WO2017179781A1 - 무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017179781A1
WO2017179781A1 PCT/KR2016/011619 KR2016011619W WO2017179781A1 WO 2017179781 A1 WO2017179781 A1 WO 2017179781A1 KR 2016011619 W KR2016011619 W KR 2016011619W WO 2017179781 A1 WO2017179781 A1 WO 2017179781A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
time unit
terminal
transmitting
channel
Prior art date
Application number
PCT/KR2016/011619
Other languages
English (en)
French (fr)
Inventor
강지원
조희정
한진백
변일무
김희진
심현진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/093,128 priority Critical patent/US11197310B2/en
Publication of WO2017179781A1 publication Critical patent/WO2017179781A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a cell cyclic uplink transmission method and apparatus therefor in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a method for transmitting an uplink signal by a terminal includes: transmitting a first uplink data signal in a first continuous time unit in one subframe; And transmitting a second uplink data signal in a second continuous time unit in the one subframe, wherein a first TA and a second continuous time applied in the first continuous time unit
  • the second TA value applied in the unit is characterized in that it is independent.
  • the receiving end in a wireless communication system a wireless communication module for transmitting and receiving signals with a plurality of transmitting end; And a processor for processing the signal, the processor transmitting a first uplink data signal in a first continuous time unit in one subframe and outputting a first uplink data signal in a second continuous time unit in the one subframe.
  • a second uplink data signal is transmitted and a first TA value applied in the first continuous time unit and a second TA value applied in the second continuous time unit are independent.
  • At least one transmitting end may transmit a predetermined uplink signal and receive the first TA value and the second TA value calculated based on the predetermined uplink signal.
  • the last symbol of the first continuous time unit or the first symbol of the second continuous time unit may be a muting symbol.
  • the last symbol of the first continuous time unit or the first symbol of the second continuous time unit may be set as a muting symbol.
  • control unit may receive control information for transmitting the first uplink data signal and the second uplink data signal in the first continuous time unit.
  • control information may include information about the first TA value and the second TA value.
  • the base station and the terminal in the wireless communication system can perform more efficient uplink transmission and reception using a cell cyclic scheme.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • 7 and 8 illustrate examples of scheduling for cell cyclic uplink transmission according to an embodiment of the present invention.
  • FIG. 9 illustrates an example of performing cell cyclic uplink transmission in symbol group units according to an embodiment of the present invention.
  • 10 is an example of a muting operation in cell cyclic uplink transmission according to an embodiment of the present invention.
  • FIG. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer of the transmitting side and the physical side of the receiving side.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R0 to R3 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format. It is assumed that information about data transmitted using information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
  • the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel status, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • the LTE-A system which is a standard of the next generation mobile communication system, is expected to support a CoMP (Coordinated Multi Point) transmission method, which was not supported in the existing standard, to improve the data rate.
  • the CoMP transmission scheme refers to a transmission scheme in which two or more base stations or cells cooperate with each other to communicate with a terminal in order to improve communication performance between a terminal and a base station (cell or sector) in a shadow area.
  • CoMP transmission can be divided into CoMP-Joint Processing (CoMP-JP) and CoMP-Coordinated Scheduling / beamforming (CoMP-CS / CB) schemes through data sharing. .
  • CoMP-JP CoMP-Joint Processing
  • CoMP-CS / CB CoMP-Coordinated Scheduling / beamforming
  • the terminal may simultaneously receive data from each base station that performs the CoMP transmission scheme, and combine the received signals from each base station to improve reception performance.
  • Joint Transmission JT
  • one of the base stations performing the CoMP transmission scheme may also consider a method for transmitting data to the terminal at a specific time point (DPS; Dynamic Point Selection).
  • DPS Dynamic Point Selection
  • the UE may receive data through one base station, that is, a serving base station, through beamforming.
  • each base station may simultaneously receive a PUSCH signal from the terminal (Joint Reception; JR).
  • JR Joint Reception
  • cooperative scheduling / beamforming scheme CoMP-CS / CB
  • only one base station receives a PUSCH, where the decision to use the cooperative scheduling / beamforming scheme is determined by the cooperative cells (or base stations). Is determined.
  • each of the base station and the terminal may perform beamforming based on channel state information in order to obtain a multiplexing gain of the MIMO antenna.
  • the base station transmits a reference signal to the terminal in order to obtain the channel state information from the terminal, and instructs to feed back the channel state information measured based on the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • CSI is largely classified into three types of information, such as a rank indicator (RI), a precoding matrix index (PMI), and a channel quality indication (CQI).
  • RI represents rank information of a channel, and means the number of streams that a UE can receive through the same frequency-time resource.
  • PMI is a value reflecting spatial characteristics of a channel and represents a precoding matrix index of a base station preferred by a terminal based on a metric such as SINR.
  • CQI is a value representing the strength of the channel, which means the reception SINR that can be obtained when the base station uses PMI.
  • a reference signal that is known to both the transmitting side and the receiving side together with data is transmitted from the transmitting side to the receiving side for channel measurement.
  • a reference signal informs the modulation technique as well as the channel measurement to play a demodulation process.
  • the reference signal is a dedicated RS (DRS) for a base station and a specific terminal, that is, a common RS or a cell specific RS (CRS), which is a cell-specific reference signal for all UEs in a cell.
  • DRS dedicated RS
  • CRS cell specific RS
  • the cell-specific reference signal includes a reference signal for measuring the CQI / PMI / RI in the terminal to report to the base station, this is referred to as Channel State Information-RS (CSI-RS).
  • CSI-RS Channel State Information-RS
  • the radio section requirement for reliability defines that the probability of sending a packet of y bytes within x msec should be greater than z%. For example, the probability that a 100-byte packet can be transmitted within 1 msec is defined as 99.999% or more.
  • the most difficult point in order to satisfy this requirement is that the radio channel quality itself may be excessively degraded, and thus the capacity of the corresponding channel may not satisfy the above condition.
  • the present invention seeks to solve the above problems by obtaining cell / base station diversity. That is, by transmitting the same data to a plurality of cells / base stations / RP, the terminal can send information to other cells / base stations / RP with a relatively good channel condition even if the radio channel for a particular cell / base station / RP is very degraded To satisfy the reliability requirements.
  • the technique proposed in the present invention is as follows.
  • the UE In uplink transmission, the UE alternately transmits data in a promised order to a plurality of cells / base stations / RPs, that is, performs cell cycling uplink transmission. In the continuous transmission, uplink grant information is signaled to the terminal only once.
  • various methods may be considered in configuring a signal to be transmitted for each cell / base station / RP, and most simply, a method of repeatedly transmitting the same signal to each cell / base station / RP may be considered. That is, a method of sequentially transmitting a signal to which the same channel coding is applied from the same information bit is sequentially transmitted to each cell / base station / RP. Alternatively, after coding at a lower coding rate in proportion to the number of cells / base stations / RPs participating from one information bit, a method of dividing the coded bits into respective cells / base stations / RPs may be considered. These schemes can be divided into extended channel coding and separated channel coding as follows.
  • a channel coding scheme is applied to transmit different parity bits of an encoded codeword to different cells / base stations / RPs so that they can be decoded by one decoder, and can be classified as follows according to whether information bits are repeated.
  • Information bit repetitive channel coding A method of setting information bits in a TB (transport block) to be transmitted to different cells / base stations / RPs and setting parity bits differently.
  • the parity bits of different cells / base stations / RPs may not be duplicated. For example, when there are N cells / base stations / RPs, parity bits generated during encoding are divided into N groups, and each cell / base station / RP uses only parity bits in the groups.
  • the device receiving the signal knows the parity group information transmitted to each cell / base station / RP and can decode the parity bits in TB received by each cell / base station / RP by group.
  • the split channel coding scheme can be classified into a repetition based log likelihood ratio (LLR) combining scheme and a hard value combining technique.
  • LLR log likelihood ratio
  • the device receiving the signal performs the process before decoding independently to obtain the LLR value. Thereafter, the calculated LLR values can be summed and used as an input value of one decoder.
  • hard value combining is a technique in which different cells / base stations / RPs also repeatedly transmit TBs of the same size.
  • TBs received from different cells / base stations / RPs are independently decoded by the corresponding cells / base stations / RPs. If any one of TBs of each cell / base station / RP succeeds in decoding, it is determined that the reception of the signal is successful.
  • the network schedules scheduling information for a plurality of consecutive subframes only once in the first subframe, and uplink in the plurality of consecutive subframes.
  • link transmission a plurality of cells / base stations / RPs participate in transmission.
  • information on whether uplink scheduling for a plurality of consecutive subframes may be provided to the terminal through higher layer signaling such as a MAC layer message or an RRC layer message, or may be delivered to the terminal together with uplink scheduling information. .
  • higher layer signaling such as a MAC layer message or an RRC layer message
  • this information may be omitted.
  • the UE may define not to perform an action for finding an uplink grant, for example, blind decoding, during a subsequent N subframe. .
  • 7 and 8 illustrate examples of scheduling for cell cyclic uplink transmission according to an embodiment of the present invention.
  • FIG. 7 illustrates an example in which resources scheduled in a first subframe continue for a plurality of consecutive subframes
  • FIG. 8 illustrates hopping in accordance with a predetermined rule for resources scheduled in a first subframe during a plurality of consecutive subframes.
  • resource hopping there may be an advantage of having a frequency diversity gain in a situation where channel quality measurement for multiple cells is not sufficiently performed.
  • signaling of hopping may be indicated to the terminal as physical layer or higher layer information.
  • the TDD system is assumed, but the downlink control channel and the uplink data channel may be allocated to different frequency bands in the case of the FDD system.
  • the basic unit for switching uplink transmission to the cell / base station / RPs is assumed as a subframe, but this is not limited.
  • a method of switching uplink transmission in units of a plurality of symbol groups is also possible.
  • FIG. 9 illustrates an example of performing cell cyclic uplink transmission in symbol group units according to an embodiment of the present invention.
  • FIG. 9 illustrates an example of alternately transmitting a plurality of RPs in groups of 3 symbols.
  • a unit time for performing transmission alternately to a cell / base station / RP for example, a subframe in FIGS. 7 and 8 and a 3 symbol unit in FIG. It is called.
  • the terminal in performing cell cyclic uplink transmission according to an embodiment of the present invention, preferably transmits at least one uplink DM-RS (DM-RS) per TU. This is because a cell / base station / RP to be received is different for each TU.
  • DM-RS uplink DM-RS
  • the network signals one or more of the following (a) to (c) to the UE regarding a plurality of cells / base stations / RPs that will participate in uplink data reception. do.
  • the reference signal transmitted to each TU is received in different cells / RPs, physical resource positions (time / frequency) and / or sequences corresponding to different cell / RP IDs may be used. Therefore, in order for the terminal to transmit these reference signals, the information must be signaled.
  • the participating cell / RP ID may be directly transmitted as shown in (a).
  • a scrambling ID of a reference signal may be transmitted, and in this case, the network may inform the UE of scrambling identifier set information of reference signals continuously transmitted in a physical layer or higher layer message. .
  • a predefined cell / RP ID and a scrambling identifier for a reference signal can be used for a cell / RP giving an uplink grant, so that a subsequent reference signal is excluded except for the first TU. Only information about the signals can be signaled.
  • a terminal transmitting a continuous TU may apply different timing advance (TA) values for each TU.
  • TA timing advance
  • the symbol is preferably muted at the TU boundary point. This is because, when the terminal transmits a signal to a base station that exists at physically different distances, uplink time synchronization may be different for each TU.
  • muting when the UE transmits N consecutive TUs, after muting the last symbol of the first TU to (N-1) th TU or the first symbol of the second TU to Nth TU, independent of each TU TA value can be applied.
  • symbol muting may be performed only when a difference between TA values satisfies a specific condition. For example, muting is performed only when the TA value of the subsequent TU is larger than the TA value of the previous TU.
  • the muting operation is variously interpreted as a puncturing operation or a rate matching operation for resource elements corresponding to a symbol corresponding to a specific physical channel, or a transmission skip for a specific physical signal or channel. Can be.
  • FIG. 10 is an example of a muting operation in cell cyclic uplink transmission according to an embodiment of the present invention.
  • FIG. 10 is a case where the TA value in the second TU is larger than the TA value in the first TU, and thus the first symbol of the second TU cannot be transmitted, and it can be seen that the first symbol is muted. If the TA value of the second TU is smaller than the TA value of the first TU, it is not necessary to perform muting.
  • the network provides in advance a base station / cell / RP list capable of performing continuous transmission to the terminal in higher layer signaling, and the terminal receiving the message includes the base station / cell / included in the list.
  • a specific value for transmitting uplink time synchronization by transmitting a specific uplink signal, for example, PRACH or uplink reference signal, to each base station / cell / RP, that is, TA values may be received in advance.
  • a specific uplink signal for example, a PRACH or an uplink reference signal of the terminal
  • the terminal After the terminal accesses a specific base station / cell / RP, the terminal is uplinked to obtain an uplink synchronization setting value for additional base station / cell / RP in the base station / cell / RP.
  • a method of transmitting a link signal and receiving a setting value the method of (B) is a plurality of base station / cell / RP to receive data cyclically when the terminal transmits a specific uplink signal with the corresponding signal
  • the present invention assumes uplink transmission to different base stations / cells / RPs that are physically separated, but this is not limitative.
  • the method of the present invention can be extended by operating each frequency band as an independent logical cell. That is, the present invention can be extended to a technique of cyclically transmitting in a promised order on different carriers to obtain frequency diversity gain, and similarly to different carriers of different base stations / cells / RPs.
  • the present invention is applicable to the case of performing uplink transmission according to a predetermined time unit to different (receive) beams or different panels of the same base station.
  • FIG. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1100 includes a processor 1110, a memory 1120, an RF module 1130, a display module 1140, and a user interface module 1150.
  • the communication device 1100 is illustrated for convenience of description and some modules may be omitted. In addition, the communication device 1100 may further include necessary modules. In addition, some modules in the communication device 1100 may be classified into more granular modules.
  • the processor 1110 is configured to perform an operation according to an embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1110 may refer to the contents described with reference to FIGS. 1 to 10.
  • the memory 1120 is connected to the processor 1110 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1130 is connected to the processor 1110 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1130 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1140 is connected to the processor 1110 and displays various information.
  • the display module 1140 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1150 is connected to the processor 1110 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 상향링크 신호를 송신하는 방법이 개시된다. 구체적으로, 상기 상향링크 신호 송신 방법은, 하나의 서브프레임 내의 제 1 연속적 시간 유닛에서 제 1 상향링크 데이터 신호를 송신하는 단계; 및 상기 하나의 서브프레임 내의 제 2 연속적 시간 유닛에서 제 2 상향링크 데이터 신호를 송신하는 단계를 포함하고, 상기 제 1 연속적 시간 유닛에서 적용되는 제 1 TA (Timing Advance) 값과 상기 제 2 연속적 시간 유닛에서 적용되는 제 2 TA 값은 독립적인 것을 특징으로 한다.

Description

무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 상향링크 신호를 송신하는 방법은, 하나의 서브프레임 내의 제 1 연속적 시간 유닛에서 제 1 상향링크 데이터 신호를 송신하는 단계; 및 상기 하나의 서브프레임 내의 제 2 연속적 시간 유닛에서 제 2 상향링크 데이터 신호를 송신하는 단계를 포함하고, 상기 제 1 연속적 시간 유닛에서 적용되는 제 1 TA (Timing Advance) 값과 상기 제 2 연속적 시간 유닛에서 적용되는 제 2 TA 값은 독립적인 것을 특징으로 한다.
한편, 본 발명의 일 양상인 무선 통신 시스템에서의 수신단은, 복수의 송신단들과 신호를 송수신하기 위한 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는, 하나의 서브프레임 내의 제 1 연속적 시간 유닛에서 제 1 상향링크 데이터 신호를 송신하고, 상기 하나의 서브프레임 내의 제 2 연속적 시간 유닛에서 제 2 상향링크 데이터 신호를 송신하며, 상기 제 1 연속적 시간 유닛에서 적용되는 제 1 TA (Timing Advance) 값과 상기 제 2 연속적 시간 유닛에서 적용되는 제 2 TA 값은 독립적인 것을 특징으로 한다.
바람직하게는, 하나 이상의 송신단으로 소정의 상향링크 신호를 송신하고, 상기 소정의 상향링크 신호에 기반하여 산출된 상기 제 1 TA 값 및 상기 제 2 TA 값을 수신할 수 있다.
바람직하게는, 상기 제 1 연속적 시간 유닛의 마지막 심볼 또는 상기 제 2 연속적 시간 유닛의 첫 번째 심볼은 뮤팅 심볼일 수 있다. 또는, 상기 제 2 TA 값이 상기 제 1 TA 값보다 큰 경우, 상기 제 1 연속적 시간 유닛의 마지막 심볼 또는 상기 제 2 연속적 시간 유닛의 첫 번째 심볼은 뮤팅 심볼로 설정될 수 있다.
추가적으로, 상기 제 1 연속적 시간 유닛에서 상기 제 1 상향링크 데이터 신호 및 상기 제 2 상향링크 데이터 신호를 송신하기 위한 제어 정보를 수신하는 것을 특징으로 한다. 특히, 상기 제어 정보는 상기 제 1 TA 값과 상기 제 2 TA 값에 대한 정보를 포함할 수 있다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 기지국과 단말은 셀 순환 기법을 이용하여 보다 효율적인 상향링크 송수신을 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 7 및 도 8은 본 발명의 실시예에 따라 셀 순환 상향링크 송신을 위한 스케줄링의 예시들을 도시한다.
도 9는 본 발명의 실시예에 따라 셀 순환 상향링크 송신을 심볼 그룹 단위로 수행하는 예를 도시한다.
도 10은 본 발명의 실시예에 따른 셀 순환 상향링크 송신 시 뮤팅 동작의 일 예이다.
도 11은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리 계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리 계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리 계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리 계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R0 내지 R3는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 송신에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송 형식 정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
한편, 차세대 이동통신 시스템의 표준인 LTE-A 시스템에서는 데이터 전송률 향상을 위해 기존 표준에서는 지원되지 않았던 CoMP(Coordinated Multi Point) 전송 방식을 지원할 것으로 예상된다. 여기서, CoMP 전송 방식은 음영 지역에 있는 단말 및 기지국(셀 또는 섹터) 간의 통신성능을 향상시키기 위해 2개 이상의 기지국 혹은 셀이 서로 협력하여 단말과 통신하기 위한 전송 방식을 말한다.
CoMP 전송 방식은 데이터 공유를 통한 협력적 MIMO 형태의 조인트 프로세싱(CoMP-Joint Processing, CoMP-JP) 및 협력 스케줄링/빔포밍(CoMP-Coordinated Scheduling/beamforming, CoMP-CS/CB) 방식으로 구분할 수 있다.
하향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 단말은 CoMP전송 방식을 수행하는 각 기지국으로부터 데이터를 순간적으로 동시에 수신할 수 있으며, 각 기지국으로부터의 수신한 신호를 결합하여 수신 성능을 향상시킬 수 있다 (Joint Transmission; JT). 또한, CoMP전송 방식을 수행하는 기지국들 중 하나가 특정 시점에 상기 단말로 데이터를 전송하는 방법도 고려할 수 있다 (DPS; Dynamic Point Selection). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 단말은 빔포밍을 통해 데이터를 순간적으로 하나의 기지국, 즉 서빙 기지국을 통해서 수신할 수 있다.
상향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 각 기지국은 단말로부터 PUSCH 신호를 동시에 수신할 수 있다 (Joint Reception; JR). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 하나의 기지국만이 PUSCH를 수신하는데 이때 협력 스케줄링/빔포밍 방식을 사용하기로 하는 결정은 협력 셀(혹은 기지국)들에 의해 결정된다.
이하에서는, 채널 상태 정보 (channel state information; CSI) 보고에 관하여 설명한다. 현재 LTE 표준에서는 채널 정보 없이 운용되는 개루프(open-loop) MIMO와 채널 정보에 기반하여 운용되는 폐루프(closed-loop) MIMO 두 가지 송신 방식이 존재한다. 특히, 폐루프 MIMO 에서는 MIMO 안테나의 다중화 이득(multiplexing gain)을 얻기 위해 기지국 및 단말 각각은 채널 상태 정보를 바탕으로 빔포밍을 수행할 수 있다. 기지국은 채널 상태 정보를 단말로부터 얻기 위해, 단말에게 참조 신호를 전송하고, 이에 기반하여 측정한 채널 상태 정보를 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)를 통하여 피드백 하도록 명령한다.
CSI는 RI(Rank Indicator), PMI(Precoding Matrix Index), CQI(Channel Quality Indication) 세가지 정보로 크게 분류된다. 우선, RI는 상술한 바와 같이 채널의 랭크 정보를 나타내며, 단말이 동일 주파수-시간 자원을 통해 수신할 수 있는 스트림의 개수를 의미한다. 또한, RI는 채널의 롱텀 페이딩(long term fading)에 의해 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기로 기지국으로 피드백 된다. 두 번째로, PMI는 채널의 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 단말이 선호하는 기지국의 프리코딩 행렬 인덱스를 나타낸다. 마지막으로, CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
이하에서는, 참조 신호에 관하여 설명한다.
일반적으로 채널 측정을 위하여 데이터와 함께 송신측과 수신측 모두가 이미 알고 있는 참조 신호가 송신측에서 수신측으로 전송된다. 이러한 참조 신호는 채널 측정뿐만 아니라 변조 기법을 알려주어 복조 과정이 수행되도록 하는 역할을 수행한다. 참조 신호는 기지국과 특정 단말을 위한 전용 참조 신호(dedicated RS; DRS), 즉 단말 특정 참조 신호와 셀 내 모든 단말을 위한 셀 특정 참조 신호인 공통 참조 신호(common RS 또는 Cell specific RS; CRS)로 구분된다. 또한, 셀 특정 참조 신호는 단말에서 CQI/PMI/RI 를 측정하여 기지국으로 보고하기 위한 참조 신호를 포함하며, 이를 CSI-RS(Channel State Information-RS)라고 지칭한다.
한편, 현재 셀룰러 시스템은 4세대(4G)를 거쳐 5세대(5G)로 진화하고 있다. 5세대 통신의 활용에 있어서 기존의 스마트폰 기반 모바일 광대역 서비스에 대한 진화뿐만 아니라 헬스케어, 재난 안전, 차량 통신, 공장 제어, 로봇 제어 등과 같은 다양한 IoT (internet of things) 응용 서비스를 지원하기 위한 요구사항이 정의되고 있다. IoT응용 서비스 지원에 있어 기존에 중시되던 데이터 속도보다도 얼마나 짧은 시간 안에 얼마나 신뢰도가 높은 데이터를 전송할 것인지가 더욱 중요해지고 있다. 이러한 유형의 서비스를 3GPP에서는 URLLC(ultra-reliable low latency communication)으로 지칭한다.
URLLC에서는 무선 채널 상태와 관련하여 신뢰도 (reliability)의 확보가 중요시되고 있다. 신뢰도에 대한 무선구간의 요구 사항은 일반적으로 x msec내에 y 바이트의 패킷을 전송할 확률이 z % 이상이어야 함으로 정의한다. 예를 들어, 1 msec 내에 100 바이트의 패킷을 전송할 수 있는 확률이 99.999% 이상이라는 형식으로 정의한다. 이러한 요구 조건을 만족시키기 위해서 가장 어려운 점은 무선 채널 품질 자체가 과도하게 열화 되어 원천적으로 해당 채널의 용량 (capacity)이 상술한 조건을 만족시키지 못하는 경우가 발생할 수 있다는 점이다.
본 발명에서는 셀/기지국 다이버시티 (diversity)를 얻어 상술한 문제점을 해결하고자 한다. 즉, 다수의 셀/기지국/RP로 동일한 데이터를 전송함으로써, 단말은 특정 셀/기지국/RP에 대한 무선 채널이 매우 열화 되더라도 채널 상태가 상대적으로 양호한 다른 셀/기지국/RP로 정보를 보낼 수 있도록 하여 신뢰도 요구 조건을 만족시키고자 한다. 본 발명에서 제안하는 기법은 다음과 같다.
상향링크 송신에 있어 단말은 복수의 셀/기지국/RP들로 약속된 순서로 번갈아 데이터 전송을 수행, 즉 셀 순환 상향링크 송신 (Cell Cycling Uplink Transmission)을 수행한다. 상기 연속적인 전송에 있어 상향링크 스케줄링 정보(uplink grant)는 한번만 단말에게 시그널링되는 특징을 갖는다.
본 기법 적용 시 각 셀/기지국/RP별로 전송할 신호를 구성함에 있어 다양한 방법을 고려할 수 있으며, 가장 단순하게는 동일한 신호를 각 셀/기지국/RP에게 반복 전송하는 방법을 고려할 수 있다. 즉, 동일한 정보 비트로부터 동일한 채널 코딩을 적용한 신호를 각 셀/기지국/RP로 순차적으로 반복 전송하는 방법이다. 혹은 하나의 정보 비트로부터 참여하는 셀/기지국/RP수에 비례하여 더 낮은 코딩 비율로 코딩한 후, 코딩된 비트들을 각 셀/기지국/RP로 나누어 전송하는 방법도 고려할 수 있다. 이러한 방식들을 정리하면 아래와 같이 확장 채널 코딩 (Extended channel coding)과 분할 채널 코딩 (Separated channel coding)으로 구분할 수 있다.
1) 확장 채널 코딩
인코딩된 코드워드의 서로 다른 패리티 비트를 서로 다른 셀/기지국/RP로 전송하여 하나의 디코더에서 복호할 수 있도록 채널 코딩을 적용하는 기법이며, 정보 비트의 반복 여부에 따라 아래와 같이 구분할 수 있다.
(1) 정보 비트 반복 채널 코딩: 서로 다른 셀/기지국/RP로 전송할 TB (transport block)내 정보 비트는 동일하게 설정하고 패리티 비트는 서로 다르게 설정하는 기법이다. 인코딩 시 사용할 패리티 비트를 사전에 지정함으로써 서로 다른 셀/기지국/RP의 패리티 비트는 중복되지 않게 할 수 있다. 일례로, 셀/기지국/RP가 N개인 경우 인코딩 시 발생하는 패리티 비트를 N개의 그룹으로 나누고 각 셀/기지국/RP에서는 그룹내의 패리티 비트만 사용하게 한다. 해당 신호를 수신한 장치는 각 셀/기지국/RP로 전송되는 패리티 그룹 정보를 알고 있으며, 각 셀/기지국/RP에서 수신한 TB내 패리티 비트를 그룹별로 정렬해서 디코딩을 수행할 수 있다.
(2) 정보 비트 미반복 채널 코딩: 서로 다른 셀/기지국/RP에서 TB를 묶어서 하나의 그룹 TB를 만들고 그룹 TB크기에 맞춰서 채널 코딩을 하는 방식이다. 해당 기법은 채널 코딩 이득이 가장 큰 장점과 각 셀/기지국/RP의 TB를 모두 받아야 디코딩이 가능한 단점이 있다.
2) 분할 채널 코딩
분할 채널 코딩 기법은 반복 기반 LLR(log likelihood ratio) 결합 기법과 Hard value combining 기법으로 구분할 수 있다. 전자의 경우 서로 다른 셀/기지국/RP로 동일한 크기의 TB를 반복해서 전송하는 기법이다. 해당 신호를 수신한 장치는 디코딩 이전의 프로세스는 독립적으로 수행하여 LLR 값을 얻는다. 이후, 계산한 LLR값을 합하여 하나의 디코더의 입력값으로 활용할 수 있다.
또한, Hard value combining은 서로 다른 셀/기지국/RP 역시 동일한 크기의 TB를 반복해서 전송하는 기법이다. 또한 서로 다른 셀/기지국/RP에서 수신한 TB는 해당 셀/기지국/RP에서 독립적으로 디코딩하며, 각 셀/기지국/RP의 TB중 하나라도 디코딩에 성공하면 신호의 수신을 성공한 것으로 판단한다.
상술한 셀 순환 상향링크 송신 (Cell Cycling Uplink Transmission)을 위하여, 네트워크는 복수의 연속적인 서브프레임들에 대한 스케줄링 정보를 처음 서브프레임에서 한 번만 스케줄링하며, 상기 복수의 연속적인 서브프레임들에서의 상향링크 송신에 있어 복수의 셀/기지국/RP들이 전송에 참여한다.
이 경우, 복수의 연속적인 서브프레임들에 대한 상향링크 스케줄링 여부에 대한 정보는 MAC 계층 메시지 또는 RRC 계층 메시지와 같은 상위 계층 시그널링을 통하여 단말에게 제공되거나, 상향링크 스케줄링 정보와 함께 단말에게 전달할 수 있다. 혹은 URLLC 정보를 전송할 것이라는 것을 사전에 단말이 알 수 있는 경우 본 정보는 생략될 수도 있다. 추가적으로, 단말은 특정 서브프레임에서 상향링크 그랜트를 수신한 후, 후속하는 연속적인 N 서브프레임 동안은 상향링크 그랜트를 찾기 위한 행위, 예를 들어 블라인드 디코딩 (blind decoding)를 수행하지 않도록 규정할 수 있다.
도 7 및 도 8은 본 발명의 실시예에 따라 셀 순환 상향링크 송신을 위한 스케줄링의 예시들을 도시한다.
특히, 도 7은 첫 서브프레임에서 스케줄링 받은 자원이 연속적인 복수 개의 서브프레임 동안 지속되는 예이고, 도 8은 첫 서브프레임에서 스케줄링 받은 자원이 연속적인 복수 개의 서브프레임 동안 정해진 규칙에 따라 호핑 (hopping)되는 예이다. 자원 호핑이 되는 경우 다중 셀에 대한 채널 품질 측정이 충분히 이뤄지지 않은 상황에서 주파수 다이버시티(diversity) 이득을 더 가질 수 있는 장점이 있을 수 있다. 자원 호핑이 되는 경우와 안 되는 경우를 모두 지원하는 경우 호핑 여부에 대한 시그널링이 물리 계층 혹은 상위 계층 정보로서 단말에게 지시될 수 있다. 본 예에서는 TDD 시스템을 가정하였으나, FDD시스템인 경우에도 하향링크 제어 채널과 상향링크 데이터 채널이 서로 다른 주파수 대역으로 할당되어 동일하게 적용될 수 있다.
위 설명에서는, 셀/기지국/RP들로의 상향링크 송신을 스위칭 (switching)하는 기본 단위를 서브프레임으로 가정하였으나 이는 제한되는 것은 아니다. 일례로, 복수의 심볼 그룹 단위로 상향링크 송신을 스위칭하는 방안도 가능하다.
도 9는 본 발명의 실시예에 따라 셀 순환 상향링크 송신을 심볼 그룹 단위로 수행하는 예를 도시한다. 특히, 도 9는 3 심볼 단위로 묶어서 복수의 RP들로 번갈아 전송하는 예를 도시하고 있다.
이하에서는, 설명의 편의를 위하여 셀/기지국/RP로 번갈아 전송을 수행하는 단위 시간, 예를 들어, 도 7 및 도 8에서의 서브프레임과 도 9에서의 3 심볼 단위 등을 TU (time unit)라고 지칭한다.
특징적으로, 본 발명의 실시예에 따라 셀 순환 상향링크 송신을 수행함에 있어, 단말은 상향링크 DM-RS (demodulation reference signal)을 TU당 적어도 하나 이상 전송하는 것이 바람직하다. 이는 TU별로 수신할 셀/기지국/RP가 다르기 때문이다.
본 발명의 실시예에 따라 셀 순환 상향링크 송신을 수행함에 있어, 네트워크는 상향링크 데이터 수신에 참여할 복수의 셀/기지국/RP에 관하여 다음 (a) 내지 (c) 중 하나 이상의 정보를 단말에게 시그널링한다.
(a) 각 TU에서 수신할 셀/기지국/RP ID 정보
(b) 각 TU에서 수신할 셀/기지국/RP ID에서의 참조 신호의 물리 자원 위치 및/또는 시퀀스 정보
각 TU에 전송되는 참조 신호는 서로 다른 셀/RP에서 수신되므로 서로 다른 셀/RP ID에 해당하는 물리 자원 위치(시간/주파수) 및/또는 시퀀스를 사용할 수 있다. 따라서 단말이 이 참조 신호들을 송신하기 위해서는 상기 정보가 시그널링 되어야 한다. 일례로 (a)과 같이 참여하는 셀/RP ID가 직접적으로 전송될 수 있다. 혹은, (b)와 같이 참조 신호의 스크램블링 식별자 (scrambling ID)가 전송될 수 있고, 이 경우 네트워크는 물리 계층 또는 상위 계층 메시지로 연속적으로 전송되는 참조 신호들의 스크램블링 식별자 집합 정보를 단말에게 알려줄 수 있다.
특히, 첫 번째 TU에서는 상향링크 그랜트를 주는 셀/RP에 대하여서는 사전에 규정된 셀/RP ID와 참조 신호에 대한 스크램블링 식별자를 사용할 수 있으므로, 첫 번째 TU에 대한 정보는 제외하고 후속하는 참조 신호들에 대한 정보만 시그널링할 수 있다.
한편, 본 발명의 실시예에 따른 셀 순환 상향링크 송신에서 연속적인 TU를 전송하는 단말은 TU 별로 서로 다른 TA (timing advance) 값을 적용할 수 있다. 이러한 과정에서 TU 경계 지점에서는 심볼이 뮤팅 (muting)되는 것이 바람직하다. 이는, 단말이 물리적으로 서로 다른 거리에 존재하는 기지국으로 신호를 송신할 때, TU별로 상향링크 시간 동기가 다를 수 있기 때문이다.
예를 들어, 단말이 N개의 연속적인 TU전송 시, 1번째 TU 내지 (N-1)번째TU의 가장 마지막 심볼 혹은 2번째 TU 내지 N번째TU의 가장 첫 번째 심볼을 뮤팅한 후, TU 별로 독립적인 TA 값을 적용할 수 있다. 또는 TA 값의 차이가 특정 조건을 만족할 경우만 심볼 뮤팅을 수행할 수도 있다. 예를 들어, 후속하는 TU의 TA 값이 이전 TU의 TA 값보다 큰 경우에만 뮤팅을 수행한다.
상기 뮤팅 동작은 특정 물리 신호나 채널에 대한 전송 생략, 혹은 특정 물리 채널에 해당 심볼에 해당하는 RE (resource element)들에 대한 펑처링 (puncturing) 동작 혹은 레이트 매칭 (rate matching) 동작으로 다양하게 해석될 수 있다.
도 10은 본 발명의 실시예에 따른 셀 순환 상향링크 송신 시 뮤팅 동작의 일 예이다. 특히, 도 10은 두 번째 TU에서의 TA값이 첫 번째 TU에서의 TA값보다 커서 두 번째 TU의 첫 심볼을 전송할 수 없는 경우로서, 가장 첫 번째 심볼을 뮤팅한 것을 알 수 있다. 만약, 두 번째 TU에서의 TA값이 첫 번째 TU에서의 TA값보다 작다면 굳이 뮤팅을 수행할 필요는 없다.
추가적으로, 본 발명의 실시예에 따른 셀 순환 상향링크 송신에서 셀 간 동기에 관하여도 고려할 필요가 있다.
이를 위하여, (A) 네트워크는 단말에게 연속적인 전송을 수행할 가능성이 있는 기지국/셀/RP 리스트를 상위 계층 시그널링으로 미리 제공하고, 해당 메시지를 수신한 단말은 해당 리스트에 포함된 기지국/셀/RP들로의 연속적인 상향링크 송신을 수행할 경우에 대비해, 각 기지국/셀/RP에 특정 상향링크 신호, 예를 들어PRACH 또는 상향링크 참조 신호 등을 전송하여 상향링크 시간 동기를 맞추기 위한 설정 값, 즉 TA값들을 사전에 수신할 수 있다. 또는, (B) 단말의 특정 상향링크 신호, 예를 들어PRACH 또는 상향링크 참조 신호 등을 복수의 기지국/셀/RP가 수신한 후에, 각각의 상향링크 시간 동기를 맞추기 위한 설정 값들, 즉 TA값들을 단말에 시그널링할 수도 있다.
(A)의 방법의 경우, 단말이 특정 기지국/셀/RP에 접속한 후, 해당 기지국/셀/RP에서 단말이 추가적인 기지국/셀/RP들에 대한 상향링크 동기 설정 값을 획득할 수 있도록 상향링크 신호를 전송하게 하고, 설정 값을 수신하도록 하는 방안이고, (B)의 방법은 단말이 특정 상향링크 신호를 송신 시 순환적으로 데이터를 수신할 복수의 기지국/셀/RP들이 해당 신호를 함께 수신하여 각각 혹은 대표 기지국/셀 (예를 들어, 서빙 셀)을 통해 복수의 상향링크 동기 설정 값을 시그널링하는 방안이다.
본 발명은 물리적으로 떨어진 서로 다른 기지국/셀/RP로의 상향링크 송신을 가정하였으나, 이는 제한되는 것은 아니다. 본 발명은 물리적으로 동일한 위치에서 구현된 기지국에서 다수의 주파수 대역(캐리어)을 운용하는 경우, 각 주파수 대역을 독립된 논리적인 셀로서 동작 시켜 본 발명의 방법을 확장 적용할 수 있다. 즉, 본 발명은 주파수 다이버시티 이득을 얻기 위해, 서로 다른 캐리어에서 약속된 순서로 순환적으로 전송하는 기술로 확장 가능하며, 마찬가지로 서로 다른 기지국/셀/RP의 서로 다른 캐리어로도 확장 가능하다. 또한, 본 발명은 동일 기지국의 서로 다른 (수신) 빔 혹은 서로 다른 패널로 소정의 시간 단위에 따라 상향링크 송신을 수행하는 경우에도 적용 가능하다.
도 11은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 11을 참조하면, 통신 장치(1100)는 프로세서(1110), 메모리(1120), RF 모듈(1130), 디스플레이 모듈(1140) 및 사용자 인터페이스 모듈(1150)을 포함한다.
통신 장치(1100)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1100)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1100)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1110)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1110)의 자세한 동작은 도 1 내지 도 10에 기재된 내용을 참조할 수 있다.
메모리(1120)는 프로세서(1110)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1130)은 프로세서(1110)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1130)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1140)은 프로세서(1110)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1140)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1150)은 프로세서(1110)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서 단말이 상향링크 신호를 송신하는 방법에 있어서,
    하나의 서브프레임 내의 제 1 연속적 시간 유닛에서 제 1 상향링크 데이터 신호를 송신하는 단계; 및
    상기 하나의 서브프레임 내의 제 2 연속적 시간 유닛에서 제 2 상향링크 데이터 신호를 송신하는 단계를 포함하고,
    상기 제 1 연속적 시간 유닛에서 적용되는 제 1 TA (Timing Advance) 값과 상기 제 2 연속적 시간 유닛에서 적용되는 제 2 TA 값은 독립적인 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  2. 제 1 항에 있어서,
    하나 이상의 송신단으로 소정의 상향링크 신호를 송신하는 단계; 및
    상기 소정의 상향링크 신호에 기반하여 산출된 상기 제 1 TA 값 및 상기 제 2 TA 값을 수신하는 단계를 더 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  3. 제 1 항에 있어서,
    상기 제 1 연속적 시간 유닛의 마지막 심볼 또는 상기 제 2 연속적 시간 유닛의 첫 번째 심볼은 뮤팅 심볼인 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  4. 제 1 항에 있어서,
    상기 제 2 TA 값이 상기 제 1 TA 값보다 큰 경우, 상기 제 1 연속적 시간 유닛의 마지막 심볼 또는 상기 제 2 연속적 시간 유닛의 첫 번째 심볼은 뮤팅 심볼로 설정되는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  5. 제 1 항에 있어서,
    상기 제 1 연속적 시간 유닛에서 상기 제 1 상향링크 데이터 신호 및 상기 제 2 상향링크 데이터 신호를 송신하기 위한 제어 정보를 수신하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  6. 제 5 항에 있어서,
    상기 제어 정보는,
    상기 제 1 TA 값과 상기 제 2 TA 값에 대한 정보를 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  7. 무선 통신 시스템에서의 단말으로서,
    복수의 송신단들과 신호를 송수신하기 위한 무선 통신 모듈; 및
    상기 신호를 처리하기 위한 프로세서를 포함하고,
    상기 프로세서는,
    하나의 서브프레임 내의 제 1 연속적 시간 유닛에서 제 1 상향링크 데이터 신호를 송신하고, 상기 하나의 서브프레임 내의 제 2 연속적 시간 유닛에서 제 2 상향링크 데이터 신호를 송신하며,
    상기 제 1 연속적 시간 유닛에서 적용되는 제 1 TA (Timing Advance) 값과 상기 제 2 연속적 시간 유닛에서 적용되는 제 2 TA 값은 독립적인 것을 특징으로 하는,
    단말.
  8. 제 7 항에 있어서,
    상기 프로세서는,
    하나 이상의 송신단으로 소정의 상향링크 신호를 송신하고, 상기 소정의 상향링크 신호에 기반하여 산출된 상기 제 1 TA 값 및 상기 제 2 TA 값을 수신하는 것을 특징으로 하는,
    단말.
  9. 제 7 항에 있어서,
    상기 제 1 연속적 시간 유닛의 마지막 심볼 또는 상기 제 2 연속적 시간 유닛의 첫 번째 심볼은 뮤팅 심볼인 것을 특징으로 하는,
    단말.
  10. 제 7 항에 있어서,
    상기 제 2 TA 값이 상기 제 1 TA 값보다 큰 경우, 상기 제 1 연속적 시간 유닛의 마지막 심볼 또는 상기 제 2 연속적 시간 유닛의 첫 번째 심볼은 뮤팅 심볼로 설정되는 것을 특징으로 하는,
    단말.
  11. 제 7 항에 있어서,
    상기 제 1 연속적 시간 유닛에서 상기 제 1 상향링크 데이터 신호 및 상기 제 2 상향링크 데이터 신호를 송신하기 위한 제어 정보를 수신하는 것을 특징으로 하는,
    단말.
  12. 제 11 항에 있어서,
    상기 제어 정보는,
    상기 제 1 TA 값과 상기 제 2 TA 값에 대한 정보를 포함하는 것을 특징으로 하는,
    단말.
PCT/KR2016/011619 2016-04-12 2016-10-17 무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치 WO2017179781A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/093,128 US11197310B2 (en) 2016-04-12 2016-10-17 Cell cycling uplink transmission method and apparatus therefor in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662321225P 2016-04-12 2016-04-12
US62/321,225 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179781A1 true WO2017179781A1 (ko) 2017-10-19

Family

ID=60042673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011619 WO2017179781A1 (ko) 2016-04-12 2016-10-17 무선 통신 시스템에서 셀 순환 상향링크 송신 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11197310B2 (ko)
WO (1) WO2017179781A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195048A1 (en) * 2012-01-30 2013-08-01 Texas Instruments Incorporated Simultaneous Transmission in Multiple Timing Advance Groups
US20140226607A1 (en) * 2011-09-21 2014-08-14 Nokia Solutions And Networks Oy Apparatus and Method for Communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300424B2 (en) * 2011-04-08 2016-03-29 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals with a terminal in TDD wireless communication system
EP3094140A1 (en) * 2011-05-17 2016-11-16 Interdigital Patent Holdings, Inc. Nodeb power adaption for reducing references
CN108834205B (zh) * 2011-11-04 2021-09-28 交互数字专利控股公司 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置
KR102091607B1 (ko) * 2012-04-29 2020-03-20 엘지전자 주식회사 상향링크 신호 전송 및 수신 방법, 및 이들을 위한 장치
US9578671B2 (en) * 2013-03-15 2017-02-21 Blackberry Limited Establishing multiple connections between a user equipment and wireless access network nodes
US20140370904A1 (en) * 2013-06-12 2014-12-18 Research In Motion Limited Device-to-device discovery
US20160337839A1 (en) * 2014-01-28 2016-11-17 Lg Electronics Inc. Method and apparatus for device-to-device terminal for tranceiving signal in wireless communication system
CN110087303B (zh) * 2014-09-30 2022-07-12 华为技术有限公司 传输定时调整的方法及设备
US10547426B2 (en) * 2016-03-14 2020-01-28 Samsung Electronics Co., Ltd. Transmission of sounding reference signals in communication systems with carrier aggregation
BR112018069878A2 (pt) * 2016-04-01 2019-02-05 Huawei Tech Co Ltd sistema e método para comutação de srs, transmissão e aperfeiçoamentos

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140226607A1 (en) * 2011-09-21 2014-08-14 Nokia Solutions And Networks Oy Apparatus and Method for Communication
US20130195048A1 (en) * 2012-01-30 2013-08-01 Texas Instruments Incorporated Simultaneous Transmission in Multiple Timing Advance Groups

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"PUSCH Design for Shortened TTI", R1-163173 3GPP TSG RAN WG1 MEETING #84BIS, 1 April 2016 (2016-04-01), Busan, Korea, XP051079878 *
CATT: "Design of sPUSCH for Shortened TTI", R] -162299, 3GPP TSG RAN WG1 MEETING #84BIS, 2 April 2016 (2016-04-02), Busan, Korea, XP051080104 *
INTERDIGITAL: "Short TTI PUSCH Design", R 1-162966. 3GPP TSG RAN WG1 MEETING #84BIS, 1 April 2016 (2016-04-01), Busan, Korea, XP051079869 *

Also Published As

Publication number Publication date
US11197310B2 (en) 2021-12-07
US20210185707A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2018182383A1 (ko) 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2016159673A1 (ko) 무선 통신 시스템에서 비면허 대역을 통하여 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017119771A1 (ko) 무선 통신 시스템에서 다중 채널을 이용한 에러 복구 방법 및 이를 위한 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2010117239A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2018186671A1 (ko) 차세대 통신 시스템에서 방송 데이터를 위한 dm-rs 송신 방법 및 이를 위한 장치
WO2012150793A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치
WO2012144763A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
WO2013024997A2 (ko) 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898743

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898743

Country of ref document: EP

Kind code of ref document: A1