WO2017179921A1 - 무선통신 시스템에서 변경된 tdd 상향링크-하향링크 설정에 따라 동작하는 방법 및 이를 위한 장치 - Google Patents
무선통신 시스템에서 변경된 tdd 상향링크-하향링크 설정에 따라 동작하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2017179921A1 WO2017179921A1 PCT/KR2017/004001 KR2017004001W WO2017179921A1 WO 2017179921 A1 WO2017179921 A1 WO 2017179921A1 KR 2017004001 W KR2017004001 W KR 2017004001W WO 2017179921 A1 WO2017179921 A1 WO 2017179921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- downlink configuration
- tdd uplink
- uplink
- base station
- subframe
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for operating in accordance with the modified TDD uplink-downlink configuration.
- the transmission from the base station to the terminal is referred to as the downlink transmission
- the transmission from the terminal to the base station is referred to as the uplink transmission.
- a method of dividing radio resources between the downlink transmission and the uplink transmission is defined as a duplex, and when a frequency band is divided into a downlink transmission band and an uplink transmission band and bi-directionally transmitted and received, frequency division duplex (Frequency Division Duplex) FDD) and time division duplex for transmitting and receiving time domain radio resources divided into downlink time duration resources and uplink time duration resources in the same frequency band. , TDD).
- FDD Frequency Division Duplex
- Full-duplex communication (Full-Duplex communication or Full-Duplex Radio, hereinafter abbreviated as FDR) is a method in which a node performs simultaneous transmission and reception at the same time and frequency resources. It is distinguished from the existing half-duplex communication, and it is a technology that can theoretically double the capacity of the system compared to the half-duplex communication method.
- FIG. 1 is a conceptual diagram of a terminal and a base station supporting FDR.
- Intra- device self-interference Because the device transmits / receives at the same time and frequency resources, not only a desired signal but also a signal transmitted by itself is simultaneously received. At this time, since the signal transmitted by the self is received by its reception antenna with little attenuation, it means that the signal is received with a much larger power than the desired signal to act as interference.
- UE to UE inter-link interference means that an uplink signal transmitted by a UE is received by an adjacent UE and acts as an interference.
- BS to BS inter-link interference means that signals transmitted between heterogeneous base stations (Picocell, femtocell, relay node) between base stations or HetNet are received by receiving antennas of other base stations and act as interference.
- heterogeneous base stations Picocell, femtocell, relay node
- An object of the present invention is to provide an operation method according to a time division duplex (TDD) uplink-downlink configuration in which a terminal is changed in a wireless communication system.
- TDD time division duplex
- Another object of the present invention is to provide a terminal for performing an operation according to a modified time division duplex (TDD) configuration in a wireless communication system.
- TDD time division duplex
- TDD time division duplex
- the changed TDD uplink-downlink configuration may be configured by moving subframes in a time domain direction by a predetermined number of subframes according to a rule previously defined for the specific TDD uplink-downlink configuration.
- the changed TDD uplink-downlink configuration 1 or 6 may be configured by moving in the time domain direction by the predetermined number of subframes.
- the predetermined number of subframes may be one.
- the specific TDD uplink-downlink configuration is TDD uplink-downlink configuration 3 or 4
- the modified TDD uplink-downlink configuration 3 or 6 may be configured by moving in the time domain direction.
- the predetermined number of subframes may be 4.
- the number of the predetermined subframes may be 2.
- the terminal may be a terminal that can recognize that the base station can operate in the full duplex mode.
- Information indicating to use the changed TDD uplink-downlink configuration may be received through an uplink grant.
- Information indicating to use the changed TDD uplink-downlink configuration may be signaled with 1 bit.
- Receiving information indicating to use the changed TDD uplink-downlink configuration, receiving information indicating to measure the channel state from the base station and transmission of the generated channel state information in the first frame is the same frame Can be performed.
- the method may further include receiving, from the base station, downlink data to which a modulation and coding scheme (MCS) level adjusted in a second frame is applied, wherein the MCS level is based on the channel state information. It is adjusted.
- MCS modulation and coding scheme
- a terminal for performing an operation according to a modified time division duplex (TDD) configuration in a wireless communication system is configured with a specific TDD uplink-downlink configuration from a base station operating in a full duplex mode.
- a receiver configured to receive;
- a processor configured to measure the channel state to generate channel state information.
- a transmitter configured to transmit the generated channel state information to the base station in an uplink subframe of the changed TDD uplink-downlink configuration.
- the changed TDD uplink-downlink configuration may be configured by moving subframes in a time domain direction by a predetermined number of subframes according to a rule previously defined for the specific TDD uplink-downlink configuration.
- the receiver may receive information indicating to use the changed TDD uplink-downlink configuration through an uplink grant.
- the receiver may receive, by 1 bit signaling, information indicating to use the changed TDD uplink-downlink configuration.
- FIG. 1 is a conceptual diagram of a terminal and a base station supporting FDR.
- FIG. 2 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
- FIG. 3 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
- FIG. 4 is a diagram illustrating a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- FIG. 5 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- FIG. 6 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- FIG. 7 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
- SI self-interference
- FIG. 8 is a diagram illustrating a position at which three interference techniques are applied at an RF transceiver (or RF front end) of a device.
- FIG. 9 is a block diagram of a device for self-interference cancellation (Self-IC) in the communication device proposed in the communication system environment using OFDM based on FIG.
- FIG. 10 is a view showing an example of a frame structure proposed in the present invention.
- FIG. 11 is a view showing an example of a frame structure proposed in the present invention.
- FIG. 12 is a diagram illustrating a flowchart for grouping a terminal to use a shift frame and a terminal not to be used.
- FIG. 13 is a diagram illustrating a flow chart for determining the operation of the frame structure proposed by the base station.
- FIG. 14 is a diagram illustrating a frame structure for an operation between a base station and UE 2 (UE 2) for the operation of the frame structure according to an embodiment of the present invention.
- FIG. 15 is a diagram illustrating signaling between a base station and UE 2 (UE 2) for operating according to the frame structure shown in FIG. 14.
- FIG. 16 is a diagram illustrating a frame structure for an operation between a base station and UE 1 (UE 1) for the operation of a frame structure according to another embodiment of the present invention.
- FIG. 17 is a diagram illustrating signaling between a base station and UE 1 (UE 1) for operating according to the frame structure shown in FIG. 16.
- a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
- the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
- UE user equipment
- MS mobile station
- AMS advanced mobile station
- AP Access Point
- a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
- the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
- FIG. 2 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
- the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
- the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
- the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
- the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
- MIMO multiple input multiple output
- SU-MIMO single user-MIMO
- MU-MIMO multi-user-MIMO
- the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
- the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
- the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
- each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
- pilot symbols may be sent continuously.
- the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
- Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
- the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
- Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
- the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
- the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
- the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
- the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
- the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
- the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
- the transmit antenna 135 transmits the generated uplink signal to the base station 105.
- an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
- the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
- the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
- Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
- Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
- the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
- the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
- the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs Field programmable gate arrays
- the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
- the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
- the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
- the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
- a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
- the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
- the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
- the following description does not specifically refer to the processors 155 and 180.
- the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
- FIG 3 illustrates a structure of a radio frame used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
- the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
- the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
- the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
- TTI transmission time interval
- one subframe may have a length of 1 ms
- one slot may have a length of 0.5 ms.
- One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- RBs resource blocks
- a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
- the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
- CPs include extended CPs and normal CPs.
- the number of OFDM symbols included in one slot may be seven.
- the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
- the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
- one subframe includes 14 OFDM symbols.
- the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
- DwPTS downlink pilot time slot
- GP guard period
- UpPTS uplink pilot time slot
- One subframe consists of two slots.
- DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- Each half frame includes five subframes, and a subframe labeled "D” is a subframe for downlink transmission, a subframe labeled "U” is a subframe for uplink transmission, and "S"
- the indicated subframe is a special subframe including a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
- DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- the special subframe S exists every half-frame, and in the case of 5ms downlink-uplink switch-point period, only the first half-frame exists.
- Subframe indexes 0 and 5 and DwPTS are sections for downlink transmission only.
- the subframe immediately following the UpPTS and the special subframe is always an interval for uplink transmission.
- the UE may assume the same uplink-downlink configuration across all cells, and guard intervals of special subframes in different cells overlap at least 1456 Ts.
- the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
- Table 1 below shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
- Table 2 below shows an uplink-downlink configuration in a type 2 frame structure in a 3GPP LTE / LTE-A system.
- Table 2 in the 3GPP LTE / LTE-A system, there are seven types of uplink-downlink configurations in a type 2 frame structure. Each configuration may have a different location or number of downlink subframes, special frames, and uplink subframes.
- Table 3 shows k values for TDD configurations 0-6.
- the HARQ-ACK received on the PHICH allocated to the UE in subframe i is related to the PUSCH transmission in subframe i-4.
- Type 2 frame structure UL / DL configuration 1-6 HARQ-ACK received on PHICH allocated to UE in subframe i is related to PUSCH transmission in subframe ik (k is shown in Table 3 above). have.
- FIG. 4 is a diagram illustrating a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- the downlink slot includes a plurality of OFDM symbols in the time domain.
- One downlink slot may include 7 (or 6) OFDM symbols and the resource block may include 12 subcarriers in the frequency domain.
- Each element on the resource grid is referred to as a resource element (RE).
- One RB contains 12x7 (6) REs.
- the number of RBs included in the downlink slot NRB depends on the downlink transmission band.
- the structure of an uplink slot is the same as that of a downlink slot, but an OFDM symbol is replaced with an SC-FDMA symbol.
- FIG. 5 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- up to three (or four) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
- the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared CHannel (PDSCH) is allocated.
- Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
- the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
- the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
- DCI downlink control information
- the DCI format is defined as format 0 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, and so on for downlink.
- the DCI format includes a hopping flag, RB assignment, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DM RS, depending on the application.
- MCS modulation coding scheme
- RV redundancy version
- NDI new data indicator
- TPC transmit power control
- Information including a reference signal (CQI), a channel quality information (CQI) request, a HARQ process number, a transmitted precoding matrix indicator (TPMI), and a precoding matrix indicator (PMI) confirmation are optionally included.
- CQI reference signal
- CQI channel quality information
- TPMI transmitted precoding matrix indicator
- PMI pre
- the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, Tx power control command , The activation instruction information of the Voice over IP (VoIP).
- a plurality of PDCCHs may be transmitted in the control region.
- the terminal may monitor the plurality of PDCCHs.
- the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
- CCEs control channel elements
- the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
- the CCE corresponds to a plurality of resource element groups (REGs).
- the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
- the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
- the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
- RNTI radio network temporary identifier
- an identifier eg, cell-RNTI (C-RNTI)
- C-RNTI cell-RNTI
- P-RNTI paging-RNTI
- SI-RNTI system information RNTI
- RA-RNTI random access-RNTI
- FIG. 6 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
- an uplink subframe includes a plurality of slots (eg, two).
- the slot may include different numbers of SC-FDMA symbols according to the CP length.
- the uplink subframe is divided into a data region and a control region in the frequency domain.
- the data area includes a PUSCH (Physical Uplink Shared CHannel) and is used to transmit a data signal such as voice.
- the control region includes a PUCCH (Physical Uplink Control CHannel) and is used to transmit uplink control information (UCI).
- the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
- PUCCH may be used to transmit the following control information.
- SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
- HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
- One bit of ACK / NACK is transmitted in response to a single downlink codeword (CodeWord, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
- CQI Channel Quality Indicator
- MIMO Multiple input multiple output
- RI rank indicator
- PMI precoding matrix indicator
- PTI precoding type indicator
- the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
- SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
- the reference signal is used for coherent detection of the PUCCH.
- PUCCH supports seven formats according to the transmitted information.
- the FDR transmission / reception system capable of simultaneously transmitting and receiving uplink and downlink signals on the same frequency band can increase the spectral efficiency up to 2 times compared to the existing system that transmits uplink and downlink signals by dividing frequency or time. As a result, it is one of the core technologies of the next generation 5G mobile communication system.
- FDR using a single frequency transmission band may be defined as a transmission resource configuration method for simultaneously transmitting and receiving through a single frequency transmission band from an arbitrary wireless device perspective.
- RRH remote radio head
- It can be expressed by a transmission resource configuration method for simultaneously performing link reception and uplink transmission.
- D2D device-to-device direct communication
- transmission and reception between wireless terminals may be expressed by a transmission resource setting method performed simultaneously in the same frequency transmission band.
- the present invention illustrates a case of wireless transmission and reception between a base station and a wireless terminal and describes the proposed techniques related to FDR, but also includes a case of a network wireless device performing wireless transmission and reception with a terminal other than a general base station and direct communication between terminals. It also includes the case.
- FIG. 7 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
- SI self-interference
- the magnetic interference may be classified into direct interference from a signal transmitted from a transmitting antenna directly into its receiving antenna without path attenuation and reflected interference by surrounding terrain.
- the size may be extremely larger than the desired signal due to the physical distance difference. This extremely high level of interference requires effective cancellation of self-interference to drive the FDR system.
- the UE requires 119dBm of Self-IC performance in order to effectively drive the FDR system at a bandwidth of 20MHz (BW).
- the thermal noise value depends on the bandwidth of the mobile communication system. It can be changed as shown in the equation. Table 1 assumes a bandwidth of 20MHz. Regarding Table 4, the Receiver Noise Figure (NF) considered the worst case with reference to the 3GPP specification requirements.
- the receiver thermal noise level is determined by the sum of the thermal noise at the specific BW and the receiver NF.
- FIG. 8 is a diagram illustrating a position at which three interference techniques are applied at an RF transceiver (or RF front end) of a device. 8 shows the application location of the three Self-IC techniques. The following three self-IC techniques are briefly described.
- the self-interference cancellation scheme that should be executed first is the antenna self-interference cancellation scheme.
- SI cancellation is performed at the antenna stage.
- the simplest is to physically block the transmission of the SI signal by installing an object that can block the signal between the transmitting and receiving antennas, artificially adjusting the distance between the antennas using multiple antennas, or reversing the phase for a particular transmitting signal. Can be used to remove some of the SI signal.
- a part of the SI signal may be removed using a multi-polarized antenna or a directional antenna.
- Analog Self-IC A method of removing interference from the analog stage before the received signal passes through the ADC (Analog-to-Digital Convertor). This method removes the SI signal using the duplicated analog signal. This may be performed in the RF domain or the IF domain. A method of removing the SI signal is described in detail as follows. First, the delayed analog signal is time-delayed, and then the magnitude and phase are adjusted to make a duplicate signal of the SI signal actually received and subtracted from the signal received by the receiving antenna. However, since the analog signal is processed, additional distortion may occur due to implementation complexity and circuit characteristics, and thus, interference cancellation performance may be greatly changed.
- Digital Self-IC Removes interference after the received signal passes through the ADC. It includes all interference cancellation techniques in the baseband region. In the simplest case, it can be realized by making a copy signal of SI and subtracting it from the received digital signal by using the transmitted digital signal. Alternatively, techniques for preventing a transmission signal to a terminal or a base station from being received by a reception antenna by performing precoding / postcoding on a baseband using multiple antennas may also be classified as digital self-ICs. However, since digital self-IC can be quantized so that a digitally modulated signal can recover information on a desired signal, interference can be achieved by using one or more of the above techniques to perform digital self-IC. After removal, a precondition is that the difference in signal power between the remaining interfering signal and the desired signal must fall within the ADC range.
- FIG. 9 is a block diagram of a device for self-interference cancellation (Self-IC) in the communication device proposed in the communication system environment using OFDM based on FIG.
- FIG. 9 is a conceptual diagram of removing a magnetic interference signal by separating a transmitting antenna and a receiving antenna, a method of configuring an antenna different from FIG. 5 may be used when an antenna interference cancellation technique using one antenna is used.
- Multi-user interference is transmitted due to the phenomenon that signals from devices transmitting in the same frequency band between a plurality of FDR-applied devices having relatively close distances come into interference from a device receiving a signal in the corresponding band or another TDD configuration in the same cell.
- the uplink transmission signal may be defined as a phenomenon that an interference occurs when the downlink transmission signal is received.
- the base station instructs the use of the changed frame structure of the terminal even in 1-bit signaling, the base station in full-duplex mode can maximize resource utilization.
- the base station has assigned a terminal or user-oriented uplink-downlink configuration to match the uplink / downlink traffic ratio from the terminal or user perspective.
- the base station may allocate cell-specific configuration information to UEs through SIB signaling, and may perform UE-specific higher-layer signaling (eg, RRC signaling or MAC signaling) delivers uplink-downlink configuration information to each terminal at intervals of several tens ms to 200 ms.
- UE-specific higher-layer signaling eg, RRC signaling or MAC signaling
- the base station Since the base station must deliver a (different) configuration for each user equipment, more signaling overhead occurs than before. In addition, in order to cope with the traffic environment of the terminal adaptively, the base station needs to transmit the configuration to each terminal in a shorter period than the existing configuration transmission period. Therefore, additional signaling overhead is increased compared to the existing system.
- the present invention proposes a specific method for solving and improving such a problem, and is largely composed of a terminal grouping for a frame structure operation, a frame configuration, and a signaling method for operating the proposed frame structure.
- the frame structure proposed in the present invention proposes a new frame structure corresponding to the existing uplink-downlink configurations 1, 3, 4, and 6.
- 'Reserved duration' which will be described in the following drawings, indicates the same section as the existing frame structure in the frame structure proposed by the present invention, and 'Shifted duration' indicates a section in which a subframe is moved among the section of the frame structure proposed by the present invention. Indicates.
- FIG. 10 is a view showing an example of a frame structure proposed in the present invention.
- the frame structure shown in FIG. 10 illustrates a shift frame structure used in the case of uplink-downlink configurations 3 and 4.
- one frame may be divided into a reserved duration and a shifted duration.
- Reserved duration is a corresponding section from subframe # 0 to subframe # 2 and takes the same form as the existing TDD frame structure (ie, subframe # 0 is 'D', subframe # 1 is 'S', and subframe # 2 is 'U').
- the shifted duration is a section corresponding to subframe # 3 to subframe # 9 and is a section in which subframe movement occurs in the existing TDD frame structure.
- the base station can operate in full-duplex mode at shifted duration.
- FIG. 11 is a view showing an example of a frame structure proposed in the present invention.
- the frame structure shown in FIG. 11 illustrates a shift frame structure used in the case of uplink-downlink configurations 1 and 6.
- the frame structure shown in FIG. 11 includes one reserved frame having two reserved durations and two shift durations.
- the first reserved duration is an interval from subframe # 0 to subframe # 2
- the second reserved duration is an interval from subframe # 5 to subframe # 7 (ie, existing uplink-downlink configuration 1, 6). It takes the same form (eg, same subframe type) as subframe # 0 to subframe # 2, subframe # 5 to subframe # 7 in.
- the first shifted duration is a section from subframe # 4 to subframe # 5
- the second shifted duration is a section from subframe # 8 to subframe # 9, where a subframe shift occurs in the existing TDD frame structure.
- the base station can operate in full-duplex mode at shifted duration.
- the reserved duration described in the present invention uses the same subframe (or the same subframe type) as the existing TDD frame to avoid a situation in which the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) are out of synchronization in a cell. .
- the shifted duration included in the present invention is a period for allowing the base station to schedule the uplink subframe and the downlink subframe to the same time-frequency resource by moving the subframe relative to the existing frame structure.
- the number of subframes moved in the shifted duration If you define silver Number of subframes that can operate in full-duplex mode when four subframes are moved, silver The number of subframes that can operate in half-duplex mode when two subframes are moved.
- each uplink-downlink configuration moves as many subframes as the following Equation 1.
- the number of moving subframes required in the present invention is calculated by other criteria besides Equation 1 above. It may also be the number of subframes moved by.
- Table 5 is determined within the shifted duration of each uplink-downlink configuration according to equation (1).
- the existing uplink-downlink configuration 1 when subframe types are listed from subframe # 0 to subframe # 9 in the TDD frame, it is 'D S U U D D S U U D'.
- the number of subframes to be moved in the time domain direction is one.
- the existing uplink-downlink configuration 1 according to the shift duration shown in FIG. 11, the existing subframe # 9 moves to subframe # 3, the existing subframe # 3 moves to subframe # 4, the existing subframe # 4 turns to subframe # 8, and the existing subframe # 8 is moved to subframe # 9.
- the existing uplink-downlink configuration 1 is 'D S U D U D S U D U'.
- the uplink-downlink shifted configuration 1 is changed to 'D S U S U D S U S U'.
- the uplink-downlink shifted configuration 6 becomes 'D S U S U D S U U U'.
- the uplink-downlink shifted configuration 3 becomes 'D S U D D D S U U D'.
- the uplink-downlink shifted configuration 4 becomes 'D S U D S U D D D D'.
- the base station can indicate whether to use the shifted configuration to the terminal through additional 1-bit signaling in addition to the signaling for the existing uplink-downlink configuration information.
- subframe # 6 of uplink-downlink configuration 3 and subframe # 4 of uplink-downlink configuration 4 are changed to a special subframe ('S') unlike the existing frame structure.
- subframe # 3 and subframe # 8 of uplink-downlink configuration 1 have been changed to a special subframe ('S') unlike the existing frame structure.
- the reason for this change is that the base station cannot schedule the uplink subframe immediately after the downlink subframe in order to synchronize the uplink signal.
- Special subframe configurations 0 to 9 are existing special subframe structures. If the base station determines that the total throughput loss of the system due to the newly introduced special subframe is not large, the base station can operate the special frame based on the existing special subframe configurations.
- Table 7 is written on the basis of Normal CP. Even when using Extended CP, special subframe can be operated in the same way to set UpPTS to 0.
- the present invention starts with determining a terminal using a shift frame for operation according to the proposed frame structure.
- FIG. 12 is a diagram illustrating a flowchart for grouping a terminal to use a shift frame and a terminal not to be used.
- the base station in full-duplex mode determines whether the terminal is a legacy terminal or a non-legacy terminal with respect to the terminals existing in the cell. That is, the base station knows the number of legacy terminals and the number of non-legacy terminals.
- the legacy terminal refers to a terminal that does not know whether the base station is operating in full-duplex mode
- the legacy terminal is a terminal that knows whether the base station is operating in full-duplex mode.
- the base station may determine whether the terminal is legacy or non-legacy by explicitly indicating whether the shift subframe is operable to the C-RNTI of the terminal based on category information of the terminal.
- the UE may arbitrarily determine whether to operate in a shift subframe and report whether the UE is a legacy terminal or a non-legacy terminal through a scheduling request (SR) field.
- SR scheduling request
- N bc is the number of legacy terminals and N new is the number of non-legacy terminals.
- the base station determines whether the number of legacy terminals is greater than the number of non-legacy terminals. At this time, if the number of legacy terminals is larger than the number of non-legacy terminals, the base station instructs all non-legacy terminals to operate using a shift frame. On the other hand, if the number of non-legacy terminals is larger than the number of legacy terminals, the base station determines the ratio of the legacy terminal to operate using the shift frame through the following equation (2). Equation 2 is just an example of an equation for determining a ratio of a legacy terminal to operate using a shift frame.
- N bc represents the number of legacy terminals
- N new represents the number of non-legacy terminals
- Equation 2 ⁇ represents a ratio of non-legacy terminals to use an existing frame or an existing uplink-downlink configuration.
- the base station equals the number of terminals to use the existing frame and the shift frame. Specific embodiments of grouping of the terminal are shown in Table 8 below.
- Examples 3 and 4 of Table 8 when the number of terminals using an existing frame is determined by using ⁇ based on Equation 2, accurate terminal grouping is impossible because the number of terminals of the decimal point is derived.
- the base station increases the number of terminals using a shift frame by one more than the number of terminals using an existing frame as shown in Example 3, and the number of terminals using an existing frame by using a shift subframe. Two cases can be considered, one more than the number.
- the base station may compare the total system yield of the two cases to select and operate the case where the yield performance is better. In Example 1 of Table 8, Equation 2 may not be applied.
- FIG. 13 is a diagram illustrating a flow chart for determining the operation of the frame structure proposed by the base station.
- the base station may instruct the terminal of the operation in the frame in which the subframe is moved.
- the base station receives the traffic information and the interference information to operate in the frame structure in which the subframe is moved.
- the base station may determine whether the subframe operates in the moved frame structure based on the received traffic information and the interference information. If the base station determines that the subframe operates in the moved frame structure, the base station may inform the terminal that the subframe operates in the moved frame structure through UL grant or RRC (Radio Resource Control) signaling. On the contrary, if it is determined that the base station operates in the existing frame structure, the base station may inform the terminal through UL grant or RRC (Radio Resource Control) signaling.
- UE 1 (UE 1) is a terminal using a conventional TDD frame structure
- UE 2 (UE 2) is a terminal using a TDD frame structure according to the proposal of the present invention.
- FIG. 14 is a diagram illustrating a frame structure for an operation between a base station and UE 2 (UE 2) for the operation of the frame structure according to an embodiment of the present invention.
- UE UE 2 represents a non-legacy UE grouped into Group 2.
- the base station may instruct the terminal 2 to use the shift frame in subframe # 0 of the (n-1) th frame through UL grant or RRC (Radio Resource Control) signaling.
- the base station may instruct the terminal 2 in the subframe # 3 of the (n-1) th frame and measure the interference and the CQI measurement in consideration of the interference.
- the interference measurement and the CQI measurement indicated by the base station in subframe # 3 are for receiving feedback from the interference measurement and interference reflected from the uplink terminal (eg, UE 1 of FIG. 14) co-scheduled in subframe # 3. .
- the interference measurement instruction may indicate the interference measurement field or RRC signaling of the UL grant to the terminal by the base station.
- the base station may receive the feedback of the CQI measured in subframe # 3 from the terminal 2 in subframe # 7 of the (n-1) th frame.
- the base station uses the CQI fed back in subframe # 7 of the (n-1) th frame as information for the modulation and coding scheme (MCS) of data transmitted in subframe # 3 and subframe # 4 in the nth frame. That is, the base station may transmit the downlink data to the terminal 2 based on the changed MCS level based on the CQI fed back from the subframe # 3 and the subframe # 4 in the first frame.
- MCS modulation and coding scheme
- the base station may instruct the terminal 2 to use the shift frame in subframe # 0 of the nth frame. However, when the base station determines that there is no cell throughput gain due to full-duplex operation based on the CQI information received in subframe # 7 of the (n-1) th frame, the base station does not use the shift frame. You can also indicate.
- the base station uses the CQI-based reconditioned MCS received in subframe # 7 of the (n-1) th frame to the UE in subframe # 3 and subframe # 4. Data can be transferred.
- FIG. 15 is a diagram illustrating signaling between a base station and UE 2 (UE 2) for operating according to the frame structure shown in FIG. 14.
- the base station may instruct UE 1 to use an existing uplink-downlink configuration 3.
- the base station may instruct UE 2 to operate using a frame in which the subframe is moved (ie, a shift frame).
- the base station may instruct the terminal 2 to operate using the shifted uplink-downlink configuration 3 modified from the existing uplink-downlink configuration 3.
- the terminal 2 may generate a CQI by measuring a channel state including interference in a predetermined subframe (subframe # 3 of the (n-1) th frame in FIG. 14).
- the terminal 2 feeds back the generated CQI to the base station, and the base station may calculate a data rate based on the fed back CQI in the next frame (n th frame in FIG. 14) based on the fed back CQI.
- the base station determines a frame mode based on the calculated data rate (for example, determining to use a shift frame), and informs the terminal 2 of this in subframe # 0 of the n-th frame, for example.
- the base station may adjust the MCS level based on the fed back CQI.
- the base station may transmit the downlink data to the terminal 2 by applying the adjusted MCS level in the downlink subframe of the n-th frame.
- FIG. 16 is a diagram illustrating a frame structure for an operation between a base station and UE 1 (UE 1) for the operation of a frame structure according to another embodiment of the present invention.
- UE 1 represents a legacy or non-legacy terminal grouped into group 1.
- the base station may instruct the terminal to measure CQI in subframe # 7 of the (n-1) th frame.
- the CQI measurement at this time is to feed back the CQI reflecting the interference measurement from the uplink user co-scheduling in subframe # 7 and reflecting the same.
- UE 1 feeds back the CQI based on the channel state measured in subframe # 7 of the (n-1) th frame to substation # 2 of the nth frame.
- the base station may adjust the MCS based on the fed back CQI and transmit downlink data to the terminal 1 in subframe # 7 of the nth frame based on the adjusted MCS.
- FIG. 17 is a diagram illustrating signaling between a base station and UE 1 (UE 1) for operating according to the frame structure shown in FIG. 16.
- the base station may instruct interference measurement to UE 1 through a UL grant.
- UE 1 may generate a CQI by measuring a channel state including interference from UE 2 and feed back the generated CQI to a base station.
- the base station calculates a data rate based on the fed back CQI, and adjusts the MCS based on the fed back CQI value. Thereafter, the base station may transmit downlink data to the terminal 1 using the adjusted MCS.
- the existing TDD system can also be operated together.
- the base station even though the base station operates in the full-duplex mode, it is possible to support a terminal that does not recognize the operation of the base station in full-duplex mode. This can provide the effect of supporting compatibility with legacy legacy terminals when operating in full-duplex mode.
- a base station supporting a full UE-specific TDD-based full-duplex technology may operate in a full-duplex mode in a specific subframe period.
- UE-specific TDD is a system that is not optimized in terms of resource utilization. Therefore, the present invention can maximize the total throughput of the system through the UE-specific TDD technology and the full-duplex technology.
- the frame structure proposed by the present invention can be used for the FDD frequency band or the frequency band to be allocated for future mobile communication.
- each component or feature is to be considered optional unless stated otherwise.
- Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
- the method and apparatus for operating in accordance with the modified TDD uplink-downlink configuration in the wireless communication system can be applied in various communication systems such as 3GPP LTE / LTE-A, 5G communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선통신 시스템에서 단말이 변경된 TDD(Time Division Duplex) 상향링크-하향링크 설정에 따른 동작 방법은 full duplex 모드로 동작하는 기지국으로부터 특정 TDD 상향링크-하향링크 설정(configuration)에 대응하는 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신하는 단계; 상기 변경된 TDD 상향링크-하향링크 설정의 하향링크 서브프레임에 대한 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신하는 단계; 및 상기 채널 상태를 측정하여 채널 상태 정보를 생성하고, 상기 생성된 채널 상태 정보를 상기 변경된 TDD 상향링크-하향링크 설정의 상향링크 서브프레임에서 상기 기지국으로 전송하는 단계를 포함할 수 있다.
Description
본 발명은 무선통신 시스템에 관한 것으로, 보다 상세하게는, 변경된 TDD 상향링크-하향링크 설정에 따라 동작하는 방법 및 이를 위한 장치에 관한 것이다.
통상적인 무선 전송의 표현으로서 기지국과 단말 간의 무선 전송에 대하여 기지국에서 단말로의 전송을 하향링크 전송, 단말로부터 기지국으로의 전송을 상향링크 전송으로 통칭하여 표현한다. 이러한 하향 링크 전송과 상향 링크 전송 간의 무선 자원을 구분하는 방식을 듀플렉스(duplex)라고 정의하며 주파수 밴드를 하향링크 전송 밴드와 상향링크 전송 밴드로 구분하여 양방향 송수신하는 경우 주파수 분할 듀플렉스(Frequency Division Duplex, FDD)라고 표현하고 동일 주파수 밴드에서 시간 영역(time domain) 무선 자원을 하향 링크 시구간(time duration) 자원과 상향링크 시구간(time duration) 자원으로 구분하여 송수신하는 경우 시간 분할 듀플렉스(Time Division Duplex, TDD)라고 표현한다.
전이중 통신 기술 (Full-Duplex communication or Full-Duplex Radio, 이하 FDR로 약칭함)은 한 노드가 동일 시간 및 주파수 자원에서 송신과 수신을 동시에 수행하는 방식으로, 시간 자원 또는 주파수 자원을 직교하도록 분할하여 사용하는 기존의 반이중 통신 (Half-duplex communication)과 구분되며, 반이중 통신 방식에 비해서 시스템의 용량(capacity)를 이론적으로 2배 향상시킬 수 있는 기술이다.
도 1은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 1과 같은 FDR 상황에서는 다음과 같은 총 3종류의 간섭이 존재하게 된다.
Intra -device self-interference: 동일한 시간 및 주파수 자원으로 송/수신을 수행하기 때문에, desired signal 뿐만 아니라 자신이 송신한 신호가 동시에 수신된다. 이때, 자신이 송신한 신호는 감쇄가 거의 없이 자신의 수신 안테나로 수신 되므로 desired signal 보다 매우 큰 파워로 수신되어 간섭으로 작용하는 것을 의미한다.
UE to UE inter-link interference: 단말이 송신한 상향링크 신호가 인접하게 위치한 단말에게 수신되어 간섭으로 작용하는 것을 의미한다.
BS to BS inter-link interference: 기지국간 혹은 HetNet 상황에서의 이종 기지국간(Picocell, femtocell, relay node) 송신하는 신호가 다른 기지국의 수신 안테나로 수신되어 간섭으로 작용하는 것을 의미한다.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 단말이 변경된 TDD(Time Division Duplex) 상향링크-하향링크 설정에 따른 동작 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 변경된 TDD(Time Division Duplex) 설정에 따른 동작 수행을 위한 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 무선통신 시스템에서 단말이 변경된 TDD(Time Division Duplex) 상향링크-하향링크 설정에 따른 동작 방법은, full duplex 모드로 동작하는 기지국으로부터 특정 TDD 상향링크-하향링크 설정(configuration)에 대응하는 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신하는 단계; 상기 변경된 TDD 상향링크-하향링크 설정의 하향링크 서브프레임에 대한 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신하는 단계; 및 상기 채널 상태를 측정하여 채널 상태 정보를 생성하고, 상기 생성된 채널 상태 정보를 상기 변경된 TDD 상향링크-하향링크 설정의 상향링크 서브프레임에서 상기 기지국으로 전송하는 단계를 포함할 수 있다.
상기 변경된 TDD 상향링크-하향링크 설정은 상기 특정 TDD 상향링크-하향링크 설정을 사전에 정의한 규칙에 따라 소정의 서브프레임 개수만큼 시간 도메인 방향으로 서브프레임을 이동시켜 설정될 수 있다.
상기 특정 TDD 상향링크-하향링크 설정이 TDD 상향링크-하향링크 설정 1 또는 6인 경우, 상기 TDD 상향링크-하향링크 설정 1 또는 6의 서브프레임 인덱스 3 및 4와 서브프레임 인덱스 8 및 9에 대해서 상기 소정의 서브프레임 개수만큼 시간 도메인 방향으로 이동시킴으로써 상기 변경된 TDD 상향링크-하향링크 설정 1 또는 6이 구성될 수 있다. 상기 소정의 서브프레임 개수는 1개일 수 있다.
상기 특정 TDD 상향링크-하향링크 설정이 TDD 상향링크-하향링크 설정 3 또는 4인 경우, 상기 TDD 상향링크-하향링크 설정 3 또는 4의 서브프레임 인덱스 3 내지 9에 대해서만 상기 소정의 서브프레임 개수만큼 시간 도메인 방향으로 이동시킴으로써 상기 변경된 TDD 상향링크-하향링크 설정 3 또는 6이 구성될 수 있다. 상기 TDD 상향링크-하향링크 설정 3의 경우 상기 소정의 서브프레임 개수는 4이고, 상기 TDD 상향링크-하향링크 설정 4의 경우 상기 소정의 서브프레임 개수는 2일 수 있다.
상기 단말은 상기 기지국이 상기 full duplex 모드로 동작할 수 있음을 인지할 수 있는 단말일 수 있다. 상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보는 상향링크 그랜트(uplink grant)를 통해 수신될 수 있다. 상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보는 1 비트로 시그널링될 수 있다.
상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신, 상기 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신 및상기 생성된 채널 상태 정보의 전송은 동일 프레임인 제 1 프레임에서 수행될 수 있다.
상기 방법은, 제 2 프레임에서 조정된 변조 및 코딩 방식(MCS) 레벨이 적용된 하향링크 데이터를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있고, 이때, 상기 MCS 레벨은 상기 채널 상태 정보에 기초하여 조정된 것이다.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 변경된 TDD(Time Division Duplex) 설정에 따른 동작 수행을 위한 단말은, full duplex 모드로 동작하는 기지국으로부터 특정 TDD 상향링크-하향링크 설정(configuration)에 대응하는 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신하고, 상기 변경된 TDD 상향링크-하향링크 설정의 하향링크 서브프레임에 대한 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신하도록 구성된 수신기; 및 상기 채널 상태를 측정하여 채널 상태 정보를 생성하는 프로세서; 및 상기 생성된 채널 상태 정보를 상기 변경된 TDD 상향링크-하향링크 설정의 상향링크 서브프레임에서 상기 기지국으로 전송하도록 구성된 송신기를 포함할 수 있다. 상기 변경된 TDD 상향링크-하향링크 설정은 상기 특정 TDD 상향링크-하향링크 설정을 사전에 정의한 규칙에 따라 소정의 서브프레임 개수만큼 시간 도메인 방향으로 서브프레임을 이동시켜 설정될 수 있다. 상기 수신기는 상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 상향링크 그랜트(uplink grant)를 통해 수신할 수 있다. 상기 수신기는 상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 1 비트 시그널링으로 수신할 수 있다.
[발명의 효과]
본 발명을 통하여 단말-특정 TDD 기술 및 full-duplex 기술을 통한 시스템 총 수율(throughput)을 최대화할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 2는 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 3은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
도 6은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 7은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 8은 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다.
도 9는 도 8을 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화한 도면이다.
도 10은 본 발명에서 제안하는 프레임 구조의 일 예를 나타낸 도면이다.
도 11은 본 발명에서 제안하는 프레임 구조의 일 예를 나타낸 도면이다.
도 12는 shift 프레임을 사용할 단말과 사용하지 않을 단말을 그룹핑하기 위한 순서도를 예시한 도면이다.
도 13은 기지국이 제안하는 프레임 구조의 운용을 결정하는 순서도를 예시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 프레임 구조의 동작을 위한 기지국과 단말 2(UE 2)간의 동작을 위한 프레임 구조를 도시한 도면이다.
도 15는 도 14에서 도시된 프레임 구조에 따라 동작하기 위한 기지국과 단말 2(UE 2)간의 시그널링을 예시한 도면이다.
도 16은 본 발명의 다른 일 실시예에 따른 프레임 구조의 동작을 위한 기지국과 단말 1(UE 1)간의 동작을 위한 프레임 구조를 도시한 도면이다.
도 17은 도 16에서 도시된 프레임 구조에 따라 동작하기 위한 기지국과 단말 1(UE 1)간의 시그널링을 예시한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A, 5G 시스템 등인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A, 5G 통신 시스템의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
도 2는 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 2를 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 무선 프레임의 구조를 예시한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 3의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 3의 (b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 하프 프레임은 5개의 서브프레임을 포함하고 있고, "D"라고 표시된 서브프레임은 하향링크 전송을 위한 서브프레임, "U"라고 표시된 서브프레임은 상향링크 전송을 위한 서브프레임이며, "S"라고 표시된 서브프레임은 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성되는 특별 서브프레임이다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
5ms 하향링크-상향링크 스위치-포인트 주기인 경우에 특별 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 스위치-포인트 주기인 경우에는 첫 번째 하프-프레임에만 존재한다. 서브프레임 인덱스 0 및 5(subframe 0 and 5) 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 특별 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다. 멀티-셀 들이 병합된(aggregated) 경우, 단말은 모든 셀들에 거쳐 동일한 상향링크-하향링크 구성임을 가정할 수 있고, 서로 다른 셀들에서의 특별 서브프레임의 보호 구간은 적어도 1456Ts 오버랩된다. 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
다음 표 1은 특별 서브프레임(special subframe)의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸 표이다
다음 표 2는 3GPP LTE/LTE-A 시스템에서는 타입 2 프레임 구조에서 상향링크-하향링크 구성(configuration)을 나타낸 표이다.
표 2를 참조하면, 3GPP LTE/LTE-A 시스템에서는 타입 2 프레임 구조에서 상향링크-하향링크 설정(configuration)에는 7가지가 있다. 각 설정 별로 하향링크 서브프레임, 특별 프레임, 상향링크 서브프레임의 위치 또는 개수가 다를 수 있다. 이하에서는 다음 표 3은 TDD configurations 0-6에 대한 k값을 나타내고 있다.
타입 1 프레임 구조에서 서브프레임 i에서 단말에 할당된 PHICH 상에서 수신된 HARQ-ACK은 서브프레임 i-4에서의 PUSCH 전송과 관련되어 있다. 타입 2 프레임 구조 UL/DL configuration 1-6에서, 서브프레임 i에서 단말에 할당된 PHICH 상에서 수신된 HARQ-ACK은 서브프레임 i-k(k는 상기 표 3에 표시되어 있음)에서의 PUSCH 전송과 관련되어 있다.
도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
도 4를 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 하나의 하향링크 슬롯은 7(혹은 6)개의 OFDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소(element)는 자원 요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12×7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, OFDM 심볼이 SC-FDMA 심볼로 대체된다.
도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3개(혹은 4개)의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당, MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 사이클릭 쉬프트 DM RS(demodulation reference signal), CQI (channel quality information) 요청, HARQ 프로세스 번호, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIC))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.
도 6은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 6을 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared CHannel)를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control CHannel)를 포함하고 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드(CodeWord, CW)에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CQI(Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding Type Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
동일 주파수 밴드 상에서 상향링크와 하향링크 신호를 동시에 송수신이 가능한 FDR 송수신 시스템은 주파수 또는 시간을 나누어 상향링크와 하향링크 신호를 송수신하는 기존 시스템 대비 주파수 효율 (Spectral efficiency) 를 최대 2배 증가시킬 수 있기 때문에 차세대 5G 이동통신 시스템의 핵심 기술 중 하나로 각광 받고 있다.
단일 주파수 전송 밴드를 사용한 FDR은 임의의 무선 디바이스 관점에서는 단일 주파수 전송 밴드를 통해 송수신을 동시에 수행하는 전송 자원 설정 방식으로 정의할 수 있다. 이의 특별한 일례로서 일반적인 기지국(또는 중계기, 릴레이 노드, remote radio head(RRH) 등)과 무선 단말 간의 무선 통신에 대해서 단일한 주파수 전송 밴드를 통해 기지국의 하향링크 전송과 상향링크 수신, 무선 단말의 하향링크 수신과 상향링크 전송을 동시적으로 수행하는 전송 자원 설정 방식으로 표현할 수 있다. 다른 일 예로서 무선 단말 들 간의 디바이스 간 직접 통신 (device-to-device direct communication, D2D)의 상황에서 무선 단말들 간의 전송과 수신이 동일한 주파수 전송 밴드에서 동시에 수행되는 전송 자원 설정 방식으로 표현할 수 있다. 이하의 본 발명에서 일반적 기지국과 무선 단말 간 무선 송수신의 경우를 예시하며 FDR 관련 제안 기술들을 기술하고 있으나 일반적인 기지국 이외의 단말과 무선 송수신을 수행하는 네트워크 무선 디바이스의 경우도 포함하며 단말들 간의 직접 통신의 경우도 포함한다.
도 7은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 7에서처럼 자기간섭(SI)는 송신 안테나로부터 송신된 신호가 경로 감쇄 없이 자신의 수신 안테나로 바로 들어오는 다이렉트 간섭(direct interference)과 주변의 지형에 의해 반사된 간섭(reflected interference)로 구분될 수 있으며, 그 크기는 물리적인 거리 차이에 의해 원하는 신호(desired signal) 보다 극단적으로 클 수 밖에 없다. 이렇게 극단적으로 큰 간섭의 세기 때문에 FDR 시스템의 구동을 위해서는 자기간섭의 효과적인 제거가 필요하다.
효과적으로 FDR 시스템이 구동되기 위해서는 장치의 최대 송신 파워에 따른 자기간섭 제거(Self-IC)의 요구 사항을 다음 표 4(이동통신 시스템에서의 FDR 적용 시 Self-IC 요구사항 (BW=20MHz))과 같이 결정할 수 있다.
표 4
Node Type | Max. Tx Power (PA) | Thermal Noise. (BW=20MHz) | Receiver NF | Receiver Thermal Noise Level | Self-IC Target (PA- TN-NF) |
Macro eNB | 46dBm | -101dBm | 5dB (for eNB) | -96dBm | 142 dB |
Pico eNB | 30dBm | 126 dB | |||
Femto eNB,WLAN AP | 23dBm | 119 dB | |||
UE | 23dBm | 9dB(for UE) | -92dBm | 115 dB |
상기 표 4를 참조하면, 단말(UE)이 20MHz 의 대역폭(BW)에서 효과적으로 FDR 시스템을 구동시키기 위해서는 119dBm 의 Self-IC 성능이 필요함을 알 수 있다. 이동통신 시스템의 대역폭에 따라서 Thermal noise 값이 식과 같이 바뀔 수 있으며, 표 1은 20MHz 의 대역폭을 가정하고 구하였다. 표 4와 관련하여 Receiver Noise Figure (NF) 는 3GPP 표준 요구사항(specification requirement)를 참조하여 worst case를 고려하였다. Receiver thermal noise level 은 특정 BW 에서의 thermal noise 와 receiver NF의 합으로 결정된다.
자기간섭 제거(Self-IC) 기법의 종류 및 적용 방법
도 8은 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다. 도 8에서는 3가지 Self-IC 기법의 적용 위치를 도시하고 있다. 이하 3가지 Self-IC 기법에 대해 간략히 설명한다.
Antenna Self-IC: 모든 Self-IC 기법 중 가장 우선적으로 실행되어야 할 자기간섭 제거 기법이 안테나 자기간섭 제거 기법이다. 안테나 단에서 SI 제거가 수행된다. 가장 간단하게는 송신 안테나 및 수신 안테나 사이에 신호를 차단할 수 있는 물체를 설치하여 SI 신호의 전달을 물리적으로 차단하거나, 다중 안테나를 활용하여 안테나 간의 거리를 인위적으로 조절하거나, 특정 송신 신호에 위상 반전을 주어 SI 신호를 일부 제거할 수 있다. 또한, 다중 편파 안테나 또는 지향성 안테나를 활용하여 SI 신호의 일부를 제거할 수 있다.
Analog Self-IC: 수신 신호가 ADC (Analog-to-Digital Convertor) 를 통과하기 이전에 Analog 단에서 간섭을 제거하는 기법으로 복제된 Analog 신호를 이용하여 SI 신호를 제거하는 기법이다. 이는 RF영역 혹은 IF 영역에서 수행될 수 있다. SI 신호를 제거하는 방법은 구체적으로 기술하면 다음과 같다. 우선 송신되는 Analog 신호를 시간지연 시킨 후 크기와 위상을 조절하여 실제로 수신되는 SI 신호의 복제 신호를 만들어 수신 안테나로 수신되는 신호에서 차감하는 방식으로 이루어진다. 그러나, Analog 신호를 이용하여 처리하기 때문에 구현 복잡도와 회로특성으로 인하여 추가적인 왜곡이 발생할 수도 있으며 이로 인하여 간섭제거 성능이 크게 달라질 수 있다는 단점이 있다.
Digital Self-IC: 수신 신호가 ADC를 통과한 이후에 간섭을 제거하는 기법으로 Baseband 영역에서 이루어지는 모든 간섭제거 기법들을 포함한다. 가장 간단하게는 송신되는 Digital 신호를 활용하여 SI의 복제 신호를 만들어 수신된 Digital 신호에서 차감하는 방법으로 구현 가능하다. 혹은 다중 안테나를 이용하여 Baseband에서의 Precoding/Postcoding을 수행함으로써 단말 혹은 기지국에의 송신 신호가 수신안테나로 수신되지 않게끔 하기 위한 기법들 또한 Digital Self-IC로 분류할 수 있다. 그러나 Digital Self-IC는 Digital로 변조된 신호가 원하는 신호에 대한 정보를 복원할 수 있을 정도로 양자화가 이루어져 가능하기 때문에 Digital Self-IC를 수행하기 위해서는 상기의 기법들 중 하나 이상의 기법을 활용하여 간섭을 제거하고 난 이후의 남아있는 간섭 신호와 원하는 신호간의 신호 파워의 크기 차가 ADC range안에 들어와야 하는 전제조건이 필요하다.
도 9는 도 8을 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화한 도면이다.
Digital Self-IC block의 위치는 도 9에서는 DAC 전과 ADC 통과 후의 디지털 자기간섭 신호(digital SI) 정보를 바로 이용하여 수행하는 것으로 도시하고 있으나, IFFT 통과 후 및 FFT 통과 전의 디지털 자기간섭 신호를 이용하여 수행될 수도 있다. 또한, 도 9는 송신 안테나와 수신 안테나를 분리하여 자기 간섭 신호를 제거하는 개념도이지만, 하나의 안테나를 이용한 안테나 간섭 제거 기법 사용시에는 도 5와는 다른 안테나의 구성법이 될 수 있다.
FDR 전송 방식을 적용할 때 발생하는 다른 종류의 간섭으로는 다중 사용자 간섭이 있다. 다중 사용자 간섭은 상대적으로 근접한 거리를 가진 복수 개의 FDR 적용 디바이스들 간에 동일 주파수 밴드로 전송하는 디바이스들의 신호가 해당 밴드로 신호를 수신하는 디바이스에 간섭으로 들어오는 현상 또는 동일 셀 내의 다른 TDD Configuration으로 인해 송신된 상향 전송 신호가 하향 전송 신호의 수신 시 간섭으로 들어오는 현상으로 정의할 수 있다.
이하에서는, LTE/LTE-A 등의 시스템에서 full-duplex 기지국의 TDD(Time Duplex Division) 설정 정보를 운용하는 내용을 설명한다. 특히, 기지국이 1 bit 시그널링으로도 단말의 변경된 프레임 구조의 사용을 지시함으로써, full-duplex 모드의 기지국은 자원 활용도를 극대화 시킬 수 있다.
종래에는 단말 혹은 사용자 관점에서의 상향링크/하향링크 트래픽 비율을 맞추기 위해서 기지국은 단말 혹은 사용자 중심의 uplink-downlink configuration을 할당하였다. 기지국은 SIB 시그널링을 통해 셀-특정 설정(cell-specific configuration) 정보를 단말들에게 할당해 줄 수 있고, 단말-특정 상위 레이어 시그널링(UE-specific higher-layer signaling)(예를 들어, RRC 시그널링 혹은 MAC 시그널링)을 통해 각 단말에게 수십 ms ~ 200 ms 주기로 uplink-downlink configuration 정보를 전달해 준다.
기지국은 단말마다 (다른) configuration을 전달해야 하므로 기존 대비 더 많은 시그널링 오버헤드가 발생한다. 또한, 단말의 트래픽 환경에 적응적으로 대처하기 위해 기지국은 기존의 configuration 전송 주기보다 더 짧은 주기로 configuration을 각 단말에게 전송할 필요가 있다. 따라서 기존 시스템 대비 추가적인 시그널링 오버헤드가 증가하게 된다.
또한, 기지국이 현재보다 더 빠른 주기로 configuration 정보를 시그널링해야 하는 경우, 현재의 채널 품질에 대한 피드백 및 간섭 측정이 개선될 필요가 있다. 또한, 기존의 configuration의 전송은 기존 레거시(legacy) 단말은 지원받을 수 없는 문제가 있다. 본 발명은 이러한 문제점의 해결 및 개선하기 위한 구체적 방법을 제안하는데, 크게 프레임 구조 운용을 위한 단말 그룹핑, 프레임 구성, 그리고 제안하는 프레임 구조 운용 위한 시그널링 방법으로 구성된다. 본 발명에서 제안하는 프레임 구조는 기존의 uplink-downlink configuration 1, 3, 4, 6과 대응되는 새로운 프레임 구조를 제안한다.
이하의 도면에서 설명할 'Reserved duration'은 본 발명에서 제안하는 프레임 구조에서 기존 프레임 구조와 동일한 구간을 나타내고, 'Shifted duration'은 본 발명에서 제안하는 프레임 구조의 구간 중 서브프레임을 이동시킨 구간을 나타낸다.
도 10은 본 발명에서 제안하는 프레임 구조의 일 예를 나타낸 도면이다.
도 10에 도시한 프레임 구조는 uplink-downlink configuration 3, 4인 경우에 사용하는 shift 프레임 구조를 예시하고 있다. 도 10의 프레임 구조를 살펴보면, 한 프레임을 10개의 서브프레임이라고 예시하였을 때, 한 프레임은 reserved duration과 shifted duration으로 나눌 수 있다. Reserved duration은 subframe #0에서 subframe #2까지의 해당하는 구간으로서 기존 TDD 프레임 구조와 동일한 형태를 취한다(즉 subframe #0은 'D', subframe #1은 'S', subframe #2는 'U'). Shifted duration은 subframe #3에서 subframe #9 까지 해당하는 구간으로서 기존 TDD 프레임 구조에서 서브프레임 이동이 발생하는 구간이다. 기지국은 shifted duration에서 full-duplex 모드로 동작이 가능하다.
도 11은 본 발명에서 제안하는 프레임 구조의 일 예를 나타낸 도면이다.
도 11에 도시한 프레임 구조는 uplink-downlink configurations 1, 6인 경우에 사용하는 shift 프레임 구조를 예시하고 있다. 도 11에 도시한 프레임 구조는 도 10에 도시한 프레임 구조와 달리 한 프레임이 두 개의 reserved duration과 두 개의 shift duration으로 구성된다. 첫 번째 reserved duration은 subframe #0에서 subframe #2까지의 구간이며, 두 번째 reserved duration은 subframe #5에서 subframe #7까지의 구간으로서 기존의 TDD 프레임 구조(즉, 기존의 uplink-downlink configuration 1, 6에서의 subframe #0에서 subframe #2, subframe #5에서 subframe #7까지의 구간)와 동일한 형태(예를 들어, 동일한 서브프레임 타입)를 취한다.
첫 번째 shifted duration은 subframe #4에서 subframe #5까지의 구간, 두 번째 shifted duration은 subframe #8에서 subframe #9까지의 구간으로서 기존 TDD 프레임 구조에서 서브프레임 이동(shift)이 발생하는 구간이다. 기지국은 shifted duration에서 full-duplex 모드로 동작이 가능하다.
본 발명에서 설명하는 reserved duration은 한 셀 내에서 Primary synchronization signal (PSS)와 Secondary synchronization signal (SSS)의 동기가 어긋나는 상황을 피하기 위하여 기존 TDD 프레임과 동일한 서브프레임(혹은 ㄷ동일한 서브프레임 타입)을 이용한다.
본 발명에서 포함하는 shifted duration은 기존 프레임 구조 대비 서브프레임을 이동시킴으로써 기지국이 상향링크 서브프레임과 하향링크 서브프레임을 같은 시간-주파수 자원에 스케줄링시킬 수 있게 하는 구간이다. Shifted duration에서 이동되는 서브프레임의 수를 라고 정의하면 은 개의 서브프레임이 이동되는 경우에 full-duplex 모드로 동작 가능한 서브프레임 수이고, 은 개의 서브프레임이 이동되는 경우에 half-duplex 모드로 동작 가능한 서브프레임 수이다. 이때, 기지국의 시간-주파수 자원 활용도를 높이기 위하여 각 uplink-downlink configuration에서는 다음 수학식 1을 만족하는 만큼의 서브프레임을 이동시킨다.
여기서, 은 개의 서브프레임이 이동되는 경우에 full-duplex 모드로 동작 가능한 서브프레임 수, 은 개의 서브프레임이 이동되는 경우에 half-duplex 모드로 동작 가능한 서브프레임 수이다.
표 5에 의하여 이동된 서브프레임을 고려한 uplink-downlink configuration은 다음 표 6과 같다.
표 6
Uplink-downlink shifted configuration | Subframe에 따른 전송 방향 | |||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1 | D | S | U | S | U | D | S | U | S | U |
3 | D | S | U | D | D | D | S | U | U | D |
4 | D | S | U | D | S | U | D | D | D | D |
6 | D | S | U | S | U | D | S | U | U | U |
상기 표 5로부터 상기 표 6과 같은 uplink-downlink shifted configuration이 도출되는 과정에 대해 이하에서 간략히 설명한다.
기존 uplink-downlink configuration 1의 경우, TDD 프레임에서 subframe #0에서 subframe #9까지 서브프레임 타입을 나열하면 'D S U U D D S U U D'이다. 여기서, 표 5를 참조하면, 기존 uplink-downlink configuration 1의 경우 시간 도메인 방향으로 이동시킬 서브프레임의 수는 1개이다. 도 11에 도시한 shift duration에 따라 기존 uplink-downlink configuration 1에서 기존 subframe #9는 subframe #3으로 이동하고, 기존 subframe #3은 subframe #4로, 기존 subframe #4는 subframe #8로, 기존 subframe #8은 subframe #9로 이동된다. 이러한 이동에 의해, 기존 uplink-downlink configuration 1의 경우 'D S U D U D S U D U'이다. 그러나, 'D' 서브프레임 다음에 바로 'U' 서브프레임이 올 수 없으므로, uplink-downlink shifted configuration 1은 'D S U S U D S U S U'로 변경된다.
기존 uplink-downlink configuration 6의 경우의 상기 설명에 따라 변경하면, uplink-downlink shifted configuration 6은 'D S U S U D S U U U'로 된다.
한편, 기존 uplink-downlink configuration 3의 경우, 도 10에 도시한 shift duration에 따라 표 5에 나타낸 서브프레임 이동 개수 만큼 (4개) 이동시키면, uplink-downlink shifted configuration 3은 'D S U D D D S U U D'로 된다.
기존 uplink-downlink configuration 4의 경우, 도 10에 도시한 shift duration에 따라 표 5에 나타낸 서브프레임 이동 개수 만큼 (2개) 이동시키면, uplink-downlink shifted configuration 4는 'D S U D S U D D D D'로 된다.
표 6에서 정의된 uplink-downlink configuration을 기반으로, 기지국은 기존의 uplink-downlink configuration 정보를 위한 시그널링외에 추가적인 1-bit 시그널링을 통하여 단말에게 shifted configuration의 사용 여부를 지시해 줄 수 있다.
표 6에 따르면, uplink-downlink configuration 3의 subframe #6과 uplink-downlink configuration 4의 subframe #4가 기존 프레임 구조와 달리 special subframe ('S')으로 변경되었음을 알 수 있다. 또한, uplink-downlink configuration 1의 subframe #3과 subframe #8이 기존 프레임 구조와 달리 special subframe ('S')으로 변경되었음을 알 수 있다. 이러한 변경의 원인은 기지국에서 상향링크 신호의 동기를 맞추기 위해서 하향링크 서브프레임 직후에 상향링크 서브프레임을 스케줄링할 수 없기 때문이다.
기존 프레임과 달리 본 발명에서 사용하는 special subframe으로 인하여 기존 시스템 대비 시스템 총 수율 (throughput) 손실이 발생할 수 있다. special subframe으로 시스템 총 수율 손실을 막기 위하여 special subframe의 표 7 기반의 special subframe 운용 방식을 적용한다.
표 7
Special subframe configuration | Normal CP (downlink and uplink) | ||
DwPTS | GP | UpPTS | |
0 | 3 | 10 | 1 |
1 | 9 | 4 | |
2 | 10 | 3 | |
3 | 11 | 2 | |
4 | 12 | 1 | |
5 | 3 | 9 | 2 |
6 | 9 | 3 | |
7 | 10 | 2 | |
8 | 11 | 1 | |
9 | 6 | 6 | |
10 | 4 | 10 | 0 |
11 | 5 | 9 | |
12 | 10 | 4 | |
13 | 11 | 3 | |
14 | 12 | 2 | |
15 | 13 | 1 |
표 7에서 Special subframe configurations 0부터 9까지는 기존 special subframe 구조이다. 기지국이 새로 도입되는 special subframe으로 인한 시스템 총 수율 (throughput) 손실이 크지 않다고 판단한다면 기지국은 기존 Special subframe configurations 기반으로 special frame을 운용할 수 있다.
표 7에서 Special subframe configurations 10부터 15까지는 기존 special subframe에서 UpPTS를 할당하지 않는 경우이다. 추가적인 special subframe에서는 상향링크 참조신호 전송이 필요하기 때문에 기지국이 UpPTS를 할당하지 않음으로써 새로 도입되는 special subframe으로 인한 시스템 총 수율 (throughput) 손실을 줄일 수 있다.
표 7은 Normal CP 기준으로 작성된 것으로, Extended CP를 사용하는 경우에도 UpPTS를 0으로 설정하는 동일한 방식으로 special subframe을 운용할 수 있다.
본 발명은 제안하는 프레임 구조에 따른 동작을 위해, 먼저 shift frame을 사용하는 단말들을 결정하는 단계부터 시작한다.
도 12는 shift 프레임을 사용할 단말과 사용하지 않을 단말을 그룹핑하기 위한 순서도를 예시한 도면이다.
도 12를 참조하면, full-duplex 모드의 기지국은 셀 안에 존재하는 단말들에 대해 레거시 단말인지 및 비-레거시(non-legacy) 단말인지 여부를 판단한다. 즉, 기지국은 레거시 단말의 수와 비-레거시 단말의 수를 파악한다. 여기서, 레거시 단말은 기지국의 full-duplex 모드 동작 여부를 알지 못하는 단말을 의미하고, 레거시 단말은 기지국의 full-duplex 모드 동작 여부를 알고 있는 단말이다.
기지국은 단말의 카테고리(category) 정보를 기반으로 단말의 C-RNTI에 shift subframe 운용 가능 여부를 명시적으로 지시함으로써 단말이 레거시 혹은 비-레거시인지 여부를 판단할 수 있다. 또는, 단말이 자의적으로 shift subframe으로의 동작 여부를 판단하여 스케줄링 요청(SR) 필드를 통하여 기지국에 자신이 레거시 단말인지 비-레거시 단말인지 여부를 보고할 수도 있다.
이때, Nbc는 레거시 단말의 수, Nnew는 비-레거시 단말의 수라고 가정한다. 기지국이 레거시 단말과 비-레거시 단말의 수를 파악하고 나면, 기지국은 레거시 단말의 수가 비-레거시 단말의 수보다 많은지 여부를 판단한다. 이때, 레거시 단말의 수가 비-레거시 단말의 수보다 많다면, 기지국은 모든 비-레거시 단말이 shift frame을 이용하여 동작하도록 지시한다. 반면에, 비-레거시 단말의 수가 레거시 단말의 수보다 많다면, 기지국은 다음 수학식 2를 통하여 shift frame을 이용하여 동작할 레거시 단말의 비율을 결정한다. 다음 수학식 2는 shift frame을 이용하여 동작할 레거시 단말의 비율을 결정하기 위한 식의 일 예일 뿐이다.
여기서, Nbc는 레거시 단말의 수, Nnew는 비-레거시 단말의 수를 나타낸다.
수학식 2에서 α는 기존 프레임 혹은 기존 uplink-downlink configuration을 사용할 비-레거시 단말의 비율을 나타낸다. 상기 수학식 2를 통하여 기지국은 기존의 프레임과 shift frame을 사용할 단말의 수를 같게 한다. 구체적인 단말의 그룹핑의 실시 예는 다음 표 8과 같다.
표 8
Nbc | Nnew | α | 기존 프레임 사용하는 단말 수 | shift 프레임을 사용하는 단말 수 | |
예 1 | 10 | 5 | 0 | 10 | 5 |
예 2 | 10 | 20 | 0.25 | 15 | 15 |
예 3 | 10 | 19 | 0.2368 | 14 | 15 |
예 4 | 10 | 19 | 0.2368 | 15 | 14 |
상기 표 8의 예 3과 예 4의 경우, 수학식 2 기반의 α를 이용하여 기존 프레임을 사용하는 단말 수를 결정하는 경우 소수점의 단말 수가 도출되므로 정확한 단말 그룹핑이 불가능하다. 이런 경우 기지국은 예 3과 같이 shift frame을 사용하는 단말의 수를 기존 프레임을 사용하는 단말의 수 대비 1개 더 늘려 운용하는 경우와 기존 프레임을 사용하는 단말의 수를 shift subframe을 사용하는 단말의 수 대비 1개를 더 늘려 운용하는 두 가지 경우를 고려할 수 있다. 상기 표 8의 예 3과 예 4의 경우는, 기지국이 두 가지 경우의 시스템 총 수율을 비교하여 수율 성능이 더 좋은 경우를 선택하여 운용할 수도 있다. 표 8의 예 1은 상기 수학식 2가 적용되지 않을 수 있다.
도 13은 기지국이 제안하는 프레임 구조의 운용을 결정하는 순서도를 예시한 도면이다.
기지국은 서브프레임이 이동된 프레임에서의 동작을 단말에게 지시해 줄 수 있다. 기지국은 서브프레임이 이동된 프레임 구조로 동작하기 위해 트래픽 정보 및 간섭 정보를 수신한다. 기지국은 수신한 트래픽 정보, 간섭 정보에 기초하여 서브프레임이 이동된 프레임 구조로 동작할 지 여부를 결정할 수 있다. 만약, 기지국이 서브프레임이 이동된 프레임 구조로 동작하는 것으로 결정하였다면, 서브프레임이 이동된 프레임 구조로의 동작한다는 것을 단말에게 UL grant 혹은 RRC(Radio Resource Control) 시그널링 등을 통하여 알려줄 수 있다. 반대로, 기지국이 기존 프레임 구조로 동작하는 것으로 결정하였다면, 기존 프레임 구조로의 동작한다는 것을 단말에게 UL grant 혹은 RRC(Radio Resource Control) 시그널링 등을 통하여 알려줄 수 있다.
이하 도 14 내지 도 17에서 단말 1(UE 1)은 기존의 TDD 프레임 구조를 사용하는 단말, 단말 2(UE 2)는 본 발명의 제안에 따른 TDD 프레임 구조를 사용하는 단말이다.
도 14는 본 발명의 일 실시예에 따른 프레임 구조의 동작을 위한 기지국과 단말 2(UE 2)간의 동작을 위한 프레임 구조를 도시한 도면이다.
도 14에서 단말(UE 2)는 그룹 2(Group 2)로 그룹핑된 비-레거시 단말을 나타낸다. 기지국은 (n-1)번째 프레임의 subframe #0에서 단말 2에게 shift 프레임을 사용을 UL grant 또는 RRC(Radio Resource Control) 시그널링 등을 통해 지시해 줄 수 있다. 기지국은 (n-1)번째 프레임의 subframe #3에서 단말 2에게 간섭 측정 및 간섭을 고려한 CQI 측정을 지시할 수 있다. subframe #3에서 기지국이 지시하는 간섭 측정 및 CQI 측정은 subframe #3에서 co-scheduling 되는 상향링크 단말(예를 들어, 도 14의 UE 1)로부터의 간섭 측정 및 간섭이 반영된 CQI를 피드백 받기 위함이다. 간섭 측정 지시는 UL grant의 interference measurement field 또는 RRC 시그널링등을 기지국이 단말에게 지시해 줄 수 있다.
기지국이 (n-1)번째 프레임의 subframe #7에서 단말 2로부터 subframe #3에서 측정된 CQI의 피드백을 수신할 수 있다. 기지국은 (n-1)번째 프레임의 subframe #7에서 피드백받은 CQI를 n번째 프레임에서의 subframe #3, subframe #4에서 전송되는 데이터의 변조 및 코딩 방식(MCS)를 위한 정보로 활용된다. 즉, 기지국은 번째 프레임에서의 subframe #3, subframe #4에서 피드백 받은 CQI에 기초하여 변경된 MCS 레벨에 기초하여 하향링크 데이터를 단말 2로 전송할 수 있다.
기지국은 n번째 frame의 subframe #0에서 단말 2에게 shift 프레임 사용을 지시할 수 있다. 그러나, 기지국이 (n-1)번째 프레임의 subframe #7에서 받은 CQI 정보를 기반으로 full-duplex 운용으로 인한 셀 수율(cell throughput) 이득이 없다고 판단할 시에는 단말로 shift 프레임의 사용하지 않음을 지시할 수도 있다.
n번째 프레임의 subframe #0에서 shift 프레임의 사용이 지시되었다면, 기지국은 (n-1)번째 프레임의 subframe #7에서 받은 CQI 기반의 재조정된 MCS를 이용하여 subframe #3과 subframe #4에서 단말로 데이터를 전송할 수 있다.
도 15는 도 14에서 도시된 프레임 구조에 따라 동작하기 위한 기지국과 단말 2(UE 2)간의 시그널링을 예시한 도면이다.
도 15를 참조하면, 기지국은 단말 1(UE 1)에게 기존의 uplink-downlink configuration 3을 사용할 것을 지시해 줄 수 있다. 그리고, 기지국은 단말 2(UE 2)에게 서브프레임이 이동된 프레임(즉, shift frame)을 이용하여 동작할 것일 지시할 수 있다. 예를 들어, 기지국은 단말 2에게는 기존의 uplink-downlink configuration 3을 변형한 shifted uplink-downlink configuration 3을 이용하여 동작할 것을 지시할 수 있다.
이후, 단말 2는 소정의 서브프레임(도 14에서 (n-1)번째 프레임의 subframe #3)에서 간섭이 포함된 채널 상태를 측정하여 CQI를 생성할 수 있다. 단말 2는 기지국으로 생성된 CQI를 피드백하고, 기지국은 피드백받은 CQI에 기초하여 다음 프레임(도 14에서 n번째 프레임)에서 상기 피드백받은 CQI에 기초하여 데이터 전송률을 계산할 수 있다. 기지국은 계산된 데이터 전송률에 기초하여 프레임 모드를 결정하고(예를 들어, shift frame 사용 결정), 이를 단말 2에게 예를 들어 n번째 프레임의 subframe #0에서 알려줄 수 있다. 그리고, 기지국은 피드백받은 CQI에 기초하여 MCS레벨을 조정할 수 있다. 이후, 기지국은 예를 들어 n번째 프레임의 하향링크 서브프레임에서 조정된 MCS 레벨을 적용하여 하향링크 데이터를 단말 2에게 전송할 수 있다.
도 16은 본 발명의 다른 일 실시예에 따른 프레임 구조의 동작을 위한 기지국과 단말 1(UE 1)간의 동작을 위한 프레임 구조를 도시한 도면이다.
도 16에서 단말 1은 그룹 1로 그룹핑된 레거시 또는 비-레거시 단말을 나타낸다. 기지국은 단말이 (n-1)번째 프레임의 subframe #7에서 CQI 측정하도록 지시할 수 있다. 이때의 CQI 측정은 subframe #7에서 co-scheduling 되는 상향링크 사용자로부터의 간섭 측정 및 이를 반영한 CQI를 피드백하기 위함이다. 단말 1은 n번째 프레임의 subframe #2에서 (n-1)번째 프레임의 subframe #7에서 측정한 채널 상태에 기초한 CQI를 기지국으로 피드백한다. 이후, 일 예로서, 기지국은 피드백 받은 CQI에 기반하여 MCS를 조정하고, 조정된 MCS에 기초하여 n번째 프레임의 subframe #7에서 하향링크 데이터를 단말 1로 전송할 수 있다.
도 17은 도 16에서 도시된 프레임 구조에 따라 동작하기 위한 기지국과 단말 1(UE 1)간의 시그널링을 예시한 도면이다.
도 17을 참조하면, 기지국은 단말 1(UE 1)에게 UL grant 등을 통하여 간섭 측정을 지시할 수 있다. 단말 1은 단말 2로부터의 간섭을 포함한 채널 상태를 측정하여 CQI를 생성하고, 생성된 CQI를 기지국으로 피드백할 수 있다. 기지국은 피드백받은 CQI에 기초하여 데이터 전송률을 산출하고, 피드백받은 CQI 값에 기초하여 MCS를 조정한다. 이후, 기지국은 조정된 MCS를 이용하여 단말 1로 하향링크 데이터를 전송할 수 있다.
기존의 단말-특정 TDD 기술의 경우에는 기지국이 단말마다 각기 다른 uplink-downlink configuration으로 동작할 것을 시그널링해주어야 하므로 기존의 셀-특정 configuration 정보의 시그널링 오버헤드와 대비하여 더 큰 시그널링 오버헤드가 발생한다. 그러나, 본 발명에서 제안한 프레임 구조에 대해 1 비트 시그널링을 통해 full-duplex 모드의 기지국 운용 시 기존의 TDD 시스템도 함께 운용이 가능하게 된다.
본 발명에서 기지국은 full-duplex 모드로 동작함에도 불구하고 기지국의 full-duplex 모드로의 동작을 인식하지 못하는 단말도 지원이 가능하다. 이는 full-duplex 모드로 동작할 때에 기존 레거시 단말들과의 호환성을 지원해 주는 효과를 얻을 수 있다.
또한, 기존 단말-특정 TDD 기반의 full-duplex 기술을 지원하는 기지국의 경우, 특정 서브프레임 구간에서의 full-duplex 모드로 동작이 가능하다. 그러나, 단말-특정 TDD는 자원 활용도 관점에서 최적화되지 않은 시스템이다. 따라서 본 발명을 통하여 단말-특정 TDD 기술 및 full-duplex 기술을 통한 시스템 총 수율(throughput)을 최대화할 수 있다.
본 발명에서 제안하는 프레임 구조는 TDD용 주파수 밴드 이외에도 FDD 주파수 밴드 또는 차후 이동 통신을 위해 할당될 주파수 밴드에서도 사용가능하다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
무선통신 시스템에서 변경된 TDD 상향링크-하향링크 설정에 따라 동작하는 방법 및 이를 위한 장치는 3GPP LTE/LTE-A, 5G 통신 시스템 등 다양한 통신 시스템에서 적용이 가능하다.
Claims (15)
- 무선통신 시스템에서 단말이 변경된 TDD(Time Division Duplex) 상향링크-하향링크 설정에 따른 동작 방법에 있어서,full duplex 모드로 동작하는 기지국으로부터 특정 TDD 상향링크-하향링크 설정(configuration)에 대응하는 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신하는 단계;상기 변경된 TDD 상향링크-하향링크 설정의 하향링크 서브프레임에 대한 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신하는 단계; 및상기 채널 상태를 측정하여 채널 상태 정보를 생성하고, 상기 생성된 채널 상태 정보를 상기 변경된 TDD 상향링크-하향링크 설정의 상향링크 서브프레임에서 상기 기지국으로 전송하는 단계를 포함하는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 1항에 있어서,상기 변경된 TDD 상향링크-하향링크 설정은 상기 특정 TDD 상향링크-하향링크 설정을 사전에 정의한 규칙에 따라 소정의 서브프레임 개수만큼 시간 도메인 방향으로 서브프레임을 이동시켜 설정되는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 2항에 있어서,상기 특정 TDD 상향링크-하향링크 설정이 TDD 상향링크-하향링크 설정 1 또는 6인 경우, 상기 TDD 상향링크-하향링크 설정 1 또는 6의 서브프레임 인덱스 3 및 4와 서브프레임 인덱스 8 및 9에 대해서 상기 소정의 서브프레임 개수만큼 시간 도메인 방향으로 이동시킴으로써 상기 변경된 TDD 상향링크-하향링크 설정 1 또는 6이 구성되는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 3항에 있어서,상기 소정의 서브프레임 개수는 1개인, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 2항에 있어서,상기 특정 TDD 상향링크-하향링크 설정이 TDD 상향링크-하향링크 설정 3 또는 4인 경우, 상기 TDD 상향링크-하향링크 설정 3 또는 4의 서브프레임 인덱스 3 내지 9에 대해서만 상기 소정의 서브프레임 개수만큼 시간 도메인 방향으로 이동시킴으로써 상기 변경된 TDD 상향링크-하향링크 설정 3 또는 6이 구성되는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 5항에 있어서,상기 TDD 상향링크-하향링크 설정 3의 경우 상기 소정의 서브프레임 개수는 4이고, 상기 TDD 상향링크-하향링크 설정 4의 경우 상기 소정의 서브프레임 개수는 2인, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 1항에 있어서,상기 단말은 상기 기지국이 상기 full duplex 모드로 동작할 수 있음을 인지할 수 있는 단말인, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 1항에 있어서,상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보는 상향링크 그랜트(uplink grant)를 통해 수신되는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 8항에 있어서,상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보는 1 비트로 시그널링되는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 1항에 있어서,상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신, 상기 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신 및상기 생성된 채널 상태 정보의 전송은 동일 프레임인 제 1 프레임에서 수행되는, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 제 10항에 있어서,제 2 프레임에서 조정된 변조 및 코딩 방식(MCS) 레벨이 적용된 하향링크 데이터를 상기 기지국으로부터 수신하는 단계를 더 포함하되,상기 MCS 레벨은 상기 채널 상태 정보에 기초하여 조정된 것인, 변경된 TDD 상향링크-하향링크 설정에 따른 동작 방법.
- 무선통신 시스템에서 변경된 TDD(Time Division Duplex) 설정에 따른 동작 수행을 위한 단말에 있어서,full duplex 모드로 동작하는 기지국으로부터 특정 TDD 상향링크-하향링크 설정(configuration)에 대응하는 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 수신하고,상기 변경된 TDD 상향링크-하향링크 설정의 하향링크 서브프레임에 대한 채널 상태를 측정할 것을 지시하는 정보를 상기 기지국으로부터 수신하도록 구성된 수신기; 및상기 채널 상태를 측정하여 채널 상태 정보를 생성하는 프로세서; 및상기 생성된 채널 상태 정보를 상기 변경된 TDD 상향링크-하향링크 설정의 상향링크 서브프레임에서 상기 기지국으로 전송하도록 구성된 송신기를 포함하는, 단말.
- 제 12항에 있어서,상기 변경된 TDD 상향링크-하향링크 설정은 상기 특정 TDD 상향링크-하향링크 설정을 사전에 정의한 규칙에 따라 소정의 서브프레임 개수만큼 시간 도메인 방향으로 서브프레임을 이동시켜 설정되는, 단말.
- 제 12항에 있어서,상기 수신기는 상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 상향링크 그랜트(uplink grant)를 통해 수신하는, 단말.
- 제 14항에 있어서,상기 수신기는 상기 변경된 TDD 상향링크-하향링크 설정을 이용할 것을 지시하는 정보를 1 비트 시그널링으로 수신하는, 단말.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662322248P | 2016-04-14 | 2016-04-14 | |
US62/322,248 | 2016-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179921A1 true WO2017179921A1 (ko) | 2017-10-19 |
Family
ID=60041757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/004001 WO2017179921A1 (ko) | 2016-04-14 | 2017-04-13 | 무선통신 시스템에서 변경된 tdd 상향링크-하향링크 설정에 따라 동작하는 방법 및 이를 위한 장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017179921A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019182347A1 (ko) * | 2018-03-20 | 2019-09-26 | 엘지전자 주식회사 | 무선랜 시스템에서 tdd 스케줄링을 지원하기 위한 방법 및 이를 이용한 무선 단말 |
US11888787B2 (en) | 2019-11-22 | 2024-01-30 | Huawei Technologies Co., Ltd. | Frame structures for wireless communication |
CN118139090A (zh) * | 2024-05-07 | 2024-06-04 | 中国星网网络系统研究院有限公司 | 下行链路配置方法及相关装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130336177A1 (en) * | 2011-02-21 | 2013-12-19 | Renesas Mobile Corporation | Dynamic uplink/downlink configuration for time division duplex |
EP2816853A1 (en) * | 2013-06-21 | 2014-12-24 | Panasonic Intellectual Property Corporation of America | Uplink switching of communication links for mobile stations in dual connectivity |
WO2015023227A1 (en) * | 2013-08-15 | 2015-02-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method and radio node for handling csi reporting |
US20150188690A1 (en) * | 2013-01-17 | 2015-07-02 | Intel Corporation | Dynamic configuration of uplink (ul) and downlink (dl) frame resources for a time division duplex (tdd) transmission |
WO2015122733A1 (ko) * | 2014-02-16 | 2015-08-20 | 엘지전자 주식회사 | Fdr 전송을 지원하는 무선접속시스템에서 신호를 수신하는 방법 및 장치 |
-
2017
- 2017-04-13 WO PCT/KR2017/004001 patent/WO2017179921A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130336177A1 (en) * | 2011-02-21 | 2013-12-19 | Renesas Mobile Corporation | Dynamic uplink/downlink configuration for time division duplex |
US20150188690A1 (en) * | 2013-01-17 | 2015-07-02 | Intel Corporation | Dynamic configuration of uplink (ul) and downlink (dl) frame resources for a time division duplex (tdd) transmission |
EP2816853A1 (en) * | 2013-06-21 | 2014-12-24 | Panasonic Intellectual Property Corporation of America | Uplink switching of communication links for mobile stations in dual connectivity |
WO2015023227A1 (en) * | 2013-08-15 | 2015-02-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method and radio node for handling csi reporting |
WO2015122733A1 (ko) * | 2014-02-16 | 2015-08-20 | 엘지전자 주식회사 | Fdr 전송을 지원하는 무선접속시스템에서 신호를 수신하는 방법 및 장치 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019182347A1 (ko) * | 2018-03-20 | 2019-09-26 | 엘지전자 주식회사 | 무선랜 시스템에서 tdd 스케줄링을 지원하기 위한 방법 및 이를 이용한 무선 단말 |
US11888787B2 (en) | 2019-11-22 | 2024-01-30 | Huawei Technologies Co., Ltd. | Frame structures for wireless communication |
CN118139090A (zh) * | 2024-05-07 | 2024-06-04 | 中国星网网络系统研究院有限公司 | 下行链路配置方法及相关装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017034125A1 (ko) | 무선통신 시스템에서 flexible fdd 프레임을 이용하여 통신을 수행하는 방법 및 이를 위한 장치 | |
WO2018128428A1 (ko) | 크로스-링크 간섭을 제어하는 방법 및 이를 위한 장치 | |
WO2019156466A1 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2018038418A1 (ko) | 무선 통신 시스템에서 상향링크 전송을 위한 방법 및 이를 위한 장치 | |
WO2013069994A1 (ko) | 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치 | |
WO2018203732A1 (ko) | 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2012077974A2 (ko) | 복수의 콤포넌트 캐리어를 지원하는 무선통신 시스템에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 기지국 장치 | |
WO2015115818A1 (ko) | Harq ack/nack 전송방법 및 장치 | |
WO2016021957A1 (ko) | Ack/nack 피드백 방법 및 사용자기기 | |
WO2014007593A1 (ko) | 제어 신호 송수신 방법 및 이를 위한 장치 | |
WO2012157987A2 (ko) | 무선통신 시스템에서 제어 정보를 전송 및 수신하는 방법과 이를 위한 장치 | |
WO2013055126A1 (ko) | 복수의 네트워크 노드로 구성된 셀을 포함하는 무선통신 시스템에서 채널품질상태를 측정하는 방법 및 이를 위한 장치 | |
WO2013009043A2 (ko) | 무선 통신 시스템에서 하향링크 harq 송수신 방법 및 장치 | |
WO2017217584A1 (ko) | Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치 | |
WO2013073916A1 (ko) | 무선통신 시스템에서 상기 단말이 상향링크 제어 채널 전송 방법 | |
WO2011115463A2 (ko) | 캐리어 집합을 지원하는 무선통신 시스템에서 제어 정보를 송신/수신하는 장치 및 그 방법 | |
WO2017119791A2 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2017171350A1 (ko) | 무선 통신 시스템에서 상향링크 신호의 전송 또는 수신 방법 및 이를 위한 장치 | |
WO2012118345A2 (ko) | 무선통신 시스템에서 d-tdd(dynamic-time division duplex) 하향링크-상향링크 구성을 지원하는 방법 및 이를 위한 장치 | |
WO2011043636A2 (ko) | 무선 통신 시스템에서 상향링크 백홀 신호를 송신 및 수신을 위한 장치 및 그 방법 | |
WO2016072763A1 (ko) | 비면허 대역-부요소 반송파에서의 데이터 전송을 위한 방법 및 이를 위한 장치 | |
WO2019070098A1 (ko) | 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치 | |
WO2019151789A1 (ko) | 준-정적 스케줄링 기반 상향링크 반복을 위한 방법 및 장치 | |
WO2016048111A2 (ko) | 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 모니터링 방법 및 이를 위한 장치 | |
WO2012153962A2 (ko) | 복수의 셀을 포함하는 네트워크에서 상향링크 전송 전력을 결정하는 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782676 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17782676 Country of ref document: EP Kind code of ref document: A1 |