WO2017179949A1 - Dual heat pump heating and cooling apparatus - Google Patents

Dual heat pump heating and cooling apparatus Download PDF

Info

Publication number
WO2017179949A1
WO2017179949A1 PCT/KR2017/004073 KR2017004073W WO2017179949A1 WO 2017179949 A1 WO2017179949 A1 WO 2017179949A1 KR 2017004073 W KR2017004073 W KR 2017004073W WO 2017179949 A1 WO2017179949 A1 WO 2017179949A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
low temperature
high temperature
evaporator
condenser
Prior art date
Application number
PCT/KR2017/004073
Other languages
French (fr)
Korean (ko)
Inventor
이도규
Original Assignee
주식회사 신우종합에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신우종합에너지 filed Critical 주식회사 신우종합에너지
Publication of WO2017179949A1 publication Critical patent/WO2017179949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • the present invention relates to a dual heat pump air-conditioning apparatus, and more particularly, to a dual heat pump air-conditioning apparatus capable of normal operation even when the outside air is cryogenic temperature is improved stability and durability of the product.
  • a binary refrigeration cycle is a refrigeration system using refrigerants having different boiling points.
  • the refrigerant changes phase from liquid to gas or gas to liquid before and after the boiling point.
  • the dual refrigeration cycle is provided with a low temperature side refrigeration cycle using a low temperature side first refrigerant boiling at a low temperature and a high temperature side refrigeration cycle using a high temperature side second refrigerant boiling at a relatively high temperature, the evaporation of the high temperature side refrigerant And condensation of the low temperature side refrigerant occurs in one cascade heat exchanger.
  • the refrigerant discharge gas temperature at the high temperature side can be maintained at a constant high temperature of 85 ° C. or higher, which is effective for producing hot water.
  • the low temperature first refrigerant compressed by the low temperature side compressor supplies heat to the high temperature side refrigerant through the casecade heat exchanger, and then passes through the low temperature side expansion valve and the low temperature side evaporator of the outdoor unit to the low temperature side compressor. Reflowed.
  • Patent Document 0001 Korean Unexamined Patent Publication No. 10-2003-0071607
  • the present invention is to provide a binary heat pump cooling and heating device that is capable of normal operation even when the outdoor air is cryogenic temperature improves the stability and durability of the product.
  • the present invention comprises a low temperature side refrigeration cycle and a high temperature side refrigeration cycle, the low temperature side condenser and the high temperature side evaporator comprising a two-way heat exchanger coupled to heat exchange with each other,
  • the discharge side of the compressor is alternately connected to one of the high temperature side hot water condenser arranged to exchange heat with the hot water line of the hot water tank by the solenoid valve control and the high temperature side defrost cooling condenser arranged to exchange heat with the low temperature side external evaporator.
  • the low temperature side external evaporator discharge stage includes an evaporation compensation heat exchanger including the high temperature side subcondenser and the low temperature side evaporator so as to be connected to the low temperature side secondary evaporator inlet end arranged to exchange heat with the high temperature side secondary condenser.
  • the condenser discharge stage is connected to the high temperature according to the outside air temperature of the low temperature side
  • the first solenoid valve of the evaporation compensation line and the first solenoid valve are closed and the second solenoid valve of the high temperature heating line is controlled to be opened, and if the low temperature side external evaporator side outside temperature is less than or equal to a predetermined first evaporation compensation temperature;
  • the low temperature side condenser discharge end is provided to be alternately connected to one of the low temperature side defrost compensator and the low temperature side external evaporator arranged to exchange heat with the cold water line of the cold water tank by the solenoid valve control.
  • the solenoid valve is controlled to be connected to the low temperature side defrost compensator evaporator stage when the high temperature side defrost cooling condenser inlet stage is connected.
  • the low temperature side external evaporator and the high temperature side defrost cooling condenser are provided in pairs, and the low temperature side condenser discharge stage is branched in pairs so as to be connected to each low temperature side external evaporator.
  • the provided external evaporation line is connected, it is preferable that each of the high temperature side defrost cooling condenser discharge end is provided with a pressure control valve for controlling the condensation pressure of the high temperature side second refrigerant.
  • the capacity ratio between the low temperature side compressor of the low temperature side refrigeration cycle and the high temperature side compressor of the high temperature side refrigeration cycle is configured in a ratio of 1: 1, and the outside temperature of the low temperature side external evaporator is used to prevent overcompression of the low temperature side compressor. If the degree is more than a predetermined excessive temperature, it is preferable that the blowing fan rotation speed of the low-temperature external evaporator is controlled to slow down.
  • the present invention provides the following effects.
  • the low temperature side evaporator is connected to a low temperature side secondary evaporator arranged to exchange heat with a high temperature side secondary condenser at the low temperature side external evaporator discharge end, so that the residual heat of the high temperature side second refrigerant used for producing hot water can be supplied to the low temperature side first refrigerant.
  • the low temperature side of the first refrigerant can be smoothly evaporated even in a harsh environment, thereby maintaining stable heating performance and minimizing failure due to the liquid back phenomenon, thereby improving stability and durability of the device.
  • the contact area between the low temperature first refrigerant and the outside air is increased, thereby enabling a smoother evaporation, and also absorbing a large amount of heat from the outside air so as to absorb the high temperature side second refrigerant.
  • the heating efficiency of the device can be improved.
  • the high temperature side second refrigerant discharged from the high temperature side compressor is circulated to the defrost cooling condenser, and the low temperature side first refrigerant is circulated to the defrost compensation evaporator during the defrosting operation and at the same time the defrosting of the low temperature external evaporator is performed. Since the circulation process is absorbed by the low-temperature compressor and the compression process is maintained, the heat source for evaporation of the high-temperature second refrigerant can be continuously supplied to the dual-side heat exchanger, thereby enabling fast and efficient defrosting operation.
  • FIG. 1 is a block diagram of a dual heat pump air conditioning system according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing the evaporation compensation operation of the dual heat pump heating and cooling apparatus according to an embodiment of the present invention.
  • Figure 3 is a flow chart showing the defrosting operation of the dual heat pump air-conditioning device according to an embodiment of the present invention.
  • the high temperature side compressor discharge stage uses hot water by solenoid valve control.
  • the high temperature side condenser selectively The solenoid valve is controlled so as to be connected to the high temperature side evaporator inlet, the hot water side condenser discharge end is connected to the high temperature side evaporator inlet via the high temperature side condenser, and the high temperature side condenser.
  • a high temperature heating line directly connected to the inlet end of the high temperature side evaporator is provided.
  • the first solenoid valve of the evaporation compensation line When the external temperature of the low temperature side evaporator side exceeds a preset first evaporation compensation temperature, the first solenoid valve of the evaporation compensation line is closed and the The second solenoid valve of the high temperature heating line is controlled to open, and if the low temperature side external evaporator side outside temperature is less than or equal to a predetermined first evaporation compensation temperature, the first solenoid valve of the evaporation compensation line and the second electron of the high temperature heating line. The valve is controlled to open, and the second evaporation compensation temperature is set to be less than the first evaporation compensation temperature of the low temperature side external evaporator side outside temperature. The first solenoid valve is opened, but the second solenoid valve is controlled to be closed.
  • the dual heat pump air-conditioning unit can be used in a business center that wants centralized heating and cooling such as a bathroom, a steam room, a swimming pool, and a high-rise building.
  • the heating and cooling can be simultaneously performed by supplying hot and cold water, but the maintenance cost can be reduced with high thermal efficiency.
  • It is an air conditioning unit.
  • FIG. 1 is a block diagram of a dual heat pump heating and cooling device according to an embodiment of the present invention.
  • the dual heat pump air conditioning apparatus 100 has a low temperature side refrigeration cycle using a low temperature side first refrigerant boiling at a relatively low temperature and a high temperature side boiling at a relatively high temperature. It consists of a high temperature side refrigeration cycle using a second refrigerant.
  • the low temperature side first refrigerant is preferably understood to mean a refrigerant boiling at a lower temperature than the high temperature side second refrigerant.
  • R-410a which is a mixed refrigerant of HFC series in which R-32 and R-125 are mixed at a composition ratio of 50:50 may be used, and R-410a may be used at 1 atm. It has a boiling point of -51 ° C.
  • the high temperature side second refrigerant may use R-134a of the HFC series, and the R-134a has a boiling point of ⁇ 26 ° C. at 1 atmosphere.
  • the binary heat pump air-conditioning unit is a low temperature side compressor 10, a binary heat exchanger 30, a low temperature side external evaporator 17, a low temperature side defrost compensator 15, an evaporative compensation heat exchanger 40, a high temperature side compressor. 20, a high temperature side hot water condenser 21, and a high temperature side defrost cooling condenser 28.
  • the low temperature side compressor 10 serves to circulate the refrigerant by supplying heat by compressing the low temperature side first refrigerant in the low temperature side refrigeration cycle and sending it to the binary heat exchanger 30.
  • the binary heat exchanger 30 means a device in which the low temperature side condenser 11 and the high temperature side evaporator 26 are coupled to each other to exchange heat.
  • the low temperature first refrigerant discharged from the low temperature side compressor 10 flows into the low temperature side condenser 11, and the high temperature side evaporator 26 passes through the high temperature side heating expansion valve 25. 2 Refrigerant flows in.
  • the heat of the low temperature side first refrigerant through the condensation of the low temperature side first refrigerant introduced into the low temperature side condenser 11 and the high temperature side second refrigerant introduced into the high temperature side evaporator 26 are increased. It can be delivered to the refrigerant.
  • the low temperature side first refrigerant condensed in the liquid state in the low temperature side condenser 11 flows to the low temperature side external evaporator 17 or the low temperature side defrost compensator 15.
  • the low temperature side first refrigerant flows through the low temperature side heating expansion side 16 to the low temperature side external evaporator 17 and absorbs ambient heat and evaporates.
  • the condensed low temperature first refrigerant passes through the low temperature side cooling expansion piece 14, It flows to the defrost compensator (15).
  • the defrost compensation evaporator 15 is arranged to exchange heat with the cold water line of the cold water tank (c), the first low-temperature side of the coolant is passed through the cooling line as it evaporates to take the heat of the water supplied to the cold water line
  • the water can be cooled to produce cooling water.
  • power consumption can be minimized by simultaneously producing cold water and hot water at the same time when cooling and hot water are required, such as a season change, so that the efficiency of the device can be improved.
  • the fan speed of the low temperature side external evaporator 17 is controlled to be reduced. Is preferred.
  • the excess temperature may be set to 7 ⁇ 40 °C.
  • the low temperature side first refrigerant is a low temperature side compressor 10, a low temperature side condenser 11, a heating expansion valve 16, and an external evaporator 17.
  • the low temperature side first refrigerant may absorb a large amount of heat from the external evaporator 17 due to a high temperature difference from the outside air.
  • the low temperature side first refrigerant has a high heat amount
  • the low temperature side first refrigerant A large amount of energy is required to compress the refrigerant, and there is a fear that the low temperature side compressor 10 and the high temperature side compressor 20 are overloaded.
  • the blowing fan provided in the low temperature side external evaporator 17 is controlled to reduce the rotational speed per hour, and the low temperature side first refrigerant may absorb appropriate heat.
  • the rotational speed of the blowing fan is controlled to decrease as the outside temperature increases, and when the outside temperature is higher than a certain temperature, the blowing fan may be stopped.
  • the high temperature side compressor 20 serves to circulate the high temperature side second refrigerant by compressing and sending the high temperature side second refrigerant to high temperature and high pressure in a high temperature side refrigeration cycle.
  • the inlet end of the high temperature side compressor 20 is connected to the outlet end of the high temperature side evaporator 26 of the binary heat exchanger 30.
  • the high temperature side second refrigerant absorbs heat generated by the condensation of the low temperature side first refrigerant in the high temperature side evaporator 26 and evaporates, and flows through the liquid separator 27 to the high temperature side compressor 20. As it is compressed, it is circulated in a gaseous state of high temperature and high pressure.
  • the high temperature side compressor 20 discharge end is a high temperature side hot water condenser 21 and a low temperature side external evaporator 17 arranged to exchange heat with the hot water line of the hot water tank h by the solenoid valve control 20a, 20b. It is provided to be alternately connected to one of the high-temperature side defrost cooling condenser 28 arranged to heat exchange with.
  • connection is alternately connected to one another when disconnected, but it is preferable to understand that it means to keep the connection state with one of the two.
  • the discharge end of the high temperature side compressor 20 is connected to the inlet end of the high temperature side hot water condenser 21.
  • the second refrigerant of the high temperature and high pressure is condensed in the high temperature side hot water condenser 21 and supplies heat to the water supplied to the hot water line, the water passing through the hot water line may be heated to produce hot water.
  • the high temperature side compressor 20 discharge end is connected to the high temperature side defrost cooling condenser 28 inlet end.
  • the high-temperature high-pressure second refrigerant is condensed in the high-temperature defrost cooling condenser 28 and supply heat to the low-temperature external evaporator 17, such as frost or frost generated in the low-temperature external evaporator 17, etc. This can be removed.
  • the evaporation compensation heat exchanger 40 means a device coupled to the heat exchange between the low temperature side evaporator 18 and the high temperature side auxiliary condenser 23.
  • the low temperature side first refrigerant discharged from the low temperature side external evaporator 17 discharge stage or the low temperature side defrost compensation evaporator 15 discharge stage passes through the evaporation compensation heat exchanger 40 to the low temperature side compressor 10. Flows into.
  • the low temperature side external evaporator 17 discharge end and the low temperature side defrost compensator 15 discharge end are connected to the inlet end of the low temperature side evaporator 18 arranged to exchange heat with the high temperature side auxiliary condenser 23. do.
  • the high temperature side hot water condenser 21 discharge end and the high temperature side defrost cooling condenser 28 discharge end selectively pass through the high temperature side auxiliary condenser 23 according to the outside air temperature of the low temperature side external evaporator 17 side.
  • the solenoid valve controls 22a and 22b are connected to the inlet end of the high temperature side evaporator 26.
  • the high temperature side auxiliary condenser 23 it may be circulated to the receiver 24, the high temperature side heating expansion 25 and the high temperature side evaporator 26.
  • the low outside air temperature is preferably understood to mean that the outdoor temperature at which the low temperature side external evaporator 17 is disposed is low enough that the low temperature side first refrigerant cannot be evaporated smoothly. It can be different depending on, but generally means a temperature lower than -7 °C.
  • the high temperature side second refrigerant of about 30 to 50 ° C. which is condensed and discharged after producing hot water in the high temperature side hot water condenser 21, passes through the high temperature side auxiliary condenser 23, One latent heat for evaporation of the refrigerant can be supplied.
  • the high temperature side second refrigerant does not pass through the high temperature side auxiliary condenser 23 and receives the receiver 24.
  • the high temperature side heating expansion piece 25 may be circulated to the high temperature side evaporator 26.
  • the low temperature side first refrigerant absorbs heat of outdoor air in which the low temperature side external evaporator 17 is disposed and is first evaporated to the low temperature side secondary evaporator 18. Flows.
  • the high temperature side second refrigerant of 30 ° C. to 50 ° C., which is primarily condensed, produces hot water.
  • the high temperature side secondary refrigerant is secondary condensed in the high temperature side secondary condenser 23, and residual heat of 30 to 50 ° C. remaining in the high temperature side secondary refrigerant after hot water is produced may be generated in the low temperature side secondary evaporator 18.
  • the low temperature side second refrigerant may be supplied, and the low temperature side first refrigerant may be supplied with sufficient heat to be secondarily evaporated.
  • the low temperature side first refrigerant completely evaporated through the second evaporation process flows to the low temperature side compressor 10 via the liquid separator 19. Accordingly, even when the outdoor temperature is excessively reduced, the failure of the device due to incomplete evaporation of the low temperature side first refrigerant can be significantly reduced.
  • the failure of the side compressor 10 can be significantly reduced.
  • Table 1 shows the result of measuring the heating efficiency (COP) according to the outside air temperature by comparing the present invention applied to the evaporation compensation heat exchanger and the conventional invention applied only to the binary heat exchanger.
  • the low temperature side first refrigerant is R-410a
  • the high temperature side second refrigerant is R-134a
  • Each heating efficiency (COP) was measured with the side compressor and the low temperature side compressor configured to have the same capacity ratio of 1: 1.
  • the present invention to which the evaporative compensation heat exchanger is applied shows a high heating efficiency as compared with the conventional binary heat exchanger only, and the present invention is 0.1 to 0.2 when the ambient temperature is -7 ° C. or more. It shows a somewhat higher heating efficiency (COP).
  • both the present invention and the conventional invention appears to decrease the heating efficiency (COP), in the case of the present invention at a normal temperature state (at a heating efficiency of 2 or more to -38 °C) 7 °C) was maintained at 60% performance and appeared to operate normally.
  • COP heating efficiency
  • the decrease in the heating efficiency according to the decrease in the external temperature is shown to be larger than the present invention.
  • the heating efficiency is drastically reduced to less than 2 during operation. It was found that, under -25 °C driving is impossible.
  • the evaporation compensating heat exchanger 40 is provided at the discharge end of the low temperature side external evaporator 17 so that the heat exchange between the high temperature side auxiliary condenser 23 and the low temperature side evaporator 18 is possible when the outside temperature is reduced. Heating efficiency and stability can be improved.
  • the residual heat of 30 to 50 ° C. remaining in the second refrigerant on the high temperature side is supplied to the first refrigerant on the low temperature side through the evaporative compensation heat exchanger 40, so that the low-temperature first refrigerant is completely completed even in a cryogenic environment. It can be evaporated to maintain a stable heating performance, and the occurrence of failure due to the liquid back phenomenon can be minimized to significantly improve the heating stability and durability of the device.
  • an evaporation compensation line (o, k, t, m, w) connected to the inlet end of the high temperature side evaporator 26 via the high temperature side auxiliary condenser 23 at the discharge end of the hot side hot water condenser 21.
  • a high temperature heating line (o, p, m, w) directly connected to the inlet end of the high temperature side evaporator 26 without passing through the high temperature side auxiliary condenser (23).
  • the second solenoid valve 22a of the lines o, p, m, and w may be controlled to open.
  • the first evaporation compensation temperature may be set corresponding to the boiling point of the low temperature side first refrigerant, and set to ⁇ 7 ° C. when the low temperature side first refrigerant has a boiling point similar to that of R-410a. desirable.
  • the first solenoid valve 22b is opened and the second solenoid valve 22a is opened. Can be controlled to close.
  • the second evaporation compensation temperature is set to a temperature lower than the first evaporation compensation temperature, and is preferably set to -15 ° C when the low temperature side first refrigerant has a boiling point similar to that of R-410a.
  • the high temperature side hot water condenser 21 discharge end and the high temperature side defrost cooling condenser 28 discharge end are connected to a first confluence part o, and the evaporation compensation line o, k, t, m, w ) And the high temperature heating line (o, p, m, w) is branched from the first confluence (o) is connected to the inlet end of the high temperature side evaporator (26).
  • the evaporation compensation line is provided with a first confluence part (o), the first solenoid valve (22b), but the evaporation inlet portion connecting the first confluence part (o) and the inlet end of the high temperature side auxiliary condenser (23) ( k), the evaporation discharge part (t) connected to the discharge end of the high temperature side auxiliary condenser (23).
  • the high temperature heating line includes a shielding portion p provided with a first confluence portion o and a second solenoid valve 22a. At this time, the end of the evaporation discharge portion (t) and the end of the shielding portion (p) are merged into one (m), and connected to the inlet end of the high temperature side evaporator (26) (w).
  • the evaporation compensation line and the high temperature heating line are joined to the first confluence part o, the evaporation discharge part t and the shielding part p, and are connected to the high temperature side evaporator 26 inlet end (m). , w)
  • the circulation path of the high temperature side second refrigerant during the solenoid valve control can be accurately classified. That is, the circulation path through which the high temperature side second refrigerant flows to the evaporator 26 without passing through the sub condenser 23 or the sub condenser 23 corresponding to the outdoor temperature where the low temperature side external evaporator 17 is disposed is It can be driven accurately.
  • Figure 2 is a flow chart showing the evaporation compensation operation of the dual heat pump cooling and heating apparatus according to an embodiment of the present invention.
  • the first solenoid valve 22b of the evaporation compensation line is closed, and the second solenoid valve 22a of the high temperature heating line is opened (s21). That is, the high temperature side second refrigerant is circulated without passing through the evaporation compensation heat exchanger 40.
  • the low temperature side refrigeration cycle during the heating operation is the low temperature side compressor (10), low temperature side condenser when the outside temperature exceeds -7 °C
  • the high temperature side refrigeration cycle includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a high temperature side hot water condenser 21, a receiver 24, and a high temperature side heating expansion valve 25. It has a circulation structure.
  • heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant is performed between the binary heat exchanger 30, that is, the low temperature side condenser 11 and the high temperature side evaporator 26, and the condensation step of the low temperature side first refrigerant.
  • Exothermic heat generated at may be used as a heat source for evaporation of the high temperature side second refrigerant.
  • the heat generated during the condensation of the low temperature side first refrigerant in the low temperature side condenser 11 is smoothly transferred to the high temperature side second refrigerant, and the heat loss of the high temperature side second refrigerant is reduced, 2
  • the refrigerant can be heated quickly.
  • the low temperature side first refrigerant is compressed in the low temperature side compressor 10, condensed in the low temperature side condenser 11 of the binary heat exchanger 30, and supplies heat to the high temperature side second refrigerant. Then, the condensed low temperature side first refrigerant flows through the receiver 12 to the low temperature side heating expansion side 16, expands, and is evaporated in the low temperature side external evaporator 17 to absorb heat from the outside air.
  • the low temperature side external evaporator 17 is preferably provided in pairs, and the low temperature side condenser 11 is branched in pairs so as to be connected to each of the low temperature side external evaporators 17a and 17b.
  • the external evaporation line s equipped with the low temperature side heating expansion sides 16a and 16b may be connected.
  • the low temperature side first refrigerant discharged from the low temperature side condenser 11 flows to the external evaporation line s through the receiver 12 and is divided along the branched portion of the external evaporation line s. It expands through the heating expansion sides 16a and 16b.
  • the low temperature side first refrigerant that is partially expanded at each of the heating expansion sides 16a and 16b may be flowed to each of the external evaporators 17a and 17b to be evaporated.
  • the low-temperature first refrigerant discharged from the low-temperature side condenser 11 is divided and expanded through each of the heating expansion sides 16a and 16b and flows along a pair of low-temperature external evaporators 17a and 17b, thereby contacting the outside air.
  • the evaporation can be more smoothly, and a large amount of heat can be absorbed from the outside air and supplied to the high temperature side second refrigerant, thereby improving the heating efficiency of the device.
  • the low temperature side first refrigerant flows to the low temperature side cooling expansion side 14, expands, and is then evaporated in the low temperature side defrost compensator. Can be.
  • a third solenoid valve 13a is provided at the discharge end of the low temperature side condenser 11 along an external evaporation line s connected to the low temperature side external evaporator 17 and at a low temperature in the external evaporation line s.
  • a fourth solenoid valve 13b is provided along the defrost compensation line branched to the side defrost compensator 15.
  • the low temperature side first refrigerant of the low temperature side condenser 11 passes through the low temperature side external evaporator 17 and the low temperature side auxiliary evaporator ( 18), when the third solenoid valve 13a is closed and the fourth solenoid valve 13b is opened, the low temperature first refrigerant of the low temperature side condenser 11 passes through the low temperature side defrost compensator 15 Flow to the side auxiliary evaporator (18).
  • the evaporated low temperature side first refrigerant passes through the low temperature side secondary evaporator 18 of the evaporation compensating heat exchanger 40, but is closed without closing the first solenoid valve 22b without the heat exchange with the high temperature side second refrigerant. 19) flows into the low temperature side compressor (10).
  • the high temperature side second refrigerant absorbs the heat of the low temperature side first refrigerant from the high temperature side evaporator 26 of the binary heat exchanger 30 and evaporates, and flows through the liquid separator 27 to the high temperature side compressor 20. do.
  • the high temperature side second refrigerant becomes gas of high temperature and high pressure by heat absorbed by the binary heat exchanger 30 and compression through the compressor 20.
  • the sixth solenoid valve 20b is provided at the discharge end of the high temperature side compressor 20 along the defrost line connected to the high temperature side defrost cooling condenser 28 and is heated to the hot water condenser 21.
  • a fifth solenoid valve 20a is provided along the line.
  • the fifth solenoid valve 20a is opened and the sixth solenoid valve 20b is closed, and the high temperature side second refrigerant flows to the high temperature side hot water condenser 21 to condense and is supplied to the hot water line. Heat with water.
  • the defrost waiting time Is preferably set according to the external humidity.
  • the defrost waiting time is preferably understood to mean a time required for defrosting operation to remove frost or frost from the external evaporator after the start of heating, defrosting operation is started when the defrost waiting time after the start of heating, defrosting If the waiting time has not elapsed, the heating operation is maintained.
  • the defrost waiting time is set to decrease as the external humidity increases, and as the defrost waiting time decreases, the time interval between the start of heating and the defrosting operation is shortened.
  • the defrost waiting time is set to increase, and as the defrost waiting time increases, the time interval between the heating start and the defrosting operation becomes longer.
  • the defrosting operation may be performed by preserving the heat of the high temperature side second refrigerant as much as possible.
  • both the first solenoid valve 22b of the evaporation compensation line and the second solenoid valve 22a of the high temperature heating line are opened (s41), and the external temperature is second evaporation.
  • the first solenoid valve 22b of the evaporation compensation line is opened, but the second solenoid valve 22a of the high temperature heating line is closed (s42).
  • the residual heat of some of the high-temperature second refrigerant may be preserved, but the remaining heat of the other part may be transferred from the evaporative compensation heat exchanger 40 to the low-temperature first refrigerant, so that the heating efficiency of the apparatus is optimized and the low temperature is low.
  • Complete evaporation of the side first refrigerant may be performed smoothly.
  • the low temperature side refrigeration cycle during the heating operation when the external temperature is less than the second preset evaporation compensation temperature is the low temperature side compressor (10), the low temperature side condenser (11), the receiver (12), the low temperature side heating expansion valve (16).
  • the low temperature side evaporator 17, the low temperature side evaporator 18, and the liquid separator 19 have a circulation structure.
  • the high temperature side refrigeration cycle includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a high temperature side hot water condenser 21, a high temperature side auxiliary condenser 23, a receiver 24, It has a circulation structure comprised of the high temperature side heating expansion edge 25.
  • the heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant is carried out between the binary heat exchanger 30, that is, between the low temperature side condenser 11 and the high temperature side evaporator 26, and the evaporation compensation heat exchanger 40, that is, the low temperature side. Between the subevaporator 18 and the hot side subcondenser 23.
  • the high temperature side second refrigerant is discharged from the high temperature side hot water condenser 21 and flows to the high temperature side auxiliary condenser 23.
  • the high temperature side second refrigerant is first condensed in the high temperature side hot water condenser 21, the hot water is heated and has a residual heat of 30 ⁇ 50 °C, secondary condensation in the secondary condenser 23 and the low temperature side agent
  • One refrigerant can supply heat.
  • the low temperature side first refrigerant evaporated to the low temperature side external evaporator 17 may flow to the low temperature side secondary evaporator 18 and may be secondly evaporated by the heat of the high temperature side second refrigerant.
  • the heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant may be performed at both sides of the binary heat exchanger 30 and the evaporative compensation heat exchanger 40 at a temperature lower than the first evaporation compensation temperature preset during the heating operation.
  • Figure 3 is a flow chart showing the defrosting operation of the dual heat pump air-conditioning apparatus according to an embodiment of the present invention.
  • the low temperature side condenser 11 discharge end is a low temperature side defrost compensator 15 arranged to exchange heat with the cold water line of the cold water tank (c) by the solenoid valve control (13a, 13b) And it is preferably provided to be alternately connected to one of the low-temperature external evaporator (17).
  • the low temperature side condenser 11 discharge end is connected to the low temperature side defrost compensation evaporator 15 inlet end when the high temperature side compressor 20 discharge end and the high temperature side defrost cooling condenser 28 inlet end are connected.
  • Valve controlled 13a, 13b is preferred.
  • the sixth solenoid valve 20b provided between the discharge end of the high temperature side compressor 20 and the inlet end of the high temperature side defrost cooling condenser 28 is opened, the discharge end and the low temperature of the low temperature side condenser 11 are opened.
  • the fourth solenoid valve 13b provided between the side defrost compensators 15 may be interlocked so as to be opened.
  • the low temperature side refrigeration cycle includes a low temperature side compressor (10), a low temperature side condenser (11), a receiver (12), a low temperature side cooling expansion valve (14), a low temperature side defrost compensator (15), and a low temperature side assistance. It has a circulation structure composed of an evaporator 18 and a liquid separator 19.
  • the high temperature side refrigeration cycle includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a high temperature side defrost cooling condenser 28, a receiver 24, and a high temperature side heating expansion valve 25. It has a configured circulation structure.
  • the blowing fan of the low temperature side evaporator 17 does not rotate and prevents endothermic evaporation of the low temperature side first refrigerant to reduce heating efficiency. do.
  • the elapsed time after the start of heating is compared with the preset defrost waiting time (s120).
  • the defrosting operation may be started when the external temperature is equal to or less than the predetermined defrost temperature and the elapsed time after the start of heating is equal to or greater than the preset defrost waiting time.
  • the defrost temperature and the defrost waiting time can be set by calculating the time point when the frost or frost occurs in the cold winter season through a test operation, the defrost waiting time is preferably calculated according to the algorithm applied defrost temperature and external humidity. .
  • a high humidity and a lot of dropping between 0 °C ⁇ 7 °C can reduce the evaporation efficiency of the low-temperature external evaporator 17, at -1 °C or less, the humidity is less than 40%, low dropping occurs after heating 90 Defrosting has been shown to be necessary after more than minutes of operation.
  • the waiting time can be set.
  • the defrosting operation may be started when the defrost waiting time is set according to the external humidity after the start of heating.
  • the sixth solenoid valve 20b is opened and the fifth solenoid valve 20a is closed so that the discharge end of the high temperature side compressor 10 is connected to the inlet end of the high temperature side defrost cooling condenser 28, but the low temperature side condenser 11 is closed.
  • the fourth solenoid valve 20b is opened and the third solenoid valve 20a is closed (s130) so that the discharge end is connected to the inlet end of the low temperature side defrost compensator.
  • the driving of the low temperature side compressor 10 is stopped (s140).
  • the low temperature side compressor 10 is restarted when a predetermined waiting time elapses after the start of the defrosting operation (s150) (s160).
  • the low temperature side compressor 10 is re-driven after the waiting time of about 20 seconds for efficient defrosting operation. This is preferred.
  • the low temperature side first refrigerant is a low temperature side compressor (10), a low temperature side condenser (11), a cooling expansion valve (14), a defrost compensation evaporator (15), a low temperature side evaporator (18), a liquid separator (19). It has a configured circulation path, and absorbs the heat of the cold water line is compressed in the evaporated state to supply heat from the low temperature side condenser 11 to the high temperature second refrigerant.
  • the high temperature side second refrigerant includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a defrost cooling condenser 28, a receiver 24, and a heating expansion valve 25. It has a path, and absorbs the heat of the low-temperature first refrigerant and is condensed in the defrost cooling condenser 28 in the compressed state to remove the frost or frost of the low-temperature external evaporator 17.
  • the high temperature side defrost cooling condenser 28 is preferably provided in pairs to correspond to the low temperature side external evaporator 17, it can be made more efficient defrosting operation.
  • the high temperature side second refrigerant may be continuously supplied with heat from the low temperature side first refrigerant and thus heated to a high temperature, thereby enabling rapid defrosting operation.
  • the fifth solenoid valve 20a is opened and the sixth solenoid valve is opened so that the discharge end of the high temperature side compressor 20 is connected to the inlet end of the high temperature side hot water condenser 21.
  • the solenoid valve 20b is closed, but the third solenoid valve 13a is opened and the fourth solenoid valve 13b is closed so that the low temperature side condenser 11 discharge end is connected to the low temperature side external evaporator 17 inlet end (s180). ).
  • the defrosting operation time may be set in response to the external temperature, it is preferably set to about 180 seconds between -7 ⁇ 7 °C, 300 seconds between -7 ⁇ -10 °C, -10 ⁇ -40 It is preferable that the temperature is set between 400 and 700 seconds.
  • the outside temperature is -10 ⁇ -40 °C, the humidity is very small, one defrosting operation is required every 6 to 9 hours.
  • the defrosting operation time elapses, the defrosting operation is terminated and the heating operation for generating hot water may be restarted.
  • the high temperature side second refrigerant heated along the high temperature side refrigeration cycle is circulated to the high temperature side defrost cooling condenser 28 which is heat-exchanged with the low temperature side external evaporator 17 to remove the drop of frost, frost and the like. Since the first refrigerant is circulated to the defrost compensation evaporator and absorbs heat from the cold water line and is compressed through the low temperature compressor, a heat source for evaporation of the high temperature second refrigerant may be continuously supplied to the binary heat exchanger.
  • the low temperature side first refrigerant has a low temperature side compressor (10), a low temperature side condenser (11), a cooling expansion valve (14), a defrost compensation evaporator (15), and a low temperature side. It has a circulation path composed of the auxiliary evaporator 18, the liquid separator 19, absorbs the heat of the cold water line and is compressed in the evaporated state to supply heat from the low temperature side condenser 11 to the high temperature side second refrigerant.
  • the high temperature side second refrigerant includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a defrost cooling condenser 28, a receiver 24, and a heating expansion valve 25. It has a path, absorbs the heat of the low temperature side first refrigerant, is condensed in the defrost cooling condenser 28 in the compressed state and releases heat to the outside air.
  • the high temperature side defrost cooling condenser 28 is preferably provided in pairs, and heat discharge to the outside air can be made more smoothly by increasing the contact area with the outside air.
  • each of the high temperature side defrost cooling condenser (28a, 28b) is preferably provided with a control valve for controlling the condensation pressure of the high temperature side second refrigerant. Accordingly, even when the outside air temperature is high, the high temperature side second refrigerant may be more liquefied more smoothly, and rapid heat dissipation is possible.
  • the dual heat pump air-conditioning apparatus of the present invention stable heating performance is maintained and failure occurrence due to the liquid back phenomenon is minimized, thereby improving stability and durability of the apparatus, and a pair of external evaporators are connected to the low-temperature condenser discharge end. 1
  • the contact area between the refrigerant and the outside air is increased, so that the evaporation can be more smoothly, and a large amount of heat can be absorbed from the outside air and supplied to the second refrigerant on the high temperature side, thereby improving the heating efficiency of the device. Since the heat source for evaporation of the refrigerant can be continuously supplied, there is an effect that can enable a fast and efficient defrosting operation is an invention of high industrial availability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The present invention provides, in order to improve the stability and durability of products by enabling normal operation even if external air has an extremely low temperature, a dual heat pump heating and cooling apparatus comprising a low-temperature side refrigeration cycle and a high-temperature side refrigeration cycle and including a dual heat exchanger in which a low-temperature side condenser and a high-temperature side evaporator are coupled so as to exchange heat with each other, wherein: a high-temperature side compressor outlet end is provided so as to be alternately connected, by the control of an electronic valve, to either a high-temperature side hot water condenser disposed so as to exchange heat with a hot water line of a hot water tank or a high-temperature side defrosting and cooling condenser disposed so as to exchange heat with a low-temperature side outer evaporator; a low-temperature side outer evaporator outlet end is provided so as to be connected to a low-temperature side auxiliary evaporator inlet end disposed so as to exchange heat with a high-temperature side auxiliary condenser; and a high-temperature side hot water condenser outlet end is controlled by the electronic valve so as to be connected to a high-temperature side evaporator inlet end by selectively passing through the high-temperature side auxiliary condenser according to the temperature of external air of the low-temperature side outer evaporator.

Description

이원 히트펌프 냉난방 장치Dual Heat Pump Air Conditioning Unit
본 발명은 이원 히트펌프 냉난방 장치에 관한 것으로, 더욱 상세하게는 외기가 극저온인 경우에도 정상 운전이 가능하여 제품의 안정성 및 내구성이 향상되는 이원 히트펌프 냉난방 장치에 관한 것이다.The present invention relates to a dual heat pump air-conditioning apparatus, and more particularly, to a dual heat pump air-conditioning apparatus capable of normal operation even when the outside air is cryogenic temperature is improved stability and durability of the product.
일반적으로, 이원냉동사이클이란 비등점이 다른 냉매를 사용하는 냉동시스템이다. 여기서, 상기 냉매는 비등점의 전후에서 액체에서 기체로 혹은 기체에서 액체로 상이 변화하게 된다.In general, a binary refrigeration cycle is a refrigeration system using refrigerants having different boiling points. Here, the refrigerant changes phase from liquid to gas or gas to liquid before and after the boiling point.
이때, 이원냉동사이클은 저온에서 비등하는 저온측 제1냉매를 사용하는 저온측 냉동사이클과 비교적 고온에서 원활히 비등하는 고온측 제2냉매를 사용하는 고온측 냉동사이클로 구비되며, 상기 고온측 냉매의 증발과 상기 저온측 냉매의 응축이 하나의 케스케이드 열교환기에서 일어나도록 구비된다.At this time, the dual refrigeration cycle is provided with a low temperature side refrigeration cycle using a low temperature side first refrigerant boiling at a low temperature and a high temperature side refrigeration cycle using a high temperature side second refrigerant boiling at a relatively high temperature, the evaporation of the high temperature side refrigerant And condensation of the low temperature side refrigerant occurs in one cascade heat exchanger.
따라서, 겨울철 외기온도가 낮더라도 고온측의 냉매 토출가스 온도를 85℃ 이상 일정하게 고온으로 유지시킬 수 있으므로 온수생산에 효과적이다.Therefore, even when the outside air temperature is low in winter, the refrigerant discharge gas temperature at the high temperature side can be maintained at a constant high temperature of 85 ° C. or higher, which is effective for producing hot water.
한편, 종래의 히트펌프장치는 저온측 압축기에 의해 압축된 저온측 제1냉매가 케이스케이드 열교환기를 통해 고온측 냉매로 열을 공급한 후 실외기의 저온측 팽창변과 저온측 증발기를 거쳐 저온측 압축기로 재유입된다.On the other hand, in the conventional heat pump apparatus, the low temperature first refrigerant compressed by the low temperature side compressor supplies heat to the high temperature side refrigerant through the casecade heat exchanger, and then passes through the low temperature side expansion valve and the low temperature side evaporator of the outdoor unit to the low temperature side compressor. Reflowed.
이때, 일반적인 저온측 제1냉매의 경우에 실외기측 온도가 -15℃ 미만으로 떨어지면 원활한 증발이 이루어지기 힘들어 저온측 제1냉매가 액화된 상태로 압축기로 유입되는 액백(liquid back) 현상이 발생된다.In this case, in the case of the general low temperature side first refrigerant, when the outdoor unit temperature drops below -15 ° C, it is difficult to evaporate smoothly, and a liquid back phenomenon that flows into the compressor with the low temperature side first refrigerant liquefied occurs. .
이에 따라, 극저온 환경에서 히트펌프장치의 정상정인 구동이 불가능할 뿐만 아니라, 액백 현상으로 인해 압축기에 빈번한 고장이 발생되는 문제점이 있었다.Accordingly, not only normal driving of the heat pump device is impossible in the cryogenic environment, but also there is a problem that frequent failure occurs in the compressor due to the liquid back phenomenon.
선행기술문헌Prior art literature
특허문헌Patent Literature
(특허문헌 0001) 한국 공개특허 제10-2003-0071607호(Patent Document 0001) Korean Unexamined Patent Publication No. 10-2003-0071607
상기와 같은 문제점을 해결하기 위하여, 본 발명은 외기가 극저온인 경우에도 정상 운전이 가능하여 제품의 안정성 및 내구성이 향상되는 이원 히트펌프 냉난방 장치를 제공하는 것을 해결과제로 한다.In order to solve the above problems, the present invention is to provide a binary heat pump cooling and heating device that is capable of normal operation even when the outdoor air is cryogenic temperature improves the stability and durability of the product.
상기의 과제를 해결하기 위하여, 본 발명은 저온측 냉동사이클과 고온측 냉동사이클로 구성되되, 저온측 응축기와 고온측 증발기가 상호 열교환하도록 결합된 이원열교환기를 포함하는 이원 히트펌프 냉난방 장치에 있어서, 고온측 압축기 토출단은 전자밸브제어에 의해 온수탱크의 온수라인과 열교환되도록 배치된 고온측 온수응축기 및 저온측 외부증발기와 열교환되도록 배치된 고온측 제상냉방 응축기 중 하나에 교번하여 연결되도록 구비되고, 상기 저온측 외부증발기 토출단은 고온측 보조응축기와 열교환되도록 배치된 저온측 보조증발기 유입단에 연결되도록 상기 고온측 보조응축기와 상기 저온측 보조증발기를 포함하는 증발보상열교환기를 포함하며, 상기 고온측 온수응축기 토출단은 상기 저온측 외부증발기측 외기온도에 따라 상기 고온측 보조응축기를 선택적으로 경유하여 상기 고온측 증발기 유입단과 연결되도록 전자밸브제어되고, 상기 고온측 온수응축기 토출단에는 상기 고온측 보조응축기를 경유하여 상기 고온측 증발기 유입단에 연결되는 증발보상라인과, 상기 고온측 보조응축기를 미경유하여 상기 고온측 증발기 유입단에 직결되는 고온가열라인이 구비되되, 상기 저온측 외부증발기측 외부온도가 기설정된 제1증발보상온도를 초과하면 상기 증발보상라인의 제1전자밸브가 폐쇄되고 상기 고온가열라인의 제2전자밸브가 개방되도록 제어되고, 상기 저온측 외부증발기측 외기온도가 기설정된 제1증발보상온도 이하이면 상기 증발보상라인의 제1전자밸브 및 상기 고온가열라인의 제2전자밸브가 개방되도록 제어되며, 상기 저온측 외부증발기측 외기온도가 상기 제1증발보상온도 미만으로 기설정된 제2증발보상온도 이하이면 상기 제1전자밸브가 개방되되 상기 제2전자밸브가 폐쇄되도록 제어됨을 특징으로 하는 이원 히트펌프 냉난방 장치를 제공한다.In order to solve the above problems, the present invention comprises a low temperature side refrigeration cycle and a high temperature side refrigeration cycle, the low temperature side condenser and the high temperature side evaporator comprising a two-way heat exchanger coupled to heat exchange with each other, The discharge side of the compressor is alternately connected to one of the high temperature side hot water condenser arranged to exchange heat with the hot water line of the hot water tank by the solenoid valve control and the high temperature side defrost cooling condenser arranged to exchange heat with the low temperature side external evaporator. The low temperature side external evaporator discharge stage includes an evaporation compensation heat exchanger including the high temperature side subcondenser and the low temperature side evaporator so as to be connected to the low temperature side secondary evaporator inlet end arranged to exchange heat with the high temperature side secondary condenser. The condenser discharge stage is connected to the high temperature according to the outside air temperature of the low temperature side A solenoid valve controlled to be connected to the high temperature side evaporator inlet end via an on-side auxiliary condenser selectively; an evaporation compensation line connected to the high temperature side evaporator inlet end via the high temperature side auxiliary condenser at the high temperature side hot water condenser discharge end; And a high temperature heating line directly connected to the inlet end of the high temperature side evaporator without the high temperature side auxiliary condenser, and if the external temperature of the low temperature side evaporator exceeds a preset first evaporation compensation temperature, The first solenoid valve of the evaporation compensation line and the first solenoid valve are closed and the second solenoid valve of the high temperature heating line is controlled to be opened, and if the low temperature side external evaporator side outside temperature is less than or equal to a predetermined first evaporation compensation temperature; The second solenoid valve of the high temperature heating line is controlled to be opened, and the outside temperature of the low temperature side external evaporator is the first evaporation report. Is less than a second evaporation temperature compensation to a predetermined temperature less than said first electronic valve being gaebangdoe provides two won heat pump air conditioning system, it characterized in that the control such that the second solenoid valve is closed.
여기서, 상기 저온측 응축기 토출단은 전자밸브제어에 의해 냉수탱크의 냉수라인과 열교환되도록 배치된 저온측 제상보상증발기 및 상기 저온측 외부증발기 중 하나에 교번하여 연결되도록 구비되며, 상기 고온측 압축기 토출단 및 상기 고온측 제상냉방 응축기 유입단의 연결시 상기 저온측 제상보상증발기 유입단과 연결되도록 전자밸브제어됨이 바람직하다.Here, the low temperature side condenser discharge end is provided to be alternately connected to one of the low temperature side defrost compensator and the low temperature side external evaporator arranged to exchange heat with the cold water line of the cold water tank by the solenoid valve control. Preferably, the solenoid valve is controlled to be connected to the low temperature side defrost compensator evaporator stage when the high temperature side defrost cooling condenser inlet stage is connected.
그리고, 상기 저온측 외부증발기 및 상기 고온측 제상냉방 응축기는 각각 한쌍으로 구비되고, 상기 저온측 응축기 토출단에는 상기 각 저온측 외부증발기에 연결되도록 한쌍으로 분지되되 분지된 각 부분에 저온측 난방팽창변이 구비된 외부증발라인이 연결되고, 상기 각 고온측 제상냉방 응축기 토출단에는 고온측 제2냉매의 응축압력조절을 위한 압력조절밸브가 구비됨이 바람직하다.The low temperature side external evaporator and the high temperature side defrost cooling condenser are provided in pairs, and the low temperature side condenser discharge stage is branched in pairs so as to be connected to each low temperature side external evaporator. The provided external evaporation line is connected, it is preferable that each of the high temperature side defrost cooling condenser discharge end is provided with a pressure control valve for controlling the condensation pressure of the high temperature side second refrigerant.
한편, 상기 저온측 냉동사이클의 저온측 압축기 및 상기 고온측 냉동사이클의 고온측 압축기 간의 용량비는 1:1의 비율로 구성되되, 상기 저온측 압축기의 과압축 방지를 위해 상기 저온측 외부증발기측 외기온도가 기설정된 과다온도 이상이면 상기 저온측 외부증발기의 송풍팬 회전속도가 감속되도록 제어됨이 바람직하다.Meanwhile, the capacity ratio between the low temperature side compressor of the low temperature side refrigeration cycle and the high temperature side compressor of the high temperature side refrigeration cycle is configured in a ratio of 1: 1, and the outside temperature of the low temperature side external evaporator is used to prevent overcompression of the low temperature side compressor. If the degree is more than a predetermined excessive temperature, it is preferable that the blowing fan rotation speed of the low-temperature external evaporator is controlled to slow down.
상기의 해결 수단을 통해서, 본 발명은 다음과 같은 효과를 제공한다.Through the above solution, the present invention provides the following effects.
첫째, 상기 저온측 외부증발기 토출단에 고온측 보조응축기와 열교환되도록 배치된 저온측 보조증발기가 연결되어 온수 생산에 사용된 고온측 제2냉매의 잔열이 저온측 제1냉매로 공급될 수 있으므로 극저온의 혹한 환경에서도 저온측 제1냉매의 원활한 증발이 가능하여 안정적인 가열 성능이 유지되고 액백 현상으로 인한 고장 발생이 최소화되어 장치의 안정성 및 내구성이 향상될 수 있다.First, the low temperature side evaporator is connected to a low temperature side secondary evaporator arranged to exchange heat with a high temperature side secondary condenser at the low temperature side external evaporator discharge end, so that the residual heat of the high temperature side second refrigerant used for producing hot water can be supplied to the low temperature side first refrigerant. The low temperature side of the first refrigerant can be smoothly evaporated even in a harsh environment, thereby maintaining stable heating performance and minimizing failure due to the liquid back phenomenon, thereby improving stability and durability of the device.
둘째, 상기 저온측 응축기 토출단에 한쌍의 외부증발기가 연결되므로 저온측 제1냉매 및 외기와의 접촉면적이 증가되어 한층 원활한 증발이 가능할 뿐만 아니라 외기로부터 다량의 열을 흡수하여 고온측 제2냉매로 공급할 수 있어 장치의 가열 효율이 향상될 수 있다.Second, since a pair of external evaporators are connected to the discharge side of the low temperature side condenser, the contact area between the low temperature first refrigerant and the outside air is increased, thereby enabling a smoother evaporation, and also absorbing a large amount of heat from the outside air so as to absorb the high temperature side second refrigerant. The heating efficiency of the device can be improved.
셋째, 상기 고온측 압축기에서 토출된 고온측 제2냉매가 제상냉방 응축기로 순환되며 저온측 외부증발기의 적상을 제거함과 동시에 제상운전시에도 상기 저온측 제1냉매가 제상보상증발기로 순환되며 냉수라인의 열을 흡수하여 저온측 압축기를 통해 압축되는 순환과정이 유지되므로 이원열교환기에 고온측 제2냉매의 증발을 위한 열원이 지속적으로 공급될 수 있어 신속하고 효율적인 제상운전이 가능하다.Third, the high temperature side second refrigerant discharged from the high temperature side compressor is circulated to the defrost cooling condenser, and the low temperature side first refrigerant is circulated to the defrost compensation evaporator during the defrosting operation and at the same time the defrosting of the low temperature external evaporator is performed. Since the circulation process is absorbed by the low-temperature compressor and the compression process is maintained, the heat source for evaporation of the high-temperature second refrigerant can be continuously supplied to the dual-side heat exchanger, thereby enabling fast and efficient defrosting operation.
도 1은 본 발명의 일실시예에 따른 이원 히트펌프 냉난방 장치의 블록도.1 is a block diagram of a dual heat pump air conditioning system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 이원 히트펌프 냉난방 장치의 증발보상운전을 나타낸 흐름도.Figure 2 is a flow chart showing the evaporation compensation operation of the dual heat pump heating and cooling apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 이원 히트펌프 냉난방 장치의 제상운전을 나타낸 흐름도.Figure 3 is a flow chart showing the defrosting operation of the dual heat pump air-conditioning device according to an embodiment of the present invention.
도면의 주요부호 설명Explanation of Major Symbols in Drawings
100: 이원 히트펌프 냉난방 장치 10: 저온측 압축기100: binary heat pump air conditioning unit 10: low temperature side compressor
11: 저온측 응축기 14: 저온측 냉방팽창변11: low temperature side condenser 14: low temperature side cooling expansion valve
15: 저온측 제상보상증발기 16: 저온측 난방팽창변15: Low temperature side defrost compensation evaporator 16: Low temperature side heating expansion valve
17: 저온측 외부증발기 18: 저온측 보조증발기17: low temperature side evaporator 18: low temperature side evaporator
20: 고온측 압축기 21: 고온측 온수응축기20: high temperature side compressor 21: high temperature side hot water condenser
23: 고온측 보조응축기 26: 고온측 증발기23: high temperature side condenser 26: high temperature side evaporator
28: 고온측 제상냉방 응축기 30: 이원열교환기28: high temperature side defrost cooling condenser 30: binary heat exchanger
40: 증발보상열교환기40: evaporation compensation heat exchanger
저온측 냉동사이클과 고온측 냉동사이클로 구성되되, 저온측 응축기와 고온측 증발기가 상호 열교환하도록 결합된 이원열교환기를 포함하는 이원 히트펌프 냉난방 장치에 있어서, 고온측 압축기 토출단은 전자밸브제어에 의해 온수탱크의 온수라인과 열교환되도록 배치된 고온측 온수응축기 및 저온측 외부증발기와 열교환되도록 배치된 고온측 제상냉방 응축기 중 하나에 교번하여 연결되도록 구비되고, 상기 저온측 외부증발기 토출단은 고온측 보조응축기와 열교환되도록 배치된 저온측 보조증발기 유입단에 연결되도록 상기 고온측 보조응축기와 상기 저온측 보조증발기를 포함하는 증발보상열교환기를 포함하며, 상기 고온측 온수응축기 토출단은 상기 저온측 외부증발기측 외기온도에 따라 상기 고온측 보조응축기를 선택적으로 경유하여 상기 고온측 증발기 유입단과 연결되도록 전자밸브제어되고, 상기 고온측 온수응축기 토출단에는 상기 고온측 보조응축기를 경유하여 상기 고온측 증발기 유입단에 연결되는 증발보상라인과, 상기 고온측 보조응축기를 미경유하여 상기 고온측 증발기 유입단에 직결되는 고온가열라인이 구비되되, 상기 저온측 외부증발기측 외부온도가 기설정된 제1증발보상온도를 초과하면 상기 증발보상라인의 제1전자밸브가 폐쇄되고 상기 고온가열라인의 제2전자밸브가 개방되도록 제어되고, 상기 저온측 외부증발기측 외기온도가 기설정된 제1증발보상온도 이하이면 상기 증발보상라인의 제1전자밸브 및 상기 고온가열라인의 제2전자밸브가 개방되도록 제어되며, 상기 저온측 외부증발기측 외기온도가 상기 제1증발보상온도 미만으로 기설정된 제2증발보상온도 이하이면 상기 제1전자밸브가 개방되되 상기 제2전자밸브가 폐쇄되도록 제어됨을 특징으로 한다.In the two-way heat pump cooling and heating device comprising a low temperature side refrigeration cycle and a high temperature side refrigeration cycle, wherein the low temperature side condenser and the high temperature side evaporator are coupled to each other to exchange heat, the high temperature side compressor discharge stage uses hot water by solenoid valve control. It is provided to be alternately connected to one of the high temperature side hot water condenser arranged to exchange heat with the hot water line of the tank and the high temperature side defrost cooling condenser arranged to heat exchange with the low temperature side external evaporator, wherein the low temperature side external evaporator discharge end is a high temperature side auxiliary condenser And an evaporation compensating heat exchanger including the high temperature side auxiliary condenser and the low temperature side auxiliary evaporator to be connected to a low temperature side auxiliary evaporator inlet end arranged to exchange heat with the high temperature side hot evaporator. The high temperature side condenser selectively The solenoid valve is controlled so as to be connected to the high temperature side evaporator inlet, the hot water side condenser discharge end is connected to the high temperature side evaporator inlet via the high temperature side condenser, and the high temperature side condenser. A high temperature heating line directly connected to the inlet end of the high temperature side evaporator is provided. When the external temperature of the low temperature side evaporator side exceeds a preset first evaporation compensation temperature, the first solenoid valve of the evaporation compensation line is closed and the The second solenoid valve of the high temperature heating line is controlled to open, and if the low temperature side external evaporator side outside temperature is less than or equal to a predetermined first evaporation compensation temperature, the first solenoid valve of the evaporation compensation line and the second electron of the high temperature heating line. The valve is controlled to open, and the second evaporation compensation temperature is set to be less than the first evaporation compensation temperature of the low temperature side external evaporator side outside temperature. The first solenoid valve is opened, but the second solenoid valve is controlled to be closed.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 이원 히트펌프 냉난방 장치를 상세히 설명한다. 여기서, 이원 히트펌프 냉난방 장치는 목욕탕이나 찜질방, 수영장, 고층빌딩 등 중앙집중식 냉난방을 원하는 사업장에서 사용될 수 있으며, 온수 및 냉수를 공급하여 난방과 냉방이 동시에 가능하되 높은 열효율로 유지비를 절감할 수 있는 냉난방장치이다.Hereinafter, with reference to the accompanying drawings will be described in detail a binary heat pump air conditioning apparatus according to a preferred embodiment of the present invention. Here, the dual heat pump air-conditioning unit can be used in a business center that wants centralized heating and cooling such as a bathroom, a steam room, a swimming pool, and a high-rise building.The heating and cooling can be simultaneously performed by supplying hot and cold water, but the maintenance cost can be reduced with high thermal efficiency. It is an air conditioning unit.
도 1은 본 발명의 일실시예에 따른 이원 히트펌프 [0021] 냉난방 장치의 블록도이다.1 is a block diagram of a dual heat pump heating and cooling device according to an embodiment of the present invention.
도 1에서 보는 바와 같이, 본 발명의 일실시예에 따른 이원 히트펌프 냉난방 장치(100)는 비교적 저온에서 비등하는 저온측 제1냉매를 사용하는 저온측 냉동사이클과 비교적 고온에서 원활히 비등하는 고온측 제2냉매를 사용하는 고온측 냉동사이클로 구성된다.As shown in FIG. 1, the dual heat pump air conditioning apparatus 100 according to an embodiment of the present invention has a low temperature side refrigeration cycle using a low temperature side first refrigerant boiling at a relatively low temperature and a high temperature side boiling at a relatively high temperature. It consists of a high temperature side refrigeration cycle using a second refrigerant.
여기서, 상기 저온측 제1냉매는 상기 고온측 제2냉매보다 낮은 온도에서 비등하는 냉매를 의미하는 것으로 이해함이 바람직하다.Here, the low temperature side first refrigerant is preferably understood to mean a refrigerant boiling at a lower temperature than the high temperature side second refrigerant.
예를 들어, 상기 저온측 제1냉매로는 R-32와 R-125를 50:50의 조성비로 혼합한 HFC계열의 혼합 냉매인 R-410a를 사용할 수 있으며, 상기 R-410a는 1기압에서 -51℃의 비등점을 가진다. 그리고, 상기 고온측 제2냉매로는 HFC계열의 R-134a를 사용할 수 있으며, 상기 R-134a는 1기압에서 -26℃의 비등점을 가진다.For example, as the low temperature side first refrigerant, R-410a which is a mixed refrigerant of HFC series in which R-32 and R-125 are mixed at a composition ratio of 50:50 may be used, and R-410a may be used at 1 atm. It has a boiling point of -51 ° C. The high temperature side second refrigerant may use R-134a of the HFC series, and the R-134a has a boiling point of −26 ° C. at 1 atmosphere.
그리고, 상기 이원 히트펌프 냉난방 장치는 저온측 압축기(10), 이원열교환기(30), 저온측 외부증발기(17), 저온측 제상보상증발기(15), 증발보상열교환기(40), 고온측 압축기(20), 고온측 온수응축기(21), 고온측 제상냉방응축기(28)를 포함하여 이루어진다.In addition, the binary heat pump air-conditioning unit is a low temperature side compressor 10, a binary heat exchanger 30, a low temperature side external evaporator 17, a low temperature side defrost compensator 15, an evaporative compensation heat exchanger 40, a high temperature side compressor. 20, a high temperature side hot water condenser 21, and a high temperature side defrost cooling condenser 28.
이때, 상기 저온측 압축기(10)는 저온측 냉동사이클에서 저온측 제1냉매를 압축하여 열을 공급하고 상기 이원열교환기(30)로 송출함으로써 냉매를 순환시켜주는 역할을 한다.At this time, the low temperature side compressor 10 serves to circulate the refrigerant by supplying heat by compressing the low temperature side first refrigerant in the low temperature side refrigeration cycle and sending it to the binary heat exchanger 30.
여기서, 상기 이원열교환기(30)는 저온측 응축기(11) 및 고온측 증발기(26)가 상호 열교환되도록 결합된 장치를 의미한다.Here, the binary heat exchanger 30 means a device in which the low temperature side condenser 11 and the high temperature side evaporator 26 are coupled to each other to exchange heat.
상세히, 상기 저온측 압축기(10)로부터 토출된 저온측 제1냉매는 상기 저온측 응축기(11)로 유입되며, 상기 고온측 증발기(26)에는 고온측 난방팽창변(25)을 통과한 고온측 제2냉매가 유입된다.In detail, the low temperature first refrigerant discharged from the low temperature side compressor 10 flows into the low temperature side condenser 11, and the high temperature side evaporator 26 passes through the high temperature side heating expansion valve 25. 2 Refrigerant flows in.
이때, 상기 저온측 응축기(11)로 유입된 저온측 제1냉매의 응축과 고온측 증발기(26)로 유입된 고온측 제2냉매의 증발을 통해 저온측 제1냉매의 열이 고온측 제2냉매로 전달될 수 있다.At this time, the heat of the low temperature side first refrigerant through the condensation of the low temperature side first refrigerant introduced into the low temperature side condenser 11 and the high temperature side second refrigerant introduced into the high temperature side evaporator 26 are increased. It can be delivered to the refrigerant.
그리고, 상기 저온측 응축기(11)에서 액체상태로 응축된 저온측 제1냉매는 저온측 외부증발기(17) 내지는 저온측 제상보상증발기(15)로 유동된다.The low temperature side first refrigerant condensed in the liquid state in the low temperature side condenser 11 flows to the low temperature side external evaporator 17 or the low temperature side defrost compensator 15.
한편, 난방을 위한 온수를 만드는 난방운전시 상기 저온측 제1냉매는 저온측 난방팽창변(16)을 통과하여 상기 저온측 외부증발기(17)로 유동되며 주변 열을 흡수하며 증발된다.On the other hand, during the heating operation to make hot water for heating, the low temperature side first refrigerant flows through the low temperature side heating expansion side 16 to the low temperature side external evaporator 17 and absorbs ambient heat and evaporates.
그리고, 냉방을 위한 냉각수를 만드는 냉방운전시 내지는 상기 저온측 외부증발기(17)의 서리나 성에를 제거하는 제상운전시에는 상기 응축된 저온측 제1냉매가 저온측 냉방팽창편(14)을 통과하여 제상보상증발기(15)로 유동된다.In addition, during the cooling operation for making the cooling water for cooling, or during the defrosting operation to remove frost or frost of the low temperature side external evaporator 17, the condensed low temperature first refrigerant passes through the low temperature side cooling expansion piece 14, It flows to the defrost compensator (15).
이때, 상기 제상보상증발기(15)는 냉수탱크(c)의 냉수라인과 열교환되도록 배치되며, 상기 응측된 저온측 제1냉매가 냉수라인에 급수된 물의 열을 빼앗아 증발함에 따라 냉각라인을 통과한 물이 냉각되어 냉각수가 생산될 수 있다.At this time, the defrost compensation evaporator 15 is arranged to exchange heat with the cold water line of the cold water tank (c), the first low-temperature side of the coolant is passed through the cooling line as it evaporates to take the heat of the water supplied to the cold water line The water can be cooled to produce cooling water.
이처럼, 상기 고온측 압축기(20) 토출단이 상기 고온측 온수응축기(21)로 연결되고, 상기 저온측 응축기(11) 토출단이 상기 저온측 제상보상증발기(15)로 연결되는 경우에는 냉방을 위한 냉수와 난방을 위한 온수가 동시에 생산될 수 있다.As such, when the high temperature side compressor 20 discharge end is connected to the high temperature side hot water condenser 21, and the low temperature side condenser 11 discharge end is connected to the low temperature side defrost compensator 15, cooling is performed. Cold water for heating and hot water for heating can be produced simultaneously.
이에 따라, 환절기 등 냉방과 온수가 동시에 필요한 시기에 냉수 및 온수를 동시에 생산함으로써 전력 소모량이 최소화될 수 있으므로 장치의 효율성이 향상될 수 있다.Accordingly, power consumption can be minimized by simultaneously producing cold water and hot water at the same time when cooling and hot water are required, such as a season change, so that the efficiency of the device can be improved.
한편, 상기 저온측 압축기(10)의 과압축 방지를 위해 상기 저온측 외부증발기(17)측 외기온도가 기설정된 과다온도 이상이면 상기 저온측 외부증발기(17)의 송풍팬 회전속도가 감속되도록 제어됨이 바람직하다.On the other hand, in order to prevent overcompression of the low temperature side compressor 10, if the outside temperature of the low temperature side external evaporator 17 side is higher than a preset excessive temperature, the fan speed of the low temperature side external evaporator 17 is controlled to be reduced. Is preferred.
여기서, 상기 과다온도는 7~40℃로 설정될 수 있다. 상세히, 환절기 등 외부 온도가 높은 경우 냉방 없이 온수만 생산하는 경우에, 상기 저온측 제1냉매는 저온측 압축기(10), 저온측 응축기(11), 난방팽창변(16), 외부증발기(17), 저온측 보조증발기(18), 액분리기(19)로 구성된 순환경로를 가지며, 외기의 열을 흡수하여 증발된 상태에서 압축되어 저온측 응축기(11)에서 고온측 제2냉매로 열을 공급한다.Here, the excess temperature may be set to 7 ~ 40 ℃. In detail, when only hot water is produced without cooling when the external temperature is high, such as a season change, the low temperature side first refrigerant is a low temperature side compressor 10, a low temperature side condenser 11, a heating expansion valve 16, and an external evaporator 17. , Has a circulation path composed of a low temperature side evaporator 18 and a liquid separator 19, absorbs heat from outside air, compresses in an evaporated state, and supplies heat to the high temperature side second refrigerant from the low temperature side condenser 11. .
이때, 상기 저온측 제1냉매는 외기와의 높은 온도차로 인해 외부증발기(17)에서 다량의 열을 흡수할 수 있다.그리고, 상기 저온측 제1냉매가 높은 열량을 가지고 있을 때에는 저온측 제1냉매를 압축하는데 많은 에너지가 필요하게 되고, 저온측 압축기(10) 및 고온측 압축기(20)에 과부하가 발생될 우려가 있다.At this time, the low temperature side first refrigerant may absorb a large amount of heat from the external evaporator 17 due to a high temperature difference from the outside air. When the low temperature side first refrigerant has a high heat amount, the low temperature side first refrigerant A large amount of energy is required to compress the refrigerant, and there is a fear that the low temperature side compressor 10 and the high temperature side compressor 20 are overloaded.
따라서, 외부온도가 기설정된 과다온도 이상인 경우에는 상기 저온측 외부증발기(17)에 구비된 송풍팬은 시간당 회전속도가 감소되도록 제어되며 상기 저온측 제1냉매가 적당한 열을 흡수할 수 있다.Therefore, when the external temperature is higher than the preset excessive temperature, the blowing fan provided in the low temperature side external evaporator 17 is controlled to reduce the rotational speed per hour, and the low temperature side first refrigerant may absorb appropriate heat.
이때, 상기 송풍팬의 회전속도는 외부온도가 증가할수록 감소되도록 제어되며, 외부온도가 일정한 온도 이상으로 높은 경우에 상기 송풍팬은 정지될 수 있다.At this time, the rotational speed of the blowing fan is controlled to decrease as the outside temperature increases, and when the outside temperature is higher than a certain temperature, the blowing fan may be stopped.
이에 따라, 상온으로 갈수록 송풍팬의 회전동력이 감소되는데 반하여 저온 환경보다 높은 수준의 열량이 생산될 수 있으므로 장치의 전력 효율성이 향상될 수 있다.Accordingly, while the rotational power of the blower fan decreases toward room temperature, a higher level of heat can be produced than in a low temperature environment, and thus the power efficiency of the device can be improved.
한편, 상기 고온측 압축기(20)는 고온측 냉동사이클에서 고온측 제2냉매를 고온고압으로 압축하여 송출함으로써 고온측 제2냉매를 순환시켜 주는 역할을 한다.Meanwhile, the high temperature side compressor 20 serves to circulate the high temperature side second refrigerant by compressing and sending the high temperature side second refrigerant to high temperature and high pressure in a high temperature side refrigeration cycle.
상세히, 상기 고온측 압축기(20) 유입단은 이원열교환기(30)의 고온측 증발기(26) 토출단과 연결된다. 이때, 상기 고온측 제2냉매는 상기 고온측 증발기(26)에서 저온측 제1냉매의 응축으로 발생된 열을 흡수하며 증발되고, 액분리기(27)를 거쳐 고온측 압축기(20)로 유동되어 압축됨에 따라 고온고압의 기체 상태로 순환된다.In detail, the inlet end of the high temperature side compressor 20 is connected to the outlet end of the high temperature side evaporator 26 of the binary heat exchanger 30. At this time, the high temperature side second refrigerant absorbs heat generated by the condensation of the low temperature side first refrigerant in the high temperature side evaporator 26 and evaporates, and flows through the liquid separator 27 to the high temperature side compressor 20. As it is compressed, it is circulated in a gaseous state of high temperature and high pressure.
여기서, 상기 고온측 압축기(20) 토출단은 전자밸브제어(20a,20b)에 의해 온수탱크(h)의 온수라인과 열교환되도록 배치된 고온측 온수응축기(21) 및 저온측 외부증발기(17)와 열교환되도록 배치된 고온측 제상냉방 응축기(28) 중 하나에 교번하여 연결되도록 구비된다.Here, the high temperature side compressor 20 discharge end is a high temperature side hot water condenser 21 and a low temperature side external evaporator 17 arranged to exchange heat with the hot water line of the hot water tank h by the solenoid valve control 20a, 20b. It is provided to be alternately connected to one of the high-temperature side defrost cooling condenser 28 arranged to heat exchange with.
이때, 교번하여 연결된다는 말은 하나와 연결시 다른 하나와는 연결이 해제되되, 둘 중 하나와는 연결된 상태를 유지한다는 의미로 이해함이 바람직하다.At this time, it means that the connection is alternately connected to one another when disconnected, but it is preferable to understand that it means to keep the connection state with one of the two.
상세히, 난방을 위한 온수를 만드는 난방운전시에는 상기 고온측 압축기(20) 토출단은 상기 고온측 온수응축기(21) 유입단으로 연결된다. 이때, 상기 고온고압의 고온측 제2냉매가 상기 고온측 온수응축기(21)에서 응축되며 온수라인에 급수된 물로 열을 공급함에 따라 온수라인을 통과한 물이 가열되어 온수가 생산될 수 있다. In detail, during the heating operation for making hot water for heating, the discharge end of the high temperature side compressor 20 is connected to the inlet end of the high temperature side hot water condenser 21. At this time, as the second refrigerant of the high temperature and high pressure is condensed in the high temperature side hot water condenser 21 and supplies heat to the water supplied to the hot water line, the water passing through the hot water line may be heated to produce hot water.
그리고, 제상운전시에는 상기 고온측 압축기(20) 토출단은 상기 고온측 제상냉방 응축기(28) 유입단으로 연결된다. 이때, 상기 고온고압의 고온측 제2냉매가 고온측 제상냉방 응축기(28)에서 응축되며 상기 저온측 외부증발기(17)로 열을 공급함에 따라 저온측 외부증발기(17)에 발생된 서리나 성에 등이 제거될 수 있다.In the defrosting operation, the high temperature side compressor 20 discharge end is connected to the high temperature side defrost cooling condenser 28 inlet end. At this time, the high-temperature high-pressure second refrigerant is condensed in the high-temperature defrost cooling condenser 28 and supply heat to the low-temperature external evaporator 17, such as frost or frost generated in the low-temperature external evaporator 17, etc. This can be removed.
한편, 상기 증발보상열교환기(40)는 저온측 보조증발기(18) 및 고온측 보조응축기(23)가 상호 열교환되도록 결합된 장치를 의미한다.On the other hand, the evaporation compensation heat exchanger 40 means a device coupled to the heat exchange between the low temperature side evaporator 18 and the high temperature side auxiliary condenser 23.
이때, 상기 저온측 외부증발기(17) 토출단 내지는 상기 저온측 제상보상증발기(15) 토출단으로부터 배출된 저온측 제1냉매는 상기 증발보상열교환기(40)를 거쳐 상기 저온측 압축기(10)로 유동된다.At this time, the low temperature side first refrigerant discharged from the low temperature side external evaporator 17 discharge stage or the low temperature side defrost compensation evaporator 15 discharge stage passes through the evaporation compensation heat exchanger 40 to the low temperature side compressor 10. Flows into.
즉, 상기 저온측 외부증발기(17) 토출단 및 상기 저온측 제상보상증발기(15) 토출단은 고온측 보조응축기(23)와 열교환되도록 배치된 저온측 보조증발기(18) 유입단에 연결되도록 구비된다.That is, the low temperature side external evaporator 17 discharge end and the low temperature side defrost compensator 15 discharge end are connected to the inlet end of the low temperature side evaporator 18 arranged to exchange heat with the high temperature side auxiliary condenser 23. do.
이때, 상기 고온측 온수응축기(21) 토출단 및 상기 고온측 제상냉방 응축기(28) 토출단은 상기 저온측 외부증발기(17)측 외기온도에 따라 상기 고온측 보조응축기(23)를 선택적으로 경유하여 상기 고온측 증발기(26) 유입단과 연결되도록 전자밸브제어(22a,22b)된다.At this time, the high temperature side hot water condenser 21 discharge end and the high temperature side defrost cooling condenser 28 discharge end selectively pass through the high temperature side auxiliary condenser 23 according to the outside air temperature of the low temperature side external evaporator 17 side. Thus, the solenoid valve controls 22a and 22b are connected to the inlet end of the high temperature side evaporator 26.
즉, 난방운전시 외기온도가 낮은 경우에 상기 고온측 온수응축기(21)에서 응축되어 온수라인에 열을 공급한 후 약 30~50℃의 온도로 토출된 고온측 제2냉매 일부 내지는 전부가 상기 고온측 보조응축기(23)를 거쳐, 수액기(24), 고온측 난방팽창변(25) 및 고온측 증발기(26)로 순환될 수 있다.That is, when the outside air temperature is low during the heating operation, some or all of the high temperature side second refrigerant that is condensed in the high temperature side hot water condenser 21 and supplied to the hot water line and discharged at a temperature of about 30 to 50 ° C. Via the high temperature side auxiliary condenser 23, it may be circulated to the receiver 24, the high temperature side heating expansion 25 and the high temperature side evaporator 26.
여기서, 외기온도가 낮다는 말은 상기 저온측 외부증발기(17)가 배치된 실외 온도가 저온측 제1냉매의 원활한 증발이 불가능한 정도로 낮다는 의미로 이해함이 바람직하며, 저온측 제1냉매의 물성에 따라 상이할 수 있으나 대체적으로 -7℃ 보다 낮은 온도를 의미한다.Here, the low outside air temperature is preferably understood to mean that the outdoor temperature at which the low temperature side external evaporator 17 is disposed is low enough that the low temperature side first refrigerant cannot be evaporated smoothly. It can be different depending on, but generally means a temperature lower than -7 ℃.
이에 따라, 고온측 온수응축기(21)에서 온수를 생산한 후 응축되어 토출되는 30~50℃ 내외의 고온측 제2냉매 일부 내지는 전부가 상기 고온측 보조응축기(23)를 경유하며 상기 저온측 제1냉매의 증발을 위한 잠열을 공급할 수 있다.Accordingly, some or all of the high temperature side second refrigerant of about 30 to 50 ° C., which is condensed and discharged after producing hot water in the high temperature side hot water condenser 21, passes through the high temperature side auxiliary condenser 23, One latent heat for evaporation of the refrigerant can be supplied.
물론, 상기 실외 온도가 저온측 제1냉매의 원활한 증발이 가능한 정도의 범위인, -7℃ 이상의 경우에, 고온측 제2냉매는 상기 고온측 보조응축기(23)를 경유하지 않고 수액기(24) 및 고온측 난방팽창편(25)을 거쳐 고온측 증발기(26)로 순환될 수 있다.Of course, when the outdoor temperature is in the range of -7 ° C or more, in which the low temperature side first refrigerant is in a range where a smooth evaporation is possible, the high temperature side second refrigerant does not pass through the high temperature side auxiliary condenser 23 and receives the receiver 24. ) And the high temperature side heating expansion piece 25 may be circulated to the high temperature side evaporator 26.
상세히, 상기 이원 히트펌프 냉난방 장치의 난방운전시 상기 저온측 제1냉매는 저온측 외부증발기(17)가 배치된 실외 공기의 열을 흡수하여 1차 증발되며, 상기 저온측 보조증발기(18)로 유동된다.In detail, during the heating operation of the dual heat pump air conditioning apparatus, the low temperature side first refrigerant absorbs heat of outdoor air in which the low temperature side external evaporator 17 is disposed and is first evaporated to the low temperature side secondary evaporator 18. Flows.
이때, 상기 실외 온도가 저온측 제1냉매의 원활한 증발이 불가능한 정도로 낮아지면 고온측 온수응축기(21)에서 온수를 생산하며 1차 응축된 30℃~50℃ 정도의 고온측 제2냉매가 상기 고온측 보조응축기(23)로 유동된다.At this time, when the outdoor temperature becomes low enough that the low temperature side first refrigerant cannot be evaporated smoothly, the high temperature side second refrigerant of 30 ° C. to 50 ° C., which is primarily condensed, produces hot water. Flow to the side auxiliary condenser (23).
그리고, 상기 고온측 보조응축기(23)에서 고온측 제2냉매가 2차 응축되고, 온수 생산 후 고온측 제2냉매에 남아있는 30~50℃의 잔열이 상기 저온측 보조증발기(18)의 상기 저온측 제2냉매로 공급될 수 있으며 저온측 제1냉매가 충분한 열을 공급받아 2차 증발될 수 있다.Then, the high temperature side secondary refrigerant is secondary condensed in the high temperature side secondary condenser 23, and residual heat of 30 to 50 ° C. remaining in the high temperature side secondary refrigerant after hot water is produced may be generated in the low temperature side secondary evaporator 18. The low temperature side second refrigerant may be supplied, and the low temperature side first refrigerant may be supplied with sufficient heat to be secondarily evaporated.
이때, 2차의 증발 과정을 통해 완전 증발된 저온측 제1냉매는 액분리기(19)를 거쳐 저온측 압축기(10)로 유동된다. 이에 따라, 실외 온도가 과도하게 감소되는 경우에도 저온측 제1냉매의 불완전한 증발로 인한 장치의 고장이 현저히 절감될 수 있다.At this time, the low temperature side first refrigerant completely evaporated through the second evaporation process flows to the low temperature side compressor 10 via the liquid separator 19. Accordingly, even when the outdoor temperature is excessively reduced, the failure of the device due to incomplete evaporation of the low temperature side first refrigerant can be significantly reduced.
즉, 저온측 제1냉매의 불완전한 증발로 액분리기(19)에서의 필터링 량이 증가됨에 따라 발생될 수 있는 냉매량 부족현상 내지는 액체 상태의 저온측 제1냉매가 유입되는 액백 현상으로 발생될 수 있는 저온측 압축기(10)의 고장이 현저히 감소될 수 있다.That is, low temperature that may occur due to insufficient amount of refrigerant that may occur as the amount of filtering in the liquid separator 19 increases due to incomplete evaporation of the low temperature first refrigerant, or a liquid back phenomenon in which the low temperature first refrigerant flows into a liquid state. The failure of the side compressor 10 can be significantly reduced.
Figure PCTKR2017004073-appb-T000001
Figure PCTKR2017004073-appb-T000001
상기 표 1은 외기온도에 따른 가열효율(COP)을 측정한 결과를 증발보상열교환기가 적용된 본원 발명과 이원열교환기만 적용된 종래 발명을 비교하여 나타낸 것이다.Table 1 shows the result of measuring the heating efficiency (COP) according to the outside air temperature by comparing the present invention applied to the evaporation compensation heat exchanger and the conventional invention applied only to the binary heat exchanger.
여기서, 저온측 제1냉매는 R-410a, 고온측 제2냉매는 R-134a로 본원 발명 및 종래 발명에 동일하게 적용하였으며, 각 발명에는 동일한 용량의 고온측 압축기 및 저온측 압축기가 사용되되 고온측 압축기 및 저온측 압축기가 1:1의 동일한 용량비를 갖도록 구성된 상태에서 각각의 가열효율(COP)을 측정하였다.Here, the low temperature side first refrigerant is R-410a, and the high temperature side second refrigerant is R-134a, which is applied to the present invention and the conventional invention in the same manner, and the high temperature side compressor and the low temperature side compressor having the same capacity are used in each invention. Each heating efficiency (COP) was measured with the side compressor and the low temperature side compressor configured to have the same capacity ratio of 1: 1.
상기 표 1에서 보는 바와 같이, 증발보상열교환기가 적용된 본 발명이 종래 이원열교환기만 적용된 것에 비해 전반적으로 높은 가열 효율을 보이고 있으며, 외기온도가 -7℃ 이상인 경우 본원 발명은 종래 발명에 비해 0.1~0.2 정도로 다소 높은 가열효율(COP)을 나타내고 있다.As shown in Table 1, the present invention to which the evaporative compensation heat exchanger is applied shows a high heating efficiency as compared with the conventional binary heat exchanger only, and the present invention is 0.1 to 0.2 when the ambient temperature is -7 ° C. or more. It shows a somewhat higher heating efficiency (COP).
특히, 외기온도가 -15℃ 이하로 감소되는 경우에, 본원 발명 및 종래 발명 모두 가열효율(COP)이 감소되는 것으로 나타나지만, 본원 발명의 경우에는 -38℃까지 2 이상의 가열 효율로 정상온도 상태(7℃) 대비 60% 정도의 성능을 유지하며 정상 구동되는 것으로 나타났다.In particular, when the outside air temperature is reduced to -15 ℃ or less, both the present invention and the conventional invention appears to decrease the heating efficiency (COP), in the case of the present invention at a normal temperature state (at a heating efficiency of 2 or more to -38 ℃) 7 ℃) was maintained at 60% performance and appeared to operate normally.
반면, 종래 발명의 경우에는 외부 온도의 감소에 따른 가열효율의 감소폭이 본 발명에 비해 큰 것으로 나타났으며, 외부 온도가 -20℃로 감소되면 가동시 가열효율이 2미만으로 급격하게 감소되는 양상을 보이고, -25℃ 이하에서는 구동이 불가능한 것을 알 수 있었다.On the other hand, in the case of the conventional invention, the decrease in the heating efficiency according to the decrease in the external temperature is shown to be larger than the present invention. When the external temperature is reduced to -20 ° C, the heating efficiency is drastically reduced to less than 2 during operation. It was found that, under -25 ℃ driving is impossible.
이처럼, 상기 저온측 외부증발기(17) 토출단에 증발보상열교환기(40)가 구비되어 외기온도의 감소시 고온측 보조응축기(23) 및 저온측 보조증발기(18) 간의 열교환이 가능하므로 장치의 가열 효율 및 안정성이 향상될 수 있다.As such, the evaporation compensating heat exchanger 40 is provided at the discharge end of the low temperature side external evaporator 17 so that the heat exchange between the high temperature side auxiliary condenser 23 and the low temperature side evaporator 18 is possible when the outside temperature is reduced. Heating efficiency and stability can be improved.
즉, 온수 생산 후 고온측 제2냉매에 남아 있는 30~50℃의 잔열이 증발보상열교환기(40)를 통해 저온측 제1냉매로 공급됨에 따라 극저온의 혹한 환경에서도 저온측 제1냉매가 완전 증발될 수 있어 안정적인 가열 성능이 유지될 수 있으며, 액백 현상으로 인한 고장 발생이 최소화되어 장치의 가열 안정성 및 내구성이 현저히 개선될 수 있다.That is, after the hot water is produced, the residual heat of 30 to 50 ° C. remaining in the second refrigerant on the high temperature side is supplied to the first refrigerant on the low temperature side through the evaporative compensation heat exchanger 40, so that the low-temperature first refrigerant is completely completed even in a cryogenic environment. It can be evaporated to maintain a stable heating performance, and the occurrence of failure due to the liquid back phenomenon can be minimized to significantly improve the heating stability and durability of the device.
한편, 상기 고온측 온수응축기(21) 토출단에는 상기 고온측 보조응축기(23)를 경유하여 상기 고온측 증발기(26) 유입단에 연결되는 증발보상라인(o,k,t,m,w)과, 상기 고온측 보조응축기(23)를 미경유하여 상기 고온측 증발기(26) 유입단에 직결되는 고온가열라인(o,p,m,w) 구비됨이 바람직하다.Meanwhile, an evaporation compensation line (o, k, t, m, w) connected to the inlet end of the high temperature side evaporator 26 via the high temperature side auxiliary condenser 23 at the discharge end of the hot side hot water condenser 21. And, it is preferable that a high temperature heating line (o, p, m, w) directly connected to the inlet end of the high temperature side evaporator 26 without passing through the high temperature side auxiliary condenser (23).
이때, 상기 저온측 외부증발기(17)측 외기온도가 기설정된 제1증발보상온도 이하이면 상기 증발보상라인(o,k,t,m,w)의 제1전자밸브(22b) 및 상기 고온가열라인(o,p,m,w)의 제2전자밸브(22a)가 개방되도록 제어될 수 있다.At this time, if the outside temperature of the low temperature side external evaporator 17 is less than or equal to the first predetermined evaporation compensation temperature, the first solenoid valve 22b of the evaporation compensation line o, k, t, m, w and the high temperature heating The second solenoid valve 22a of the lines o, p, m, and w may be controlled to open.
여기서, 상기 제1증발보상온도는 상기 저온측 제1냉매의 비등점에 대응하여 설정될 수 있으며, 상기 저온측 제1냉매가 R-410a 내지는 이와 유사한 비등점을 갖는 경우에는 -7℃로 설정됨이 바람직하다.Here, the first evaporation compensation temperature may be set corresponding to the boiling point of the low temperature side first refrigerant, and set to −7 ° C. when the low temperature side first refrigerant has a boiling point similar to that of R-410a. desirable.
이때, 상기 제1전자밸브(22b) 및 상기 제2전자밸브(22a)가 모두 개방되면, 상기 고온측 온수응축기(21)로부터 토출된 고온측 제2냉매 중 일부는 상기 고온측 보조응축기(23)를 경유하여 상기 고온측 증발기(26)로 순환되고, 나머지 일부는 상기 고온측 보조응축기(23)를 경유하지 않고 상기 고온측 증발기(26)로 순환될 수 있다.At this time, when both of the first solenoid valve 22b and the second solenoid valve 22a are opened, a part of the high temperature side second refrigerant discharged from the high temperature side hot water condenser 21 is the high temperature side auxiliary condenser 23. ) May be circulated to the hot side evaporator 26 and the remaining part may be circulated to the hot side evaporator 26 without passing through the hot side auxiliary condenser 23.
또한, 상기 저온측 외부증발기(17)측 외기온도가 상기 제1증발보상온도 미만으로 기설정된 제2증발보상온도 이하이면 상기 제1전자밸브(22b)가 개방되되 상기 제2전자밸브(22a)가 폐쇄되도록 제어될 수 있다.Further, when the low temperature side external evaporator 17 side outside air temperature is less than or equal to the second evaporation compensation temperature set to be less than the first evaporation compensation temperature, the first solenoid valve 22b is opened and the second solenoid valve 22a is opened. Can be controlled to close.
여기서, 상기 제2증발보상온도는 상기 제1증발보상온도보다 낮은 온도로 설정되며, 저온측 제1냉매가 R-410a 내지는 이와 유사한 비등점을 갖는 경우 -15℃로 설정됨이 바람직하다.Here, the second evaporation compensation temperature is set to a temperature lower than the first evaporation compensation temperature, and is preferably set to -15 ° C when the low temperature side first refrigerant has a boiling point similar to that of R-410a.
이때, 상기 제1전자밸브(22b)가 개방되고, 상기 제2전자밸브(22a)가 폐쇄되면, 상기 고온측 온수응축기(21)로부터 토출된 고온측 제2냉매 전부가 상기 고온측 보조응축기(23)를 경유하여 상기 고온측 증발기(26)로 순환될 수 있다.At this time, when the first solenoid valve 22b is opened and the second solenoid valve 22a is closed, all of the high temperature side second refrigerant discharged from the high temperature side hot water condenser 21 is the high temperature side auxiliary condenser ( It may be circulated to the hot side evaporator 26 via 23).
상세히, 상기 고온측 온수응축기(21) 토출단 및 상기 고온측 제상냉방 응축기(28) 토출단은 제1합류부(o)에 연결되며, 상기 증발보상라인(o,k,t,m,w) 및 상기 고온가열라인(o,p,m,w)은 제1합류부(o)로부터 분지되어 상기 고온측 증발기(26) 유입단으로 연결된다.In detail, the high temperature side hot water condenser 21 discharge end and the high temperature side defrost cooling condenser 28 discharge end are connected to a first confluence part o, and the evaporation compensation line o, k, t, m, w ) And the high temperature heating line (o, p, m, w) is branched from the first confluence (o) is connected to the inlet end of the high temperature side evaporator (26).
여기서, 상기 증발보상라인은 제1합류부(o), 제1전자밸브(22b)가 구비되되 제1합류부(o) 및 고온측 보조응축기(23) 유입단 사이를 연결하는 증발유입부(k), 고온측 보조응축기(23) 토출단에 연결되는 증발토출부(t)를 포함한다.Here, the evaporation compensation line is provided with a first confluence part (o), the first solenoid valve (22b), but the evaporation inlet portion connecting the first confluence part (o) and the inlet end of the high temperature side auxiliary condenser (23) ( k), the evaporation discharge part (t) connected to the discharge end of the high temperature side auxiliary condenser (23).
그리고, 상기 고온가열라인은 제1합류부(o), 제2전자밸브(22a)가 구비되는 차폐부(p)를 포함한다. 이때, 상기 증발토출부(t)의 단부 및 상기 차폐부(p)의 단부는 하나로 합류되고(m), 상기 고온측 증발기(26) 유입단으로 연결(w)된다.The high temperature heating line includes a shielding portion p provided with a first confluence portion o and a second solenoid valve 22a. At this time, the end of the evaporation discharge portion (t) and the end of the shielding portion (p) are merged into one (m), and connected to the inlet end of the high temperature side evaporator (26) (w).
즉, 상기 증발보상라인과 상기 고온가열라인은 제1합류부(o), 그리고 증발토출부(t) 및 차폐부(p)가 합류되어 고온측 증발기(26) 유입단으로 연결되는 부분(m,w)을 공유한다.That is, the evaporation compensation line and the high temperature heating line are joined to the first confluence part o, the evaporation discharge part t and the shielding part p, and are connected to the high temperature side evaporator 26 inlet end (m). , w)
이에 따라, 전자밸브제어시 고온측 제2냉매의 순환경로가 정확하게 구분될 수 있다. 즉, 저온측 외부증발기(17)가 배치된 실외 온도에 대응하여 고온측 제2냉매가 보조응축기(23)를 경유하거나 보조응축기(23)를 경유하지 않고 증발기(26)로 유동되는 순환경로가 정확하게 구분되어 구동될 수 있다.Accordingly, the circulation path of the high temperature side second refrigerant during the solenoid valve control can be accurately classified. That is, the circulation path through which the high temperature side second refrigerant flows to the evaporator 26 without passing through the sub condenser 23 or the sub condenser 23 corresponding to the outdoor temperature where the low temperature side external evaporator 17 is disposed is It can be driven accurately.
한편, 도 2는 본 발명의 일실시예에 따른 이원 히트펌프 냉난방 장치의 증발보상운전을 나타낸 흐름도이다.On the other hand, Figure 2 is a flow chart showing the evaporation compensation operation of the dual heat pump cooling and heating apparatus according to an embodiment of the present invention.
도 2에서 보는 바와 같이, 난방운전이 시작되면(s10), 상기 저온측 외부증발기(17)가 배치된 실외의 외기온도, 즉 외부온도가 기설정된 제1증발보상온도 이하인지 여부(s20)를 확인한다.As shown in Figure 2, when the heating operation is started (s10), whether the outside air temperature, that is, the outdoor temperature where the low-temperature external evaporator 17 is disposed, that is whether the external temperature is less than the first preset evaporation compensation temperature (s20) Check it.
이때, 외부온도가 제1증발보상온도를 초과하는 경우에 증발보상라인의 제1전자밸브(22b)가 폐쇄되고, 고온가열라인의 제2전자밸브(22a)가 개방된다(s21). 즉, 상기 고온측 제2냉매는 상기 증발보상열교환기(40)를 경유하지 않고 순환하게 된다.At this time, when the external temperature exceeds the first evaporation compensation temperature, the first solenoid valve 22b of the evaporation compensation line is closed, and the second solenoid valve 22a of the high temperature heating line is opened (s21). That is, the high temperature side second refrigerant is circulated without passing through the evaporation compensation heat exchanger 40.
상세히, 외부온도가 -7℃를 초과하는 경우 난방 운전시 저온측 냉동사이클은 저온측 압축기(10), 저온측 응축기In detail, the low temperature side refrigeration cycle during the heating operation is the low temperature side compressor (10), low temperature side condenser when the outside temperature exceeds -7 ℃
(11), 수액기(12), 저온측 난방팽창변(16), 저온측 외부증발기(17), 저온측 보조증발기(18), 액분리기(19)로 구성된 순환구조를 갖는다.(11), a receiver 12, a low temperature side heating expansion side 16, a low temperature side external evaporator 17, a low temperature side evaporator 18, and a liquid separator 19.
그리고, 고온측 냉동사이클은 고온측 증발기(26), 액분리기(27), 고온측 압축기(20), 고온측 온수응축기(21), 수액기(24), 고온측 난방팽창변(25)으로 구성된 순환구조를 갖는다.The high temperature side refrigeration cycle includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a high temperature side hot water condenser 21, a receiver 24, and a high temperature side heating expansion valve 25. It has a circulation structure.
이때, 상기 고온측 제2냉매 및 저온측 제1냉매의 열교환은 이원열교환기(30), 즉 저온측 응축기(11) 및 고온측증발기(26) 사이에서 이루어지며, 저온측 제1냉매의 응축단계에서 발생된 발열이 고온측 제2냉매의 증발에 필요한 열원으로 사용될 수 있다.At this time, heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant is performed between the binary heat exchanger 30, that is, the low temperature side condenser 11 and the high temperature side evaporator 26, and the condensation step of the low temperature side first refrigerant. Exothermic heat generated at may be used as a heat source for evaporation of the high temperature side second refrigerant.
이에 따라, 상기 저온측 응축기(11)에서 상기 저온측 제1냉매의 응축시 발생된 열이 상기 고온측 제2냉매로 원활하게 전달되되 고온측 제2냉매의 열손실이 감소되어 상기 고온측 제2냉매가 신속하게 가열될 수 있다.Accordingly, the heat generated during the condensation of the low temperature side first refrigerant in the low temperature side condenser 11 is smoothly transferred to the high temperature side second refrigerant, and the heat loss of the high temperature side second refrigerant is reduced, 2 The refrigerant can be heated quickly.
여기서, 상기 저온측 제1냉매는 저온측 압축기(10)에서 압축되고, 이원열교환기(30)의 저온측 응축기(11)에서 응축되며 고온측 제2냉매에 열을 공급한다. 그리고, 응축된 저온측 제1냉매는 수액기(12)를 거쳐, 저온측 난방팽창변(16)으로 유동되어 팽창된 후 저온측 외부증발기(17)에서 증발되어 외기의 열을 흡수한다.Here, the low temperature side first refrigerant is compressed in the low temperature side compressor 10, condensed in the low temperature side condenser 11 of the binary heat exchanger 30, and supplies heat to the high temperature side second refrigerant. Then, the condensed low temperature side first refrigerant flows through the receiver 12 to the low temperature side heating expansion side 16, expands, and is evaporated in the low temperature side external evaporator 17 to absorb heat from the outside air.
이때, 상기 저온측 외부증발기(17)는 한쌍으로 구비됨이 바람직하며, 상기 저온측 응축기(11)에는 상기 각 저온측 외부증발기(17a,17b)에 연결되도록 한쌍으로 분지되되 분지된 각 부분에 저온측 난방팽창변(16a,16b)가 구비된 외부증발라인(s)이 연결될 수 있다.In this case, the low temperature side external evaporator 17 is preferably provided in pairs, and the low temperature side condenser 11 is branched in pairs so as to be connected to each of the low temperature side external evaporators 17a and 17b. The external evaporation line s equipped with the low temperature side heating expansion sides 16a and 16b may be connected.
즉, 상기 저온측 응축기(11)에서 토출된 저온측 제1냉매는 수액기(12)를 거쳐 외부증발라인(s)으로 유동되며, 외부증발라인(s)의 분지된 부분을 따라 분할되어 각 난방팽창변(16a,16b)을 통과하며 팽창된다.That is, the low temperature side first refrigerant discharged from the low temperature side condenser 11 flows to the external evaporation line s through the receiver 12 and is divided along the branched portion of the external evaporation line s. It expands through the heating expansion sides 16a and 16b.
그리고, 각 난방팽창변(16a,16b)에서 분할 팽창된 저온측 제1냉매가 각 외부증발기(17a,17b)로 유동되어 증발될 수 있다.In addition, the low temperature side first refrigerant that is partially expanded at each of the heating expansion sides 16a and 16b may be flowed to each of the external evaporators 17a and 17b to be evaporated.
이처럼, 상기 저온측 응축기(11)로부터 토출된 저온측 제1냉매가 각 난방팽창변(16a,16b)을 통해 분할 팽창되어 한쌍의 저온측 외부증발기(17a,17b)를 따라 유동되므로 외기와의 접촉면적 증가를 통해 더욱 원활한 증발이 가능하며, 외기로부터 다량의 열을 흡수하여 고온측 제2냉매에 공급할 수 있어 장치의 가열 효율이 향상될 수 있다.As such, the low-temperature first refrigerant discharged from the low-temperature side condenser 11 is divided and expanded through each of the heating expansion sides 16a and 16b and flows along a pair of low-temperature external evaporators 17a and 17b, thereby contacting the outside air. By increasing the area, the evaporation can be more smoothly, and a large amount of heat can be absorbed from the outside air and supplied to the high temperature side second refrigerant, thereby improving the heating efficiency of the device.
물론, 상기 저온측 제1냉매의 증발시 흡열로 냉각수를 생산하는 경우에는 상기 저온측 제1냉매는 저온측 냉방팽창변(14)으로 유동되어 팽창된 후 저온측 제상보상증발기(15)에서 증발될 수 있다.Of course, when producing the cooling water by the endotherm when the low temperature side first refrigerant evaporates, the low temperature side first refrigerant flows to the low temperature side cooling expansion side 14, expands, and is then evaporated in the low temperature side defrost compensator. Can be.
이를 위해, 상기 저온측 응축기(11) 토출단에는 저온측 외부증발기(17)와 연결되는 외부증발라인(s)을 따라 제3전자밸브(13a)가 구비되며, 외부증발라인(s)에서 저온측 제상보상증발기(15)측으로 분지된 제상보상라인을 따라 제4전자밸브가(13b)가 구비된다.To this end, a third solenoid valve 13a is provided at the discharge end of the low temperature side condenser 11 along an external evaporation line s connected to the low temperature side external evaporator 17 and at a low temperature in the external evaporation line s. A fourth solenoid valve 13b is provided along the defrost compensation line branched to the side defrost compensator 15.
즉, 제3전자밸브(13a)가 개방되고, 제4전자밸브(13b)가 폐쇄되면 저온측 응축기(11)의 저온측 제1냉매는 저온측외부증발기(17)를 거쳐 저온측 보조증발기(18)로 유동되고, 제3전자밸브(13a)가 폐쇄되고 제4전자밸브(13b)가 개방되면 저온측 응축기(11)의 저온측 제1냉매는 저온측 제상보상증발기(15)를 거쳐 저온측 보조증발기(18)로 유동된다.That is, when the third solenoid valve 13a is opened and the fourth solenoid valve 13b is closed, the low temperature side first refrigerant of the low temperature side condenser 11 passes through the low temperature side external evaporator 17 and the low temperature side auxiliary evaporator ( 18), when the third solenoid valve 13a is closed and the fourth solenoid valve 13b is opened, the low temperature first refrigerant of the low temperature side condenser 11 passes through the low temperature side defrost compensator 15 Flow to the side auxiliary evaporator (18).
이때, 증발된 저온측 제1냉매는 증발보상열교환기(40)의 저온측 보조증발기(18)를 통과하나 제1전자밸브(22b)의 폐쇄로 고온측 제2냉매와의 열교환 없이 액분리기(19)를 저온측 압축기(10)로 유입된다.At this time, the evaporated low temperature side first refrigerant passes through the low temperature side secondary evaporator 18 of the evaporation compensating heat exchanger 40, but is closed without closing the first solenoid valve 22b without the heat exchange with the high temperature side second refrigerant. 19) flows into the low temperature side compressor (10).
이와 동시에, 고온측 제2냉매는 이원열교환기(30)의 고온측 증발기(26)에서 저온측 제1냉매의 열을 흡수하여 증발되고, 액분리기(27)를 거쳐 고온측 압축기(20)로 유동된다. 이때, 고온측 제2냉매는 이원열교환기(30)에서 흡수한 열과 압축기(20)를 통한 압축으로 고온고압의 기체가 된다.At the same time, the high temperature side second refrigerant absorbs the heat of the low temperature side first refrigerant from the high temperature side evaporator 26 of the binary heat exchanger 30 and evaporates, and flows through the liquid separator 27 to the high temperature side compressor 20. do. At this time, the high temperature side second refrigerant becomes gas of high temperature and high pressure by heat absorbed by the binary heat exchanger 30 and compression through the compressor 20.
여기서, 상기 고온측 압축기(20) 토출단에는 고온측 제상냉방 응축기(28)와 연결되는 제상라인을 따라 제6전자밸브(20b)가 구비되며, 고온측 온수응축기(21)와 연결되는 온수가열라인을 따라 제5전자밸브(20a)가 구비된다.Here, the sixth solenoid valve 20b is provided at the discharge end of the high temperature side compressor 20 along the defrost line connected to the high temperature side defrost cooling condenser 28 and is heated to the hot water condenser 21. A fifth solenoid valve 20a is provided along the line.
이때, 난방운전시에는 제5전자밸브(20a)가 개방되고 제6전자밸브(20b)가 폐쇄되며, 고온측 제2냉매는 고온측 온수응축기(21)로 유동되어 응축되며 온수라인에 급수된 물로 열을 공급한다.At this time, during the heating operation, the fifth solenoid valve 20a is opened and the sixth solenoid valve 20b is closed, and the high temperature side second refrigerant flows to the high temperature side hot water condenser 21 to condense and is supplied to the hot water line. Heat with water.
한편, 난방운전시 외부온도가 기설정된 제1증발보상온도 이하이면(s20), 제상운전 여부(s30)를 확인한다.On the other hand, during the heating operation, if the external temperature is less than the first preset evaporation compensation temperature (s20), it is checked whether the defrosting operation (s30).
이때, 난방운전시 외부온도가 기설정된 제상온도 이하이고(도 3의 s110 참조), 난방시작 후 제상대기시간이 경과된 경우(도 3의 s120) 제상운전이 실시될 수 있으며, 상기 제상대기시간은 외부습도에 따라 설정됨이 바람직하다.At this time, when the external temperature during the heating operation is less than the predetermined defrost temperature (see s110 of FIG. 3), when the defrost waiting time has elapsed after the start of heating (s120 of FIG. 3), defrosting operation may be performed, the defrost waiting time Is preferably set according to the external humidity.
여기서, 제상대기시간이라는 말은 난방시작 후 외부증발기에서 서리나 성에 등을 제거하는 제상운전이 필요한 시간을 의미하는 말로 이해함이 바람직하며, 난방시작 후 제상대기시간이 경과하면 제상운전이 시작되며, 제상대기시간이 경과하지 않은 경우에는 난방운전이 유지된다.Here, the defrost waiting time is preferably understood to mean a time required for defrosting operation to remove frost or frost from the external evaporator after the start of heating, defrosting operation is started when the defrost waiting time after the start of heating, defrosting If the waiting time has not elapsed, the heating operation is maintained.
즉, 외부습도가 높아질수록 제상대기시간은 감소되도록 설정되며, 제상대기시간이 감소될수록 난방시작 및 제상운전 사이의 시간간격이 짧아진다. 그리고, 외부습도가 낮아질수록 제상대기시간은 증가되도록 설정되며, 제상대기시간이 증가될수록 난방시작 및 제상운전 사이의 시간간격이 길어진다.That is, the defrost waiting time is set to decrease as the external humidity increases, and as the defrost waiting time decreases, the time interval between the start of heating and the defrosting operation is shortened. As the external humidity decreases, the defrost waiting time is set to increase, and as the defrost waiting time increases, the time interval between the heating start and the defrosting operation becomes longer.
이때, 저온측 외부증발기(17)의 서리나 성에 제거를 위한 제상운전시에는 제1전자밸브(22b)를 폐쇄하고, 제2전자밸브(22a)를 개방하며(s31), 고온측 제2냉매의 열이 저온측 제1냉매로 유동되는 증발보상열교환기(40)를 향한 고온측 제2냉매 유동을 방지함으로써 고온측 제2냉매의 열을 최대한 보존하여 신속한 제상 운전이 이루어질 수 있다.At this time, during the defrosting operation for removing frost or defrost of the low temperature side external evaporator 17, the first solenoid valve 22b is closed, the second solenoid valve 22a is opened (s31), and the high temperature side second refrigerant By preventing the high temperature side second refrigerant flow toward the evaporative compensation heat exchanger 40 in which heat flows to the low temperature side first refrigerant, the defrosting operation may be performed by preserving the heat of the high temperature side second refrigerant as much as possible.
이때, 제상운전 상태가 아니면, 외부온도가 제2증발보상온도 이하인지 여부를 확인한다(s40).At this time, if the defrosting operation state, it is checked whether the external temperature is less than the second evaporation compensation temperature (s40).
그리고, 외부온도가 제2증발보상온도를 초과하면 증발보상라인의 제1전자밸브(22b) 및 고온가열라인의 제2전자밸브(22a)를 모두 개방하고(s41), 외부온도가 제2증발보상온도 이하이면 증발보상라인의 제1전자밸브(22b)를 개방하되 고온가열라인의 제2전자밸브(22a)를 폐쇄한다(s42).When the external temperature exceeds the second evaporation compensation temperature, both the first solenoid valve 22b of the evaporation compensation line and the second solenoid valve 22a of the high temperature heating line are opened (s41), and the external temperature is second evaporation. When the temperature is lower than the compensation temperature, the first solenoid valve 22b of the evaporation compensation line is opened, but the second solenoid valve 22a of the high temperature heating line is closed (s42).
즉, 제상운전 상태가 아닌 난방운전시 외부온도가 -7℃ 이하이되 -15℃를 초과하는 경우에 고온측 제2냉매 중 일부는 증발보상라인을 따라 유동되고, 다른 일부는 상기 고온가열라인을 따라 유동될 수 있다.That is, in the case of heating operation other than the defrosting operation state, when the external temperature is below -7 ° C but exceeds -15 ° C, some of the high temperature side second refrigerant flows along the evaporation compensation line and the other part of the high temperature heating line. Can be flowed accordingly.
이에 따라, 고온측 제2냉매 중 일부의 잔열은 보존되되 다른 일부의 잔열이 상기 증발보상열교환기(40)에서 저온측 제1냉매로 전달될 수 있으므로 장치의 가열 효율이 최적화되면서도 저온 상태에서 저온측 제1냉매의 완전 증발이 원활하게 이루어질 수 있다.Accordingly, the residual heat of some of the high-temperature second refrigerant may be preserved, but the remaining heat of the other part may be transferred from the evaporative compensation heat exchanger 40 to the low-temperature first refrigerant, so that the heating efficiency of the apparatus is optimized and the low temperature is low. Complete evaporation of the side first refrigerant may be performed smoothly.
그리고, 제상운전 상태가 아닌 난방운전시 외부온도가 -15℃ 이하인 경우에 고온측 제2냉매 전부는 증발보상라인을 따라 유동되며, 상기 증발보상열교환기(40)를 경유하여 이원열교환기(30)로 순환된다.In addition, when the external temperature is -15 ° C. or less during the heating operation other than the defrosting operation state, all of the high temperature side second refrigerant flows along the evaporation compensation line, and the binary heat exchanger 30 passes through the evaporation compensation heat exchanger 40. Circulated to
상세히, 외부온도가 기설정된 제2증발보상온도 이하인 경우의 난방 운전시 저온측 냉동사이클은 저온측 압축기(10), 저온측 응축기(11), 수액기(12), 저온측 난방팽창변(16), 저온측 외부증발기(17), 저온측 보조증발기(18), 액분리기(19)로 구성된 순환구조를 갖는다.In detail, the low temperature side refrigeration cycle during the heating operation when the external temperature is less than the second preset evaporation compensation temperature is the low temperature side compressor (10), the low temperature side condenser (11), the receiver (12), the low temperature side heating expansion valve (16). The low temperature side evaporator 17, the low temperature side evaporator 18, and the liquid separator 19 have a circulation structure.
그리고, 고온측 냉동사이클은 고온측 증발기(26), 액분리기(27), 고온측 압축기(20), 고온측 온수응축기(21), 고온측 보조응측기(23), 수액기(24), 고온측 난방팽창변(25)으로 구성된 순환구조를 갖는다.The high temperature side refrigeration cycle includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a high temperature side hot water condenser 21, a high temperature side auxiliary condenser 23, a receiver 24, It has a circulation structure comprised of the high temperature side heating expansion edge 25.
이때, 상기 고온측 제2냉매 및 저온측 제1냉매의 열교환은 이원열교환기(30), 즉 저온측 응축기(11) 및 고온측증발기(26) 사이와 증발보상열교환기(40), 즉 저온측 보조증발기(18) 및 고온측 보조응축기(23) 사이에서 이루어진다.At this time, the heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant is carried out between the binary heat exchanger 30, that is, between the low temperature side condenser 11 and the high temperature side evaporator 26, and the evaporation compensation heat exchanger 40, that is, the low temperature side. Between the subevaporator 18 and the hot side subcondenser 23.
여기서, 상기 고온측 제2냉매는 고온측 온수응축기(21)에서 토출되어 상기 고온측 보조응축기(23)로 유동된다.Here, the high temperature side second refrigerant is discharged from the high temperature side hot water condenser 21 and flows to the high temperature side auxiliary condenser 23.
이때, 상기 고온측 제2냉매는 고온측 온수응축기(21)에서 1차 응축되며 온수를 가열하고 30~50℃의 잔열을 가진 상태로, 보조응축기(23)에서 2차 응축되며 상기 저온측 제1냉매로 열을 공급할 수 있다.At this time, the high temperature side second refrigerant is first condensed in the high temperature side hot water condenser 21, the hot water is heated and has a residual heat of 30 ~ 50 ℃, secondary condensation in the secondary condenser 23 and the low temperature side agent One refrigerant can supply heat.
즉, 상기 저온측 외부증발기(17)로 1차 증발된 저온측 제1냉매가 상기 저온측 보조증발기(18)로 유동되어 고온측 제2냉매의 열로 2차 증발될 수 있다.That is, the low temperature side first refrigerant evaporated to the low temperature side external evaporator 17 may flow to the low temperature side secondary evaporator 18 and may be secondly evaporated by the heat of the high temperature side second refrigerant.
이에 따라, 극저온의 혹한 환경에서도 안정적인 가열 성능이 유지될 수 있으며, 액백 현상으로 인한 저온측 압축기(10)의 고장 발생이 감소되어 장치의 가열 안정성 및 내구성이 향상될 수 있다.Accordingly, stable heating performance may be maintained even in a cryogenic environment, and failure occurrence of the low-temperature compressor 10 due to liquid back may be reduced, thereby improving heating stability and durability of the apparatus.
이처럼, 난방운전시 기설정된 제1증발보상온도 이하에서는 고온측 제2냉매 및 저온측 제1냉매와의 열교환이 이원열교환기(30) 및 증발보상열교환기(40) 양측에서 이루어질 수 있다.As such, the heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant may be performed at both sides of the binary heat exchanger 30 and the evaporative compensation heat exchanger 40 at a temperature lower than the first evaporation compensation temperature preset during the heating operation.
한편, 도 3은 본 발명의 일실시예에 따른 이원 히트펌프 냉난방 장치의 제상운전을 나타낸 흐름도이다.On the other hand, Figure 3 is a flow chart showing the defrosting operation of the dual heat pump air-conditioning apparatus according to an embodiment of the present invention.
도 1 내지 도 3에서 보는 바와 같이, 상기 저온측 응축기(11) 토출단은 전자밸브제어(13a,13b)에 의해 냉수탱크(c)의 냉수라인과 열교환되도록 배치된 저온측 제상보상증발기(15) 및 상기 저온측 외부증발기(17) 중 하나에 교번하여 연결되도록 구비됨이 바람직하다.As shown in Figures 1 to 3, the low temperature side condenser 11 discharge end is a low temperature side defrost compensator 15 arranged to exchange heat with the cold water line of the cold water tank (c) by the solenoid valve control (13a, 13b) And it is preferably provided to be alternately connected to one of the low-temperature external evaporator (17).
이때, 상기 저온측 응축기(11) 토출단은 상기 고온측 압축기(20) 토출단 및 상기 고온측 제상냉방 응축기(28) 유입단의 연결시 상기 저온측 제상보상증발기(15) 유입단과 연결되도록 전자밸브제어됨(13a,13b)이 바람직하다.At this time, the low temperature side condenser 11 discharge end is connected to the low temperature side defrost compensation evaporator 15 inlet end when the high temperature side compressor 20 discharge end and the high temperature side defrost cooling condenser 28 inlet end are connected. Valve controlled 13a, 13b is preferred.
즉, 상기 고온측 압축기(20) 토출단 및 상기 고온측 제상냉방 응축기(28) 유입단 사이에 구비된 제6전자밸브(20b)가 개방되면, 상기 저온측 응축기(11) 토출단 및 상기 저온측 제상보상증발기(15) 사이에 구비된 제4전자밸브(13b)가 개방되도록 연동 제어될 수 있다.That is, when the sixth solenoid valve 20b provided between the discharge end of the high temperature side compressor 20 and the inlet end of the high temperature side defrost cooling condenser 28 is opened, the discharge end and the low temperature of the low temperature side condenser 11 are opened. The fourth solenoid valve 13b provided between the side defrost compensators 15 may be interlocked so as to be opened.
이때, 상기 제6전자밸브(20b)가 개방되면 제5전자밸브(20a)가 폐쇄되고, 제4전자밸브(13b)가 개방되면 제3전자밸브(13a)가 폐쇄되도록 연동 제어된다. 이에 따라, 고온측 제2냉매 및 저온측 제1냉매가 유동되는 라인이 일방향으로 한정되어 각 냉매가 원활하게 순환될 수 있다.At this time, when the sixth solenoid valve 20b is opened, the fifth solenoid valve 20a is closed, and when the fourth solenoid valve 13b is opened, the third solenoid valve 13a is closed. Accordingly, the line through which the high temperature side second refrigerant and the low temperature side first refrigerant flow is defined in one direction so that each refrigerant can be circulated smoothly.
여기서, 제상운전시 저온측 냉동사이클은 저온측 압축기(10), 저온측 응축기(11), 수액기(12), 저온측 냉방팽창변(14), 저온측 제상보상증발기(15), 저온측 보조증발기(18), 액분리기(19)로 구성된 순환구조를 갖는다.Here, in the defrosting operation, the low temperature side refrigeration cycle includes a low temperature side compressor (10), a low temperature side condenser (11), a receiver (12), a low temperature side cooling expansion valve (14), a low temperature side defrost compensator (15), and a low temperature side assistance. It has a circulation structure composed of an evaporator 18 and a liquid separator 19.
그리고, 고온측 냉동사이클은 고온측 증발기(26), 액분리기(27), 고온측 압축기(20), 고온측 제상냉방 응축기(28), 수액기(24), 고온측 난방팽창변(25)으로 구성된 순환구조를 갖는다.The high temperature side refrigeration cycle includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a high temperature side defrost cooling condenser 28, a receiver 24, and a high temperature side heating expansion valve 25. It has a configured circulation structure.
이때, 상기 고온측 제2냉매 및 저온측 제1냉매 간의 열교환은 상기 이원열교환기(30), 즉 고온측 증발기(26) 및 저온측 응축기(11) 사이에서 이루어진다.At this time, heat exchange between the high temperature side second refrigerant and the low temperature side first refrigerant is performed between the binary heat exchanger 30, that is, the high temperature side evaporator 26 and the low temperature side condenser 11.
여기서, 겨울철 난방 운전시 상기 저온측 외부증발기(17)에 서리나 성에가 발생하면, 저온측 증발기(17)의 송풍팬이 회전되지 못하고 저온측 제1냉매의 흡열 증발을 방해하여 난방효율이 저감하게 된다.Here, if frost or frost occurs in the low temperature side evaporator 17 during the winter heating operation, the blowing fan of the low temperature side evaporator 17 does not rotate and prevents endothermic evaporation of the low temperature side first refrigerant to reduce heating efficiency. do.
상세히, 외부 온도가 기설정된 제상온도 이하인 경우(s110) 난방시작 후 경과된 시간을 기설정된 제상대기시간과 비교한다(s120). 그리고, 외부 온도가 기설정된 제상온도 이하이며, 난방시작 후 경과된 시간이 기설정된 제상대기시간 이상인 경우에 제상운전이 시작될 수 있다.In detail, when the external temperature is less than the predetermined defrost temperature (s110), the elapsed time after the start of heating is compared with the preset defrost waiting time (s120). The defrosting operation may be started when the external temperature is equal to or less than the predetermined defrost temperature and the elapsed time after the start of heating is equal to or greater than the preset defrost waiting time.
여기서, 제상온도 및 제상대기시간은 겨울철 혹한기에 서리나 성에가 발생되는 시점을 시험 운전을 통해 산출하여 설정될 수 있으며, 상기 제상대기시간은 제상온도 및 외부습도가 적용된 알고리즘에 따라 산출됨이 바람직하다.Here, the defrost temperature and the defrost waiting time can be set by calculating the time point when the frost or frost occurs in the cold winter season through a test operation, the defrost waiting time is preferably calculated according to the algorithm applied defrost temperature and external humidity. .
예를 들어, 0℃~7℃ 사이에 다습하고 적상이 많아 저온측 외부증발기(17)의 증발 효율이 감소될 수 있으며, -1℃ 이하에서는 습도가 40% 미만으로 적상 발생이 낮아 난방 후 90분 이상 가동 후에 제상이 필요한 것으로 나타나고 있다.For example, a high humidity and a lot of dropping between 0 ℃ ~ 7 ℃ can reduce the evaporation efficiency of the low-temperature external evaporator 17, at -1 ℃ or less, the humidity is less than 40%, low dropping occurs after heating 90 Defrosting has been shown to be necessary after more than minutes of operation.
즉, 상기 외부 온도가 7℃ 이하인 경우에는 외부 습도를 감지하되, 외부 습도가 35% 이상에서 90분, 45% 이상에서 70분, 55% 이상에서는 50분, 65% 이상에서는 45분 등으로 제상대기시간이 설정될 수 있다.That is, when the external temperature is 7 ℃ or less, the external humidity is detected, but the external humidity is defrosted at 90% at 35% or more, 70 minutes at 45% or more, 50 minutes at 55% or more, 45 minutes or more at 65% or more. The waiting time can be set.
이때, 상기 외부 온도가 기설정된 제상온도 이하이고, 난방시작 후 외부 습도에 따라 설정된 제상대기시간이 경과된 경우 제상운전이 시작될 수 있다.At this time, when the external temperature is less than the predetermined defrost temperature, the defrosting operation may be started when the defrost waiting time is set according to the external humidity after the start of heating.
여기서, 고온측 압축기(10) 토출단이 고온측 제상냉방 응축기(28) 유입단과 연결되도록 제6전자밸브(20b)가 개방되고 제5전자밸브(20a)가 폐쇄되되, 저온측 응축기(11) 토출단이 저온측 제상보상증발기(15) 유입단과 연결되도록 제4전자밸브(20b)가 개방되고 제3전자밸브(20a)가 폐쇄된다(s130).Here, the sixth solenoid valve 20b is opened and the fifth solenoid valve 20a is closed so that the discharge end of the high temperature side compressor 10 is connected to the inlet end of the high temperature side defrost cooling condenser 28, but the low temperature side condenser 11 is closed. The fourth solenoid valve 20b is opened and the third solenoid valve 20a is closed (s130) so that the discharge end is connected to the inlet end of the low temperature side defrost compensator.
이때, 상기 저온측 압축기(10)의 구동이 정지된다(s140). 그리고, 상기 저온측 압축기(10)는 제상 운전 시작 후 기설정된 대기시간이 경과하면(s150) 재작동된다(s160).At this time, the driving of the low temperature side compressor 10 is stopped (s140). In addition, the low temperature side compressor 10 is restarted when a predetermined waiting time elapses after the start of the defrosting operation (s150) (s160).
즉, 제상 운전 시작시 저온측 제1냉매가 계속 순환되는 경우 저온측 증발기(17)에서 지속적인 흡열이 이루어지므로 효율적인 제상운전을 위해 20초 정도의 대기시간 이후 저온측 압축기(10)가 재구동됨이 바람직하다.That is, when the low temperature side first refrigerant continues to circulate at the start of the defrosting operation, the endothermic is continuously absorbed by the low temperature side evaporator 17, so the low temperature side compressor 10 is re-driven after the waiting time of about 20 seconds for efficient defrosting operation. This is preferred.
이때, 상기 저온측 제1냉매는 저온측 압축기(10), 저온측 응축기(11), 냉방팽창변(14), 제상보상증발기(15), 저온측 보조증발기(18), 액분리기(19)로 구성된 순환경로를 가지며, 냉수라인의 열을 흡수하여 증발된 상태에서 압축되어 저온측 응축기(11)에서 고온측 제2냉매로 열을 공급한다.At this time, the low temperature side first refrigerant is a low temperature side compressor (10), a low temperature side condenser (11), a cooling expansion valve (14), a defrost compensation evaporator (15), a low temperature side evaporator (18), a liquid separator (19). It has a configured circulation path, and absorbs the heat of the cold water line is compressed in the evaporated state to supply heat from the low temperature side condenser 11 to the high temperature second refrigerant.
그리고, 상기 고온측 제2냉매는 고온측 증발기(26), 액분리기(27), 고온측 압축기(20), 제상냉방 응축기(28), 수액기(24), 난방팽창변(25)으로 구성된 순환경로를 가지며, 저온측 제1냉매의 열을 흡수하고 압축된 상태에서 제상냉방 응축기(28)에서 응측되며 저온측 외부증발기(17)의 서리나 성에를 제거하게 된다.The high temperature side second refrigerant includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a defrost cooling condenser 28, a receiver 24, and a heating expansion valve 25. It has a path, and absorbs the heat of the low-temperature first refrigerant and is condensed in the defrost cooling condenser 28 in the compressed state to remove the frost or frost of the low-temperature external evaporator 17.
이때, 상기 고온측 제상냉방 응축기(28)는 상기 저온측 외부증발기(17)에 대응되도록 한쌍으로 구비됨이 바람직하며, 더욱 효율적인 제상운전이 이루어질 수 있다.At this time, the high temperature side defrost cooling condenser 28 is preferably provided in pairs to correspond to the low temperature side external evaporator 17, it can be made more efficient defrosting operation.
이처럼, 제상운전시에도 고온측 제2냉매가 저온측 제1냉매로부터 지속적으로 열을 공급받아 고온으로 가열될 수 있으므로 신속한 제상운전이 가능하다.As such, even during the defrosting operation, the high temperature side second refrigerant may be continuously supplied with heat from the low temperature side first refrigerant and thus heated to a high temperature, thereby enabling rapid defrosting operation.
한편, 상기 제상운전 시작 후 기설정된 제상운전시간이 경과하면(s170) 고온측 압축기(20) 토출단이 고온측 온수응축기(21) 유입단과 연결되도록 제5전자밸브(20a)가 개방되고 제6전자밸브(20b)가 폐쇄되되 저온측 응축기(11) 토출단이 저온측 외부증발기(17) 유입단과 연결되도록 제3전자밸브(13a)가 개방되고 제4전자밸브(13b)가 폐쇄된다(s180).Meanwhile, when a predetermined defrosting operation time has elapsed after the start of the defrosting operation (s170), the fifth solenoid valve 20a is opened and the sixth solenoid valve is opened so that the discharge end of the high temperature side compressor 20 is connected to the inlet end of the high temperature side hot water condenser 21. The solenoid valve 20b is closed, but the third solenoid valve 13a is opened and the fourth solenoid valve 13b is closed so that the low temperature side condenser 11 discharge end is connected to the low temperature side external evaporator 17 inlet end (s180). ).
이때, 상기 제상운전시간은 외부온도에 대응하여 설정될 수 있으며, -7~7℃ 사이에는 180초 내외로 설정됨이 바람직하고, -7~-10℃ 사이에는 300초, -10~-40℃ 사이에는 400~700초로 설정됨이 바람직하다. 여기서, 외부온도가 -10~-40℃인 경우에는 습도가 매우 적어 6~9시간에 1회의 제상운전이 요구된다.At this time, the defrosting operation time may be set in response to the external temperature, it is preferably set to about 180 seconds between -7 ~ 7 ℃, 300 seconds between -7 ~-10 ℃, -10 ~ -40 It is preferable that the temperature is set between 400 and 700 seconds. Here, when the outside temperature is -10 ~ -40 ℃, the humidity is very small, one defrosting operation is required every 6 to 9 hours.
그리고, 상기 제상운전시간이 경과하면 제상운전이 종료되고 온수 생성을 위한 난방운전이 재시작될 수 있다.When the defrosting operation time elapses, the defrosting operation is terminated and the heating operation for generating hot water may be restarted.
이처럼, 서리나 성에 등의 적상이 제거되도록 상기 고온측 냉동사이클을 따라 가열된 고온측 제2냉매가 저온측 외부증발기(17)와 열교환되는 고온측 제상냉방 응축기(28)로 순환됨에 동시에 저온측 제1냉매가 제상보상증발기로 순환되며 냉수라인의 열을 흡수하여 저온측 압축기를 통해 압축되므로 고온측 제2냉매의 증발을 위한 열원이 이원열교환기에 지속적으로 공급될 수 있다.As such, the high temperature side second refrigerant heated along the high temperature side refrigeration cycle is circulated to the high temperature side defrost cooling condenser 28 which is heat-exchanged with the low temperature side external evaporator 17 to remove the drop of frost, frost and the like. Since the first refrigerant is circulated to the defrost compensation evaporator and absorbs heat from the cold water line and is compressed through the low temperature compressor, a heat source for evaporation of the high temperature second refrigerant may be continuously supplied to the binary heat exchanger.
이에 따라, 한층 신속하고 효율적인 제상운전이 이루어질 수 있다.Accordingly, a faster and more efficient defrosting operation can be achieved.
한편, 여름철에 온수생산 없이 냉수만 생산하는 냉방 운전시 상기 저온측 제1냉매는 저온측 압축기(10), 저온측응축기(11), 냉방팽창변(14), 제상보상증발기(15), 저온측 보조증발기(18), 액분리기(19)로 구성된 순환경로를 가지며, 냉수라인의 열을 흡수하여 증발된 상태에서 압축되어 저온측 응축기(11)에서 고온측 제2냉매로 열을 공급한다.On the other hand, during the cooling operation in which only cold water is produced without producing hot water in the summer, the low temperature side first refrigerant has a low temperature side compressor (10), a low temperature side condenser (11), a cooling expansion valve (14), a defrost compensation evaporator (15), and a low temperature side. It has a circulation path composed of the auxiliary evaporator 18, the liquid separator 19, absorbs the heat of the cold water line and is compressed in the evaporated state to supply heat from the low temperature side condenser 11 to the high temperature side second refrigerant.
그리고, 상기 고온측 제2냉매는 고온측 증발기(26), 액분리기(27), 고온측 압축기(20), 제상냉방 응축기(28), 수액기(24), 난방팽창변(25)으로 구성된 순환경로를 가지며, 저온측 제1냉매의 열을 흡수하고 압축된 상태에서 제상냉방 응축기(28)에서 응측되며 외기로 열을 방출한다.The high temperature side second refrigerant includes a high temperature side evaporator 26, a liquid separator 27, a high temperature side compressor 20, a defrost cooling condenser 28, a receiver 24, and a heating expansion valve 25. It has a path, absorbs the heat of the low temperature side first refrigerant, is condensed in the defrost cooling condenser 28 in the compressed state and releases heat to the outside air.
여기서, 상기 고온측 제상냉방 응축기(28)는 한쌍으로 구비됨이 바람직하며, 외기와의 접촉면적 증가를 통해 외기로의 열방출이 더욱 원활하게 이루어질 수 있다.Here, the high temperature side defrost cooling condenser 28 is preferably provided in pairs, and heat discharge to the outside air can be made more smoothly by increasing the contact area with the outside air.
또한, 상기 각 고온측 제상냉방 응축기(28a,28b) 토출단에는 고온측 제2냉매의 응축압력 조절을 위한 조절밸브가 구비됨이 바람직하다. 이에 따라, 외기의 온도가 높은 경우에도 고온측 제2냉매가 더욱 원활하게 액화될 수 있으며, 신속한 열방출이 가능하다.In addition, the discharge end of each of the high temperature side defrost cooling condenser (28a, 28b) is preferably provided with a control valve for controlling the condensation pressure of the high temperature side second refrigerant. Accordingly, even when the outside air temperature is high, the high temperature side second refrigerant may be more liquefied more smoothly, and rapid heat dissipation is possible.
이상 설명한 바와 같이, 본 발명은 상술한 각 실시예에 한정되는 것은 아니며, 본 발명의 청구항에서 청구하는 범위를 벗어남 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 변형 실시되는 것은 가능하며, 이러한 변형실시는 본 발명의 범위에 속한다.As described above, the present invention is not limited to the above-described embodiments, but may be modified and implemented by those skilled in the art without departing from the scope of the claims of the present invention. Such modifications are within the scope of the present invention.
본 발명의 이원 히트펌프 냉난방 장치에 따르면 안정적인 가열 성능이 유지되고 액백 현상으로 인한 고장 발생이 최소화되어 장치의 안정성 및 내구성이 향상되며, 저온측 응축기 토출단에 한쌍의 외부증발기가 연결되므로 저온측 제1냉매 및 외기와의 접촉면적이 증가되어 한층 원활한 증발이 가능할 뿐만 아니라 외기로부터 다량의 열을 흡수하여 고온측 제2냉매로 공급할 수 있어 장치의 가열 효율이 향상되고, 이원열교환기에 고온측 제2냉매의 증발을 위한 열원이 지속적으로 공급될 수 있어 신속하고 효율적인 제상운전이 가능할 수 있는 효과가 있어 산업상 이용 가능성이 매우 높은 발명인 것이다.According to the dual heat pump air-conditioning apparatus of the present invention, stable heating performance is maintained and failure occurrence due to the liquid back phenomenon is minimized, thereby improving stability and durability of the apparatus, and a pair of external evaporators are connected to the low-temperature condenser discharge end. 1 The contact area between the refrigerant and the outside air is increased, so that the evaporation can be more smoothly, and a large amount of heat can be absorbed from the outside air and supplied to the second refrigerant on the high temperature side, thereby improving the heating efficiency of the device. Since the heat source for evaporation of the refrigerant can be continuously supplied, there is an effect that can enable a fast and efficient defrosting operation is an invention of high industrial availability.

Claims (4)

  1. 저온측 냉동사이클과 고온측 냉동사이클로 구성되되, 저온측 응축기와 고온측 증발기가 상호 열교환하도록 결합된 이원열교환기를 포함하는 이원 히트펌프 냉난방 장치에 있어서,In the two-way heat pump cooling and heating device comprising a low temperature side refrigeration cycle and a high temperature side refrigeration cycle, the low temperature side condenser and the high temperature side evaporator are coupled to each other heat exchange.
    고온측 압축기 토출단은 전자밸브제어에 의해 온수탱크의 온수라인과 열교환되도록 배치된 고온측 온수응축기 및 저온측 외부증발기와 열교환되도록 배치된 고온측 제상냉방 응축기 중 하나에 교번하여 연결되도록 구비되고,The high temperature side compressor discharge end is alternately connected to one of the high temperature side hot water condenser arranged to exchange heat with the hot water line of the hot water tank by the solenoid valve control and the high temperature side defrost cooling condenser arranged to exchange heat with the low temperature side external evaporator.
    상기 저온측 외부증발기 토출단은 고온측 보조응축기와 열교환되도록 배치된 저온측 보조증발기 유입단에 연결되도록 상기 고온측 보조응축기와 상기 저온측 보조증발기를 포함하는 증발보상열교환기를 포함하며,The low temperature side external evaporator discharge stage includes an evaporation compensation heat exchanger including the high temperature side secondary condenser and the low temperature side secondary evaporator to be connected to a low temperature side secondary evaporator inlet end arranged to exchange heat with a high temperature side secondary condenser.
    상기 고온측 온수응축기 토출단은 상기 저온측 외부증발기측 외기온도에 따라 상기 고온측 보조응축기를 선택적으로 경유하여 상기 고온측 증발기 유입단과 연결되도록 전자밸브제어되고,The high temperature side hot water condenser discharge end is solenoid valve controlled to be connected to the high temperature side evaporator inlet end via the high temperature side auxiliary condenser selectively according to the low temperature side external evaporator side outside air temperature,
    상기 고온측 온수응축기 토출단에는 상기 고온측 보조응축기를 경유하여 상기 고온측 증발기 유입단에 연결되는 증발보상라인과, 상기 고온측 보조응축기를 미경유하여 상기 고온측 증발기 유입단에 직결되는 고온가열라인이 구비되되,The high temperature side hot water condenser discharge end has an evaporation compensation line connected to the high temperature side evaporator inlet end via the high temperature side condenser, and a high temperature heating directly connected to the high temperature side evaporator inlet end without the high temperature side auxiliary condenser. Line is provided,
    상기 저온측 외부증발기측 외부온도가 기설정된 제1증발보상온도를 초과하면 상기 증발보상라인의 제1전자밸브가 폐쇄되고 상기 고온가열라인의 제2전자밸브가 개방되도록 제어되고,When the external temperature of the low temperature side evaporator side exceeds the first preset evaporation compensation temperature, the first solenoid valve of the evaporation compensation line is closed and the second solenoid valve of the high temperature heating line is controlled to open.
    상기 저온측 외부증발기측 외기온도가 기설정된 제1증발보상온도 이하이면 상기 증발보상라인의 제1전자밸브 및 상기 고온가열라인의 제2전자밸브가 개방되도록 제어되며,When the low temperature side external evaporator side outside temperature is less than the first preset evaporation compensation temperature is controlled to open the first solenoid valve of the evaporation compensation line and the second solenoid valve of the high temperature heating line,
    상기 저온측 외부증발기측 외기온도가 상기 제1증발보상온도 미만으로 기설정된 제2증발보상온도 이하이면 상기 제1전자밸브가 개방되되 상기 제2전자밸브가 폐쇄되도록 제어됨을 특징으로 하는 이원 히트펌프 냉난방 장치.A binary heat pump characterized in that the first solenoid valve is opened but the second solenoid valve is controlled to be closed if the outside temperature of the low temperature side external evaporator is less than the second evaporation compensation temperature preset to be less than the first evaporation compensation temperature. Air conditioning unit.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 저온측 응축기 토출단은 전자밸브제어에 의해 냉수탱크의 냉수라인과 열교환되도록 배치된 저온측 제상보상증발기 및 상기 저온측 외부증발기 중 하나에 교번하여 연결되도록 구비되며,The low temperature side condenser discharge end is provided to be alternately connected to one of the low temperature side defrost compensator and the low temperature side external evaporator arranged to exchange heat with the cold water line of the cold water tank by the solenoid valve control.
    상기 고온측 압축기 토출단 및 상기 고온측 제상냉방 응축기 유입단의 연결시 상기 저온측 제상보상증발기 유입단과 연결되도록 전자밸브제어됨을 특징으로 하는 이원 히트펌프 냉난방 장치.And a solenoid valve controlled to be connected to the low temperature side defrost compensation evaporator inlet stage when the high temperature side compressor discharge stage and the high temperature side defrost cooling condenser inlet stage are connected to each other.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 저온측 외부증발기 및 상기 고온측 제상냉방 응축기는 각각 한쌍으로 구비되고,The low temperature side external evaporator and the high temperature side defrost cooling condenser are provided in pairs, respectively.
    상기 저온측 응축기 토출단에는 상기 각 저온측 외부증발기에 연결되도록 한쌍으로 분지되되 분지된 각 부분에 저온측 난방팽창변이 구비된 외부증발라인이 연결되고,The low temperature side condenser discharge end is branched in pairs to be connected to each of the low temperature side external evaporators, and an external evaporation line having a low temperature side heating expansion edge is connected to each branched portion,
    상기 각 고온측 제상냉방 응축기 토출단에는 고온측 제2냉매의 응축압력 조절을 위한 압력조절밸브가 구비됨을 특징으로 하는 이원 히트펌프 냉난방 장치.Each of the high-temperature side defrost cooling condenser discharge end is provided with a pressure control valve for adjusting the condensation pressure of the high-temperature side second refrigerant.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 저온측 냉동사이클의 저온측 압축기 및 상기 고온측 냉동사이클의 고온측 압축기 간의 용량비는 1:1의 비율로 구성되되,The capacity ratio between the low temperature side compressor of the low temperature side refrigeration cycle and the high temperature side compressor of the high temperature side refrigeration cycle is configured in a ratio of 1: 1,
    상기 저온측 압축기의 과압축 방지를 위해 상기 저온측 외부증발기측 외기온도가 기설정된 과다온도 이상이면 상기 저온측 외부증발기의 송풍팬 회전속도가 감속되도록 제어됨을 특징으로 하는 이원 히트펌프 냉난방 장치.The dual heat pump air-conditioning device is characterized in that the blow fan rotation speed of the low temperature side external evaporator is controlled to be decelerated when the outside temperature of the low temperature side external evaporator is higher than a preset excessive temperature to prevent overcompression of the low temperature side compressor.
PCT/KR2017/004073 2016-04-15 2017-04-14 Dual heat pump heating and cooling apparatus WO2017179949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0045926 2016-04-15
KR1020160045926A KR101657664B1 (en) 2016-04-15 2016-04-15 air conditioning apparatus for dual heat pump

Publications (1)

Publication Number Publication Date
WO2017179949A1 true WO2017179949A1 (en) 2017-10-19

Family

ID=57103058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004073 WO2017179949A1 (en) 2016-04-15 2017-04-14 Dual heat pump heating and cooling apparatus

Country Status (2)

Country Link
KR (1) KR101657664B1 (en)
WO (1) WO2017179949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030059A (en) * 2018-09-08 2018-12-18 湖南东尤水汽能热泵制造有限公司 A kind of low-temperature thermal source heat pump experiment detection platform and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639104B1 (en) * 2003-08-01 2006-10-27 오원길 Heat pump system of cooling, heating and hot water using binary refrigerating machine with two stage cascade refrigeration
JP2009264718A (en) * 2008-04-30 2009-11-12 Panasonic Corp Heat pump hot water system
KR20120139022A (en) * 2011-06-16 2012-12-27 현우산기주식회사 Defrost operation method of the heat pump
KR101262927B1 (en) * 2013-03-26 2013-05-13 주식회사 신우종합에너지 Apparatus for dual heat pump
KR20140112928A (en) * 2013-03-15 2014-09-24 이병길 Two stage heat pump cooling and heating apparatus using air heat source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639104B1 (en) * 2003-08-01 2006-10-27 오원길 Heat pump system of cooling, heating and hot water using binary refrigerating machine with two stage cascade refrigeration
JP2009264718A (en) * 2008-04-30 2009-11-12 Panasonic Corp Heat pump hot water system
KR20120139022A (en) * 2011-06-16 2012-12-27 현우산기주식회사 Defrost operation method of the heat pump
KR20140112928A (en) * 2013-03-15 2014-09-24 이병길 Two stage heat pump cooling and heating apparatus using air heat source
KR101262927B1 (en) * 2013-03-26 2013-05-13 주식회사 신우종합에너지 Apparatus for dual heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030059A (en) * 2018-09-08 2018-12-18 湖南东尤水汽能热泵制造有限公司 A kind of low-temperature thermal source heat pump experiment detection platform and detection method
CN109030059B (en) * 2018-09-08 2023-10-03 湖南东尤水汽能热泵制造有限公司 Low-temperature heat source heat pump experiment detection platform and detection method

Also Published As

Publication number Publication date
KR101657664B1 (en) 2016-09-19

Similar Documents

Publication Publication Date Title
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2016148476A1 (en) Vehicle heat pump system
WO2011062348A1 (en) Heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2015111847A1 (en) Heat pump system for vehicle
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2016117946A1 (en) Cooling cycle apparatus for refrigerator
WO2019147085A1 (en) Air conditioner and control method therefor
WO2016114557A1 (en) Air conditioning system
WO2016003028A1 (en) Heat pump heating/cooling system using hybrid heat source and control method thereof
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2010098607A2 (en) Cooling and heating system using a cascade heat exchanger
WO2015160162A1 (en) Refrigerator and method of controlling the same
WO2015194891A1 (en) Refrigerator
EP0912865B1 (en) Make-up air handler with direct expansion dehumidification
WO2022050586A1 (en) Vapor injection module and heat pump system using same
WO2018147675A1 (en) Refrigeration system
WO2021157820A1 (en) Air conditioner
WO2017179949A1 (en) Dual heat pump heating and cooling apparatus
WO2011062349A4 (en) Heat pump
WO2020197052A1 (en) Air conditioning apparatus
WO2020197044A1 (en) Air conditioning apparatus
WO2021040427A1 (en) Air conditioner and control method thereof
WO2017123042A1 (en) Deep freezer
WO2019050077A1 (en) Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782704

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782704

Country of ref document: EP

Kind code of ref document: A1