050049818A1 (en) * 2003-09-02 2005-03-03 Hsing-Wang Liang Dynamic clock pulse adjusting device
CN1936858A (zh) * 2005-09-22 2007-03-28 技嘉科技股份有限公司 在符合温度要求下提升处理器效能的装置及方法
WO2011011668A1 (en) * 2009-07-24 2011-01-27 Advanced Micro Devices, Inc. Determining performance sensitivities of computational units
CN104199727A (zh) * 2014-08-14 2014-12-10 北京金山安全软件有限公司 降低终端温度的方法、装置及终端
CN104202180A (zh) * 2014-08-20 2014-12-10 浪潮(北京)电子信息产业有限公司 一种管理服务器集群的方法和服务器
CN104394675A (zh) * 2014-10-23 2015-03-04 深圳市金立通信设备有限公司 一种终端
CN104808717A (zh) * 2015-02-12 2015-07-29 广东欧珀移动通信有限公司 一种温度控制方法及装置
CN107341089A (zh) * 2017-06-29 2017-11-10 联想(北京)有限公司 调节电子设备的cpu频率的方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490059A (en) * 1994-09-02 1996-02-06 Advanced Micro Devices, Inc. Heuristic clock speed optimizing mechanism and computer system employing the same
US20050049818A1 (en) * 2003-09-02 2005-03-03 Hsing-Wang Liang Dynamic clock pulse adjusting device
CN1936858A (zh) * 2005-09-22 2007-03-28 技嘉科技股份有限公司 在符合温度要求下提升处理器效能的装置及方法
WO2011011668A1 (en) * 2009-07-24 2011-01-27 Advanced Micro Devices, Inc. Determining performance sensitivities of computational units
CN104199727A (zh) * 2014-08-14 2014-12-10 北京金山安全软件有限公司 降低终端温度的方法、装置及终端
CN104202180A (zh) * 2014-08-20 2014-12-10 浪潮(北京)电子信息产业有限公司 一种管理服务器集群的方法和服务器
CN104394675A (zh) * 2014-10-23 2015-03-04 深圳市金立通信设备有限公司 一种终端
CN104808717A (zh) * 2015-02-12 2015-07-29 广东欧珀移动通信有限公司 一种温度控制方法及装置
CN107341089A (zh) * 2017-06-29 2017-11-10 联想(北京)有限公司 调节电子设备的cpu频率的方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240880A (zh) * 2018-08-27 2019-01-18 北京比特大陆科技有限公司 一种数字货币挖矿机的控制方法、装置及相关设备

Also Published As

Publication number Publication date
CN108139960B (zh) 2020-07-07
WO2017181329A1 (zh) 2017-10-26

Similar Documents

Publication Publication Date Title
US11543968B2 (en) Computer system for performing adaptive interrupt control and method for controlling interrupt thereof
AU2012379690B2 (en) Scheduling tasks among processor cores
CN107770088B (zh) 一种流量控制方法及装置
CN102789246B (zh) 一种热保护方法、装置及具有热保护功能的设备
WO2016101099A1 (en) Techniques for power management associated with processing received packets at a network device
CN104424031B (zh) 一种处理器工作频率的控制方法及装置
WO2017054003A1 (en) Battery reliability odometer
EP2936268B1 (en) Adaptively disabling and enabling sleep states for power and performance
KR101622866B1 (ko) 프로세서 주파수들 및 시스템 휴면 상태들의 합동 최적화
US9377834B2 (en) Adjusting working frequency of a processor based on monitored idle time
US10651734B2 (en) System and method for robust body braking control to suppress transient voltage overshoot
CN108983946B (zh) 一种服务器功耗控制方法、系统及设备
US9310872B2 (en) Processor frequency mainly depending on a target frame rate while processing a graphics application
CN108205474B (zh) 内存管理方法、终端设备、计算机装置以及可读存储介质
EP2798438A1 (en) Method, apparatus, and system for energy efficiency and energy conservation including non frame aware frequency selection
US9223379B2 (en) Intelligent receive buffer management to optimize idle state residency
CN108139960B (zh) 中央处理器cpu的调频方法、调频装置和处理设备
US9214966B2 (en) Method and apparatus for controlling power consumption of turbo decoder
WO2017113696A1 (zh) 调频参数的调节方法、装置、调频器及移动终端
US9785463B2 (en) Using per task time slice information to improve dynamic performance state selection
TW201346578A (zh) 快速週邊組件互連(pcie)裝置的電力狀態控制技術
US20150220371A1 (en) Energy aware information processing framework for computation and communication devices coupled to a cloud
CN106997311B (zh) 具有多核心处理器的电子装置及多核心处理器的管理方法
US9639137B2 (en) Control method and electronic device
CN115119260A (zh) 传输块大小的确定方法、装置及终端

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant