WO2017123042A1 - Deep freezer - Google Patents

Deep freezer Download PDF

Info

Publication number
WO2017123042A1
WO2017123042A1 PCT/KR2017/000463 KR2017000463W WO2017123042A1 WO 2017123042 A1 WO2017123042 A1 WO 2017123042A1 KR 2017000463 W KR2017000463 W KR 2017000463W WO 2017123042 A1 WO2017123042 A1 WO 2017123042A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
evaporator
compressor
suction
Prior art date
Application number
PCT/KR2017/000463
Other languages
French (fr)
Korean (ko)
Inventor
박용주
변강수
송현수
이상균
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160005172A external-priority patent/KR102446555B1/en
Priority claimed from KR1020160080123A external-priority patent/KR102502289B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/069,952 priority Critical patent/US10782048B2/en
Priority to DE112017000376.8T priority patent/DE112017000376T5/en
Publication of WO2017123042A1 publication Critical patent/WO2017123042A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Definitions

  • Embodiments of the present invention relate to a deep freezer.
  • a deep freezer is understood as a device that drives a refrigeration cycle to form a storage compartment in a cryogenic environment of -60 ° C to -80 ° C or less.
  • a low boiling point refrigerant may be used.
  • the discharge pressure of the compressor is increased, thereby reducing the reliability of the compressor.
  • two or more mixed refrigerants having different boiling points may be used in the refrigerating cycle for implementing the temperature.
  • a mixed refrigerant that does not change temperature in a quasi-equilibrium state when liquefaction or vaporization occurs between a liquid phase and a gas under a predetermined pressure that is, an azeortropic refrigerant mixture and a temperature in which the temperature is changed during the liquefaction or vaporization process
  • Non-azeortropic refrigerant mixtures are included.
  • the azeotropic mixed refrigerant exists only in a specific component ratio and exhibits thermodynamic properties such as pure substances.
  • the azeotropic mixed refrigerant may vary in evaporation pressure or temperature depending on its composition.
  • the azeotropic mixed refrigerant has a disadvantage in that it is difficult to implement a deep temperature (extreme cryogenic), it may be preferable to use the azeotropic mixed refrigerant in order to implement a deep temperature.
  • a compressor used in a deep freezer may use a commercial compressor having a large operating pressure range, that is, a high discharge pressure value.
  • the commercial compressor has a problem in that the operation noise for the deep freezer is lowered due to the large operation noise.
  • the refrigerating cycle disclosed in the prior document the refrigerant discharged from the compressor is condensed in the condenser to perform heat exchange with the evaporative refrigerant, it is configured to implement the temperature by the heat exchange.
  • the dryness of the refrigerant is increased in the process of expanding in the expansion device after the heat exchange, thereby reducing the ratio of the liquid refrigerant in the refrigerant flowing into the evaporator, thereby decreasing the cooling power.
  • Embodiments of the present invention have been proposed to solve the above problems, and an object thereof is to provide a deep freezer that can implement a desired cryogenic environment.
  • an embodiment of the present invention is to provide a deep freezer that can lower the condensation pressure of the refrigeration cycle.
  • an embodiment of the present invention is to provide a deep freezer that can reduce the noise generated in the compressor to increase the reliability of the compressor.
  • the deep-temperature freezer according to the embodiment of the present invention includes a plurality of heat exchangers installed in the suction pipe and performing heat exchange of the mixed refrigerant sucked into the compressor.
  • the heat exchanger includes a first heat exchanger, the first heat exchanger, the first heat exchanger for guiding the flow of the mixed refrigerant sucked into the compressor; And a condensation heat exchanger configured to perform heat exchange with the first suction heat exchanger and to guide the flow of the condensation pipe.
  • the length of the first suction heat exchange or the condensation heat exchange unit is characterized in that formed in the range of 3.5 ⁇ 5m.
  • the pipe diameter of the condensation heat exchange part is larger than the pipe diameter of the expansion device.
  • the pipe diameter of the condensation heat exchange part is formed within the range of 3.5 to 4.5 times the pipe diameter of the expansion device.
  • the heat exchanger includes a second heat exchanger, and the second heat exchanger includes: a second suction heat exchanger provided at one side of the first suction heat exchanger to guide the flow of the mixed refrigerant sucked into the compressor; And the expansion device performing heat exchange with the second suction heat exchange unit.
  • the first suction heat exchange unit and the condensation pipe, or the second suction heat exchange unit and the expansion device are in contact with each other to perform heat exchange.
  • the first suction heat exchange unit and the condensation pipe, or the second suction heat exchange unit, and the expansion device may be coupled by soldering.
  • a heat exchanger connection pipe disposed between the first and second heat exchangers to prevent heat exchange between the expansion device and the condensation heat exchange unit, wherein the first heat exchange unit and the second heat exchange unit are installed in the heat exchanger. Characterized in that spaced apart from each other by a connection pipe.
  • the first heat exchanger is installed at the outlet side of the second heat exchanger based on the flow direction of the refrigerant flowing through the suction pipe.
  • the second heat exchanger is installed at the outlet side of the first heat exchanger based on the flow direction of the refrigerant flowing through the condensation pipe.
  • the evaporator includes a first evaporator and a second evaporator connected in series with each other, and the second evaporator is installed at an outlet side of the first evaporator.
  • the evaporator includes a first evaporator and a second evaporator connected in parallel with each other, and the expansion device includes a first expansion device installed at an inlet side of the first evaporator and an inlet side of the second evaporator. 2 expansion devices are included.
  • the first and second expansion devices and the suction pipe are coupled to each other to exchange heat.
  • the evaporator, the first evaporator is installed on the outlet side of the expansion device; A second evaporator connected in series with the outlet side of the first evaporator; And a third evaporator connected in series to the outlet side of the second evaporator.
  • each independent refrigeration cycle comprising the compressor, condenser, expansion device, evaporator and a plurality of heat exchangers.
  • a deep freezer includes a compressor for compressing a mixed refrigerant, and the mixed refrigerant includes any one of butane (N-Butane), 1-butene (1-Butene), and isobutane (Isobutane).
  • the low temperature refrigerant composed of the selected high temperature refrigerant and ethylene (Ethylene) is included.
  • the mixed refrigerant includes butane (N-Butane) and ethylene (Ethylene).
  • the butane (N-Butane) is determined in the range of 80% to 85% by weight, and the ethylene is determined in the range of 15% to 20% by weight.
  • the compressor is operated in a set pressure range, and the set pressure range includes a range in which the maximum discharge pressure of the compressor is 25 bar or less.
  • the set pressure range includes a range in which the minimum suction pressure of the compressor is 1 bar or more.
  • the compressor is operated within a set temperature range, and the set temperature range includes a range in which the maximum discharge temperature of the compressor is 120 ° C. or less.
  • the deep freezer includes a storage compartment having a temperature value of -60 ° C or lower.
  • the compressor includes a domestic compressor operated under pressure conditions of at least 1 bar of the minimum suction pressure and of 25 bar or less of the maximum discharge pressure.
  • a condensation pipe extending from the outlet side of the condenser to the expansion device to guide the flow of the adsorption refrigerant;
  • a suction pipe extending from the outlet side of the evaporator to the compressor to guide suction of the mixed refrigerant into the compressor;
  • a plurality of heat exchangers installed in the suction pipe and performing heat exchange of the mixed refrigerant sucked into the compressor.
  • the refrigerant condensed in the condenser passes through a plurality of heat exchangers before entering the evaporator, thereby lowering the condensation pressure of the refrigeration cycle and preventing rise in dryness when the condensed refrigerant passes through the expansion device.
  • the effect is that it can.
  • the plurality of heat exchangers include a first heat exchanger for performing heat exchange between the refrigerant passing through the condenser and the suction refrigerant sucked into the compressor, the condensation pressure of the refrigeration cycle is increased during the heat exchange process in the first heat exchanger. Can be lowered. As a result, there is an advantage that it is possible to use a household compressor having a low discharge pressure and low noise, which is used in a general refrigerator.
  • the temperature of the suction refrigerant is increased to prevent the introduction of the liquid refrigerant into the compressor, thereby improving the operating reliability of the compressor.
  • the plurality of heat exchangers may include a second heat exchanger that performs heat exchange between the refrigerant passing through the expansion device after being heat exchanged in the first heat exchanger and the suction refrigerant sucked into the compressor, and thus the refrigerant may be removed from the expansion device. It is possible to prevent the increase of dryness in the process of decompression.
  • the ratio of the liquid refrigerant in the refrigerant flowing into the evaporator has an advantage that the heat of evaporation, that is, the cooling power can be improved.
  • the diameter of the condensation heat exchanger constituting the first heat exchanger is larger than the diameter of the expansion device constituting the second heat exchanger, condensation may be easily performed while the refrigerant passes through the first heat exchanger. The effect is that the condensation temperature and condensation pressure can be lowered.
  • the length of the first heat exchanger is proposed as an optimum range, heat exchange can be performed, and thus, the refrigerant cycle characteristics can satisfy the operating conditions of the domestic compressor and improve the operation reliability of the compressor.
  • first heat exchanger may be configured by a combination of a condensation pipe and a suction pipe
  • second heat exchanger may be configured by a combination of a capillary tube and a suction pipe, thereby improving heat exchange efficiency
  • condensation refrigerant passing through the condenser may be introduced into the second heat exchanger after being heat exchanged in the first heat exchanger, the condensation pressure may be lowered first and dryness may be prevented in the expansion process.
  • the weight ratio of the azeotropic mixed refrigerant can be optimally proposed, it is possible to implement a desired cryogenic environment and to satisfy an appropriate discharge pressure of the domestic compressor.
  • FIG. 1 is a view showing a refrigeration cycle provided in a deep freezer according to a first embodiment of the present invention.
  • FIG. 2 is a view showing the configuration of the first and second heat exchangers according to the first embodiment of the present invention.
  • FIG. 3 is a P-h diagram for a deep freezer according to a first embodiment of the present invention.
  • FIG. 5 is an experimental graph showing a plurality of result values that vary depending on the amount of refrigerant of the azeotropic mixed refrigerant according to the first embodiment of the present invention.
  • FIG. 6 is a view showing a refrigeration cycle provided in the freezer temperature according to the second embodiment of the present invention.
  • FIG. 7 is a view showing a refrigeration cycle provided in the freezer temperature according to the third embodiment of the present invention.
  • FIG. 8 is a view showing a refrigerating cycle provided in a deep-temperature freezer according to a fourth embodiment of the present invention.
  • FIG. 9 is a view showing a refrigeration cycle provided in a deep-temperature freezer according to a fifth embodiment of the present invention.
  • FIG. 1 is a view showing a refrigerating cycle provided in a deep-temperature freezer according to a first embodiment of the present invention
  • Figure 2 is a view showing the configuration of the first and second heat exchangers according to the first embodiment of the present invention
  • 3 is a pH diagram for the temperature freezer according to the first embodiment of the present invention
  • Figure 4 is an experimental graph showing the optimum range of the length of the first heat exchanger according to the first embodiment of the present invention
  • Figure 5 Is an experimental graph showing a number of result values that vary depending on the amount of refrigerant in the azeotropic mixed refrigerant according to the first embodiment of the present invention.
  • a refrigeration cycle in which compression, condensation, expansion, and evaporation of a refrigerant are repeated may be operated.
  • a compressor 110 capable of compressing the refrigerant is included.
  • the compressor 110 may include a household compressor used in a general household refrigerator.
  • the temperature or pressure operating range of the compressor 110 is as follows.
  • the compressor 110 may be configured such that the maximum discharge pressure is 25 bar or less, the maximum discharge temperature is 120 ° C. or less, and the minimum suction pressure is 1 bar or less.
  • Household compressor 110 having such a temperature or pressure range has the advantage that the operation noise is generated very little.
  • the refrigerant sucked into the compressor 110 includes a mixed refrigerant.
  • the mixed refrigerant includes a first refrigerant having a first boiling point and a second refrigerant having a second boiling point lower than the first boiling point.
  • the first refrigerant may be referred to as a "high temperature refrigerant”
  • the second refrigerant may be referred to as a "low temperature refrigerant”.
  • an evaporation temperature i.e., a cryogenic temperature, required in the deep freezer may be realized, and the pressure of the refrigerant discharged from the compressor 110 may be formed within a predetermined range.
  • the core temperature may be realized by the characteristics of the low temperature refrigerant.
  • the low temperature refrigerant since the low temperature refrigerant has a relatively high discharge pressure when compressed in the compressor 110, the low temperature refrigerant may adversely affect the reliability of the compressor, particularly the domestic compressor 110 applied to the present embodiment. Therefore, in order to lower the discharge pressure, a high temperature refrigerant having a relatively low discharge pressure may be mixed.
  • the present embodiment proposes a ratio of the mixed refrigerant, that is, an appropriate ratio of the high temperature coolant and the low temperature coolant, which may correspond to the operating pressure or the operating temperature range of the domestic compressor 110.
  • isopentane, 1,2-butadiene, butane (N-Butane), 1-butene or 1-butene isobutane is included in the high temperature refrigerant. May be included. Physical properties of the high temperature refrigerant are shown in Table 1 below.
  • the evaporation temperature tends to be somewhat high. Accordingly, when the isopentane and 1,2-butadiene are used as the high temperature refrigerant according to the present embodiment, even when mixed with the low temperature refrigerant, it is difficult to realize a deep temperature. This happens.
  • the evaporation temperature has a value of 0 °C or less. Therefore, any one of butane (N-Butane), 1-butene (1-Butene) and isobutane (Isobutane) can be used as a refrigerant for high temperature according to the present embodiment in a broad sense.
  • the evaporation temperature is slightly lower, and when mixed with the low temperature refrigerant, a deep temperature may be realized, but the discharge pressure of the compressor may be somewhat higher. Problems may arise. Therefore, preferably, as the high temperature refrigerant according to the present embodiment, butane (N-Butane) having an evaporation temperature close to 0 ° C based on 1 bar is used.
  • the low temperature refrigerant may include ethane or ethylene. Physical properties of the low temperature refrigerant are shown in Table 2 below.
  • the evaporation temperature tends to be somewhat high. Therefore, when using the ethane (Ethane) as the low-temperature refrigerant according to this embodiment, there is a problem that the implementation of the deep temperature is limited.
  • the low temperature refrigerant according to the present embodiment is characterized by using ethylene having an evaporation temperature of less than -100 ° C based on 1 bar.
  • the butane N-Butane
  • the ethylene Ethylene
  • the maximum discharge pressure, minimum suction pressure and maximum discharge temperature of the compressor are increased when the weight% of butane (N-Butane) is relatively increased in the mixed refrigerant of butane (N-Butane) and ethylene (Ethylene). Decreases, and the temperature performance, that is, the temperature value of the storage compartment implemented in the deep freezer, increases.
  • the maximum discharge pressure must be 25 bar or less, the maximum discharge temperature is 120 ° C. or less, and the minimum suction pressure must be 1 bar or more.
  • the ratio of butane (N-Butane) and ethylene (Ethylene) satisfying these conditions forms a weight percentage ratio of 80: 20 ⁇ 85: 15. And within such a weight% range, the temperature of the storage compartment which can exhibit the performance required for a deep freezer, for example, a value of -60 degrees C or less can be formed.
  • the maximum discharge pressure, minimum suction pressure and maximum discharge temperature of the compressor are increased when the weight% of butane (N-Butane) is relatively increased in the mixed refrigerant of butane (N-Butane) and ethylene (Ethylene). Decreases, and the temperature performance, that is, the temperature value of the storage compartment implemented in the deep freezer, increases.
  • the maximum discharge pressure must be 25 bar or less, the maximum discharge temperature is 120 ° C. or less, and the minimum suction pressure must be 1 bar or more.
  • the ratio of butane (N-Butane) and ethylene (Ethylene) satisfying these conditions forms a weight percentage ratio of 80: 20 ⁇ 85: 15. And within such a weight% range, the temperature of the storage compartment which can exhibit the performance required for a deep freezer, for example, a value of -60 degrees C or less can be formed.
  • the ratio of butane (N-Butane) and ethylene (Ethylene) is a weight of 80: 20 ⁇ 85: 15 Refrigerants mixed to form% percentage values can be used.
  • FIG. 5 shows a result of experiments in which a mixed refrigerant is formed such that the ratio of butane (N-Butane) and ethylene is 83:17, and the storage chamber having a predetermined volume is cooled while increasing the amount of refrigerant. .
  • the suction pipe temperature tends to decrease little by little, the temperature of the storage compartment also decreases, and the amount of energy consumed gradually increases.
  • the amount of the mixed refrigerant needs to be filled at least 80 g.
  • the amount of the mixed refrigerant may vary depending on the volume of the storage compartment.
  • FIG. 3 shows a Ph diagram, and the portion indicated by a dotted line indicates a refrigeration cycle in which a plurality of heat exchangers 210 and 250 according to the present embodiment are not provided as a prior art, and the portion indicated by a solid line is configured according to the present embodiment.
  • the P-h diagram shows a number of isotherms.
  • the isotherm includes T2 (T2 '), T3, T4, T5, and T7.
  • the temperature value according to the isotherm may satisfy the following relation, that is, T2 (T2 ')> T7> T3> T5> T4.
  • T2 (T2 ') may be formed in the range of 35 ⁇ 40 °C, T7 is 30 ⁇ 35 °C, T3 is 8 ⁇ 13 °C, T5 is about -60 °C, T4 is about -80 °C.
  • the deep-temperature freezer 10 further includes a condenser 120 which is installed at the outlet side of the compressor 110 and condenses the mixed refrigerant discharged from the compressor 110. .
  • the deep-temperature freezer 10 includes a dryer 130 installed at an outlet side of the condenser 120 to filter out water or foreign substances from the refrigerant condensed in the condenser 120.
  • the deep-temperature freezer 10 further includes an expansion device 140 installed at the outlet side of the dryer 130 to reduce the refrigerant condensed in the condenser 120.
  • the expansion device 140 may include a capillary tube.
  • the deep freezer 10 further includes a condensation pipe 161 extending from the outlet side of the condenser 120 to the expansion device 140.
  • the dryer 130 may be installed in the condensation pipe 161.
  • the deep-temperature freezer 10 further includes an evaporator 150 installed at an outlet side of the expansion device 140 to evaporate the refrigerant decompressed in the expansion device 140.
  • the deep freezer 10 further includes a suction pipe 165 extending from the outlet side of the evaporator 150 to the suction side of the compressor 110.
  • Cooling air generated while the mixed refrigerant passes through the compressor 110, the condenser 120, the expansion device 140, and the evaporator 150 may be supplied to the storage compartment provided in the deep freezer 10.
  • the deep-temperature freezer 10 further includes a plurality of heat exchangers 210 and 250 for improving the operating efficiency of the deep-freezer 10.
  • the plurality of heat exchangers 210 and 250 include a first heat exchanger 210 for performing heat exchange between the refrigerant flowing through the condensation pipe 161 and the refrigerant flowing through the suction pipe 165.
  • the first heat exchanger 210 may include a first suction heat exchanger 211 and a condensation heat exchanger 213 that performs heat exchange with the first suction heat exchanger 211.
  • the first suction heat exchanger 211 may constitute at least a portion of the suction pipe 165
  • the condensation heat exchanger 213 may constitute at least a portion of the condensation pipe 161.
  • the first suction heat exchanger 211 and the condensation heat exchanger 213 may be configured to contact each other.
  • the first suction heat exchanger 211 and the condensation heat exchanger 213 may be coupled by soldering.
  • heat exchange is performed between the first suction heat exchanger 211 and the condensation heat exchanger 213, a low temperature refrigerant flowing through the first suction heat exchanger 211 flows through the condensation heat exchanger 213.
  • the refrigerant of can be cooled.
  • the condensation pressure of the refrigerating cycle is lowered, whereby the discharge pressure of the compressor 110 can be reduced.
  • operation reliability of the domestic compressor 110 may be improved and noise may be reduced as described above.
  • the ratio of the liquid refrigerant contained in the refrigerant, that is, the ineffective cooling power may be reduced.
  • inflow of the liquid refrigerant into the compressor 110 may be prevented.
  • the state of the refrigerant (point 1) compressed in the compressor 110 represents point 2 after passing through the condenser 120. Then, the refrigerant is condensed while passing through the condensation heat exchanger 213 (heat amount Q1), and as a result, the condensation temperature is lowered from T2 to T3 and the condensation pressure is formed to Pd.
  • the refrigerant compressed in the compressor condenses only in the condenser.
  • the state of the compressed refrigerant represents point 1 '
  • the state of the refrigerant represents point 2'. That is, compared with the present invention, the condensation pressure indicates Pd 'higher than the Pd, and the condensation temperature indicates T2' higher than the T3.
  • T2 ' has the same temperature value as T2.
  • the refrigerant passing through the condenser 120 is heat-exchanged in the first heat exchanger 210, whereby the condensation pressure Pd is lowered by ⁇ P than the conventional condensing pressure beam Pd ', and the condensation temperature T3. It can be seen that the lower than the condensation temperature (T2 ') of the prior art.
  • the refrigerant passing through the first suction heat exchange part 211 may undergo a process of endotherming and evaporating from the refrigerant passing through the condensation heat exchange part 213 (point 6-> 7, heat quantity Q1 ').
  • the ineffective cold power is a cold power of a refrigerant having a temperature higher than the temperature of cold air to be supplied to the deep storage compartment, for example, -60 ° C. or more, and is understood to be useless cold power that is difficult to be supplied to the deep storage compartment. That is, in the P-h diagram, since the temperature of T5 is about -60 ° C, it can be understood that the cooling force of the refrigerant forming the temperature of T5 to T7 is an ineffective cooling force.
  • some of the ineffective cooling force may be used to cool the condensation heat exchanger 213 of the first heat exchanger 210 through the first suction heat exchanger 211.
  • the specific gravity of the liquid refrigerant may decrease while the refrigerant passing through the first suction heat exchange unit 211 is evaporated.
  • the plurality of heat exchangers 210 and 250 include a second heat exchanger 250 for performing heat exchange between the refrigerant flowing through the expansion device 140 and the refrigerant flowing through the suction pipe 165.
  • the first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250 based on the flow direction of the refrigerant flowing through the suction pipe 165.
  • the second heat exchanger 250 may be installed at the outlet side of the first heat exchanger 210 based on the flow direction of the refrigerant flowing through the condensation pipe 161.
  • the second heat exchanger 250 includes an expansion for performing heat exchange with the second suction heat exchanger 251 and the second suction heat exchanger 251 provided on one side of the first suction heat exchanger 211.
  • Device 140 may be included.
  • the second suction heat exchanger 251 may constitute at least a portion of the suction pipe 165.
  • the second suction heat exchanger 251 and the expansion device 140 may be configured to contact each other.
  • the second suction heat exchanger 251 and the expansion device 140 may be coupled by soldering.
  • the pressure and temperature of the refrigerant may be lowered, and the ratio of the gaseous refrigerant in the refrigerant may be increased.
  • the gaseous refrigerant has a bad effect on the evaporation performance of the evaporator 150, and if the proportion of the gaseous refrigerant is increased, the proportion of the liquid refrigerant that can be evaporated decreases, so that the evaporation performance may be deteriorated.
  • the ratio of the liquid refrigerant at the inlet side of the evaporator 150 may be increased, thereby improving the evaporation performance. Appears.
  • the first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250 based on the refrigerant flow direction in the suction pipe 165.
  • the first suction heat exchanger 211 may be installed at an outlet side of the second suction heat exchanger 251.
  • the refrigerant passing through the evaporator 150 is heat-exchanged in the second heat exchanger 250 and then heat-exchanged in the first heat exchanger 210, thereby increasing the dryness and reducing the ineffective cooling power.
  • the suction temperature may increase as the dryness increases, and as the suction temperature increases, the suction temperature condition of the household compressor 110 may be easily met.
  • the refrigerant passing through the first heat exchanger 210 exchanges heat with the second suction heat exchanger 251 while passing through the expansion device 140 (heat quantity Q2), and as a result, the refrigerant.
  • the temperature of is lowered from T3 to T4, and the pressure of the refrigerant can be lowered from Pd to Ps (the state of the refrigerant moves from point 3 to 4).
  • the state of the refrigerant moves from point 3 to 4.
  • the refrigerant heat-exchanged in the first heat exchanger 210 is further heat-exchanged in the second heat exchanger 250, the pressure and temperature of the refrigerant may be lowered.
  • the refrigerant passing through the expansion device 140 of the second heat exchanger 250 is introduced into the evaporator 150 and evaporated. After the refrigerant passes through the evaporator 150, the state changes from point 4 to 5.
  • the temperature T4 at point 4 is about -80 ° C and the temperature T5 at point 5 represents about -60 ° C.
  • the refrigerant cooling force in the sections 4 to 5 can serve as an effective cooling force sufficient to cool the cold air to be supplied to the storage compartment of the deep freezer.
  • the refrigerant passing through the evaporator 150 passes through the second suction heat exchanger 251 of the second heat exchanger 250, and is endothermic to evaporate from the refrigerant passing through the expansion device 140 (point 5 -> 6, calories Q2 ').
  • the coolant cooling power in the sections 5 to 6 is a cooling force corresponding to a temperature of -60 ° C or higher, and acts as an ineffective cooling force.
  • the calorific value Q2 ′ may be used to cool the expansion device 140 of the second heat exchanger 250 through the second suction heat exchanger 251. In this process, while the refrigerant passing through the second suction heat exchange unit 251 is evaporated, the specific gravity of the liquid refrigerant may decrease.
  • the Q1 'and Q2' are ineffective cooling power, but are used to cool the condensation heat exchanger 213 of the first heat exchanger 210 and the expansion device 140 of the second heat exchanger 250. Can be.
  • the refrigerant passing through the first and second suction heat exchangers 211 and 251 may reduce the specific gravity of the liquid refrigerant while evaporating.
  • the deep-temperature freezer 10 further includes a heat exchanger connection pipe 260 disposed between the first heat exchanger 210 and the second heat exchanger 250.
  • the heat exchanger connection pipe 260 constitutes a part of the condensation pipe 161 and may be configured to connect the first heat exchanger 210 and the second heat exchanger 250.
  • first heat exchanger 210 and the second heat exchanger 250 are spaced apart from each other by the heat exchanger connection pipe 260, heat exchange is prevented between the first and second heat exchangers 210 and 250. Can be. That is, heat exchange may be prevented between the condensation heat exchanger 213 and the expansion device 140.
  • the heat exchanger connection pipe 260 is disposed between the first and second heat exchangers 210 and 250 to solve this problem.
  • the length of the first heat exchanger 210 increases, that is, as the amount of heat exchange in the first heat exchanger 210 increases, the endotherm of the refrigerant sucked into the compressor 110 increases, so that the temperature of the compressor 110 increases. The suction temperature will increase. Then, the energy consumption according to the operation of the deep-temperature freezer 10 is reduced.
  • the suction temperature Ts of the compressor 110 may satisfy the following equation with respect to the ambient temperature (room temperature, To).
  • the suction temperature Ts of the compressor 110 may satisfy the above equation. .
  • the length of the first heat exchanger 210 to satisfy the suction temperature Ts of the compressor 110 may be about 3.5 to 5 m. That is, when the length condition of the first heat exchanger 210 is satisfied, the operation condition of the domestic compressor 110 according to the present embodiment may be satisfied, and the operation reliability of the compressor may be improved.
  • the pipe diameter of the condensation heat exchanger 213 may be larger than the pipe diameter of the expansion device 140.
  • the pipe diameter of the condensation heat exchanger 213 may be formed in the range of 3.5 to 4.5 times the pipe diameter of the expansion device (140).
  • the pipe diameter of the condensation heat exchanger 213 may be 3.5 mm, and the pipe diameter of the expansion device 140 may be 0.8 mm.
  • the refrigerant passing through the condensation heat exchanger 213 should be condensed.
  • the refrigerant passing through the expansion device 140 should be reduced in pressure.
  • the dryness of the exit state (point 4) of the expansion device 140 is formed higher than the dryness of the inlet state (point 3). That is, in the process of passing the refrigerant through the expansion device 140, vaporization is performed with decompression.
  • the pipe diameter may be reduced to increase the flow rate of the refrigerant, and thus the pressure of the refrigerant may be reduced.
  • the condensation heat exchanger 213 acts as a resistance to the refrigerant, so that the refrigerant flow rate decreases and the refrigerant pressure decreases, while the refrigerant condensation May be limited.
  • the pipe diameter of the condensation heat exchange part 213 is sufficiently larger than the pipe diameter of the expansion device 140 so that the condensation heat exchange part 213 does not act as a resistance to the refrigerant. It is characterized by.
  • a relatively bulky gaseous refrigerant may easily flow through the condensation heat exchanger 213 and may be sufficiently condensed while heat exchange is performed in the first heat exchanger 210.
  • FIG. 6 is a view showing a refrigeration cycle provided in the freezer temperature according to the second embodiment of the present invention.
  • the deep-temperature freezer 10a includes the compressor 110, the condenser 120, the dryer 130, the expansion device 140, and the condenser 120.
  • Condensation pipe 161 extending to the expansion device 140 is included.
  • the deep-temperature freezer 10a exchanges heat between the refrigerant passing through the first heat exchanger 210 and the expansion device 140 to perform heat exchange between the condensation refrigerant and the suction refrigerant to the compressor 110 and the suction refrigerant. Further included is a second heat exchanger 250 to perform the.
  • the deep freezer 10a further includes a plurality of evaporators 151 and 152 for evaporating the refrigerant depressurized by the expansion device 140.
  • the plurality of evaporators 151 and 152 may include a first evaporator 151 installed at an outlet side of the expansion device 140 and a second evaporator 152 installed at an outlet side of the first evaporator 151. .
  • the first and second evaporators 151 and 152 may be connected in series.
  • the deep freezer 10a may include a plurality of storage compartments corresponding to the plurality of evaporators 151 and 152.
  • the plurality of storage rooms may include a cryogenic storage room of about ⁇ 60 ° C. or less and a freezer of about ⁇ 20 ° C.
  • the cold air generated by the first evaporator 151 may be supplied to the cryogenic storage chamber, and the cold air generated by the second evaporator 152 may be supplied to the freezing chamber.
  • the second heat exchanger 250 may be installed at the outlet side of the second evaporator 152, and the first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250.
  • the refrigerant evaporated in the second evaporator 152 is endothermic while passing through the second heat exchanger 250 and the first heat exchanger 210. Accordingly, the temperature of the refrigerant sucked into the compressor 110 increases and the dryness is increased. May be raised.
  • FIG. 7 is a view showing a refrigeration cycle provided in the freezer temperature according to the third embodiment of the present invention.
  • the deep freezer 10b includes the compressor 110, the condenser 120, the dryer 130, the expansion device 140, and the condenser 120.
  • Condensation pipe 161 extending to the expansion device 140 is included.
  • the expansion device 140 includes two expansion devices.
  • the two expansion devices are connected in parallel with the first expansion device 141 and the first expansion device 141 through which at least a portion of the refrigerant flowing through the condensation pipe 161 may flow, and the condensation pipe ( A second expansion device 143 is included through which another portion of the refrigerant flowing in 161 can flow.
  • a valve device for introducing a refrigerant flowing through the condensation pipe 161 into at least one expansion device 143 of the first expansion device 141 and the second expansion device 143. 170 may be installed.
  • the valve device 170 may include a three-way valve.
  • the condensation pipe 161 is connected to the inlet of the three-way valve, and the first and second expansion devices 141 and 143 may be connected to the two outlets of the three-way valve, respectively.
  • the deep freezer 10b includes a first evaporator 151a connected to an outlet side of the first expansion device 141 and a second evaporator 152a connected to an outlet side of the second expansion device 143. More included.
  • a first evaporation pipe 181 extending from the first outlet of the valve device 170 to the first evaporator 151a and a second outlet of the valve device 170 are provided.
  • a second evaporation pipe 183 extending from the portion to the second evaporator 152a is further included.
  • the first evaporation pipe 181 and the second evaporation pipe 183 may be laminated at the lamination part 185.
  • the lamination part 185 may be one point of the first evaporation pipe 181 or the second evaporation pipe 183.
  • the first evaporator 151a and the second evaporator 152a may be connected in parallel.
  • the first evaporating pipe 181 may be provided with a check valve 158 for guiding the one-way flow of the refrigerant in the first evaporating pipe 181.
  • a check valve 158 By the check valve 158, the flow of cold water from the lamination part 185 toward the first evaporator 151a may be restricted. As a result, the refrigerant passing through the second evaporator 152a may be prevented from entering the first evaporator 151a through the lamination part 185.
  • At least one of the first and second evaporators 151a and 152a may be operated under the control of the valve device 170.
  • the first outlet of the two outlets of the valve device 170 is opened and the second outlet is closed, only the refrigerant flow from the valve device 170 to the first evaporator 151a may be generated.
  • the deep freezer 10b may include a plurality of storage compartments corresponding to the plurality of evaporators 151a and 152a.
  • the plurality of storage compartments may include two cryogenic storage compartments of -60 ° C or less.
  • the plurality of storage rooms may include a cryogenic storage room of about ⁇ 60 ° C. or less and a freezer of about ⁇ 20 ° C.
  • the refrigerant passing through the first evaporator 151a or the second evaporator 152a may pass through the second heat exchanger 250a.
  • the second heat exchanger 250a includes at least a portion of the first expansion device 141, the second expansion device 143, and the suction pipe 165, that is, the second suction heat exchanger 251 described in the first embodiment. ) May be included.
  • the first and second expansion devices 141 and 143 and the second suction heat exchanger 251 may be disposed to contact each other.
  • the first and second expansion devices 141 and 143 and the second suction heat exchanger 251 may be coupled by soldering.
  • a first heat exchanger 210a may be installed at the outlet side of the second heat exchanger 250a.
  • the first heat exchanger 210a includes at least a portion of the condensation pipe 161, that is, at least a portion of the condensation heat exchanger 213 and the suction pipe 165 described in the first embodiment, that is, the first suction.
  • the heat exchanger 211 may be included. Description of the operation of the first heat exchanger 210a and the second heat exchanger 250a uses the description of the first embodiment.
  • FIG. 8 is a view showing a refrigerating cycle provided in a deep-temperature freezer according to a fourth embodiment of the present invention.
  • the deep freezer 10c includes the compressor 110, the condenser 120, the dryer 130, the expansion device 140, and the condenser 120.
  • Condensation pipe 161 extending to the expansion device 140 is included.
  • a heat exchange between the refrigerant passing through the first heat exchanger (210) and the expansion device (140) for performing heat exchange between the condensation refrigerant and the suction refrigerant to the compressor (110) and the suction refrigerant is performed. Further included is a second heat exchanger 250 to perform the.
  • the deep freezer 10c further includes a plurality of evaporators 151b, 152b, and 153b for evaporating the refrigerant decompressed in the expansion device 140.
  • the plurality of evaporators 151b, 152b and 153b may include a first evaporator 151b provided at an outlet side of the expansion device 140 and a second evaporator provided at an outlet side of the first evaporator 151b ( 152b) and a third evaporator 153b installed at the outlet side of the second evaporator 152b.
  • the first, second, and third evaporators 151b, 152b, and 153b may be connected in series.
  • the deep freezer 10c may include a plurality of storage compartments corresponding to the plurality of evaporators 151b, 152b, and 153b.
  • the plurality of storage rooms may include a cryogenic storage room of -60 ° C or less, a freezer of about -20 ° C, and a refrigerating room of 0 to 5 ° C.
  • the cold air generated by the first evaporator 151b may be supplied to the cryogenic storage chamber
  • the cold air generated by the second evaporator 152b may be supplied to the freezing chamber
  • the third evaporator 153b The cold air generated in) may be supplied to the refrigerating compartment.
  • the second heat exchanger 250 may be installed at the outlet side of the third evaporator 153b, and the first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250.
  • the refrigerant evaporated in the second evaporator 152 is endothermic while passing through the second heat exchanger 250 and the first heat exchanger 210. Accordingly, the temperature of the refrigerant sucked into the compressor 110 increases and the dryness is increased. May be raised.
  • the related description uses the description of the first embodiment.
  • FIG. 9 is a view showing a refrigeration cycle provided in a deep-temperature freezer according to a fifth embodiment of the present invention.
  • the deep-temperature freezer 10d according to the fifth embodiment of the present invention includes two independent refrigeration cycles.
  • the configurations of the two independent refrigeration cycles are identical to each other.
  • the two refrigeration cycles include a first refrigeration cycle.
  • the first refrigeration cycle the first compressor (110a), the first condenser (120a), the first dryer (130a), the first expansion device (140a), the first condensation pipe (161a), the first evaporator ( 150a), a first suction pipe 165a, a second heat exchanger 250b, and a first heat exchanger 210b. Description of these configurations and operations is the same as that of the first embodiment.
  • the two refrigeration cycles include a second refrigeration cycle.
  • the first refrigeration cycle the second compressor 110b, the second condenser 120b, the second dryer 130b, the second expansion device 140b, the second condensation pipe 161b, the second evaporator ( 150b), a second suction pipe 165b, a fourth heat exchanger 250c, and a third heat exchanger 210c. Description of these configurations and operations is the same as that of the first embodiment.
  • two refrigeration cycles independent of each other may be operated to cool the plurality of storage compartments provided in the deep freezer 10d.
  • the plurality of storage compartments may include two cryogenic storage compartments of -60 ° C or less.
  • the cold air generated in the first refrigeration cycle may cool the first cryogenic storage chamber, and the cold air generated in the second refrigeration cycle may cool the second cryogenic storage chamber.
  • the refrigerant condensed in the condenser passes through a plurality of heat exchangers before entering the evaporator, thereby lowering the condensation pressure of the refrigeration cycle and preventing rise in dryness when the condensed refrigerant passes through the expansion device.
  • the industrial applicability is remarkable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

An embodiment of the present invention relates to a deep freezer. A deep freezer according to an embodiment of the present invention comprises a plurality of heat exchangers installed to an inlet pipe and performing a heat exchange of a mixed refrigerant suctioned into a compressor. The mixed refrigerant comprises: a high temperature refrigerant which is one selected from among butane (N-butane), 1-butene, and isobutane; and a low temperature refrigerant consisting of ethylene.

Description

심온 냉동고Deep freezer
본 발명의 실시예는 심온 냉동고에 관한 것이다.Embodiments of the present invention relate to a deep freezer.
심온 냉동고로 함은, 저장실을 -60℃에서 -80℃ 이하의 극저온 환경으로 형성하기 위하여 냉동 사이클을 구동하는 장치로서 이해된다. A deep freezer is understood as a device that drives a refrigeration cycle to form a storage compartment in a cryogenic environment of -60 ° C to -80 ° C or less.
상기 냉동 사이클을 구현하기 위하여는, 비등점이 낮은 냉매를 사용할 수 있다. 그러나, 상기 비등점이 낮은 냉매를 단독으로 사용하는 경우, 압축기의 토출압력이 상승하여 압축기의 신뢰성이 저하되는 문제점이 있었다.In order to implement the refrigeration cycle, a low boiling point refrigerant may be used. However, in the case of using the refrigerant having a low boiling point alone, the discharge pressure of the compressor is increased, thereby reducing the reliability of the compressor.
따라서, 심온을 구현하기 위한 냉동 사이클에는 비등점이 서로 다른 2개 이상의 혼합냉매가 이용될 수 있다. 상기 혼합냉매에는, 소정의 압력하에서 액상과 기상간에 액화 또는 기화가 일어날 때 준평형 상태에서 온도가 변화지 않는 혼합냉매, 즉 공비 혼합냉매(azeortropic refrigerant mixture) 및 액화 또는 기화과정에서 온도가 변화하는 비공비 혼합냉매(non-azeortropic refrigerant mixture)가 포함된다.Therefore, two or more mixed refrigerants having different boiling points may be used in the refrigerating cycle for implementing the temperature. In the mixed refrigerant, a mixed refrigerant that does not change temperature in a quasi-equilibrium state when liquefaction or vaporization occurs between a liquid phase and a gas under a predetermined pressure, that is, an azeortropic refrigerant mixture and a temperature in which the temperature is changed during the liquefaction or vaporization process Non-azeortropic refrigerant mixtures are included.
상기 공비 혼합냉매는 특수한 성분비율에 한하여 존재하며 순수물질과 같은 열역학적 성질이 나타난다. 반면에, 상기 비공비 혼합냉매는 그 조성에 따라 증발압력 또는 온도가 변화할 수 있다The azeotropic mixed refrigerant exists only in a specific component ratio and exhibits thermodynamic properties such as pure substances. On the other hand, the azeotropic mixed refrigerant may vary in evaporation pressure or temperature depending on its composition.
한편, 상기 공비 혼합냉매는 심온(극저온)을 구현하기 어려운 단점이 있으므로, 심온을 구현하기 위하여는 상기 비공비 혼합냉매의 이용이 바람직할 수 있다.On the other hand, the azeotropic mixed refrigerant has a disadvantage in that it is difficult to implement a deep temperature (extreme cryogenic), it may be preferable to use the azeotropic mixed refrigerant in order to implement a deep temperature.
다만, 상기 비공비 혼합냉매를 사용하더라도 상대적으로 압축기의 토출압력 또는 응축압력이 높게 형성된다. 따라서, 상기 토출압력 범위에 맞는 압축기의 선정이 필요하다. 일반적으로, 심온 냉동고에 사용되는 압축기는 운전압력 범위가 큰, 즉 토출압력 값이 높은 상업용 압축기가 사용될 수 있다.However, even when the non-azeotropic mixed refrigerant is used, the discharge pressure or the condensation pressure of the compressor is relatively high. Therefore, it is necessary to select a compressor that fits the discharge pressure range. In general, a compressor used in a deep freezer may use a commercial compressor having a large operating pressure range, that is, a high discharge pressure value.
그러나, 상기 상업용 압축기는 운전소음이 커서 심온 냉동고에 대한 작동 신뢰성이 저하되는 문제점이 있었다.However, the commercial compressor has a problem in that the operation noise for the deep freezer is lowered due to the large operation noise.
한편, 심온 냉동고와 관련된 선행문헌의 정보는 아래와 같다.On the other hand, the information of the prior literature related to the deep freezer is as follows.
1. 등록번호(등록일) : US 7,299,653B2 (2007년 11월 27일)1.Registration No. (Registration Date): US 7,299,653B2 (November 27, 2007)
2. 발명의 명칭 : Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system.2. Name of invention: Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system.
위와 같은 선행문헌에 의하면, 2개 이상의 혼합냉매를 이용하여 심온환경을 구현할 수는 있으나, 그 혼합비율이 최적화 되지 않아 심온 구현과, 압축기의 적정 토출압력을 모두 만족시키기 어려운 문제점이 있었다. According to the prior document as described above, it is possible to implement a deep temperature environment using two or more mixed refrigerants, but the mixing ratio is not optimized, there was a problem that it is difficult to meet both the core temperature implementation and the proper discharge pressure of the compressor.
상세히, 비등점이 높은 냉매의 비율이 높은 경우 심온 구현이 쉽지 않으며, 비등점이 낮은 냉매의 비율이 높은 경우 압축기의 토출압력이 높아져 압축기의 신뢰성에 문제가 발생하는 문제점이 있었다.In detail, when the ratio of the refrigerant having a high boiling point is high, it is not easy to implement the temperature, and when the ratio of the refrigerant having the low boiling point is high, the discharge pressure of the compressor is increased, thereby causing a problem in reliability of the compressor.
한편, 상기 선행문헌에 개시된 냉동 사이클은, 압축기에서 토출된 냉매는 응축기에서 응축된 후 증발냉매와 열교환을 수행하며, 상기 열교환에 의하여 심온을 구현하도록 구성된다. 그러나, 상기 열교환 후 팽창장치에서 팽창되는 과정에서 냉매의 건도가 상승하게 되고 이에 따라 증발기로 유입되는 냉매 중 액냉매의 비율이 줄어들어 냉력이 감소하게 되는 문제점이 있었다.On the other hand, the refrigerating cycle disclosed in the prior document, the refrigerant discharged from the compressor is condensed in the condenser to perform heat exchange with the evaporative refrigerant, it is configured to implement the temperature by the heat exchange. However, there is a problem in that the dryness of the refrigerant is increased in the process of expanding in the expansion device after the heat exchange, thereby reducing the ratio of the liquid refrigerant in the refrigerant flowing into the evaporator, thereby decreasing the cooling power.
본 발명의 실시예는 상기와 같은 문제점을 해결하기 위하여 제안된 것으로서, 원하는 극저온 환경을 구현할 수 있는 심온 냉동고를 제공하는 것을 목적으로 한다. Embodiments of the present invention have been proposed to solve the above problems, and an object thereof is to provide a deep freezer that can implement a desired cryogenic environment.
또한, 본 발명의 실시예는 냉동 사이클의 응축압력을 낮출 수 있는 심온 냉동고를 제공하는 것을 목적으로 한다.In addition, an embodiment of the present invention is to provide a deep freezer that can lower the condensation pressure of the refrigeration cycle.
또한, 본 발명의 실시예는 압축기에서 발생되는 소음을 저감하여 압축기의 신뢰성을 높일 수 있는 심온 냉동고를 제공하는 것을 목적으로 한다.In addition, an embodiment of the present invention is to provide a deep freezer that can reduce the noise generated in the compressor to increase the reliability of the compressor.
본 발명의 실시예에 따른 심온 냉동고에는, 본 발명의 실시예에 따른 심온 냉동고에는, 흡입배관에 설치되어, 압축기로 흡입되는 혼합냉매의 열교환을 수행하는 복수의 열교환기가 포함된다.The deep-temperature freezer according to the embodiment of the present invention, the deep-temperature freezer according to the embodiment of the present invention includes a plurality of heat exchangers installed in the suction pipe and performing heat exchange of the mixed refrigerant sucked into the compressor.
상기 복수의 열교환기에는 제 1 열교환기가 포함되며, 상기 제 1 열교환기에는, 상기 압축기로 흡입되는 혼합냉매의 유동을 가이드 하는 제 1 흡입열교환부; 및 상기 제 1 흡입열교환부와 열교환을 수행하며, 상기 응축배관의 유동을 가이드 하는 응축열교환부가 포함된다.The heat exchanger includes a first heat exchanger, the first heat exchanger, the first heat exchanger for guiding the flow of the mixed refrigerant sucked into the compressor; And a condensation heat exchanger configured to perform heat exchange with the first suction heat exchanger and to guide the flow of the condensation pipe.
상기 제 1 흡입열교환 또는 응축열교환부의 길이는 3.5 ~ 5m의 범위 내에서 형성되는 것을 특징으로 한다.The length of the first suction heat exchange or the condensation heat exchange unit is characterized in that formed in the range of 3.5 ~ 5m.
상기 응축 열교환부의 배관 직경은, 상기 팽창장치의 배관 직경보다 크게 형성된다.The pipe diameter of the condensation heat exchange part is larger than the pipe diameter of the expansion device.
상기 응축 열교환부의 배관 직경은, 상기 팽창장치의 배관 직경 대비, 3.5 ~ 4.5배의 범위내에 형성된다.The pipe diameter of the condensation heat exchange part is formed within the range of 3.5 to 4.5 times the pipe diameter of the expansion device.
상기 복수의 열교환기에는, 제 2 열교환기가 포함되며, 상기 제 2 열교환기에는, 상기 제 1 흡입열교환부의 일측에 구비되며, 상기 압축기로 흡입되는 혼합냉매의 유동을 가이드 하는 제 2 흡입열교환부; 및 상기 제 2 흡입열교환부와 열교환을 수행하는 상기 팽창장치가 포함된다.The heat exchanger includes a second heat exchanger, and the second heat exchanger includes: a second suction heat exchanger provided at one side of the first suction heat exchanger to guide the flow of the mixed refrigerant sucked into the compressor; And the expansion device performing heat exchange with the second suction heat exchange unit.
상기 제 1 흡입열교환부 및 상기 응축배관, 또는 상기 제 2 흡입열교환부 및 상기 팽창장치는, 서로 접촉하여 열교환을 수행하는 것을 특징으로 한다.The first suction heat exchange unit and the condensation pipe, or the second suction heat exchange unit and the expansion device are in contact with each other to perform heat exchange.
상기 제 1 흡입열교환부 및 상기 응축배관, 또는 상기 제 2 흡입열교환부 및 상기 팽창장치는, 솔더링(soldering)에 의하여 결합되는 것을 특징으로 한다.The first suction heat exchange unit and the condensation pipe, or the second suction heat exchange unit, and the expansion device may be coupled by soldering.
상기 제 1,2 열교환기의 사이에 배치되어, 상기 팽창장치와 상기 응축열교환부간에 열교환을 방지하는 열교환기 연결배관이 더 포함되며, 상기 제 1 열교환부와 상기 제 2 열교환부는, 상기 열교환기 연결배관에 의하여 서로 이격되는 것을 특징으로 한다.A heat exchanger connection pipe disposed between the first and second heat exchangers to prevent heat exchange between the expansion device and the condensation heat exchange unit, wherein the first heat exchange unit and the second heat exchange unit are installed in the heat exchanger. Characterized in that spaced apart from each other by a connection pipe.
상기 흡입배관을 유동하는 냉매의 유동방향을 기준으로, 상기 제 1 열교환기는 상기 제 2 열교환기의 출구측에 설치된다.The first heat exchanger is installed at the outlet side of the second heat exchanger based on the flow direction of the refrigerant flowing through the suction pipe.
상기 응축배관을 유동하는 냉매의 유동방향을 기준으로, 상기 제 2 열교환기는 상기 제 1 열교환기의 출구측에 설치된다.The second heat exchanger is installed at the outlet side of the first heat exchanger based on the flow direction of the refrigerant flowing through the condensation pipe.
상기 증발기에는, 서로 직렬연결 되는 제 1 증발기 및 제 2 증발기가 포함되고, 상기 제 2 증발기는 상기 제 1 증발기의 출구측에 설치된다.The evaporator includes a first evaporator and a second evaporator connected in series with each other, and the second evaporator is installed at an outlet side of the first evaporator.
상기 증발기에는, 서로 병렬연결 되는 제 1 증발기 및 제 2 증발기가 포함되고, 상기 팽창장치에는, 상기 제 1 증발기의 입구측에 설치되는 제 1 팽창장치 및 상기 제 2 증발기의 입구측에 설치되는 제 2 팽창장치가 포함된다.The evaporator includes a first evaporator and a second evaporator connected in parallel with each other, and the expansion device includes a first expansion device installed at an inlet side of the first evaporator and an inlet side of the second evaporator. 2 expansion devices are included.
상기 제 1,2 팽창장치 및 상기 흡입배관은 서로 결합되어 열교환 된다.The first and second expansion devices and the suction pipe are coupled to each other to exchange heat.
상기 증발기에는, 상기 팽창장치의 출구측에 설치되는 제 1 증발기; 상기 제 1 증발기의 출구측에 직렬로 연결되는 제 2 증발기; 및 상기 제 2 증발기의 출구측에 직렬로 연결되는 제 3 증발기가 포함된다.The evaporator, the first evaporator is installed on the outlet side of the expansion device; A second evaporator connected in series with the outlet side of the first evaporator; And a third evaporator connected in series to the outlet side of the second evaporator.
2개의 독립된 냉동 사이클이 구동되며, 상기 각각의 독립된 냉동 사이클에는, 상기 압축기, 응축기, 팽창장치, 증발기 및 복수의 열교환기가 포함된다.Two independent refrigeration cycles are driven, each independent refrigeration cycle comprising the compressor, condenser, expansion device, evaporator and a plurality of heat exchangers.
본 발명의 실시예에 따른 심온 냉동고에는, 혼합냉매를 압축하는 압축기가 포함되며, 상기 혼합냉매에는, 부탄(N-Butane), 1-부텐(1-Butene) 및 이소부탄(Isobutane) 중 어느 하나로 선택되는 고온용 냉매 및 에틸렌(Ethylene)으로 구성되는 저온용 냉매가 포함된다.A deep freezer according to an embodiment of the present invention includes a compressor for compressing a mixed refrigerant, and the mixed refrigerant includes any one of butane (N-Butane), 1-butene (1-Butene), and isobutane (Isobutane). The low temperature refrigerant composed of the selected high temperature refrigerant and ethylene (Ethylene) is included.
상기 혼합냉매에는, 부탄(N-Butane) 및 에틸렌(Ethylene)이 포함된다.The mixed refrigerant includes butane (N-Butane) and ethylene (Ethylene).
상기 부탄(N-Butane)은 80 중량%에서 85 중량%의 범위 내에서 결정되며, 상기 에틸렌(Ethylene)은 15 중량%에서 20 중량%의 범위 내에서 결정된다.The butane (N-Butane) is determined in the range of 80% to 85% by weight, and the ethylene is determined in the range of 15% to 20% by weight.
상기 압축기는 설정된 압력범위에서 운전되며, 상기 설정된 압력범위에는, 상기 압축기의 최고 토출압력이 25 바아(bar) 이하인 범위가 포함된다.The compressor is operated in a set pressure range, and the set pressure range includes a range in which the maximum discharge pressure of the compressor is 25 bar or less.
상기 설정된 압력범위에는, 상기 압축기의 최저 흡입압력이 1 바아(bar) 이상인 범위가 포함된다.The set pressure range includes a range in which the minimum suction pressure of the compressor is 1 bar or more.
상기 압축기는 설정된 온도범위 내에서 운전되며, 상기 설정된 온도범위에는, 상기 압축기의 최고 토출온도가 120℃ 이하인 범위가 포함된다.The compressor is operated within a set temperature range, and the set temperature range includes a range in which the maximum discharge temperature of the compressor is 120 ° C. or less.
상기 심온 냉동고에는, -60℃ 이하의 온도값을 가지는 저장실이 포함된다.The deep freezer includes a storage compartment having a temperature value of -60 ° C or lower.
상기 압축기에는, 최저 흡입압력 1 바아(bar) 이상, 최고 토출압력 25 bar 이하의 압력조건에서 운전되는 가정용 압축기가 포함된다.The compressor includes a domestic compressor operated under pressure conditions of at least 1 bar of the minimum suction pressure and of 25 bar or less of the maximum discharge pressure.
상기 응축기의 출구측으로부터 상기 팽창장치로 연장되어, 상기 흡합냉매의 유동을 가이드 하는 응축배관; 상기 증발기의 출구측으로부터 상기 압축기로 연장되어, 상기 혼합냉매의 상기 압축기로의 흡입을 가이드 하는 흡입배관; 및 상기 흡입배관에 설치되어, 상기 압축기로 흡입되는 혼합냉매의 열교환을 수행하는 복수의 열교환기가 더 포함된다.A condensation pipe extending from the outlet side of the condenser to the expansion device to guide the flow of the adsorption refrigerant; A suction pipe extending from the outlet side of the evaporator to the compressor to guide suction of the mixed refrigerant into the compressor; And a plurality of heat exchangers installed in the suction pipe and performing heat exchange of the mixed refrigerant sucked into the compressor.
본 발명의 실시예에 따르면, 응축기에서 응축된 냉매가 증발기에 유입되기 이전에 복수의 열교환기를 통과하도록 함으로써, 냉동 사이클의 응축압력을 낮추고 응축된 냉매가 팽창장치를 통과할 때 건도 상승을 방지할 수 있다는 효과가 나타난다.According to an embodiment of the present invention, the refrigerant condensed in the condenser passes through a plurality of heat exchangers before entering the evaporator, thereby lowering the condensation pressure of the refrigeration cycle and preventing rise in dryness when the condensed refrigerant passes through the expansion device. The effect is that it can.
상세히, 상기 복수의 열교환기에는, 상기 응축기를 통과한 냉매와 압축기로 흡입되는 흡입냉매간에 열교환을 수행하는 제 1 열교환기가 포함되므로, 상기 제 1 열교환기에서의 열교환 과정에서 냉동 사이클의 응축 압력이 낮아질 수 있게 된다. 결국, 일반적인 냉장고에서 사용되는, 낮은 토출압력을 가지면서 소음이 적게 발생되는 가정용 압축기의 사용이 가능하다는 장점이 있다.In detail, since the plurality of heat exchangers include a first heat exchanger for performing heat exchange between the refrigerant passing through the condenser and the suction refrigerant sucked into the compressor, the condensation pressure of the refrigeration cycle is increased during the heat exchange process in the first heat exchanger. Can be lowered. As a result, there is an advantage that it is possible to use a household compressor having a low discharge pressure and low noise, which is used in a general refrigerator.
그리고, 상기 흡입냉매의 온도가 상승하여 압축기로의 액냉매 유입을 방지할 수 있고 이에 따라 압축기의 작동 신뢰성이 개선될 수 있다.In addition, the temperature of the suction refrigerant is increased to prevent the introduction of the liquid refrigerant into the compressor, thereby improving the operating reliability of the compressor.
또한, 상기 복수의 열교환기에는, 상기 제 1 열교환기에서 열교환 된 후 팽창장치를 통과하는 냉매와 상기 압축기로 흡입되는 흡입냉매간에 열교환을 수행하는 제 2 열교환기가 포함되므로, 냉매가 상기 팽창장치에서 감압되는 과정에서 건도의 상승을 방지할 수 있다.The plurality of heat exchangers may include a second heat exchanger that performs heat exchange between the refrigerant passing through the expansion device after being heat exchanged in the first heat exchanger and the suction refrigerant sucked into the compressor, and thus the refrigerant may be removed from the expansion device. It is possible to prevent the increase of dryness in the process of decompression.
결국, 증발기로 유입되는 냉매 중 액냉매의 비율이 증가하여 증발열량, 즉 냉력이 개선될 수 있다는 장점이 있다.As a result, the ratio of the liquid refrigerant in the refrigerant flowing into the evaporator has an advantage that the heat of evaporation, that is, the cooling power can be improved.
또한, 상기 제 1 열교환기를 구성하는 응축 열교환부의 관경은 상기 제 2 열교환기를 구성하는 팽창장치의 관경보다 크게 형성되므로, 냉매가 상기 제 1 열교환기를 통과하는 과정에서 응축이 용이하게 이루어질 수 있고 이에 따라 응축온도 및 응축압력이 낮아질 수 있다는 효과가 나타난다.In addition, since the diameter of the condensation heat exchanger constituting the first heat exchanger is larger than the diameter of the expansion device constituting the second heat exchanger, condensation may be easily performed while the refrigerant passes through the first heat exchanger. The effect is that the condensation temperature and condensation pressure can be lowered.
또한, 제 1 열교환기의 길이가 최적범위로 제안되어 열교환이 이루어질 수 있으므로, 냉매 사이클 특성상 가정용 압축기의 운전조건을 충족하고, 압축기의 운전 신뢰성을 개선할 수 있다.In addition, since the length of the first heat exchanger is proposed as an optimum range, heat exchange can be performed, and thus, the refrigerant cycle characteristics can satisfy the operating conditions of the domestic compressor and improve the operation reliability of the compressor.
그리고, 상기 제 1 열교환기는 응축 파이프와 흡입 파이프의 결합에 의하여 구성되고, 상기 제 2 열교환기는 캐필러리 튜브와 흡입파이프의 결합에 의하여 구성될 수 있으므로 열교환 효율이 개선될 수 있다는 장점이 있다.In addition, the first heat exchanger may be configured by a combination of a condensation pipe and a suction pipe, and the second heat exchanger may be configured by a combination of a capillary tube and a suction pipe, thereby improving heat exchange efficiency.
또한, 상기 응축기를 통과한 응축냉매는 상기 제 1 열교환기에서 열교환 된 후 상기 제 2 열교환기로 유입될 수 있으므로, 응축압력을 먼저 낮추고 팽창과정에서의 건도 상승이 방지될 수 있게 된다.In addition, since the condensation refrigerant passing through the condenser may be introduced into the second heat exchanger after being heat exchanged in the first heat exchanger, the condensation pressure may be lowered first and dryness may be prevented in the expansion process.
또한, 비공비 혼합냉매의 중량비가 최적으로 제안될 수 있으므로, 원하는 극저온 환경을 구현할 수 있고 상기 가정용 압축기의 적정 토출압력을 충족할 수 있다는 장점이 있다.In addition, since the weight ratio of the azeotropic mixed refrigerant can be optimally proposed, it is possible to implement a desired cryogenic environment and to satisfy an appropriate discharge pressure of the domestic compressor.
도 1은 본 발명의 제 1 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.1 is a view showing a refrigeration cycle provided in a deep freezer according to a first embodiment of the present invention.
도 2는 본 발명의 제 1 실시예에 따른 제 1,2 열교환기의 구성을 보여주는 도면이다.2 is a view showing the configuration of the first and second heat exchangers according to the first embodiment of the present invention.
도 3은 본 발명의 제 1 실시예에 따른 심온 냉동고에 대한, P-h 선도이다.FIG. 3 is a P-h diagram for a deep freezer according to a first embodiment of the present invention. FIG.
도 4는 본 발명의 제 1 실시예에 따른 제 1 열교환기의 길이에 관한 최적범위를 보여주는 실험 그래프이다.4 is an experimental graph showing an optimum range of the length of the first heat exchanger according to the first embodiment of the present invention.
도 5는 본 발명의 제 1 실시예에 따른 비공비 혼합냉매의 냉매량에 따라 변화하는 다수의 결과값을 보여주는 실험 그래프이다.5 is an experimental graph showing a plurality of result values that vary depending on the amount of refrigerant of the azeotropic mixed refrigerant according to the first embodiment of the present invention.
도 6은 본 발명의 제 2 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.6 is a view showing a refrigeration cycle provided in the freezer temperature according to the second embodiment of the present invention.
도 7은 본 발명의 제 3 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.7 is a view showing a refrigeration cycle provided in the freezer temperature according to the third embodiment of the present invention.
도 8은 본 발명의 제 4 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.8 is a view showing a refrigerating cycle provided in a deep-temperature freezer according to a fourth embodiment of the present invention.
도 9는 본 발명의 제 5 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.9 is a view showing a refrigeration cycle provided in a deep-temperature freezer according to a fifth embodiment of the present invention.
이하에서는 도면을 참조하여, 본 발명의 구체적인 실시예를 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시예를 용이하게 제안할 수 있을 것이다. Hereinafter, with reference to the drawings will be described a specific embodiment of the present invention. However, the spirit of the present invention is not limited to the embodiments presented, and those skilled in the art who understand the spirit of the present invention can easily suggest other embodiments within the scope of the same idea.
도 1은 본 발명의 제 1 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이고, 도 2는 본 발명의 제 1 실시예에 따른 제 1,2 열교환기의 구성을 보여주는 도면이고, 도 3은 본 발명의 제 1 실시예에 따른 심온 냉동고에 대한, P-h 선도이고, 도 4는 본 발명의 제 1 실시예에 따른 제 1 열교환기의 길이에 관한 최적범위를 보여주는 실험 그래프이고, 도 5는 본 발명의 제 1 실시예에 따른 비공비 혼합냉매의 냉매량에 따라 변화하는 다수의 결과값을 보여주는 실험 그래프이다.1 is a view showing a refrigerating cycle provided in a deep-temperature freezer according to a first embodiment of the present invention, Figure 2 is a view showing the configuration of the first and second heat exchangers according to the first embodiment of the present invention, 3 is a pH diagram for the temperature freezer according to the first embodiment of the present invention, Figure 4 is an experimental graph showing the optimum range of the length of the first heat exchanger according to the first embodiment of the present invention, Figure 5 Is an experimental graph showing a number of result values that vary depending on the amount of refrigerant in the azeotropic mixed refrigerant according to the first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제 1 실시예에 따른 심온 냉동고(10)에는, 냉매의 압축, 응축, 팽창 및 증발이 반복되는 냉동 사이클이 운전될 수 있다. 냉매를 압축할 수 있는 압축기(110)가 포함된다. 상기 압축기(110)에는, 일반적인 가정용 냉장고에 사용되는 가정용 압축기가 포함될 수 있다. Referring to FIG. 1, in the deep freezer 10 according to the first embodiment of the present invention, a refrigeration cycle in which compression, condensation, expansion, and evaporation of a refrigerant are repeated may be operated. A compressor 110 capable of compressing the refrigerant is included. The compressor 110 may include a household compressor used in a general household refrigerator.
일례로, 상기 압축기(110)의 온도 또는 압력 작동범위는 다음과 같다. 상기 압축기(110)는, 최고 토출압력이 25 바아(bar)이하, 최고 토출온도는 120℃ 이하, 최저 흡입압력은 1 바아(bar) 이하로 형성되도록 구성될 수 있다. 이와 같은 온도 또는 압력범위를 가지는 가정용 압축기(110)는, 운전소음이 매우 적게 발생하다는 이점이 있다.In one example, the temperature or pressure operating range of the compressor 110 is as follows. The compressor 110 may be configured such that the maximum discharge pressure is 25 bar or less, the maximum discharge temperature is 120 ° C. or less, and the minimum suction pressure is 1 bar or less. Household compressor 110 having such a temperature or pressure range has the advantage that the operation noise is generated very little.
상기 압축기(110)로 흡입되는 냉매에는, 혼합 냉매가 포함된다. 상기 혼합 냉매에는, 제 1 비등점을 가지는 제 1 냉매 및 상기 제 1 비등점보다 낮은 제 2 비등점을 가지는 제 2 냉매가 포함된다. 상기 제 1 냉매를 "고온용 냉매", 상기 제 2 냉매를 "저온용 냉매"라 이름할 수 있다.The refrigerant sucked into the compressor 110 includes a mixed refrigerant. The mixed refrigerant includes a first refrigerant having a first boiling point and a second refrigerant having a second boiling point lower than the first boiling point. The first refrigerant may be referred to as a "high temperature refrigerant", and the second refrigerant may be referred to as a "low temperature refrigerant".
상기 냉매에 혼합 냉매가 포함됨에 따라, 심온 냉동고에서 요구되는 증발온도, 즉 심온(극저온)을 구현할 수 있고, 상기 압축기(110)에서 토출되는 냉매의 압력은 설정범위에서 형성될 수 있다.As the refrigerant includes the mixed refrigerant, an evaporation temperature, i.e., a cryogenic temperature, required in the deep freezer may be realized, and the pressure of the refrigerant discharged from the compressor 110 may be formed within a predetermined range.
상세히, 상기 저온용 냉매의 특성에 의하여 심온을 구현할 수 있다. 다만, 상기 저온용 냉매는 상기 압축기(110)에서 압축될 경우 상대적으로 높은 토출압력을 가지므로 압축기의 신뢰성, 특히 본 실시예에 적용되는 가정용 압축기(110)에 악영향을 미치게 된다. 따라서, 상기 토출압력을 낮축기 위하여, 상대적으로 낮은 토출압력을 가지는 고온용 냉매가 혼합될 수 있다. In detail, the core temperature may be realized by the characteristics of the low temperature refrigerant. However, since the low temperature refrigerant has a relatively high discharge pressure when compressed in the compressor 110, the low temperature refrigerant may adversely affect the reliability of the compressor, particularly the domestic compressor 110 applied to the present embodiment. Therefore, in order to lower the discharge pressure, a high temperature refrigerant having a relatively low discharge pressure may be mixed.
다만, 상기 저온용 냉매와 고온용 냉매가 단순히 혼합되는 것만으로는, 혼합 냉매의 토출압력이 본 실시예에 사용되는 가정용 압축기(110)의 작동압력보다 높게 형성되는 문제점이 발생될 수 있다. However, simply mixing the low temperature refrigerant and the high temperature refrigerant may cause a problem that the discharge pressure of the mixed refrigerant is higher than the operating pressure of the domestic compressor 110 used in the present embodiment.
이러한 문제점을 해결하기 위하여, 작동압력 범위가 큰 상업용 압축기를 사용할 수는 있으나, 이 경우 매우 큰 운전소음에 의하여 심온 냉동고의 신뢰성이 저하될 수 있다. 따라서, 본 실시예에서는 가정용 압축기(110)의 작동압력 또는 작동온도 범위에 부합할 수 있는, 혼합 냉매의 비율, 즉 상기 고온용 냉매와 저온용 냉매의 적정 비율을 제안한다.In order to solve this problem, it is possible to use a commercial compressor having a large operating pressure range, but in this case, the reliability of the deep-temperature freezer may be degraded due to very high operating noise. Therefore, the present embodiment proposes a ratio of the mixed refrigerant, that is, an appropriate ratio of the high temperature coolant and the low temperature coolant, which may correspond to the operating pressure or the operating temperature range of the domestic compressor 110.
일반적으로, 상기 고온용 냉매에는, 이소펜탄(Isopentane), 1,2-부타디엔(1,2-Butadiene), 부탄(N-Butane), 1-부텐(1-Butene) 또는 이소부탄(Isobutane) 가 포함될 수 있다. 상기 고온용 냉매의 물성치는 아래 [표 1]과 같다.In general, isopentane, 1,2-butadiene, butane (N-Butane), 1-butene or 1-butene isobutane is included in the high temperature refrigerant. May be included. Physical properties of the high temperature refrigerant are shown in Table 1 below.
고온용 냉매High Temperature Refrigerant 증발온도(1bar), ℃Evaporation temperature (1bar), ℃ 증발온도(20bar), ℃Evaporation temperature (20bar), ℃
ISOPENTANEISOPENTANE 27.527.5 154.7154.7
1,2-BUTADIENE1,2-BUTADIENE 10.310.3 124.8124.8
N-BUTANEN-BUTANE -0.9-0.9 114.5114.5
1-BUTENE1-BUTENE -6.6-6.6 105.8105.8
ISOBUTANEISOBUTANE -12-12 100.7100.7
압력 1bar를 기준으로, 상기 이소펜탄(Isopentane) 및 1,2-부타디엔(1,2-Butadiene)의 경우, 증발온도가 다소 높은 경향을 가진다. 따라서, 상기 이소펜탄(Isopentane) 및 1,2-부타디엔(1,2-Butadiene)을 본 실시예에 따른 고온용 냉매로 사용하는 경우, 상기 저온용 냉매와 혼합되더라도 심온을 구현하는 것이 제한되는 문제점이 발생한다.Based on the pressure of 1 bar, in the case of the isopentane and 1,2-butadiene, the evaporation temperature tends to be somewhat high. Accordingly, when the isopentane and 1,2-butadiene are used as the high temperature refrigerant according to the present embodiment, even when mixed with the low temperature refrigerant, it is difficult to realize a deep temperature. This happens.
반면에, 1bar를 기준으로, 부탄(N-Butane), 1-부텐(1-Butene) 및 이소부탄(Isobutane)의 경우, 증발온도는 0℃ 이하의 값을 가진다. 따라서, 부탄(N-Butane), 1-부텐(1-Butene) 및 이소부탄(Isobutane) 중 어느 하나는, 넓은 의미에서 본 실시예에 따른 고온용 냉매로 사용될 수 있다.On the other hand, based on 1 bar, in the case of butane (N-Butane), 1-butene (1-Butene) and isobutane (Isobutane), the evaporation temperature has a value of 0 ℃ or less. Therefore, any one of butane (N-Butane), 1-butene (1-Butene) and isobutane (Isobutane) can be used as a refrigerant for high temperature according to the present embodiment in a broad sense.
다만, 상기 1-부텐(1-Butene) 및 이소부탄(Isobutane)의 경우, 상기 증발온도가 다소 낮게 형성되어, 상기 저온용 냉매와 혼합되면 심온을 구현할 수는 있으나, 압축기의 토출압력이 다소 높아지는 문제점이 발생할 수 있다. 따라서, 바람직하게는 본 실시예에 따른 고온용 냉매로는, 1bar를 기준으로 증발온도가 0℃에 가까운 부탄(N-Butane)을 사용하는 것을 특징으로 한다.However, in the case of the 1-butene and isobutane, the evaporation temperature is slightly lower, and when mixed with the low temperature refrigerant, a deep temperature may be realized, but the discharge pressure of the compressor may be somewhat higher. Problems may arise. Therefore, preferably, as the high temperature refrigerant according to the present embodiment, butane (N-Butane) having an evaporation temperature close to 0 ° C based on 1 bar is used.
한편, 상기 저온용 냉매에는, 에탄(Ethane) 또는 에틸렌(Ethylene)이 포함될 수 있다. 상기 저온용 냉매의 물성치는 아래 [표 2]과 같다.Meanwhile, the low temperature refrigerant may include ethane or ethylene. Physical properties of the low temperature refrigerant are shown in Table 2 below.
저온용 냉매Low Temperature Refrigerant 증발온도(1bar), ℃Evaporation temperature (1bar), ℃ 증발온도(20bar), ℃Evaporation temperature (20bar), ℃
ETHANEETHANE -88.8-88.8 -182.8-182.8
ETHYLENEETHYLENE -104-104 -169.15-169.15
압력 1bar를 기준으로, 상기 에탄(Ethane)의 경우, 증발온도가 다소 높은 경향을 가진다. 따라서, 상기 에탄(Ethane)을 본 실시예에 따른 저온용 냉매로 사용하는 경우, 심온을 구현하는 것이 제한되는 문제점이 발생한다.Based on the pressure 1bar, in the case of the ethane (Ethane), the evaporation temperature tends to be somewhat high. Therefore, when using the ethane (Ethane) as the low-temperature refrigerant according to this embodiment, there is a problem that the implementation of the deep temperature is limited.
반면에, 압력 1bar를 기준으로, 에틸렌(Ethylene)의 경우, 증발온도는 -100℃ 이하의 값을 가지며, 상기 -100℃ 이하의 증발온도는 심온을 구현하기에 적절한 수준의 온도를 형성한다. 따라서, 바람직하게는 본 실시예에 따른 저온용 냉매로는, 1bar를 기준으로 증발온도가 -100℃ 이하의 값을 가지는 에틸렌(Ethylene)을 사용하는 것을 특징으로 한다.On the other hand, on the basis of the pressure 1bar, in the case of ethylene (Ethylene), the evaporation temperature has a value of -100 ℃ or less, the evaporation temperature of -100 ℃ or less forms a temperature of an appropriate level to implement the temperature. Therefore, preferably, the low temperature refrigerant according to the present embodiment is characterized by using ethylene having an evaporation temperature of less than -100 ° C based on 1 bar.
이상에서 살펴본 바와 같이, 고온용 냉매로서 부탄(N-Butane)을 채용하고 저온용 냉매로서 에틸렌(Ethylene)을 사용하여 심온을 구현하더라도, 상기 가정용 압축기(110)의 토출압력 범위를 충족하기 위하여는, 적절한 중량비율로 혼합될 필요가 있다.As described above, even if the high temperature refrigerant is used butane (N-Butane) and the low temperature refrigerant by using ethylene (Ethylene) to achieve a deep temperature, to meet the discharge pressure range of the domestic compressor 110 It needs to be mixed in an appropriate weight ratio.
본 실시예에서는, 다수의 실험을 반복하여, 상기 가정용 압축기(110)의 토출압력 범위를 충족하는 혼합 냉매의 비율을 제안한다. 일례로, 상기 부탄(N-Butane)은 80 중량%에서 85 중량%의 범위 내에서 결정되며, 상기 에틸렌(Ethylene)은 15 중량%에서 20 중량%의 범위 내에서 결정될 수 있다.In this embodiment, a number of experiments are repeated to propose a proportion of the mixed refrigerant satisfying the discharge pressure range of the domestic compressor 110. In one example, the butane (N-Butane) is determined in the range of 80% to 85% by weight, the ethylene (Ethylene) may be determined in the range of 15% to 20% by weight.
상세히, 반복된 다수의 실험에 대한 결과값을 제시한다.In detail, the results of several repeated experiments are presented.
실내온도 (32℃)Indoor temperature (32 ℃)
N-BUTANE/ETHYLENE (중량%)N-BUTANE / ETHYLENE (wt%) 70/3070/30 75/2575/25 80/2080/20 85/1585/15 90/1090/10
최고 토출압력 (bar)Discharge pressure (bar) 39.139.1 36.236.2 24.324.3 22.922.9 21.421.4
최저 흡입압력 (bar)Suction pressure (bar) 1.71.7 1.51.5 1.181.18 1.091.09 0.940.94
최고 토출온도 (℃)Discharge temperature (℃) 116.9116.9 111.2111.2 105.4105.4 101.3101.3 98.698.6
온도 성능(℃)Temperature performance (℃) -79.8-79.8 -74.6-74.6 -68.3-68.3 -62.9-62.9 -55.8-55.8
위에 제시된 [표 3]은, 주위온도(실내온도)가 32℃인 조건에서, 부탄(N-Butane)과 에틸렌(Ethylene)의 중량% 비율을 달리하여 실험을 수행한 결과값을 나타낸다. [Table 3] presented above shows the results of experiments by varying the weight percentage ratio of butane (N-Butane) and ethylene (Ethylene) under the condition that the ambient temperature (room temperature) is 32 ℃.
위 결과값을 해석하면, 부탄(N-Butane)과 에틸렌(Ethylene)의 혼합 냉매에서 부탄(N-Butane)의 중량%가 상대적으로 증가하면, 압축기의 최고 토출압력, 최저 흡입압력 및 최고 토출온도는 감소하고, 온도 성능, 즉 심온 냉동고에서 구현되는 저장실의 온도값은 상승하게 된다.If the above results are interpreted, the maximum discharge pressure, minimum suction pressure and maximum discharge temperature of the compressor are increased when the weight% of butane (N-Butane) is relatively increased in the mixed refrigerant of butane (N-Butane) and ethylene (Ethylene). Decreases, and the temperature performance, that is, the temperature value of the storage compartment implemented in the deep freezer, increases.
상기한 바와 같이, 가정용 압축기(110)의 작동압력 및 온도범위를 충족하기 위하여는, 최고 토출압력은 25bar 이하, 최고 토출온도는 120℃ 이하, 최저 흡입압력은 1bar 이상을 만족하여야 한다.As described above, in order to satisfy the operating pressure and the temperature range of the domestic compressor 110, the maximum discharge pressure must be 25 bar or less, the maximum discharge temperature is 120 ° C. or less, and the minimum suction pressure must be 1 bar or more.
이러한 조건을 만족하는 부탄(N-Butane)과 에틸렌(Ethylene)의 비율은 80 : 20 ~ 85 : 15의 중량% 비율값을 형성한다. 그리고, 이러한 중량%의 범위 내에서, 심온 냉동고가 요구되는 성능을 발휘할 수 있는 저장실의 온도, 일례로 -60℃ 이하의 값을 형성할 수 있다.The ratio of butane (N-Butane) and ethylene (Ethylene) satisfying these conditions forms a weight percentage ratio of 80: 20 ~ 85: 15. And within such a weight% range, the temperature of the storage compartment which can exhibit the performance required for a deep freezer, for example, a value of -60 degrees C or less can be formed.
실내온도 (38℃)Indoor temperature (38 ℃)
N-BUTANE/ETHYLENE (중량%)N-BUTANE / ETHYLENE (wt%) 70/3070/30 75/2575/25 80/2080/20 85/1585/15 90/1090/10
최고토출압력 (bar)Discharge pressure (bar) 40.840.8 38.338.3 24.824.8 23.623.6 22.222.2
최저흡입압력 (bar)Suction pressure (bar) 1.91.9 1.61.6 1.251.25 1.141.14 0.980.98
최고토출온도 (℃)Maximum discharge temperature (℃) 121.3121.3 118.4118.4 108.3108.3 103.6103.6 101.8101.8
온도 성능(℃)Temperature performance (℃) -76.5-76.5 -72.4-72.4 -66.7-66.7 -61.9-61.9 -53.2-53.2
위에 제시된 [표 4]는, 주위온도(실내온도)가 38℃인 조건에서, 부탄(N-Butane)과 에틸렌(Ethylene)의 중량% 비율을 달리하여 실험을 수행한 결과값을 나타낸다. [Table 4] presented above shows the results of experiments by varying the weight ratio of butane (N-Butane) and ethylene (Ethylene) under the condition that the ambient temperature (room temperature) is 38 ℃.
위 결과값을 해석하면, 부탄(N-Butane)과 에틸렌(Ethylene)의 혼합 냉매에서 부탄(N-Butane)의 중량%가 상대적으로 증가하면, 압축기의 최고 토출압력, 최저 흡입압력 및 최고 토출온도는 감소하고, 온도 성능, 즉 심온 냉동고에서 구현되는 저장실의 온도값은 상승하게 된다.If the above results are interpreted, the maximum discharge pressure, minimum suction pressure and maximum discharge temperature of the compressor are increased when the weight% of butane (N-Butane) is relatively increased in the mixed refrigerant of butane (N-Butane) and ethylene (Ethylene). Decreases, and the temperature performance, that is, the temperature value of the storage compartment implemented in the deep freezer, increases.
상기한 바와 같이, 가정용 압축기(110)의 작동압력 및 온도범위를 충족하기 위하여는, 최고 토출압력은 25bar 이하, 최고 토출온도는 120℃ 이하, 최저 흡입압력은 1bar 이상을 만족하여야 한다.As described above, in order to satisfy the operating pressure and the temperature range of the domestic compressor 110, the maximum discharge pressure must be 25 bar or less, the maximum discharge temperature is 120 ° C. or less, and the minimum suction pressure must be 1 bar or more.
이러한 조건을 만족하는 부탄(N-Butane)과 에틸렌(Ethylene)의 비율은 80 : 20 ~ 85 : 15의 중량% 비율값을 형성한다. 그리고, 이러한 중량%의 범위 내에서, 심온 냉동고가 요구되는 성능을 발휘할 수 있는 저장실의 온도, 일례로 -60℃ 이하의 값을 형성할 수 있다.The ratio of butane (N-Butane) and ethylene (Ethylene) satisfying these conditions forms a weight percentage ratio of 80: 20 ~ 85: 15. And within such a weight% range, the temperature of the storage compartment which can exhibit the performance required for a deep freezer, for example, a value of -60 degrees C or less can be formed.
정리하면, 가정용 압축기(110)를 채용하는 심온 냉동고(10)에 대하여, 원하는 성능을 구현하기 위하여는, 부탄(N-Butane)과 에틸렌(Ethylene)의 비율은 80 : 20 ~ 85 : 15의 중량% 비율값을 형성하도록 혼합한 냉매를 사용할 수 있다.In summary, for the deep-temperature freezer 10 employing the home compressor 110, in order to achieve the desired performance, the ratio of butane (N-Butane) and ethylene (Ethylene) is a weight of 80: 20 ~ 85: 15 Refrigerants mixed to form% percentage values can be used.
도 5는, 부탄(N-Butane)과 에틸렌(Ethylene)의 비율이 83 : 17가 되도록 혼합 냉매를 구성하고, 냉매량을 증가하면서 소정의 용적을 가지는 저장실을 냉각하는 실험을 수행한 결과값을 보여준다.FIG. 5 shows a result of experiments in which a mixed refrigerant is formed such that the ratio of butane (N-Butane) and ethylene is 83:17, and the storage chamber having a predetermined volume is cooled while increasing the amount of refrigerant. .
상세히, 상기 냉매량이 증가함에 따라 압축기(110)로 흡입되는 혼합 냉매의 온도, 즉 흡입파이프 온도와, 냉각되어야 할 저장실의 온도 및 심온 냉동고의 운전에 따른 소비 에너지량을 보여주는 그래프로서 이해된다.In detail, it is understood as a graph showing the temperature of the mixed refrigerant sucked into the compressor 110, that is, the suction pipe temperature, the temperature of the storage chamber to be cooled, and the amount of energy consumed by the operation of the deep-temperature freezer as the amount of the refrigerant increases.
상기 혼합 냉매의 양이 증가할수록, 상기 흡입파이프 온도는 조금씩 감소하는 경향을 가지며, 상기 저장실의 온도 또한 감소하고, 상기 소비 에너지량은 점점 증가하게 된다.As the amount of the mixed refrigerant increases, the suction pipe temperature tends to decrease little by little, the temperature of the storage compartment also decreases, and the amount of energy consumed gradually increases.
도 5에 따르면, 심온 냉동고의 원하는 온도성능, 즉 -60℃ 이하의 값을 가지기 위하여는 혼합 냉매량은 80g 이상이 충전될 필요가 있다. 물론, 저장실의 용적에 따라, 상기 혼합 냉매량은 달라질 수 있을 것이다.According to FIG. 5, in order to have a desired temperature performance of the deep freezer, that is, a value of −60 ° C. or less, the amount of the mixed refrigerant needs to be filled at least 80 g. Of course, depending on the volume of the storage compartment, the amount of the mixed refrigerant may vary.
도 1 및 도 3을 함께 참조하여, 사이클의 구성 및 물성치의 변화에 대하여 설명한다. 도 3에는 P-h 선도가 도시되며, 점선으로 표시된 부분은 종래 기술로서 본 실시예에 따른 복수의 열교환기(210,250)가 구비되지 않는 냉동 사이클을 나타내며, 실선으로 표시되는 부분은 본 실시예에 따른 구성에 의한 냉동 사이클을 나타낸다.With reference to FIG. 1 and FIG. 3, the structure of a cycle and the change of a physical property value are demonstrated. 3 shows a Ph diagram, and the portion indicated by a dotted line indicates a refrigeration cycle in which a plurality of heat exchangers 210 and 250 according to the present embodiment are not provided as a prior art, and the portion indicated by a solid line is configured according to the present embodiment. The refrigeration cycle by
상세히, P-h 선도에는 다수의 등온선이 표시된다. 상기 등온선에는, T2(T2'), T3, T4, T5 및 T7가 포함된다. 상기 등온선에 따른 온도값은 아래와 같은 관계식, 즉 T2(T2') > T7 > T3 > T5 > T4를 만족할 수 있다. 일례로, T2(T2')는 35~40℃, T7은 30~35℃, T3는 8~13℃, T5는 약 -60℃, T4는 약 -80℃의 범위에서 형성될 수 있다.In detail, the P-h diagram shows a number of isotherms. The isotherm includes T2 (T2 '), T3, T4, T5, and T7. The temperature value according to the isotherm may satisfy the following relation, that is, T2 (T2 ')> T7> T3> T5> T4. For example, T2 (T2 ') may be formed in the range of 35 ~ 40 ℃, T7 is 30 ~ 35 ℃, T3 is 8 ~ 13 ℃, T5 is about -60 ℃, T4 is about -80 ℃.
본 발명의 제 1 실시예에 따른 심온 냉동고(10)에는, 상기 압축기(110)의 출구측에 설치되며, 상기 압축기(110)에서 토출된 혼합냉매를 응축하기 위한 응축기(120)가 더 포함된다. 그리고, 상기 심온 냉동고(10)에는, 상기 응축기(120)의 출구측에 설치되며, 상기 응축기(120)에서 응축된 냉매 중 수분이나 이물을 걸러내는 드라이어(130)가 포함된다.The deep-temperature freezer 10 according to the first embodiment of the present invention further includes a condenser 120 which is installed at the outlet side of the compressor 110 and condenses the mixed refrigerant discharged from the compressor 110. . The deep-temperature freezer 10 includes a dryer 130 installed at an outlet side of the condenser 120 to filter out water or foreign substances from the refrigerant condensed in the condenser 120.
상기 심온 냉동고(10)에는, 상기 드라이어(130)의 출구측에 설치되며, 상기 응축기(120)에서 응축된 냉매를 감압하는 팽창장치(140)가 더 포함된다. 일례로, 상기 팽창장치(140)에는, 캐필러리 튜브가 포함될 수 있다. 상기 심온 냉동고(10)에는, 상기 응축기(120)의 출구측으로부터 상기 팽창장치(140)로 연장되는 응축배관(161)이 더 포함된다. 상기 드라이어(130)는 상기 응축배관(161)에 설치될 수 있다.The deep-temperature freezer 10 further includes an expansion device 140 installed at the outlet side of the dryer 130 to reduce the refrigerant condensed in the condenser 120. For example, the expansion device 140 may include a capillary tube. The deep freezer 10 further includes a condensation pipe 161 extending from the outlet side of the condenser 120 to the expansion device 140. The dryer 130 may be installed in the condensation pipe 161.
그리고, 상기 심온 냉동고(10)에는, 상기 팽창장치(140)의 출구측에 설치되며, 상기 팽창장치(140)에서 감압된 냉매를 증발시키는 증발기(150)가 더 포함된다. 그리고, 상기 심온 냉동고(10)에는, 상기 증발기(150)의 출구측으로부터 상기 압축기(110)의 흡입측으로 연장되는 흡입배관(165)이 더 포함된다.The deep-temperature freezer 10 further includes an evaporator 150 installed at an outlet side of the expansion device 140 to evaporate the refrigerant decompressed in the expansion device 140. In addition, the deep freezer 10 further includes a suction pipe 165 extending from the outlet side of the evaporator 150 to the suction side of the compressor 110.
상기 심온 냉동고(10)에 구비되는 저장실에는, 상기 혼합냉매가 상기 압축기(110), 응축기(120), 팽창장치(140) 및 증발기(150)를 거치면서 발생된 냉기가 공급될 수 있다.Cooling air generated while the mixed refrigerant passes through the compressor 110, the condenser 120, the expansion device 140, and the evaporator 150 may be supplied to the storage compartment provided in the deep freezer 10.
상기 심온 냉동고(10)에는, 상기 심온 냉동고(10)의 운전효율을 개선하기 위한 복수의 열교환기(210,250)가 더 포함된다. 상기 복수의 열교환기(210,250)에는, 상기 응축배관(161)을 유동하는 냉매와 상기 흡입배관(165)을 유동하는 냉매간에 열교환이 이루어지도록 하는 제 1 열교환기(210)가 포함된다.The deep-temperature freezer 10 further includes a plurality of heat exchangers 210 and 250 for improving the operating efficiency of the deep-freezer 10. The plurality of heat exchangers 210 and 250 include a first heat exchanger 210 for performing heat exchange between the refrigerant flowing through the condensation pipe 161 and the refrigerant flowing through the suction pipe 165.
상세히, 상기 제 1 열교환기(210)에는, 제 1 흡입 열교환부(211) 및 상기 제 1 흡입 열교환부(211)와 열교환을 수행하는 응축 열교환부(213)가 포함될 수 있다. 상기 제 1 흡입 열교환부(211)는 상기 흡입배관(165)의 적어도 일부분을 구성하며, 상기 응축 열교환부(213)는 상기 응축배관(161)의 적어도 일부분을 구성할 수 있다.In detail, the first heat exchanger 210 may include a first suction heat exchanger 211 and a condensation heat exchanger 213 that performs heat exchange with the first suction heat exchanger 211. The first suction heat exchanger 211 may constitute at least a portion of the suction pipe 165, and the condensation heat exchanger 213 may constitute at least a portion of the condensation pipe 161.
상기 제 1 흡입 열교환부(211)와 상기 응축 열교환부(213)는 서로 접촉하도록 구성될 수 있다. 일례로, 상기 제 1 흡입 열교환부(211)와 상기 응축 열교환부(213)는 솔더링(sodering)에 의하여 결합될 수 있다. 상기 제 1 흡입 열교환부(211)와 상기 응축 열교환부(213)간에 열교환이 수행되면, 상기 제 1 흡입 열교환부(211)를 유동하는 저온의 냉매가 상기 응축 열교환부(213)를 유동하는 고온의 냉매를 냉각할 수 있다. The first suction heat exchanger 211 and the condensation heat exchanger 213 may be configured to contact each other. For example, the first suction heat exchanger 211 and the condensation heat exchanger 213 may be coupled by soldering. When heat exchange is performed between the first suction heat exchanger 211 and the condensation heat exchanger 213, a low temperature refrigerant flowing through the first suction heat exchanger 211 flows through the condensation heat exchanger 213. The refrigerant of can be cooled.
따라서, 냉동 사이클의 응축압력이 저하되며, 이에 따라 상기 압축기(110)의 토출압력이 저감될 수 있다는 효과가 나타난다. 그리고, 상기 압축기(110)의 토출압력이 저감됨으로써, 상기한 바와 같이 가정용 압축기(110)의 운전 신뢰성이 개선되고 소음이 저감될 수 있다.Therefore, the condensation pressure of the refrigerating cycle is lowered, whereby the discharge pressure of the compressor 110 can be reduced. In addition, as the discharge pressure of the compressor 110 is reduced, operation reliability of the domestic compressor 110 may be improved and noise may be reduced as described above.
그리고, 상기 제 1 흡입 열교환부(211)를 유동하는 냉매의 흡열이 이루어질 수 있으므로 냉매 중 포함된 액 냉매의 비율, 즉 비유효 냉력이 감소할 수 있게 된다. 그리고, 상기 압축기(110)로의 액 냉매유입이 방지될 수 있다.In addition, since the endotherm of the refrigerant flowing through the first suction heat exchanger 211 may be made, the ratio of the liquid refrigerant contained in the refrigerant, that is, the ineffective cooling power may be reduced. In addition, inflow of the liquid refrigerant into the compressor 110 may be prevented.
상세히, 도 3을 참조하면, 상기 압축기(110)에서 압축된 냉매(지점 1)의 상태는 상기 응축기(120)를 통과한 후 지점 2를 나타낸다. 그리고, 냉매는 상기 응축 열교환부(213)를 통과하면서 응축되고(열량 Q1), 그 결과 응축온도는 T2에서 T3로 저하되고 응축압력은 Pd로 형성된다.In detail, referring to FIG. 3, the state of the refrigerant (point 1) compressed in the compressor 110 represents point 2 after passing through the condenser 120. Then, the refrigerant is condensed while passing through the condensation heat exchanger 213 (heat amount Q1), and as a result, the condensation temperature is lowered from T2 to T3 and the condensation pressure is formed to Pd.
반면에, 종래기술의 경우, 압축기에서 압축된 냉매는 응축기에서만 응축이 일어나게 된다. 이 때, 압축된 냉매의 상태는 지점 1'를 나타내며, 응축기를 통과한 이후 냉매의 상태는 지점 2'를 나타낸다. 즉, 본 발명과 비교할 때, 응축압력은 상기 Pd보다 높은 Pd'를 나타내며, 응축온도는 상기 T3보다 높은 T2'를 나타낸다. 여기서, 상기 T2'는 T2와 동일한 온도값을 가진다.On the other hand, in the prior art, the refrigerant compressed in the compressor condenses only in the condenser. At this time, the state of the compressed refrigerant represents point 1 ', and after passing through the condenser, the state of the refrigerant represents point 2'. That is, compared with the present invention, the condensation pressure indicates Pd 'higher than the Pd, and the condensation temperature indicates T2' higher than the T3. Here, T2 'has the same temperature value as T2.
결국, 응축기(120)를 통과한 냉매가 상기 제 1 열교환기(210)에서 열교환 됨으로써, 응축압력(Pd)은 종래기술의 응축압력보(Pd')보다 △P만큼 낮아지고, 응축온도(T3)는 종래기술의 응축온도(T2')보다 낮아짐을 알 수 있다.As a result, the refrigerant passing through the condenser 120 is heat-exchanged in the first heat exchanger 210, whereby the condensation pressure Pd is lowered by ΔP than the conventional condensing pressure beam Pd ', and the condensation temperature T3. It can be seen that the lower than the condensation temperature (T2 ') of the prior art.
그리고, 상기 제 1 흡입 열교환부(211)를 통과하는 냉매는 상기 응축 열교환부(213)를 통과하는 냉매로부터 흡열하여 증발하는 과정을 거칠 수 있다(지점 6 -> 7, 열량 Q1'). In addition, the refrigerant passing through the first suction heat exchange part 211 may undergo a process of endotherming and evaporating from the refrigerant passing through the condensation heat exchange part 213 (point 6-> 7, heat quantity Q1 ').
상기 비유효 냉력이라 함은, 심온 저장실에 공급되어야 할 냉기의 온도보다 높은 온도, 일례로 -60℃ 이상의 온도를 가지는 냉매의 냉력으로서, 상기 심온 저장실로 공급되기 어려운 쓸모없는 냉력인 것으로 이해된다. 즉, P-h 선도에서, 상기 T5의 온도는 약 -60℃이므로, T5에서 T7까지의 온도를 형성하는 냉매의 냉력은 비유효 냉력인 것으로 이해될 수 있다.The ineffective cold power is a cold power of a refrigerant having a temperature higher than the temperature of cold air to be supplied to the deep storage compartment, for example, -60 ° C. or more, and is understood to be useless cold power that is difficult to be supplied to the deep storage compartment. That is, in the P-h diagram, since the temperature of T5 is about -60 ° C, it can be understood that the cooling force of the refrigerant forming the temperature of T5 to T7 is an ineffective cooling force.
결국, 상기 비유효 냉력 중 일부의 냉력은 상기 제 1 흡입 열교환부(211)를 통하여 상기 제 1 열교환기(210)의 응축 열교환부(213)를 냉각시키는 데 사용될 수 있다. 이 과정에서, 상기 제 1 흡입 열교환부(211)를 통과하는 냉매는 증발하면서 액 냉매의 비중이 감소할 수 있다.As a result, some of the ineffective cooling force may be used to cool the condensation heat exchanger 213 of the first heat exchanger 210 through the first suction heat exchanger 211. In this process, the specific gravity of the liquid refrigerant may decrease while the refrigerant passing through the first suction heat exchange unit 211 is evaporated.
상기 복수의 열교환기(210,250)에는, 상기 팽창장치(140)를 유동하는 냉매와 상기 흡입배관(165)을 유동하는 냉매간에 열교환이 이루어지도록 하는 제 2 열교환기(250)가 포함된다. The plurality of heat exchangers 210 and 250 include a second heat exchanger 250 for performing heat exchange between the refrigerant flowing through the expansion device 140 and the refrigerant flowing through the suction pipe 165.
상기 흡입배관(165)을 유동하는 냉매의 유동방향을 기준으로, 상기 제 1 열교환기(210)는 상기 제 2 열교환기(250)의 출구측에 설치될 수 있다. 그리고, 상기 응축배관(161)을 유동하는 냉매의 유동방향을 기준으로, 상기 제 2 열교환기(250)는 상기 제 1 열교환기(210)의 출구측에 설치될 수 있다.The first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250 based on the flow direction of the refrigerant flowing through the suction pipe 165. In addition, the second heat exchanger 250 may be installed at the outlet side of the first heat exchanger 210 based on the flow direction of the refrigerant flowing through the condensation pipe 161.
상세히, 상기 제 2 열교환기(250)에는, 상기 제 1 흡입 열교환부(211)의 일측에 구비되는 제 2 흡입 열교환부(251) 및 상기 제 2 흡입 열교환부(251)와 열교환을 수행하는 팽창장치(140)가 포함될 수 있다. 상기 제 2 흡입 열교환부(251)는 상기 흡입배관(165)의 적어도 일부분을 구성할 수 있다. In detail, the second heat exchanger 250 includes an expansion for performing heat exchange with the second suction heat exchanger 251 and the second suction heat exchanger 251 provided on one side of the first suction heat exchanger 211. Device 140 may be included. The second suction heat exchanger 251 may constitute at least a portion of the suction pipe 165.
상기 제 2 흡입 열교환부(251)와 상기 팽창장치(140)는 서로 접촉하도록 구성될 수 있다. 일례로, 상기 제 2 흡입 열교환부(251)와 상기 팽창장치(140)는 솔더링(sodering)에 의하여 결합될 수 있다.The second suction heat exchanger 251 and the expansion device 140 may be configured to contact each other. For example, the second suction heat exchanger 251 and the expansion device 140 may be coupled by soldering.
상기 제 2 흡입 열교환부(251)와 상기 팽창장치(140)간에 열교환이 수행되면, 상기 제 2 흡입 열교환부(251)를 유동하는 저온의 냉매가 상기 팽창장치(140)를 유동하는 고온의 냉매를 냉각할 수 있다. 따라서, 냉매가 상기 팽창장치(140)를 통과하는 과정에서 감압되고, 상기 감압과정에서 건도가 상승하게 되는 경향을 줄일 수 있다. When heat exchange is performed between the second suction heat exchanger 251 and the expansion device 140, a low temperature refrigerant flowing through the second suction heat exchanger 251 flows through the expansion device 140. Can be cooled. Therefore, the refrigerant is decompressed in the course of passing through the expansion device 140, it is possible to reduce the tendency that the dryness increases in the decompression process.
즉, 냉매가 상기 팽창장치(140)를 통과하면 냉매의 압력과 온도는 낮아지며, 냉매 중 기상냉매의 비율이 높아질 수 있다. 상기 기상냉매는 상기 증발기(150)의 증발성능에 나쁜 영향을 미치게 되고, 상기 기상냉매의 비율이 증가하면 증발할 수 있는 액냉매의 비율이 적어지므로, 증발성능이 저하되는 문제점이 발생할 수 있다.That is, when the refrigerant passes through the expansion device 140, the pressure and temperature of the refrigerant may be lowered, and the ratio of the gaseous refrigerant in the refrigerant may be increased. The gaseous refrigerant has a bad effect on the evaporation performance of the evaporator 150, and if the proportion of the gaseous refrigerant is increased, the proportion of the liquid refrigerant that can be evaporated decreases, so that the evaporation performance may be deteriorated.
결국, 상기 제 2 열교환기(250)를 통하여 상기 팽창장치(140)를 통과하는 냉매를 냉각할 수 있으므로, 증발기(150) 입구측에서의 액냉매 비율을 증가시킬 수 있고 이에 따라 증발성능이 개선되는 효과가 나타난다.As a result, since the refrigerant passing through the expansion device 140 may be cooled through the second heat exchanger 250, the ratio of the liquid refrigerant at the inlet side of the evaporator 150 may be increased, thereby improving the evaporation performance. Appears.
상기 흡입배관(165)에서의 냉매 유동방향을 기준으로, 상기 제 1 열교환기(210)는 상기 제 2 열교환기(250)의 출구측에 설치될 수 있다. 달리 말하면, 상기 상기 제 1 흡입 열교환부(211)는 상기 제 2 흡입 열교환부(251)의 출구측에 설치될 수 있다. The first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250 based on the refrigerant flow direction in the suction pipe 165. In other words, the first suction heat exchanger 211 may be installed at an outlet side of the second suction heat exchanger 251.
따라서, 상기 증발기(150)를 통과한 냉매는 상기 제 2 열교환기(250)에서 열교환 되고 이후 상기 제 1 열교환기(210)에서 열교환 되어, 건도가 상승하고 비유효 냉력이 감소할 수 있다. 그리고, 상기 건도 상승에 따라 흡입온도가 증가될 수 있고, 상기 흡입온도의 상승에 따라, 가정용 압축기(110)의 흡입온도 조건을 용이하게 충족할 수 있다.Therefore, the refrigerant passing through the evaporator 150 is heat-exchanged in the second heat exchanger 250 and then heat-exchanged in the first heat exchanger 210, thereby increasing the dryness and reducing the ineffective cooling power. In addition, the suction temperature may increase as the dryness increases, and as the suction temperature increases, the suction temperature condition of the household compressor 110 may be easily met.
상세히, 도 3을 참조하면, 상기 제 1 열교환기(210)를 통과한 냉매는 상기 팽창장치(140)를 통과하면서 상기 제 2 흡입 열교환부(251)와 열교환 되며(열량 Q2), 그 결과 냉매의 온도는 T3에서 T4로 저하되고, 냉매의 압력은 Pd에서 Ps로 저하될 수 있다 (냉매의 상태는 지점 3에서 4로 이동). 상세히, 열역학적인 관점에서, 냉매가 상기 팽창장치(140)를 통과하면서 상기 제 2 흡입 열교환부(251)와 열교환 될 때, 냉매의 상태는 지점 3->3'->4로 변화되는 것으로 이해될 수 있으나, 결과론적으로 냉매의 상태는 지점 3에서 4로 이동하게 된다. 결국, 상기 제 1 열교환기(210)에서 열교환된 냉매가 상기 제 2 열교환기(250)에서 추가 열교환 됨으로써, 냉매의 압력 및 온도가 낮아질 수 있다.In detail, referring to FIG. 3, the refrigerant passing through the first heat exchanger 210 exchanges heat with the second suction heat exchanger 251 while passing through the expansion device 140 (heat quantity Q2), and as a result, the refrigerant. The temperature of is lowered from T3 to T4, and the pressure of the refrigerant can be lowered from Pd to Ps (the state of the refrigerant moves from point 3 to 4). In detail, from a thermodynamic point of view, it is understood that when the refrigerant exchanges heat with the second suction heat exchanger 251 while passing through the expansion device 140, the state of the refrigerant is changed to the point 3-> 3 '-> 4. As a result, the state of the refrigerant moves from point 3 to 4. As a result, since the refrigerant heat-exchanged in the first heat exchanger 210 is further heat-exchanged in the second heat exchanger 250, the pressure and temperature of the refrigerant may be lowered.
상기 제 2 열교환기(250)의 팽창장치(140)를 통과한 냉매는 상기 증발기(150)로 유입되어 증발된다. 냉매는 상기 증발기(150)를 통과한 후, 지점 4에서 5로 상태 변화가 이루어진다. 상기 지점 4에서의 온도(T4)는 약 -80℃이며, 지점 5에서의 온도(T5)는 약 -60℃를 나타낸다. 따라서, 지점 4에서 5까지의 구간에서의 냉매 냉력은, 심온 냉동고의 저장실에 공급될 냉기를 냉각시키기에 충분한 유효냉력으로서 작용할 수 있다.The refrigerant passing through the expansion device 140 of the second heat exchanger 250 is introduced into the evaporator 150 and evaporated. After the refrigerant passes through the evaporator 150, the state changes from point 4 to 5. The temperature T4 at point 4 is about -80 ° C and the temperature T5 at point 5 represents about -60 ° C. Thus, the refrigerant cooling force in the sections 4 to 5 can serve as an effective cooling force sufficient to cool the cold air to be supplied to the storage compartment of the deep freezer.
상기 증발기(150)를 통과한 냉매는 상기 제 2 열교환기(250)의 제 2 흡입 열교환부(251)를 거치면서, 상기 팽창장치(140)를 통과하는 냉매로부터 흡열하여 증발하게 된다 (지점 5 -> 6, 열량 Q2'). 지점 5에서 6까지의 구간에서의 냉매 냉력은 -60℃ 이상의 온도에 대응하는 냉력으로서, 비유효 냉력으로서 작용한다. The refrigerant passing through the evaporator 150 passes through the second suction heat exchanger 251 of the second heat exchanger 250, and is endothermic to evaporate from the refrigerant passing through the expansion device 140 (point 5 -> 6, calories Q2 '). The coolant cooling power in the sections 5 to 6 is a cooling force corresponding to a temperature of -60 ° C or higher, and acts as an ineffective cooling force.
다만, 상기 열량 Q2'는 상기 제 2 흡입 열교환부(251)를 통하여 상기 제 2 열교환기(250)의 팽창장치(140)를 냉각시키는 데 사용될 수 있다. 이 과정에서, 상기 제 2 흡입 열교환부(251)를 통과하는 냉매는 증발하면서 액 냉매의 비중이 감소할 수 있다.However, the calorific value Q2 ′ may be used to cool the expansion device 140 of the second heat exchanger 250 through the second suction heat exchanger 251. In this process, while the refrigerant passing through the second suction heat exchange unit 251 is evaporated, the specific gravity of the liquid refrigerant may decrease.
정리하면, 상기 Q1' 및 Q2'는 비유효 냉력이나, 상기 제 1 열교환기(210)의 응축 열교환부(213) 및 상기 제 2 열교환기(250)의 팽창장치(140)를 냉각시키는 데 사용될 수 있다. 이 과정에서, 상기 제 1,2 흡입 열교환부(211,251)를 통과하는 냉매는 증발하면서 액 냉매의 비중이 감소할 수 있다.In summary, the Q1 'and Q2' are ineffective cooling power, but are used to cool the condensation heat exchanger 213 of the first heat exchanger 210 and the expansion device 140 of the second heat exchanger 250. Can be. In this process, the refrigerant passing through the first and second suction heat exchangers 211 and 251 may reduce the specific gravity of the liquid refrigerant while evaporating.
상기 심온 냉동고(10)에는, 상기 제 1 열교환기(210)와 제 2 열교환기(250)의 사이에 배치되는 열교환기 연결배관(260)이 더 포함된다. 상기 열교환기 연결배관(260)은 상기 응축배관(161)의 일부분을 구성하며, 상기 제 1 열교환기(210)와 제 2 열교환기(250)를 연결하도록 구성될 수 있다.The deep-temperature freezer 10 further includes a heat exchanger connection pipe 260 disposed between the first heat exchanger 210 and the second heat exchanger 250. The heat exchanger connection pipe 260 constitutes a part of the condensation pipe 161 and may be configured to connect the first heat exchanger 210 and the second heat exchanger 250.
상기 열교환기 연결배관(260)에 의하여, 상기 제 1 열교환기(210)와 제 2 열교환기(250)가 이격되어 배치되므로, 상기 제 1,2 열교환기(210,250)간에 열교환이 이루어지는 것을 방지할 수 있다. 즉, 상기 응축 열교환부(213)와 상기 팽창장치(140)간에 열교환이 이루어지는 것을 방지할 수 있다. Since the first heat exchanger 210 and the second heat exchanger 250 are spaced apart from each other by the heat exchanger connection pipe 260, heat exchange is prevented between the first and second heat exchangers 210 and 250. Can be. That is, heat exchange may be prevented between the condensation heat exchanger 213 and the expansion device 140.
만약, 상기 응축 열교환부(213)와 상기 팽창장치(140)간에 열교환이 이루어진다면, 상기 팽창장치(140)의 냉각효과가 저감되는 문제점이 발생할 수 있다. 따라서, 본 실시예에서는 상기 제 1,2 열교환기(210,250)의 사이에 상기 열교환기 연결배관(260)을 배치하여, 이러한 문제점을 해결한다.If heat exchange occurs between the condensation heat exchanger 213 and the expansion device 140, a problem may occur in which the cooling effect of the expansion device 140 is reduced. Therefore, in this embodiment, the heat exchanger connection pipe 260 is disposed between the first and second heat exchangers 210 and 250 to solve this problem.
도 4는, 상기 제 1 열교환기(210)의 길이, 즉 상기 제 1 흡입 열교환부(211) 또는 상기 응축 열교환부(213)의 길이에 따른, 소비 에너지량 및 압축기 흡입온도의 변화에 대한 결과값을 보여준다.4 is a result of the change in energy consumption and compressor suction temperature according to the length of the first heat exchanger 210, that is, the length of the first suction heat exchanger 211 or the condensation heat exchanger 213. Show the value.
상기 제 1 열교환기(210)의 길이가 길어질수록, 즉 상기 제 1 열교환기(210)에서의 열교환량이 증가할수록, 상기 압축기(110)로 흡입되는 냉매의 흡열이 증가되므로 상기 압축기(110)의 흡입온도가 증가하게 된다. 그리고, 심온 냉동고(10)의 운전에 따른 소비 에너지량은 감소하게 된다.As the length of the first heat exchanger 210 increases, that is, as the amount of heat exchange in the first heat exchanger 210 increases, the endotherm of the refrigerant sucked into the compressor 110 increases, so that the temperature of the compressor 110 increases. The suction temperature will increase. Then, the energy consumption according to the operation of the deep-temperature freezer 10 is reduced.
본 실시예에 따른 가정용 압축기(110)의 운전조건을 기준으로, 상기 압축기(110)의 흡입온도(Ts)는 주위온도(실내온도,To)에 대하여 아래와 같은 수식을 만족할 수 있다.Based on the operating conditions of the domestic compressor 110 according to the present embodiment, the suction temperature Ts of the compressor 110 may satisfy the following equation with respect to the ambient temperature (room temperature, To).
To-5℃ < Ts < To+5℃To-5 ℃ <Ts <To + 5 ℃
상기 압축기(110)의 흡입온도(Ts)가 증가할수록 상기 압축기(110)로의 액냉매 흡입을 방지할 수 있고, 비유효 냉력을 감소시킬 수 있다는 장점이 있다. 다만, 상기 압축기(110)의 흡입온도(Ts)가 너무 높아지면, 상기 압축기(110)의 토출온도 또는 토출압력이 너무 높아지는 문제가 발생할 수 있다. 결국, 본 실시예에 따른 가정용 압축기(110)의 운전조건 및 적절한 수준의 압축기 토출온도를 형성하기 위하여, 상기 압축기(110)의 흡입온도(Ts)는 위와 같은 수식을 만족하는 것이 바람직할 수 있다.As the suction temperature Ts of the compressor 110 increases, suction of the liquid refrigerant into the compressor 110 may be prevented, and an ineffective cooling force may be reduced. However, if the suction temperature Ts of the compressor 110 is too high, a problem may occur in which the discharge temperature or the discharge pressure of the compressor 110 is too high. As a result, in order to form the operating conditions of the household compressor 110 and the compressor discharge temperature at an appropriate level according to the present embodiment, the suction temperature Ts of the compressor 110 may satisfy the above equation. .
도 4를 기준으로, 상기 압축기(110)의 흡입온도(Ts) 조건을 만족하기 위한, 제 1 열교환기(210)의 길이는 약 3.5 ~ 5m를 형성할 수 있다. 즉, 상기 제 1 열교환기(210)의 길이 조건을 만족하면, 본 실시예에 따른 가정용 압축기(110)의 운전조건을 충족하고, 압축기의 운전 신뢰성을 개선할 수 있다.Referring to FIG. 4, the length of the first heat exchanger 210 to satisfy the suction temperature Ts of the compressor 110 may be about 3.5 to 5 m. That is, when the length condition of the first heat exchanger 210 is satisfied, the operation condition of the domestic compressor 110 according to the present embodiment may be satisfied, and the operation reliability of the compressor may be improved.
한편, 상기 응축 열교환부(213)의 배관 직경은 상기 팽창장치(140)의 배관 직경보다 크게 형성될 수 있다. 일례로, 상기 응축 열교환부(213)의 배관 직경은 상기 팽창장치(140)의 배관 직경의 3.5 ~ 4.5배의 범위에서 형성될 수 있다. 상세히, 상기 응축 열교환부(213)의 배관 직경은 3.5mm, 상기 팽창장치(140)의 배관 직경은 0.8mm로 형성될 수 있다. Meanwhile, the pipe diameter of the condensation heat exchanger 213 may be larger than the pipe diameter of the expansion device 140. For example, the pipe diameter of the condensation heat exchanger 213 may be formed in the range of 3.5 to 4.5 times the pipe diameter of the expansion device (140). In detail, the pipe diameter of the condensation heat exchanger 213 may be 3.5 mm, and the pipe diameter of the expansion device 140 may be 0.8 mm.
상기 응축 열교환부(213)를 통과하는 냉매에는 응축이 이루어져야 한다. 반면에, 상기 팽창장치(140)를 통과하는 냉매는 감압이 이루어져야 한다. 실제로, 도 3의 P-h 선도를 참조하면, 팽창장치(140)의 출구상태(지점 4)의 건도는 입구상태(지점 3)의 건도보다 높게 형성된다. 즉, 냉매가 상기 팽창장치(140)를 통과하는 과정에서, 감압과 함께 기화가 이루어지게 된다.The refrigerant passing through the condensation heat exchanger 213 should be condensed. On the other hand, the refrigerant passing through the expansion device 140 should be reduced in pressure. In fact, referring to the P-h diagram of FIG. 3, the dryness of the exit state (point 4) of the expansion device 140 is formed higher than the dryness of the inlet state (point 3). That is, in the process of passing the refrigerant through the expansion device 140, vaporization is performed with decompression.
정리하면, 상기 팽창장치(140)에서는, 냉매의 감압이 목적이므로, 배관 직경을 작게 하여 냉매의 유속을 증가시키고 그에 따라 냉매의 감압이 이루어질 수 있다. 반면에, 상기 응축 열교환부(213)의 배관 직경이 너무 작게 되면, 상기 응축 열교환부(213)가 상기 냉매에 대하여 저항으로 작용하여, 냉매 유량이 줄어들고 냉매 압력이 감소하는 반면, 냉매의 응축은 제한될 수 있다.In summary, in the expansion device 140, since the pressure of the refrigerant is reduced, the pipe diameter may be reduced to increase the flow rate of the refrigerant, and thus the pressure of the refrigerant may be reduced. On the other hand, if the pipe diameter of the condensation heat exchanger 213 is too small, the condensation heat exchanger 213 acts as a resistance to the refrigerant, so that the refrigerant flow rate decreases and the refrigerant pressure decreases, while the refrigerant condensation May be limited.
따라서, 본 실시예에서는 상기 응축 열교환부(213)의 배관 직경을 상기 팽창장치(140)의 배관 직경보다 충분히 크게 형성하여, 상기 응축 열교환부(213)가 상기 냉매에 대하여 저항으로 작용하지 않도록 하는 것을 특징으로 한다. 이 경우, 상대적으로 부피가 큰 기상 냉매가 상기 응축 열교환부(213)를 용이하게 유동할 수 있고 상기 제 1 열교환기(210)에서 열교환이 이루어지는 과정에서, 충분히 응축될 수 있다.Therefore, in the present embodiment, the pipe diameter of the condensation heat exchange part 213 is sufficiently larger than the pipe diameter of the expansion device 140 so that the condensation heat exchange part 213 does not act as a resistance to the refrigerant. It is characterized by. In this case, a relatively bulky gaseous refrigerant may easily flow through the condensation heat exchanger 213 and may be sufficiently condensed while heat exchange is performed in the first heat exchanger 210.
이하에서는, 본 발명의 제 2 내지 제 5 실시예에 대하여 설명한다. 이들 실시예들은 제 1 실시예와 비교하여 일부 구성에 있어서만 차이가 있으므로 차이점을 위주로 설명하며, 제 1 실시예와 동일한 부분에 대하여는 제 1 실시예의 설명과 도면부호를 원용한다.The following describes the second to fifth embodiments of the present invention. Since these embodiments differ only in some configurations compared to the first embodiment, the differences are mainly described. For the same parts as those of the first embodiment, the description of the first embodiment and reference numerals are used.
도 6은 본 발명의 제 2 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.6 is a view showing a refrigeration cycle provided in the freezer temperature according to the second embodiment of the present invention.
도 6을 참조하면, 본 발명의 제 2 실시예에 따른 심온 냉동고(10a)에는, 압축기(110), 응축기(120), 드라이어(130), 팽창장치(140) 및 상기 응축기(120)로부터 상기 팽창장치(140)로 연장되는 응축배관(161)이 포함된다.Referring to FIG. 6, the deep-temperature freezer 10a according to the second embodiment of the present invention includes the compressor 110, the condenser 120, the dryer 130, the expansion device 140, and the condenser 120. Condensation pipe 161 extending to the expansion device 140 is included.
그리고, 상기 심온 냉동고(10a)에는, 응축냉매와 상기 압축기(110)로의 흡입냉매간에 열교환을 수행하는 제 1 열교환기(210) 및 상기 팽창장치(140)를 통과하는 냉매와 상기 흡입냉매간에 열교환을 수행하는 제 2 열교환기(250)가 더 포함된다.The deep-temperature freezer 10a exchanges heat between the refrigerant passing through the first heat exchanger 210 and the expansion device 140 to perform heat exchange between the condensation refrigerant and the suction refrigerant to the compressor 110 and the suction refrigerant. Further included is a second heat exchanger 250 to perform the.
이상의 구성들에 대한 설명은, 제 1 실시예의 설명을 원용한다.The description of the above configurations uses the description of the first embodiment.
상기 심온 냉동고(10a)에는, 상기 팽창장치(140)에서 감압된 냉매를 증발시키기 위한 복수의 증발기(151,152)가 더 포함된다. The deep freezer 10a further includes a plurality of evaporators 151 and 152 for evaporating the refrigerant depressurized by the expansion device 140.
상기 복수의 증발기(151,152)에는, 상기 팽창장치(140)의 출구측에 설치되는 제 1 증발기(151) 및 상기 제 1 증발기(151)의 출구측에 설치되는 제 2 증발기(152)가 포함된다. 상기 제 1,2 증발기(151,152)는 직렬로 연결될 수 있다.The plurality of evaporators 151 and 152 may include a first evaporator 151 installed at an outlet side of the expansion device 140 and a second evaporator 152 installed at an outlet side of the first evaporator 151. . The first and second evaporators 151 and 152 may be connected in series.
상기 심온 냉동고(10a)에는, 상기 복수의 증발기(151,152)에 대응하는 복수의 저장실이 포함될 수 있다. 상기 복수의 저장실에는, -60℃ 이하의 극저온 저장실 및 약 -20℃의 냉동실이 포함될 수 있다. 일례로, 상기 제 1 증발기(151)에서 생성된 냉기는 상기 극저온 저장실로 공급될 수 있으며, 상기 제 2 증발기(152)에서 생성된 냉기는 상기 냉동실로 공급될 수 있다.The deep freezer 10a may include a plurality of storage compartments corresponding to the plurality of evaporators 151 and 152. The plurality of storage rooms may include a cryogenic storage room of about −60 ° C. or less and a freezer of about −20 ° C. For example, the cold air generated by the first evaporator 151 may be supplied to the cryogenic storage chamber, and the cold air generated by the second evaporator 152 may be supplied to the freezing chamber.
상기 제 2 증발기(152)의 출구측에는, 상기 제 2 열교환기(250)가 설치되며, 상기 제 2 열교환기(250)의 출구측에는 상기 제 1 열교환기(210)가 설치될 수 있다. 상기 제 2 증발기(152)에서 증발된 냉매는 상기 제 2 열교환기(250) 및 제 1 열교환기(210)를 통과하면서 흡열되며, 이에 따라 압축기(110)로 흡입되는 냉매의 온도가 증가하고 건도의 상승이 이루어질 수 있다.The second heat exchanger 250 may be installed at the outlet side of the second evaporator 152, and the first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250. The refrigerant evaporated in the second evaporator 152 is endothermic while passing through the second heat exchanger 250 and the first heat exchanger 210. Accordingly, the temperature of the refrigerant sucked into the compressor 110 increases and the dryness is increased. May be raised.
도 7은 본 발명의 제 3 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.7 is a view showing a refrigeration cycle provided in the freezer temperature according to the third embodiment of the present invention.
도 7을 참조하면, 본 발명의 제 3 실시예에 따른 심온 냉동고(10b)에는, 압축기(110), 응축기(120), 드라이어(130), 팽창장치(140) 및 상기 응축기(120)로부터 상기 팽창장치(140)로 연장되는 응축배관(161)이 포함된다.Referring to FIG. 7, the deep freezer 10b according to the third embodiment of the present invention includes the compressor 110, the condenser 120, the dryer 130, the expansion device 140, and the condenser 120. Condensation pipe 161 extending to the expansion device 140 is included.
상기 팽창장치(140)에는, 2개의 팽창장치가 포함된다. 상기 2개의 팽창장치에는, 상기 응축배관(161)을 유동하는 냉매 중 적어도 일부분이 유동할 수 있는 제 1 팽창장치(141) 및 상기 제 1 팽창장치(141)와 병렬로 연결되며 상기 응축배관(161)을 유동하는 냉매 중 다른 일부분이 유동할 수 있는 제 2 팽창장치(143)가 포함된다.The expansion device 140 includes two expansion devices. The two expansion devices are connected in parallel with the first expansion device 141 and the first expansion device 141 through which at least a portion of the refrigerant flowing through the condensation pipe 161 may flow, and the condensation pipe ( A second expansion device 143 is included through which another portion of the refrigerant flowing in 161 can flow.
상기 응축배관(161)에는, 상기 응축배관(161)을 유동하는 냉매를 상기 제 1 팽창장치(141) 및 제 2 팽창장치(143) 중 적어도 하나의 팽창장치(143)로 유입하기 위한 밸브장치(170)가 설치될 수 있다. 일례로, 상기 밸브장치(170)에는, 3방밸브가 포함될 수 있다. 상기 3방밸브의 유입부에는, 상기 응축배관(161)이 연결되며, 상기 3방밸브의 2개의 유출부에는, 상기 제 1,2 팽창장치(141,143)가 각각 연결될 수 있다.In the condensation pipe 161, a valve device for introducing a refrigerant flowing through the condensation pipe 161 into at least one expansion device 143 of the first expansion device 141 and the second expansion device 143. 170 may be installed. For example, the valve device 170 may include a three-way valve. The condensation pipe 161 is connected to the inlet of the three-way valve, and the first and second expansion devices 141 and 143 may be connected to the two outlets of the three-way valve, respectively.
상기 심온 냉동고(10b)에는, 상기 제 1 팽창장치(141)의 출구측에 연결되는 제 1 증발기(151a) 및 상기 제 2 팽창장치(143)의 출구측에 연결되는 제 2 증발기(152a)가 더 포함된다. 그리고, 상기 심온 냉동고(10b)에는, 상기 밸브장치(170)의 제 1 유출부로부터 상기 제 1 증발기(151a)로 연장되는 제 1 증발배관(181) 및 상기 밸브장치(170)의 제 2 유출부로부터 상기 제 2 증발기(152a)로 연장되는 제 2 증발배관(183)이 더 포함된다.The deep freezer 10b includes a first evaporator 151a connected to an outlet side of the first expansion device 141 and a second evaporator 152a connected to an outlet side of the second expansion device 143. More included. In the deep freezer 10b, a first evaporation pipe 181 extending from the first outlet of the valve device 170 to the first evaporator 151a and a second outlet of the valve device 170 are provided. A second evaporation pipe 183 extending from the portion to the second evaporator 152a is further included.
상기 제 1 증발배관(181)과 제 2 증발배관(183)은 합지부(185)에서 합지될 수 있다. 상기 합지부(185)는, 상기 제 1 증발배관(181) 또는 제 2 증발배관(183)의 일 지점일 수 있다. 이와 같은 구성에 의하여, 상기 제 1 증발기(151a)와 제 2 증발기(152a)는 병렬로 연결될 수 있다.The first evaporation pipe 181 and the second evaporation pipe 183 may be laminated at the lamination part 185. The lamination part 185 may be one point of the first evaporation pipe 181 or the second evaporation pipe 183. By such a configuration, the first evaporator 151a and the second evaporator 152a may be connected in parallel.
상기 제 1 증발배관(181)에는, 상기 제 1 증발배관(181)에서의 냉매의 일방향 유동을 가이드 하는 체크밸브(158)가 설치될 수 있다. 상기 체크밸브(158)에 의하여, 상기 합지부(185)로부터 상기 제 1 증발기(151a)를 향한 냉메 유동이 제한될 수 있다. 결국, 상기 제 2 증발기(152a)를 통과한 냉매가 상기 합지부(185)를 통하여 상기 제 1 증발기(151a)로의 유입이 방지될 수 있다.The first evaporating pipe 181 may be provided with a check valve 158 for guiding the one-way flow of the refrigerant in the first evaporating pipe 181. By the check valve 158, the flow of cold water from the lamination part 185 toward the first evaporator 151a may be restricted. As a result, the refrigerant passing through the second evaporator 152a may be prevented from entering the first evaporator 151a through the lamination part 185.
상기 밸브장치(170)의 제어에 의하여, 상기 제 1,2 증발기(151a,152a) 중 적어도 하나의 증발기가 운전될 수 있다. 상기 밸브장치(170)의 2개의 유출부 중 제 1 유출부가 개방되고 제 2 유출부가 폐쇄되면, 상기 밸브장치(170)로부터 상기 제 1 증발기(151a)로의 냉매 유동만 발생될 수 있다.Under the control of the valve device 170, at least one of the first and second evaporators 151a and 152a may be operated. When the first outlet of the two outlets of the valve device 170 is opened and the second outlet is closed, only the refrigerant flow from the valve device 170 to the first evaporator 151a may be generated.
반면에, 상기 밸브장치(170)의 2개의 유출부 중 제 2 유출부가 개방되고 제 1 유출부가 폐쇄되면, 상기 밸브장치(170)로부터 상기 제 2 증발기(151a)로의 냉매 유동만 발생될 수 있다. 물론, 상기 밸브장치(170)의 2개의 유출부 모두 개방되면, 상기 밸브장치(170)로 유입된 냉매는 상기 제 1,2 유출부를 통하여 제 1,2 증발기(151a,152a)로 분지하여 유동될 수 있다.On the other hand, when the second outlet of the two outlets of the valve device 170 is opened and the first outlet is closed, only the refrigerant flow from the valve device 170 to the second evaporator 151a may be generated. . Of course, when both outlets of the valve device 170 are opened, the refrigerant flowing into the valve device 170 branches and flows to the first and second evaporators 151a and 152a through the first and second outlets. Can be.
상기 심온 냉동고(10b)에는, 상기 복수의 증발기(151a,152a)에 대응하는 복수의 저장실이 포함될 수 있다. 상기 복수의 저장실에는, -60℃ 이하의 2개의 극저온 저장실이 포함될 수 있다. 다른 예로서, 상기 복수의 저장실에는, -60℃ 이하의 극저온 저장실 및 약 -20℃의 냉동실이 포함될 수 있다. The deep freezer 10b may include a plurality of storage compartments corresponding to the plurality of evaporators 151a and 152a. The plurality of storage compartments may include two cryogenic storage compartments of -60 ° C or less. As another example, the plurality of storage rooms may include a cryogenic storage room of about −60 ° C. or less and a freezer of about −20 ° C.
상기 제 1 증발기(151a) 또는 제 2 증발기(152a)를 통과한 냉매는 제 2 열교환기(250a)를 통과할 수 있다. 상기 제 2 열교환기(250a)에는, 상기 제 1 팽창장치(141), 제 2 팽창장치(143) 및 흡입배관(165)의 적어도 일부분, 즉 제 1 실시예에서 설명한 제 2 흡입 열교환부(251)가 포함될 수 있다.The refrigerant passing through the first evaporator 151a or the second evaporator 152a may pass through the second heat exchanger 250a. The second heat exchanger 250a includes at least a portion of the first expansion device 141, the second expansion device 143, and the suction pipe 165, that is, the second suction heat exchanger 251 described in the first embodiment. ) May be included.
상기 제 1,2 팽창장치(141,143) 및 상기 제 2 흡입 열교환부(251)는 접촉하도록 배치될 수 있다. 일례로, 상기 제 1,2 팽창장치(141,143) 및 상기 제 2 흡입 열교환부(251)는 솔더링(soldering)에 의하여 결합될 수 있다.The first and second expansion devices 141 and 143 and the second suction heat exchanger 251 may be disposed to contact each other. For example, the first and second expansion devices 141 and 143 and the second suction heat exchanger 251 may be coupled by soldering.
상기 제 2 열교환기(250a)의 출구측에는, 제 1 열교환기(210a)가 설치될 수 있다. 상기 제 1 열교환기(210a)에는, 상기 응축배관(161)의 적어도 일부분, 즉 제 1 실시예에서 설명한 상기 응축 열교환부(213) 및 상기 흡입배관(165)의 적어도 이부분, 즉 제 1 흡입 열교환부(211)이 포함될 수 있다. 제 1 열교환기(210a) 및 제 2 열교환기(250a)의 작용에 관한 설명은 제 1 실시예의 설명을 원용한다.A first heat exchanger 210a may be installed at the outlet side of the second heat exchanger 250a. The first heat exchanger 210a includes at least a portion of the condensation pipe 161, that is, at least a portion of the condensation heat exchanger 213 and the suction pipe 165 described in the first embodiment, that is, the first suction. The heat exchanger 211 may be included. Description of the operation of the first heat exchanger 210a and the second heat exchanger 250a uses the description of the first embodiment.
도 8은 본 발명의 제 4 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.8 is a view showing a refrigerating cycle provided in a deep-temperature freezer according to a fourth embodiment of the present invention.
도 8을 참조하면, 본 발명의 제 4 실시예에 따른 심온 냉동고(10c)에는, 압축기(110), 응축기(120), 드라이어(130), 팽창장치(140) 및 상기 응축기(120)로부터 상기 팽창장치(140)로 연장되는 응축배관(161)이 포함된다.Referring to FIG. 8, the deep freezer 10c according to the fourth embodiment of the present invention includes the compressor 110, the condenser 120, the dryer 130, the expansion device 140, and the condenser 120. Condensation pipe 161 extending to the expansion device 140 is included.
그리고, 상기 심온 냉동고(10c)에는, 응축냉매와 상기 압축기(110)로의 흡입냉매간에 열교환을 수행하는 제 1 열교환기(210) 및 상기 팽창장치(140)를 통과하는 냉매와 상기 흡입냉매간에 열교환을 수행하는 제 2 열교환기(250)가 더 포함된다.In the deep freezer (10c), a heat exchange between the refrigerant passing through the first heat exchanger (210) and the expansion device (140) for performing heat exchange between the condensation refrigerant and the suction refrigerant to the compressor (110) and the suction refrigerant is performed. Further included is a second heat exchanger 250 to perform the.
이상의 구성들에 대한 설명은, 제 1 실시예의 설명을 원용한다.The description of the above configurations uses the description of the first embodiment.
상기 심온 냉동고(10c)에는, 상기 팽창장치(140)에서 감압된 냉매를 증발시키기 위한 복수의 증발기(151b,152b,153b)가 더 포함된다. The deep freezer 10c further includes a plurality of evaporators 151b, 152b, and 153b for evaporating the refrigerant decompressed in the expansion device 140.
상기 복수의 증발기(151b,152b,153b)에는, 상기 팽창장치(140)의 출구측에 설치되는 제 1 증발기(151b)와, 상기 제 1 증발기(151b)의 출구측에 설치되는 제 2 증발기(152b) 및 상기 제 2 증발기(152b)의 출구측에 설치되는 제 3 증발기(153b)가 포함된다. 상기 제 1,2,3 증발기(151b,152b,153b)는 직렬로 연결될 수 있다.The plurality of evaporators 151b, 152b and 153b may include a first evaporator 151b provided at an outlet side of the expansion device 140 and a second evaporator provided at an outlet side of the first evaporator 151b ( 152b) and a third evaporator 153b installed at the outlet side of the second evaporator 152b. The first, second, and third evaporators 151b, 152b, and 153b may be connected in series.
상기 심온 냉동고(10c)에는, 상기 복수의 증발기(151b,152b,153b)에 대응하는 복수의 저장실이 포함될 수 있다. 상기 복수의 저장실에는, -60℃ 이하의 극저온 저장실과, 약 -20℃의 냉동실 및 0~5℃ 범위의 냉장실이 포함될 수 있다. 일례로, 상기 제 1 증발기(151b)에서 생성된 냉기는 상기 극저온 저장실로 공급될 수 있으며, 상기 제 2 증발기(152b)에서 생성된 냉기는 상기 냉동실로 공급될 수 있고, 상기 제 3 증발기(153b)에서 생성된 냉기는 상기 냉장실로 공급될 수 있다.The deep freezer 10c may include a plurality of storage compartments corresponding to the plurality of evaporators 151b, 152b, and 153b. The plurality of storage rooms may include a cryogenic storage room of -60 ° C or less, a freezer of about -20 ° C, and a refrigerating room of 0 to 5 ° C. For example, the cold air generated by the first evaporator 151b may be supplied to the cryogenic storage chamber, the cold air generated by the second evaporator 152b may be supplied to the freezing chamber, and the third evaporator 153b. The cold air generated in) may be supplied to the refrigerating compartment.
상기 제 3 증발기(153b)의 출구측에는, 상기 제 2 열교환기(250)가 설치되며, 상기 제 2 열교환기(250)의 출구측에는 상기 제 1 열교환기(210)가 설치될 수 있다. 상기 제 2 증발기(152)에서 증발된 냉매는 상기 제 2 열교환기(250) 및 제 1 열교환기(210)를 통과하면서 흡열되며, 이에 따라 압축기(110)로 흡입되는 냉매의 온도가 증가하고 건도의 상승이 이루어질 수 있다. 이와 관련된 설명은 제 1 실시예의 설명을 원용한다.The second heat exchanger 250 may be installed at the outlet side of the third evaporator 153b, and the first heat exchanger 210 may be installed at the outlet side of the second heat exchanger 250. The refrigerant evaporated in the second evaporator 152 is endothermic while passing through the second heat exchanger 250 and the first heat exchanger 210. Accordingly, the temperature of the refrigerant sucked into the compressor 110 increases and the dryness is increased. May be raised. The related description uses the description of the first embodiment.
도 9는 본 발명의 제 5 실시예에 따른 심온 냉동고에 구비되는 냉동 사이클을 보여주는 도면이다.9 is a view showing a refrigeration cycle provided in a deep-temperature freezer according to a fifth embodiment of the present invention.
도 9를 참조하면, 본 발명의 제 5 실시예에 따른 심온 냉동고(10d)에는, 독립된 2개의 냉동 사이클이 포함된다. 상기 독립된 2개의 냉동 사이클의 구성은 서로 동일하다.Referring to FIG. 9, the deep-temperature freezer 10d according to the fifth embodiment of the present invention includes two independent refrigeration cycles. The configurations of the two independent refrigeration cycles are identical to each other.
상기 2개의 냉동 사이클에는, 제 1 냉동사이클이 포함된다. 상세히, 상기 제 1 냉동사이클에는, 제 1 압축기(110a), 제 1 응축기(120a), 제 1 드라이어(130a), 제 1 팽창장치(140a), 제 1 응축배관(161a), 제 1 증발기(150a), 제 1 흡입배관(165a), 제 2 열교환기(250b) 및 제 1 열교환기(210b)가 포함된다. 이들 구성 및 작용에 대한 설명은 제 1 실시예의 설명과 동일하다.The two refrigeration cycles include a first refrigeration cycle. In detail, the first refrigeration cycle, the first compressor (110a), the first condenser (120a), the first dryer (130a), the first expansion device (140a), the first condensation pipe (161a), the first evaporator ( 150a), a first suction pipe 165a, a second heat exchanger 250b, and a first heat exchanger 210b. Description of these configurations and operations is the same as that of the first embodiment.
상기 2개의 냉동 사이클에는, 제 2 냉동사이클이 포함된다. 상세히, 상기 제 1 냉동사이클에는, 제 2 압축기(110b), 제 2 응축기(120b), 제 2 드라이어(130b), 제 2 팽창장치(140b), 제 2 응축배관(161b), 제 2 증발기(150b), 제 2 흡입배관(165b), 제 4 열교환기(250c) 및 제 3 열교환기(210c)가 포함된다. 이들 구성 및 작용에 대한 설명은 제 1 실시예의 설명과 동일하다.The two refrigeration cycles include a second refrigeration cycle. In detail, the first refrigeration cycle, the second compressor 110b, the second condenser 120b, the second dryer 130b, the second expansion device 140b, the second condensation pipe 161b, the second evaporator ( 150b), a second suction pipe 165b, a fourth heat exchanger 250c, and a third heat exchanger 210c. Description of these configurations and operations is the same as that of the first embodiment.
본 실시예에 따르면, 서로 독립된 2개의 냉동 사이클이 운전되어, 상기 심온 냉동고(10d)에 구비되는 복수의 저장실을 냉각할 수 있다. 상기 복수의 저장실에는, -60℃ 이하의 2개의 극저온 저장실이 포함될 수 있다. 상기 제 1 냉동사이클에서 생성된 냉기는 제 1 극저온 저장실을 냉각할 수 있으며, 상기 제 2 냉동사이클에서 생성된 냉기는 제 2 극저온 저장실을 냉각할 수 있다.According to this embodiment, two refrigeration cycles independent of each other may be operated to cool the plurality of storage compartments provided in the deep freezer 10d. The plurality of storage compartments may include two cryogenic storage compartments of -60 ° C or less. The cold air generated in the first refrigeration cycle may cool the first cryogenic storage chamber, and the cold air generated in the second refrigeration cycle may cool the second cryogenic storage chamber.
본 발명의 실시예에 따르면, 응축기에서 응축된 냉매가 증발기에 유입되기 이전에 복수의 열교환기를 통과하도록 함으로써, 냉동 사이클의 응축압력을 낮추고 응축된 냉매가 팽창장치를 통과할 때 건도 상승을 방지할 수 있다는 효과가 나타나므로, 산업상 이용 가능성이 현저하다.According to an embodiment of the present invention, the refrigerant condensed in the condenser passes through a plurality of heat exchangers before entering the evaporator, thereby lowering the condensation pressure of the refrigeration cycle and preventing rise in dryness when the condensed refrigerant passes through the expansion device. As it can be seen, the industrial applicability is remarkable.

Claims (20)

  1. 2개 이상의 혼합냉매를 압축하는 압축기;A compressor for compressing two or more mixed refrigerants;
    상기 압축기에서 압축된 혼합냉매를 응축시키는 응축기;A condenser for condensing the mixed refrigerant compressed by the compressor;
    상기 응축기에서 응축된 혼합냉매를 감압하는 팽창장치;An expansion device for depressurizing the mixed refrigerant condensed in the condenser;
    상기 팽창장치에서 감압된 혼합냉매를 증발하는 증발기;An evaporator for evaporating the reduced pressure of the mixed refrigerant in the expansion device;
    상기 응축기의 출구측으로부터 상기 팽창장치로 연장되어, 상기 혼합냉매의 유동을 가이드 하는 응축배관;A condensation pipe extending from the outlet side of the condenser to the expansion device to guide the flow of the mixed refrigerant;
    상기 증발기의 출구측으로부터 상기 압축기로 연장되어, 상기 혼합냉매의 상기 압축기로의 흡입을 가이드 하는 흡입배관; 및A suction pipe extending from the outlet side of the evaporator to the compressor to guide suction of the mixed refrigerant into the compressor; And
    상기 흡입배관에 설치되어, 상기 압축기로 흡입되는 혼합냉매의 열교환을 수행하는 복수의 열교환기가 포함되는 심온 냉동고.And a plurality of heat exchangers installed in the suction pipe and performing heat exchange of the mixed refrigerant sucked into the compressor.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 열교환기에는 제 1 열교환기가 포함되며, The plurality of heat exchangers include a first heat exchanger,
    상기 제 1 열교환기에는, In the first heat exchanger,
    상기 압축기로 흡입되는 혼합냉매의 유동을 가이드 하는 제 1 흡입열교환부; 및A first suction heat exchanger for guiding the flow of the mixed refrigerant sucked into the compressor; And
    상기 제 1 흡입열교환부와 열교환을 수행하며, 상기 응축배관의 유동을 가이드 하는 응축열교환부가 포함되는 심온 냉동고.And a condensation heat exchanger configured to perform heat exchange with the first suction heat exchanger and to guide the flow of the condensation pipe.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 응축 열교환부의 배관 직경은,Pipe diameter of the condensation heat exchanger,
    상기 팽창장치의 배관 직경보다 크게 형성되는 것을 특징으로 하는 심온 냉동고.Deep freezer, characterized in that formed larger than the pipe diameter of the expansion device.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 복수의 열교환기에는, 제 2 열교환기가 포함되며,The plurality of heat exchangers include a second heat exchanger,
    상기 제 2 열교환기에는,In the second heat exchanger,
    상기 제 1 흡입열교환부의 일측에 구비되며, 상기 압축기로 흡입되는 혼합냉매의 유동을 가이드 하는 제 2 흡입열교환부; 및A second suction heat exchanger provided at one side of the first suction heat exchanger to guide the flow of the mixed refrigerant sucked into the compressor; And
    상기 제 2 흡입열교환부와 열교환을 수행하는 상기 팽창장치가 포함되는 심온 냉동고.Deep freezer comprising the expansion device for performing heat exchange with the second suction heat exchange unit.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1 흡입열교환부 및 상기 응축배관, 또는The first suction heat exchange unit and the condensation pipe, or
    상기 제 2 흡입열교환부 및 상기 팽창장치는, The second suction heat exchanger and the expansion device,
    서로 접촉하여 열교환을 수행하는 것을 특징으로 하는 심온 냉동고.Deep freezer, characterized in that to perform heat exchange in contact with each other.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1,2 열교환기의 사이에 배치되어, 상기 팽창장치와 상기 응축열교환부간에 열교환을 방지하는 열교환기 연결배관이 더 포함되며,A heat exchanger connection pipe disposed between the first and second heat exchangers to prevent heat exchange between the expansion device and the condensation heat exchange unit;
    상기 제 1 열교환부와 상기 제 2 열교환부는, 상기 열교환기 연결배관에 의하여 서로 이격되는 것을 특징으로 하는 심온 냉동고.And the first heat exchanger and the second heat exchanger are spaced apart from each other by the heat exchanger connection pipe.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 흡입배관을 유동하는 냉매의 유동방향을 기준으로, 상기 제 1 열교환기는 상기 제 2 열교환기의 출구측에 설치되는 것을 특징으로 하는 심온 냉동고.And the first heat exchanger is installed at an outlet side of the second heat exchanger based on a flow direction of the refrigerant flowing through the suction pipe.
  8. 제 4 항에 있어서,The method of claim 4, wherein
    상기 응축배관을 유동하는 냉매의 유동방향을 기준으로, 상기 제 2 열교환기는 상기 제 1 열교환기의 출구측에 설치되는 것을 특징으로 하는 심온 냉동고.And the second heat exchanger is installed at an outlet side of the first heat exchanger based on a flow direction of the refrigerant flowing through the condensation pipe.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 증발기에는, 서로 직렬연결 되는 제 1 증발기 및 제 2 증발기가 포함되고,The evaporator includes a first evaporator and a second evaporator connected in series with each other,
    상기 제 2 증발기는 상기 제 1 증발기의 출구측에 설치되는 것을 특징으로 하는 심온 냉동고.And the second evaporator is installed at an outlet side of the first evaporator.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 증발기에는, 서로 병렬연결 되는 제 1 증발기 및 제 2 증발기가 포함되고,The evaporator includes a first evaporator and a second evaporator connected in parallel to each other,
    상기 팽창장치에는, 상기 제 1 증발기의 입구측에 설치되는 제 1 팽창장치 및 상기 제 2 증발기의 입구측에 설치되는 제 2 팽창장치가 포함되는 심온 냉동고.The expansion device, a deep freezer including a first expansion device installed on the inlet side of the first evaporator and a second expansion device installed on the inlet side of the second evaporator.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 증발기에는,The evaporator,
    상기 팽창장치의 출구측에 설치되는 제 1 증발기;A first evaporator installed at an outlet side of the expansion device;
    상기 제 1 증발기의 출구측에 직렬로 연결되는 제 2 증발기; 및A second evaporator connected in series with the outlet side of the first evaporator; And
    상기 제 2 증발기의 출구측에 직렬로 연결되는 제 3 증발기가 포함되는 심온 냉동고.And a third evaporator connected in series to the outlet side of the second evaporator.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 혼합냉매에는,In the mixed refrigerant,
    부탄(N-Butane), 1-부텐(1-Butene) 및 이소부탄(Isobutane) 중 어느 하나로 선택되는 고온용 냉매; 및High temperature refrigerant selected from any one of butane (N-Butane), 1-butene (1-Butene), and isobutane; And
    에틸렌(Ethylene)으로 구성되는 저온용 냉매가 포함되는 심온 냉동고.Deep freezer containing a low-temperature refrigerant composed of ethylene (Ethylene).
  13. 제 12 항에 있어서,The method of claim 12,
    상기 부탄(N-Butane)은 80 중량%에서 85 중량%의 범위 내에서 결정되며, 상기 에틸렌(Ethylene)은 15 중량%에서 20 중량%의 범위 내에서 결정되는 것을 특징으로 하는 심온 냉동고.The butane (N-Butane) is determined in the range of 80% to 85% by weight, Ethylene (Ethylene) is a deep freezer, characterized in that determined in the range of 15% to 20% by weight.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 압축기는 설정된 압력범위에서 운전되며,The compressor is operated at a set pressure range,
    상기 설정된 압력범위에는,In the set pressure range,
    상기 압축기의 최고 토출압력이 25 바아(bar) 이하인 범위가 포함되고,The maximum discharge pressure of the compressor is included in the range of 25 bar or less,
    상기 압축기의 최저 흡입압력이 1 바아(bar) 이상인 범위가 포함되는 심온 냉동고.Deep freezer including a range of the minimum suction pressure of the compressor is more than 1 bar (bar).
  15. 제 12 항에 있어서,The method of claim 12,
    상기 압축기는 설정된 온도범위 내에서 운전되며,The compressor is operated within a set temperature range,
    상기 설정된 온도범위에는,In the set temperature range,
    상기 압축기의 최고 토출온도가 120℃ 이하인 범위가 포함되는 심온 냉동고.Deep freezer including the range that the maximum discharge temperature of the compressor is 120 ℃ or less.
  16. 제 12 항에 있어서,The method of claim 12,
    상기 심온 냉동고에는,In the deep freezer,
    -60℃ 이하의 온도값을 가지는 저장실이 포함되는 심온 냉동고.A deep freezer containing a reservoir having a temperature value of less than -60 ℃.
  17. 제 2 항에 있어서,The method of claim 2,
    상기 제 1 흡입열교환부 또는 응축열교환부의 길이는 3.5 ~ 5m의 범위 내에서 형성되는 것을 특징으로 하는 심온 냉동고.The first suction heat exchanger or the condensation heat exchanger is a length freezer, characterized in that formed in the range of 3.5 ~ 5m.
  18. 제 3 항에 있어서,The method of claim 3, wherein
    상기 응축 열교환부의 배관 직경은,Pipe diameter of the condensation heat exchanger,
    상기 팽창장치의 배관 직경 대비, 3.5 ~ 4.5배의 범위내에 형성되는 것을 특징으로 하는 심온 냉동고.Deep freezer, characterized in that formed in the range of 3.5 to 4.5 times the diameter of the pipe of the expansion device.
  19. 제 10 항에 있어서,The method of claim 10,
    상기 제 1,2 팽창장치 및 상기 흡입배관은 서로 결합되어 열교환 되는 것을 특징으로 하는 심온 냉동고.The first and second expansion device and the suction pipe is a deep freezer, characterized in that the heat exchange is coupled to each other.
  20. 제 1 항에 있어서,The method of claim 1,
    2개의 독립된 냉동 사이클이 구동되며,Two independent refrigeration cycles are driven
    상기 각각의 독립된 냉동 사이클에는, 상기 압축기, 응축기, 팽창장치, 증발기 및 복수의 열교환기가 포함되는 심온 냉동고.And each of the independent refrigeration cycles includes the compressor, the condenser, the expansion device, the evaporator and the plurality of heat exchangers.
PCT/KR2017/000463 2016-01-15 2017-01-13 Deep freezer WO2017123042A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/069,952 US10782048B2 (en) 2016-01-15 2017-01-13 Deep freezer
DE112017000376.8T DE112017000376T5 (en) 2016-01-15 2017-01-13 Freezer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0005172 2016-01-15
KR20160005161 2016-01-15
KR1020160005172A KR102446555B1 (en) 2016-01-15 2016-01-15 Refrigerator for super-freezing a storing chamber
KR10-2016-0005161 2016-01-15
KR1020160080123A KR102502289B1 (en) 2016-01-15 2016-06-27 Refrigerator for super-freezing a storing chamber
KR10-2016-0080123 2016-06-27

Publications (1)

Publication Number Publication Date
WO2017123042A1 true WO2017123042A1 (en) 2017-07-20

Family

ID=59311270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000463 WO2017123042A1 (en) 2016-01-15 2017-01-13 Deep freezer

Country Status (1)

Country Link
WO (1) WO2017123042A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811154A (en) * 2020-07-21 2020-10-23 闻婧 Air conditioner heat exchange system
CN113432326A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Cascade compression refrigeration system and refrigeration equipment with same
CN114207363A (en) * 2019-08-21 2022-03-18 Lg电子株式会社 Refrigeration system using non-azeotropic refrigerant mixture
US20220170675A1 (en) * 2019-02-28 2022-06-02 Lg Electronics Inc. Method for controlling refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040053696A (en) * 2002-12-17 2004-06-24 엘지전자 주식회사 Refrigerating system using two stage refrigerating cycle
KR100756880B1 (en) * 2006-04-14 2007-09-07 주식회사 대우일렉트로닉스 Apparatus for cooling of refrigerator
KR100808180B1 (en) * 2006-11-09 2008-02-29 엘지전자 주식회사 Apparatus for refrigeration cycle and refrigerator
KR20120026157A (en) * 2010-09-09 2012-03-19 정준영 Extremely low temperature refrigerative apparatus
KR20150076685A (en) * 2013-12-27 2015-07-07 동부대우전자 주식회사 Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040053696A (en) * 2002-12-17 2004-06-24 엘지전자 주식회사 Refrigerating system using two stage refrigerating cycle
KR100756880B1 (en) * 2006-04-14 2007-09-07 주식회사 대우일렉트로닉스 Apparatus for cooling of refrigerator
KR100808180B1 (en) * 2006-11-09 2008-02-29 엘지전자 주식회사 Apparatus for refrigeration cycle and refrigerator
KR20120026157A (en) * 2010-09-09 2012-03-19 정준영 Extremely low temperature refrigerative apparatus
KR20150076685A (en) * 2013-12-27 2015-07-07 동부대우전자 주식회사 Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220170675A1 (en) * 2019-02-28 2022-06-02 Lg Electronics Inc. Method for controlling refrigerator
CN114207363A (en) * 2019-08-21 2022-03-18 Lg电子株式会社 Refrigeration system using non-azeotropic refrigerant mixture
CN113432326A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Cascade compression refrigeration system and refrigeration equipment with same
CN111811154A (en) * 2020-07-21 2020-10-23 闻婧 Air conditioner heat exchange system

Similar Documents

Publication Publication Date Title
WO2017123042A1 (en) Deep freezer
WO2011062348A1 (en) Heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
KR20200108245A (en) Refrigerant
WO2021172752A1 (en) Vapor injection module and heat pump system using same
KR20200051588A (en) Refrigerant
KR20200054953A (en) Air conditioning method and device
WO2022050586A1 (en) Vapor injection module and heat pump system using same
KR20200108246A (en) Refrigerant
WO2010098607A2 (en) Cooling and heating system using a cascade heat exchanger
WO2019143195A1 (en) Multi-type air conditioner
KR20200091816A (en) Refrigerant
WO2011062349A1 (en) Heat pump
CN100458312C (en) Refrigerating device
WO2021040427A1 (en) Air conditioner and control method thereof
KR20170085936A (en) Refrigerator for super-freezing a storing chamber
WO2020197044A1 (en) Air conditioning apparatus
KR20200091815A (en) Refrigerant
WO2019050077A1 (en) Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method
WO2021034136A1 (en) Method for controlling refrigerating system using non-azeotropic mixed refrigerant
WO2022145847A1 (en) Refrigerator and control method therefor
WO2020111479A1 (en) Air conditioner
WO2019147086A1 (en) Air conditioner and method for controlling air conditioner
KR102380369B1 (en) Cryocooler
WO2017179949A1 (en) Dual heat pump heating and cooling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000376

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738671

Country of ref document: EP

Kind code of ref document: A1