WO2017179454A1 - Ceramic-particle-containing composition - Google Patents

Ceramic-particle-containing composition Download PDF

Info

Publication number
WO2017179454A1
WO2017179454A1 PCT/JP2017/013957 JP2017013957W WO2017179454A1 WO 2017179454 A1 WO2017179454 A1 WO 2017179454A1 JP 2017013957 W JP2017013957 W JP 2017013957W WO 2017179454 A1 WO2017179454 A1 WO 2017179454A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ceramic particles
mole
content
composition according
Prior art date
Application number
PCT/JP2017/013957
Other languages
French (fr)
Japanese (ja)
Inventor
博 丸澤
淳 柳原
直晃 阿部
池田 豊
廣瀬 左京
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017179454A1 publication Critical patent/WO2017179454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a ceramic particle-containing composition, and more particularly to a composition containing ceramic particles containing vanadium, insulating ceramic particles, and insulating resin.
  • the cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the equipment. Therefore, such a cooling device is difficult to use especially for thin devices, and is disadvantageous from the viewpoint of downsizing the devices. Moreover, since power is consumed, it is also disadvantageous from the viewpoint of low power consumption (battery life). Furthermore, since such a cooling device has a specific shape, the installation location is limited according to the shape, and for example, it is difficult to install in a location where the surface is uneven.
  • a cooling device formed from a composition for manufacturing a cooling device comprising particles of a ceramic material that absorbs heat by latent heat and an insulating resin (Patent Document 2). reference).
  • a cooling device can be used without a power source and can be designed freely.
  • the cooling device described in Patent Document 2 uses vanadium oxide particles as ceramic material particles that absorb heat by latent heat.
  • vanadium oxide has a tendency to decrease in resistance after phase transition and absorption of heat, and in the cooling device, vanadium oxide particles are joined together to form a path, resulting in low insulation of the composition There is. Therefore, it is not suitable for installation in a place where current can flow.
  • an object of the present invention is to provide a cooling device that can be used without a power source, can be freely designed in accordance with the shape of the installation location, and has high insulation properties.
  • the present inventors include particles of ceramic material, insulating ceramic particles, and insulating resin that absorb heat by latent heat associated with crystal structure phase transition or magnetic phase transition. It has been found that the above problem can be solved by forming a cooling device using the composition comprising the present invention, and the present invention has been achieved.
  • the present invention provides a composition comprising ceramic particles containing vanadium that absorbs heat by latent heat, insulating ceramic particles, and an insulating resin.
  • an arbitrary space can be obtained by using a composition comprising ceramic material particles, insulating ceramic particles, and insulating resin that absorb heat by latent heat accompanying a crystal structure phase transition or a magnetic phase transition.
  • a cooling device can be installed.
  • the cooling device obtained from the composition of this invention has insulation, it can be installed also in the location where an electric current can flow, such as on a circuit board.
  • FIG. 1 is a graph showing a difference in cooling effect depending on the presence or absence of a cooling device in the example.
  • FIG. 2 is a graph showing the relationship between the change rate of the endothermic amount and the integral width in the example.
  • the composition of the present invention includes particles of a ceramic material that absorbs heat by latent heat, particularly a ceramic material containing vanadium.
  • the heat absorption of the ceramic material is performed by absorbing heat by latent heat.
  • Such a ceramic material can smooth the temporal temperature change by temporarily absorbing excess heat by latent heat, and has a high cooling effect compared with conventional cooling devices such as graphite sheets Can be obtained.
  • the ceramic material containing vanadium is preferably a ceramic material mainly composed of vanadium oxide.
  • the ceramic material mainly composed of vanadium oxide means a ceramic material containing V and O, and includes, for example, vanadium dioxide and vanadium dioxide doped with other atoms.
  • the ceramic material containing vanadium is vanadium oxide containing V, Ti and M (wherein M is at least one selected from W, Ta, Mo and Nb),
  • M is at least one selected from W, Ta, Mo and Nb
  • examples include vanadium oxide in which the molar part of M is from 0 to 15 parts by mole, and the molar part of Ti is from 0 to 30 parts by mole when the total of Ti and M is 100 parts by mole. It is done.
  • Ti and M are not essential components, and the mole part of Ti and M may be 0 mole part, that is, not contained.
  • the ceramic material containing vanadium is vanadium oxide
  • the ceramic material containing vanadium is M
  • the ceramic material containing vanadium is Ti-doped vanadium oxide
  • the vanadium oxide is a vanadium oxide doped with Ti. That is, the content mole part of Ti in the vanadium oxide may be greater than 0 and 30 mole parts or less. Doping Ti improves the moisture resistance of vanadium oxide.
  • the content mole part of Ti is preferably 2 mole parts or more and 30 mole parts or less, more preferably 5 mole parts or more and 10 mole parts or less. By making the content mole part of Ti within this range, the moisture resistance is further improved.
  • the molar content of M with respect to the total of 100 molar parts of V, Ti, and M is preferably larger than 0 molar part and 5 molar parts or less.
  • the molar part of M contained with respect to the total of 100 parts by mole of V, Ti and M is preferably larger than 0 part by mole and 15 parts by mole or less.
  • the ceramic material comprising vanadium has the formula: V 1-xy M x Ti y O 2 [Where: M is W, Ta, Mo or Nb, x is 0 or more and 0.15 or less, y is 0 or more and 0.30 or less. ]
  • the vanadium oxide represented by these is mentioned.
  • x in the above formula is greater than 0. That is, the ceramic material containing vanadium is vanadium oxide doped with Ti. Doping Ti improves the moisture resistance of vanadium oxide.
  • X in the above formula is preferably 0.02 or more and 0.30 or less, and more preferably 0.05 or more and 0.10 or less. By setting it as such a range, moisture resistance further improves.
  • y is preferably larger than 0 and not larger than 0.05.
  • y is preferably greater than 0 and 0.15 or less.
  • the temperature at which the ceramic material containing vanadium undergoes phase transition is appropriately selected according to the object to be cooled, the purpose of cooling, and the like.
  • the temperature is 20 to 100 ° C., preferably 40 to 70. It is preferable that the phase transition occurs at ° C.
  • the temperature at which the ceramic material containing vanadium of the present invention undergoes a phase transition is controlled by adding (doping) other atoms and adjusting the amount of the atoms added. Can be adjusted.
  • the ceramic material containing vanadium is used as particles (including powder).
  • the average particle diameter D99 of the ceramic particles containing vanadium used in the present invention is, in particular, although it is not limited, Preferably they are 30 micrometers or more and 120 micrometers or less, More preferably, they are 50 micrometers or more and 110 micrometers or less, More preferably, they are 60 micrometers or more and 100 micrometers or less.
  • the average particle size can be measured using an image analysis type particle size distribution measuring apparatus.
  • the average particle diameter D99 By making the average particle diameter D99 to be 120 ⁇ m or less, the supply of the composition of the present invention with a dispenser is facilitated without problems such as filler sedimentation and nozzle clogging, and the surface of the cooling device obtained from the composition of the present invention Becomes flat. Further, when the average particle diameter D99 is 30 ⁇ m or more, the handling of the particles becomes easy, the fluidity of the composition of the present invention can be maintained, and the surface of the obtained cooling device becomes flat.
  • the present invention also provides ceramic particles containing vanadium having an average particle diameter D99 of 30 ⁇ m or more and 120 ⁇ m or less, preferably 50 ⁇ m or more and 120 ⁇ m or less.
  • the ceramic particles containing vanadium for example, powders of oxides of V, Ti and M as raw materials are prepared, and then the powders are mixed at a predetermined ratio and heat-treated in a nitrogen / hydrogen / water atmosphere. Can be manufactured.
  • the ceramic particles containing vanadium thus obtained may have an average particle size larger than the preferable average particle size. In such a case, a step for obtaining particles having an average particle diameter in the above range from the obtained particles may be included.
  • a step for obtaining particles having an average particle size in the above range from the obtained particles a step of selecting particles having a desired particle size from the obtained particles by classification, mesh pass, or the like.
  • the particles are pulverized by a jet mill or the like to obtain a smaller average particle size.
  • a method of obtaining particles having an average particle diameter in the above range from the obtained particles is a method that does not require pulverization, For example, classification and mesh pass are preferable.
  • Particles selected by classification, mesh pass, etc. can maintain high crystallinity without changing crystallinity before and after selection.
  • the change rate of the integral width in the powder X-ray diffraction analysis may be preferably 8% or less, more preferably 4% or less before and after selection.
  • the selected particles may have an integral width in a powder X-ray diffraction analysis of 0.230 ° or less, preferably 0.220 ° or less. Ceramic particles containing vanadium having such an integral width have high moisture resistance.
  • the present invention also provides ceramic particles containing vanadium having an integral width of 0.230 ° or less in powder X-ray diffraction analysis.
  • the width of the rectangle when the plane index 011 peak as the main peak is converted into a rectangle having the same area as the peak area and the same height as the peak intensity is expressed as follows. Set to "Integral width". The larger the integration width, the greater the variation in the lattice spacing of the crystal and the lower the crystallinity.
  • the surface of the ceramic particle containing vanadium is covered with an insulating layer.
  • the ceramic particles containing vanadium are coated with an insulating material.
  • the insulating material constituting the insulating layer is not particularly limited as long as it is an insulating material, and may be a resin material or an inorganic material.
  • a preferred insulating material is an inorganic material. By using an inorganic material, the moisture resistance is further improved.
  • Examples of the resin used as the insulating material include a fluorine resin, a silicone resin, and a silica resin.
  • Examples of the inorganic substance used as the insulating substance include silicon compounds such as SiO x (x is 1.5 to 2.5, typically SiO 2 ), TiO 2 , Al 2 O 3 , and Cr oxidation. And SiO x is preferably used.
  • the content of the ceramic particles containing vanadium is preferably 30 vol% or more, more preferably 35 vol% or more, and further preferably 40 vol% or more.
  • the content of the ceramic particles containing vanadium is preferably 60 vol% or less, more preferably 50 vol% or less, and further preferably 45 vol% or less.
  • the composition of the present invention further comprises insulating ceramic particles.
  • the ceramic particles containing vanadium tend to decrease in resistance after absorbing heat and undergoing phase transition.
  • Insulation can be reduced.
  • a paste filled with ceramic particles containing vanadium particles having an average particle size D99 of 30 ⁇ m or more and 120 ⁇ m or less, preferably 50 ⁇ m or more and 120 ⁇ m or less
  • the particles are selected during the time until curing after the paste is applied. Therefore, the path is formed on the bottom surface contacting the substrate mounting surface, which may cause a problem of deterioration in insulation.
  • the composition of the present invention can be applied directly to a location where current can flow, such as on a circuit board.
  • the insulating ceramic material constituting the insulating ceramic particles is not particularly limited as long as it is insulative, and examples thereof include glass, metal oxide, metal nitride, and metal carbide.
  • the insulating ceramic material has a resistivity at 25 ° C. of preferably 1 ⁇ 10 6 ⁇ ⁇ cm or more, more preferably 1 ⁇ 10 8 ⁇ ⁇ cm or more, and further preferably 1 ⁇ 10 10 ⁇ ⁇ cm or more. .
  • the insulating ceramic material has thermal conductivity.
  • the insulating ceramic material having such thermal conductivity is preferably 1.0 W / (m ⁇ K) or more, preferably 10 W / (m ⁇ K) or more, more preferably 30 W / (m ⁇ K) or more.
  • the insulating ceramic material has heat dissipation.
  • the cooling characteristics of the cooling device formed from the composition of the present invention are improved.
  • the insulating ceramic material includes alumina (Al 2 O 3 ) and silica (SiO 2 ).
  • the insulating ceramic particles composed of the insulating ceramic material preferably have an average particle diameter (D99) of 50 ⁇ m to 120 ⁇ m, more preferably 60 ⁇ m to 100 ⁇ m.
  • the average particle size of the insulating ceramic particles is preferably about the same as the ceramic particles containing vanadium.
  • Insulating ceramic particles may be used alone or in combination of two or more.
  • the content of the insulating ceramic particles in the composition of the present invention is preferably 10 vol% or more, more preferably 15 vol% or more. By setting the content of the insulating ceramic particles to 10 vol% or more, high insulating properties can be ensured. Further, the content of the insulating ceramic particles is preferably 25 vol% or less, more preferably 20 vol% or less, and still more preferably 18 vol% or less. By setting the content of the insulating ceramic particles to 25 vol% or less, an appropriate viscosity of the composition can be ensured.
  • the content of the insulating ceramic particles in the composition of the present invention is preferably 20 vol% or more, more preferably 25 vol% or more. By setting the content of the insulating ceramic particles to 20 vol% or more, higher thermal conductivity can be ensured.
  • the content of the insulating ceramic particles is preferably 40 vol% or less, more preferably 35 vol% or less. By setting the content of the insulating ceramic particles to 40 vol% or less, the viscosity of the composition can be reduced.
  • the content of the ceramic particles containing vanadium is 30 vol% or more, preferably 30 vol% or more and 50 vol% or less, and the content of the insulating ceramic particles is 10 vol% or more, preferably 10 vol% or more and 20 vol% or less. It is.
  • the content of the ceramic particles containing vanadium is 30 vol% or more, preferably 30 vol% or more and 50 vol% or less, and the content of the insulating ceramic particles is 20 vol% or more and 40 vol% or less.
  • the total content of the ceramic particles containing vanadium and the insulating ceramic particles is preferably 40 vol% or more and 90 vol% or less, more preferably 50 vol% or more and 70 vol% or less.
  • the composition of the present invention further comprises an insulating resin.
  • This insulating resin has fluidity and may be in a liquid or paste form. When it does not have fluidity at room temperature, it may be fluidized, for example, by heating or by adding a solvent.
  • a cooling device can be obtained by providing the composition of the present invention to a predetermined part of an electronic component or an electronic device, where it is cured and / or solidified.
  • the composition of the present invention has a shape corresponding to the part provided by its fluidity, and is substantially cured or solidified in that shape. And become a cooling device. Therefore, by using the composition of the present invention, it is possible to install a cooling device at a location having a fine and complicated shape.
  • the insulating resin is not particularly limited, and for example, various thermosetting resins and thermoplastic resins can be used.
  • thermosetting resin is not particularly limited, and examples thereof include urethane resin, epoxy resin, polyimide resin, silicone resin, fluorine resin, liquid crystal polymer resin, and polyphenyl sulfide resin. These may be used alone or in admixture of two or more.
  • the cooling device manufacturing composition may contain a curing agent, if desired.
  • a curing agent is not particularly limited, and examples thereof include phenol resins, polyamines, and imidazoles.
  • thermoplastic resin is not particularly limited, and examples thereof include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, acrylic resin, nylon, and polyester. These may be used alone or in admixture of two or more.
  • the insulating resin is preferably a low adhesion resin. By using the low-adhesion resin, it becomes easy to remove after installing as a cooling device.
  • the insulating resin to be used can be appropriately selected according to the type and application of the electronic device in which the cooling device is installed using the composition of the present invention.
  • an epoxy resin or polyimide resin having solder heat resistance and high versatility is preferable.
  • a glass such as a phenol novolac type epoxy resin or polyimide resin is used.
  • a resin having a transition temperature of 150 ° C. or higher is preferred.
  • composition of the present invention may further contain a solvent.
  • the solvent can be appropriately selected from general-purpose solvents according to various factors such as the type and amount of the insulating resin used and the properties required for the composition. For example, dipropylene methyl ether acetate, toluene, methyl ethyl ketone Etc. are used.
  • composition of the present invention may further contain additives such as a dispersant, a curing accelerator, and an antifoaming agent.
  • additives such as a dispersant, a curing accelerator, and an antifoaming agent.
  • a dispersing agent, a hardening accelerator, an antifoaming agent, etc. can be suitably selected as needed from what is used in a general polymer composition.
  • composition of the present invention is not particularly limited.
  • the ceramic particles containing vanadium, the insulating ceramic particles, and the insulating resin, and optionally a curing agent, a solvent, an additive, and the like are mixed with a commercially available mixer or the like. Can be manufactured.
  • the viscosity of the composition of the present invention can be selected according to the method of providing the composition to electronic equipment, the shape of the cooling device to be obtained, etc., but preferably 0.5 Pa ⁇ s to 120 Pa ⁇ s, more It may be preferably 1.0 Pa ⁇ s or more and 80 Pa ⁇ s or less, and more preferably 5 Pa ⁇ s or more and 50 Pa ⁇ s or less (E-type viscosity, shear rate 10 s ⁇ 1 ).
  • the viscosity of the composition of the present invention can be adjusted by various methods. For example, adjusting the amount and particle size of ceramic particles to be used, adjusting the type, combination and amount of insulating resin to be used, chemically modifying the insulating resin, adding additives, adding solvents, etc. be able to.
  • the composition of the present invention is provided in a place where it comes into contact with a heat source of an electronic component or an electronic device, or in the vicinity of the heat source, for example, a place affected by heat from the heat source. Since the composition of the present invention can have fluidity as described above, it can be provided on a surface and / or space having a fine and complicated shape. In addition, since the insulating property is high, it can also be provided on a circuit board or the like where current can flow. Therefore, it can also be provided in places that have conventionally been dead spaces.
  • the method for providing the composition of the present invention is not particularly limited, and examples thereof include dispenser application, dispenser injection, screen printing, electrostatic application, inkjet printing, spray spraying, dipping, die coating, blade coating, and the like.
  • composition provided as described above forms a cooling device by curing or solidifying there. Accordingly, the present invention also provides a cooling device manufactured using the composition of the present invention.
  • the cooling device of the present invention obtained by curing or solidifying the composition can have any shape and size.
  • the cooling device of the present invention contains an insulating ceramic, it exhibits high insulating properties.
  • the cooling device of the present invention has a dielectric breakdown voltage of 2 mm, preferably 0.1 kV or more, more preferably 0.5 kV or more, still more preferably 1.0 kV or more, and even more preferably 1.5 kV or more.
  • the surface resistance of the cooling device of the present invention is preferably 10 G ⁇ or more, more preferably 100 G ⁇ or more, and even more preferably 1000 G ⁇ or more.
  • the present invention also provides an electronic component and an electronic apparatus having the cooling device of the present invention.
  • the electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR).
  • IC integrated circuit
  • CPU central processing unit
  • PMIC power management IC
  • PA power amplifier
  • TFT field effect transistors
  • the electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), and a tablet terminal.
  • VWTi powder a powder of V 0.895 W 0.005 Ti 0.1 O 2
  • paste composition 1 The above-obtained V 0.895 W 0.005 Ti 0.1 O 2 powder, Al 2 O 2 powder, and silicone resin were blended in the proportions shown in Table 1 below, and a planetary mixer Were mixed for about 2 hours to obtain paste compositions of the present invention (samples 1 to 8). Thereafter, a cured resin cured at 120 ° C. for 1 hour was prepared, and endothermic and heat dissipation characteristics were evaluated.
  • Viscosity measurement The viscosity of the paste composition obtained above was measured with an E-type viscometer (shear rate 20 s -1 for sample number 5 and shear rate 10 s -1 for sample numbers 6 to 8). The results are shown in Table 1.
  • Samples 4 to 8 having a V 0.895 W 0.005 Ti 0.1 O 2 powder content of 30 vol% or more show an endotherm of 50 J / cm 2 or more, and are useful as a cooling device. It was confirmed that it could be. Further, from the viscosity of the paste compositions of sample numbers 5 to 8, the sample numbers 5 and 6 in which the content of Al 2 O 3 powder is 20.0 vol% have a viscosity of 50 Pa ⁇ s or less, and the substrate It was confirmed that it was preferable in view of the applicability to etc.
  • the paste composition of Sample 5 was applied at a coating thickness of about 0.2 mm around a fixed resistance heater assuming a heat generating component using a dispenser (nozzle inner diameter 250 ⁇ m). Then, it was cured at 120 ° C. for 1 hour to form a cooling device. The fixed resistance heater was operated and the temperature of the fixed resistance surface was measured with a thermocouple to obtain a temperature profile. As a target, a temperature profile was obtained when no cooling device was installed. The results are shown in FIG.
  • Paste compositions (Samples 9 to 12) of the present invention were obtained in the same manner as Samples 5 to 8, except that SiO 2 powder was used in the ratio shown in Table 4 instead of Al 2 O 2 powder.
  • V 0.895 W 0.005 Ti 0.1 O 2 powder obtained in the above synthesis example was controlled by adjusting the classification point by adjusting the classification rotor rotation speed, air flow rate, and raw material supply amount of the classifier. Classification was performed to obtain two kinds of powders having different particle sizes (Samples 18 to 19).
  • the DSC peak endotherm was measured as an initial value for the powder obtained in the synthesis example and the powders of Samples 13 to 19. Next, the powder was allowed to stand for 500 hours in an environment of 85 ° C. and a relative humidity of 85%, and the DSC peak endotherm was measured again to determine the rate of change from the initial value. The results are shown in Table 5. The relationship with the integration width is shown in FIG.
  • the V 0.895 W 0.005 Ti 0.1 O 2 powder has a D99 having a D99 of 120 ⁇ m or more, and a D99 having a D99 of 30 ⁇ m or less has good flatness. There wasn't.
  • D99 is 120 ⁇ m or more, the particle size is too large and the surface becomes rough, and when D99 is 30 ⁇ m or less, the specific surface area becomes large and the fluidity of the paste composition is lowered, so that the surface is considered rough.
  • samples 13 to 15 obtained by physically pulverizing the V 0.895 W 0.005 Ti 0.1 O 2 powder obtained by the heat treatment showed a large endothermic amount in the moisture resistance test. A significant decrease was confirmed. It was confirmed that these powders had an integral width larger than that before pulverization.
  • samples 16 to 19 in which the powders having the optimum particle diameter were selected without pulverizing the V 0.895 W 0.005 Ti 0.1 O 2 powder obtained by the heat treatment showed a slight decrease in the endothermic amount. The integration width was also slightly increased.
  • a composition comprising ceramic particles containing vanadium that absorbs heat by latent heat, insulating ceramic particles, and insulating resin;
  • Aspect 2 The vanadium-containing ceramic particles are vanadium oxide particles containing V, Ti, and M (where M is at least one selected from W, Ta, Mo, and Nb), and the sum of V, Ti, and M
  • Aspect 1 is characterized in that the content mole part of M is from 0 to 15 mole parts, and the content mole part of Ti is from 0 to 30 mole parts, with 100 mole parts being 100 mole parts.
  • the content mole part of Ti when the sum of V, Ti, and M is 100 mole parts is 5 mole parts or more and 10 mole parts or less; Aspect 4.
  • Ceramic particles containing vanadium have the formula: V 1-xy M x Ti y O 2 [Where: M is W, Ta, Mo or Nb, x is 0 or more and 0.15 or less, y is 0 or more and 0.30 or less.
  • composition according to aspect 1 wherein the composition is a particle of vanadium oxide represented by: Aspect 5
  • Aspect 4 The composition according to aspect 4, wherein x is 0.05 or more and 0.10 or less;
  • Aspect 6 The composition according to any one of aspects 1 to 5, wherein the ceramic particles containing vanadium have an average particle diameter D99 of 50 ⁇ m or more and 120 ⁇ m or less;
  • Aspect 7 The composition according to any one of embodiments 1 to 6, wherein the integral width in the powder X-ray diffraction analysis of the ceramic particles containing vanadium is 0.230 ° or less;
  • Aspect 8 The composition according to any one of embodiments 1 to 7, wherein the ceramic particles containing vanadium are covered with an insulating layer;
  • Vanadium oxide particles containing V, Ti and M (where M is at least one selected from W, Ta, Mo and Nb), When the total amount of V, Ti and M is 100 mole parts, the mole content of M is 0 to 15 mole parts, and the mole content of Ti is 0 to 30 mole parts, Vanadium oxide particles having a particle size D99 of 50 ⁇ m or more and 120 ⁇ m or less; Aspect 19 formula: V 1-xy M x Ti y O 2 [Where: M is W, Ta, Mo or Nb, x is 0 or more and 0.15 or less, y is 0 or more and 0.30 or less.
  • Vanadium oxide particles represented by the formula: Vanadium oxide particles having a particle diameter D99 of 50 ⁇ m or more and 120 ⁇ m or less; Aspect 20 Vanadium oxide particles containing V, Ti and M (where M is at least one selected from W, Ta, Mo and Nb), When the total amount of V, Ti and M is 100 mole parts, the mole content of M is 0 to 15 mole parts, and the mole content of Ti is 0 to 30 mole parts, Vanadium oxide particles having an integral width in powder X-ray diffraction analysis of 0.230 ° or less; Aspect 21.
  • V 1-xy M x Ti y O 2 [Where: M is W, Ta, Mo or Nb, x is 0 or more and 0.15 or less, y is 0 or more and 0.30 or less. ]
  • composition of the present invention can be used, for example, to manufacture a cooling device for a small communication terminal in which the problem of countermeasures against heat has become prominent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a composition comprising: a ceramic particle containing vanadium and absorbing heat by latent heat; an insulating ceramic particle; and an insulating resin.

Description

セラミック粒子含有組成物Ceramic particle-containing composition
 本発明は、セラミック粒子含有組成物、より詳しくは、バナジウムを含むセラミック粒子、絶縁性セラミック粒子、および絶縁性樹脂を含む組成物に関する。 The present invention relates to a ceramic particle-containing composition, and more particularly to a composition containing ceramic particles containing vanadium, insulating ceramic particles, and insulating resin.
 近年、小型通信機器の進歩により薄くて軽いスマートフォンやタブレット型端末が広く普及し始めている。このような機器においてもパーソナルコンピューターと同様に高性能化が進められ、それに伴いCPUなどの発熱に関する問題が顕著化している。従って、機器の内部温度を、より高度に制御することが求められている。このような課題に対しては、従来からヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置が知られている(特許文献1を参照)。 In recent years, thin and light smartphones and tablet terminals have begun to spread widely due to the progress of small communication devices. In such devices as well as the personal computer, the performance has been improved, and the problem related to heat generation of the CPU and the like has become conspicuous accordingly. Therefore, it is required to control the internal temperature of the device to a higher degree. Conventionally, a cooling device combining a heat sink and a fan or a Peltier element is known for such problems (see Patent Document 1).
 上記のようなヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置は、構造が比較的複雑であることに加え、機器が大きくなる。従って、このような冷却装置は、特に薄型の機器には使用しにくく、機器の小型化の観点から不利である。また、電力を消費するので、低消費電力(バッテリーの持ち時間)の観点からも不利である。さらに、このような冷却装置は、特定の形状を有していることから、その形状に合わせて設置箇所が限定され、例えば、表面に凹凸があるような場所に設置しづらい。 The cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the equipment. Therefore, such a cooling device is difficult to use especially for thin devices, and is disadvantageous from the viewpoint of downsizing the devices. Moreover, since power is consumed, it is also disadvantageous from the viewpoint of low power consumption (battery life). Furthermore, since such a cooling device has a specific shape, the installation location is limited according to the shape, and for example, it is difficult to install in a location where the surface is uneven.
 上記の問題を解決する冷却デバイスとして、潜熱により熱を吸収するセラミック材料の粒子および絶縁性樹脂を含んで成る冷却デバイス製造用組成物から形成された冷却デバイスが知られている(特許文献2を参照)。このような冷却デバイスは、無電源で使用可能であり、形状を自由に設計できる。 As a cooling device that solves the above problem, there is known a cooling device formed from a composition for manufacturing a cooling device comprising particles of a ceramic material that absorbs heat by latent heat and an insulating resin (Patent Document 2). reference). Such a cooling device can be used without a power source and can be designed freely.
特開2010-223497号公報JP 2010-223497 A 国際公開第2015/118783号International Publication No. 2015/118783
 特許文献2に記載の冷却デバイスは、潜熱により熱を吸収するセラミック材料の粒子として、酸化バナジウム粒子を用いている。しかしながら、酸化バナジウムは、相転移して熱を吸収した後、抵抗値が低下する傾向があり、冷却デバイス中で、酸化バナジウム粒子が連なってパスが形成され、組成物の絶縁性が低くなる場合がある。従って、電流が流れ得る箇所には設置するのに適していない。 The cooling device described in Patent Document 2 uses vanadium oxide particles as ceramic material particles that absorb heat by latent heat. However, vanadium oxide has a tendency to decrease in resistance after phase transition and absorption of heat, and in the cooling device, vanadium oxide particles are joined together to form a path, resulting in low insulation of the composition There is. Therefore, it is not suitable for installation in a place where current can flow.
 従って、本発明の目的は、無電源で使用可能であり、設置箇所の形状に合わせて形状を自由に設計でき、かつ絶縁性の高い冷却デバイスを提供することにある。 Therefore, an object of the present invention is to provide a cooling device that can be used without a power source, can be freely designed in accordance with the shape of the installation location, and has high insulation properties.
 本発明者らは、上記問題を解消すべく鋭意検討した結果、結晶構造相転移や磁気相転移等に伴う潜熱により熱を吸収するセラミック材料の粒子、絶縁性セラミック粒子および絶縁性樹脂を含んで成る組成物を用いて冷却デバイスを形成することにより、上記の問題を解決できることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors include particles of ceramic material, insulating ceramic particles, and insulating resin that absorb heat by latent heat associated with crystal structure phase transition or magnetic phase transition. It has been found that the above problem can be solved by forming a cooling device using the composition comprising the present invention, and the present invention has been achieved.
 本発明は、潜熱により熱を吸収するバナジウムを含むセラミック粒子、絶縁性セラミック粒子、および絶縁性樹脂を含む組成物を提供する。 The present invention provides a composition comprising ceramic particles containing vanadium that absorbs heat by latent heat, insulating ceramic particles, and an insulating resin.
 本発明によれば、結晶構造相転移や磁気相転移等に伴う潜熱により熱を吸収するセラミック材料の粒子、絶縁性セラミック粒子および絶縁性樹脂を含んで成る組成物を用いることにより、任意の空間に冷却デバイスを設置することができる。また、本発明の組成物から得られる冷却デバイスは、絶縁性を有するので、回路基板上など電流が流れ得る箇所にも設置することができる。 According to the present invention, an arbitrary space can be obtained by using a composition comprising ceramic material particles, insulating ceramic particles, and insulating resin that absorb heat by latent heat accompanying a crystal structure phase transition or a magnetic phase transition. A cooling device can be installed. Moreover, since the cooling device obtained from the composition of this invention has insulation, it can be installed also in the location where an electric current can flow, such as on a circuit board.
図1は、実施例における冷却デバイスの有無による冷却効果の違いを示すグラフである。FIG. 1 is a graph showing a difference in cooling effect depending on the presence or absence of a cooling device in the example. 図2は、実施例における吸熱量の変化率と積分幅の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the change rate of the endothermic amount and the integral width in the example.
 本発明の組成物は、潜熱により熱を吸収するセラミック材料、特にバナジウムを含むセラミック材料の粒子を含む。このセラミック材料の熱の吸収は、潜熱により熱を吸収することにより行われる。このようなセラミック材料は、過剰な熱を潜熱により一時的に吸収することにより、時間的な温度変化を平滑化することができ、グラファイトシートのような従来の冷却デバイスと比較して高い冷却効果を得ることが可能になる。 The composition of the present invention includes particles of a ceramic material that absorbs heat by latent heat, particularly a ceramic material containing vanadium. The heat absorption of the ceramic material is performed by absorbing heat by latent heat. Such a ceramic material can smooth the temporal temperature change by temporarily absorbing excess heat by latent heat, and has a high cooling effect compared with conventional cooling devices such as graphite sheets Can be obtained.
 上記バナジウムを含むセラミック材料としては、酸化バナジウムを主成分とするセラミック材料が好ましい。ここに、酸化バナジウムを主成分とするセラミック材料とは、VおよびOを含んだセラミック材料を意味し、例えば二酸化バナジウムおよび、他の原子がドープされた二酸化バナジウムを含む。 The ceramic material containing vanadium is preferably a ceramic material mainly composed of vanadium oxide. Here, the ceramic material mainly composed of vanadium oxide means a ceramic material containing V and O, and includes, for example, vanadium dioxide and vanadium dioxide doped with other atoms.
 一の態様において、バナジウムを含むセラミック材料としては、V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウムであって、V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下である酸化バナジウムが挙げられる。尚、TiおよびMは必須成分ではなく、TiおよびMの含有モル部は0モル部、即ち含まれていなくてもよい。例えば、TiおよびMの含有モル部が0モル部である場合、バナジウムを含むセラミック材料は酸化バナジウムであり;Tiの含有モル部のみが0モル部である場合、バナジウムを含むセラミック材料はMがドープされた酸化バナジウムであり;Mの含有モル部のみが0モル部である場合、バナジウムを含むセラミック材料はTiがドープされた酸化バナジウムである。 In one embodiment, the ceramic material containing vanadium is vanadium oxide containing V, Ti and M (wherein M is at least one selected from W, Ta, Mo and Nb), Examples include vanadium oxide in which the molar part of M is from 0 to 15 parts by mole, and the molar part of Ti is from 0 to 30 parts by mole when the total of Ti and M is 100 parts by mole. It is done. Note that Ti and M are not essential components, and the mole part of Ti and M may be 0 mole part, that is, not contained. For example, when the mole content of Ti and M is 0 mole part, the ceramic material containing vanadium is vanadium oxide; when only the mole content of Ti is 0 mole part, the ceramic material containing vanadium is M If the only M-containing mole part is 0 mole part, the ceramic material containing vanadium is Ti-doped vanadium oxide.
 好ましい態様において、上記酸化バナジウムは、Tiがドープされた酸化バナジウムである。即ち、上記酸化バナジウムにおけるTiの含有モル部は、0より大きく30モル部以下であり得る。Tiをドープすることにより、酸化バナジウムの耐湿性が向上する。 In a preferred embodiment, the vanadium oxide is a vanadium oxide doped with Ti. That is, the content mole part of Ti in the vanadium oxide may be greater than 0 and 30 mole parts or less. Doping Ti improves the moisture resistance of vanadium oxide.
 上記Tiがドープされた酸化バナジウムにおいて、Tiの含有モル部は、好ましくは2モル部以上30モル部以下、より好ましくは5モル部以上10モル部以下である。Tiの含有モル部をこの範囲とすることにより、さらに耐湿性が向上する。 In the above-described vanadium oxide doped with Ti, the content mole part of Ti is preferably 2 mole parts or more and 30 mole parts or less, more preferably 5 mole parts or more and 10 mole parts or less. By making the content mole part of Ti within this range, the moisture resistance is further improved.
 上記の態様において、MがWである場合、V、TiおよびMの合計100モル部に対する、Mの含有モル部は、好ましくは0モル部より大きく5モル部以下である。 In the above aspect, when M is W, the molar content of M with respect to the total of 100 molar parts of V, Ti, and M is preferably larger than 0 molar part and 5 molar parts or less.
 上記の態様において、MがTa、MoまたはNbである場合、V、TiおよびMの合計100モル部に対する、Mの含有モル部は、好ましくは0モル部より大きく15モル部以下である。 In the above embodiment, when M is Ta, Mo or Nb, the molar part of M contained with respect to the total of 100 parts by mole of V, Ti and M is preferably larger than 0 part by mole and 15 parts by mole or less.
 一の態様において、バナジウムを含むセラミック材料としては、式:
   V1-x-yTi
[式中:
 Mは、W、Ta、MoまたはNbであり、
 xは、0以上0.15以下であり、
 yは、0以上0.30以下である。]
で表される酸化バナジウムが挙げられる。
In one embodiment, the ceramic material comprising vanadium has the formula:
V 1-xy M x Ti y O 2
[Where:
M is W, Ta, Mo or Nb,
x is 0 or more and 0.15 or less,
y is 0 or more and 0.30 or less. ]
The vanadium oxide represented by these is mentioned.
 好ましい態様において、上記式におけるxは0より大きい。即ち、バナジウムを含むセラミック材料は、Tiがドープされた酸化バナジウムである。Tiをドープすることにより、酸化バナジウムの耐湿性が向上する。 In a preferred embodiment, x in the above formula is greater than 0. That is, the ceramic material containing vanadium is vanadium oxide doped with Ti. Doping Ti improves the moisture resistance of vanadium oxide.
 上記式におけるxは、好ましくは0.02以上0.30以下であり、より好ましくは、0.05以上0.10以下である。このような範囲とすることにより、さらに耐湿性が向上する。 X in the above formula is preferably 0.02 or more and 0.30 or less, and more preferably 0.05 or more and 0.10 or less. By setting it as such a range, moisture resistance further improves.
 上記の態様において、MがWである場合、yは、好ましくは0より大きく0.05以下である。 In the above embodiment, when M is W, y is preferably larger than 0 and not larger than 0.05.
 上記の態様において、MがTa、MoまたはNbである場合、yは、好ましくは0より大きく0.15以下である。 In the above embodiment, when M is Ta, Mo or Nb, y is preferably greater than 0 and 0.15 or less.
 上記バナジウムを含むセラミック材料が相転移する温度は、冷却対象物、冷却目的などに応じて適宜選択され、例えば冷却対象物がCPUである場合、昇温時20~100℃、好ましくは40~70℃で相転移することが好ましい。上記本発明のバナジウムを含むセラミック材料が相転移する温度、即ち、このバナジウムを含むセラミック材料が潜熱を示す温度は、他の原子を添加(ドープ)し、その原子の添加量を調節することにより調整することができる。 The temperature at which the ceramic material containing vanadium undergoes phase transition is appropriately selected according to the object to be cooled, the purpose of cooling, and the like. For example, when the object to be cooled is a CPU, the temperature is 20 to 100 ° C., preferably 40 to 70. It is preferable that the phase transition occurs at ° C. The temperature at which the ceramic material containing vanadium of the present invention undergoes a phase transition, that is, the temperature at which the ceramic material containing vanadium exhibits latent heat is controlled by adding (doping) other atoms and adjusting the amount of the atoms added. Can be adjusted.
 本発明において、上記バナジウムを含むセラミック材料は、粒子(粉末を含む)として用いられる。本発明で用いられるバナジウムを含むセラミック粒子の平均粒径D99(体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が99%となる点の粒径)は、特に限定されないが、好ましくは30μm以上120μm以下、より好ましくは50μm以上110μm以下、さらに好ましくは60μm以上100μm以下である。かかる平均粒径は、画像解析式粒子径分布測定装置を用いて測定することができる。平均粒径D99を120μm以下とすることにより、本発明の組成物のディスペンサでの供給が、フィラー沈降およびノズル詰まり等の課題もなく容易になり、本発明の組成物から得られる冷却デバイスの表面が平坦になる。また、平均粒径D99を30μm以上とすることにより、粒子の取り扱いが容易になり、また、本発明の組成物の流動性を保持することができ、得られる冷却デバイスの表面が平坦になる。 In the present invention, the ceramic material containing vanadium is used as particles (including powder). The average particle diameter D99 of the ceramic particles containing vanadium used in the present invention (the particle diameter at the point where the cumulative value is 99% in the cumulative curve where the particle size distribution is obtained on a volume basis and the total volume is 100%) is, in particular, Although it is not limited, Preferably they are 30 micrometers or more and 120 micrometers or less, More preferably, they are 50 micrometers or more and 110 micrometers or less, More preferably, they are 60 micrometers or more and 100 micrometers or less. The average particle size can be measured using an image analysis type particle size distribution measuring apparatus. By making the average particle diameter D99 to be 120 μm or less, the supply of the composition of the present invention with a dispenser is facilitated without problems such as filler sedimentation and nozzle clogging, and the surface of the cooling device obtained from the composition of the present invention Becomes flat. Further, when the average particle diameter D99 is 30 μm or more, the handling of the particles becomes easy, the fluidity of the composition of the present invention can be maintained, and the surface of the obtained cooling device becomes flat.
 従って、本発明は、平均粒径D99が、30μm以上120μm以下、好ましくは50μm以上120μm以下である上記バナジウムを含むセラミック粒子をも提供する。 Therefore, the present invention also provides ceramic particles containing vanadium having an average particle diameter D99 of 30 μm or more and 120 μm or less, preferably 50 μm or more and 120 μm or less.
 上記バナジウムを含むセラミック粒子は、例えば、原料としてのV、TiおよびMの酸化物の粉末を準備し、次いで、この粉末を所定の割合で混合し、窒素/水素/水雰囲気下で熱処理することにより製造することができる。このようにして得られたバナジウムを含むセラミック粒子は、上記の好ましい平均粒径よりも大きい平均粒径を有する場合がある。このような場合には、得られた粒子から、上記の範囲の平均粒径を有する粒子を得るための工程が含まれていてもよい。 For the ceramic particles containing vanadium, for example, powders of oxides of V, Ti and M as raw materials are prepared, and then the powders are mixed at a predetermined ratio and heat-treated in a nitrogen / hydrogen / water atmosphere. Can be manufactured. The ceramic particles containing vanadium thus obtained may have an average particle size larger than the preferable average particle size. In such a case, a step for obtaining particles having an average particle diameter in the above range from the obtained particles may be included.
 得られた粒子から上記の範囲の平均粒径を有する粒子を得るための工程としては、分級、メッシュパス等により、得られた粒子から所望の粒径のものを選り分ける工程、または、得られた粒子を、ジェットミル等により粉砕して、より小さい平均粒径とする工程が挙げられる。粉砕を行うと、粒子の結晶構造が一部破壊され、耐湿性が低下し得ることから、得られた粒子から上記の範囲の平均粒径を有する粒子を得る方法は、粉砕を要しない方法、例えば分級、メッシュパス等が好ましい。 As a step for obtaining particles having an average particle size in the above range from the obtained particles, a step of selecting particles having a desired particle size from the obtained particles by classification, mesh pass, or the like. The particles are pulverized by a jet mill or the like to obtain a smaller average particle size. When the pulverization is performed, the crystal structure of the particles is partly destroyed and the moisture resistance may be reduced. Therefore, a method of obtaining particles having an average particle diameter in the above range from the obtained particles is a method that does not require pulverization, For example, classification and mesh pass are preferable.
 分級、メッシュパス等により選り分けられた粒子は、選り分け前後で結晶性が変化せず、高い結晶性を維持することができる。例えば、粉末X線回折分析における積分幅の変化率が、選り分け前後で、好ましくは8%以下、より好ましくは4%以下であり得る。具体的には、選り分けられた粒子は、粉末X線回折分析における積分幅が、0.230°以下、好ましくは0.220°以下であり得る。このような積分幅を有するバナジウムを含むセラミック粒子は、高い耐湿性を有する。 Particles selected by classification, mesh pass, etc. can maintain high crystallinity without changing crystallinity before and after selection. For example, the change rate of the integral width in the powder X-ray diffraction analysis may be preferably 8% or less, more preferably 4% or less before and after selection. Specifically, the selected particles may have an integral width in a powder X-ray diffraction analysis of 0.230 ° or less, preferably 0.220 ° or less. Ceramic particles containing vanadium having such an integral width have high moisture resistance.
 従って、本発明は、粉末X線回折分析における積分幅が、0.230°以下である上記バナジウムを含むセラミック粒子をも提供する。 Therefore, the present invention also provides ceramic particles containing vanadium having an integral width of 0.230 ° or less in powder X-ray diffraction analysis.
 ここに、本明細書において、メインピークである面指数011ピークを、そのピーク面積と同じ面積を有し、そのピーク強度の高さと同じ高さを有する長方形に変換した場合の、長方形の幅を「積分幅」とする。積分幅が大きいほど結晶の格子面間隔のばらつきが大きく、結晶性が低くなる。 Here, in this specification, the width of the rectangle when the plane index 011 peak as the main peak is converted into a rectangle having the same area as the peak area and the same height as the peak intensity is expressed as follows. Set to "Integral width". The larger the integration width, the greater the variation in the lattice spacing of the crystal and the lower the crystallinity.
 好ましい態様において、上記バナジウムを含むセラミック粒子は、その表面が絶縁層により被覆されている。換言すれば、バナジウムを含むセラミック粒子は、絶縁性材料によりコーティングされている。このようにバナジウムを含むセラミック粒子を絶縁性材料により被覆することにより、より絶縁性が向上し、また、完全に被覆した場合には耐湿性が向上する。 In a preferred embodiment, the surface of the ceramic particle containing vanadium is covered with an insulating layer. In other words, the ceramic particles containing vanadium are coated with an insulating material. Thus, by covering the ceramic particles containing vanadium with an insulating material, the insulating properties are further improved, and when completely covered, the moisture resistance is improved.
 上記絶縁層を構成する絶縁性材料としては、絶縁性を有する材料であれば特に限定されず、樹脂材料であっても、無機材料であってもよい。好ましい絶縁性材料は、無機材料である。無機材料を用いることにより、より耐湿性が向上する。 The insulating material constituting the insulating layer is not particularly limited as long as it is an insulating material, and may be a resin material or an inorganic material. A preferred insulating material is an inorganic material. By using an inorganic material, the moisture resistance is further improved.
 上記絶縁性材料として用いられる樹脂としては、例えば、フッ素樹脂、シリコーン樹脂、シリカ樹脂などが挙げられる。 Examples of the resin used as the insulating material include a fluorine resin, a silicone resin, and a silica resin.
 上記絶縁性物質として用いられる無機物としては、例えば、ケイ素系化合物、例えばSiO(xは1.5以上2.5以下、代表的にはSiO)、TiO、Al、Cr酸化物が挙げられ、好ましくはSiOが用いられる。 Examples of the inorganic substance used as the insulating substance include silicon compounds such as SiO x (x is 1.5 to 2.5, typically SiO 2 ), TiO 2 , Al 2 O 3 , and Cr oxidation. And SiO x is preferably used.
 本発明の組成物において、バナジウムを含むセラミック粒子の含有量は、好ましくは30vol%以上、より好ましくは35vol%以上、さらに好ましくは40vol%以上である。バナジウムを含むセラミック粒子の含有量を30vol%以上とすることにより、高い潜熱量を確保することができる。また、バナジウムを含むセラミック粒子の含有量は、好ましくは60vol%以下、より好ましくは50vol%以下、さらに好ましくは45vol%以下である。バナジウムを含むセラミック粒子の含有量を60vol%以下とすることにより、組成物の適正な粘度を確保することができる。 In the composition of the present invention, the content of the ceramic particles containing vanadium is preferably 30 vol% or more, more preferably 35 vol% or more, and further preferably 40 vol% or more. By setting the content of the ceramic particles containing vanadium to 30 vol% or more, a high latent heat amount can be secured. The content of the ceramic particles containing vanadium is preferably 60 vol% or less, more preferably 50 vol% or less, and further preferably 45 vol% or less. By setting the content of the ceramic particles containing vanadium to 60 vol% or less, an appropriate viscosity of the composition can be ensured.
 本発明の組成物は、さらに、絶縁性セラミック粒子を含んで成る。上記のバナジウムを含むセラミック粒子は、熱を吸収して相転移した後、抵抗値が低下する傾向があり、組成物中で、このバナジウムを含むセラミック粒子が連なってパスを形成すると、組成物の絶縁性が低くなり得る。特に、当該バナジウムを含むセラミック粒子(平均粒径D99が、30μm以上120μm以下、好ましくは50μm以上120μm以下の粒子)を単体で充填したペーストでは、ペースト塗布後の硬化までの時間に上記粒子が選択的に沈降し、基板実装面に接する底面において、上記パスが形成され、絶縁性の低下の不具合が生じ得る。しかしながら、組成物中に絶縁性セラミック粒子を含ませた場合、絶縁性セラミック粒子が、バナジウムを含むセラミック粒子の間に存在することにより、バナジウムを含むセラミック粒子のパスの形成が抑制される。その結果、組成物の絶縁性、ひいてはこの組成物から形成される冷却デバイスの絶縁性が向上する。従って、本発明の組成物は、回路基板上などの電流が流れ得る箇所に直接適用することができる。 The composition of the present invention further comprises insulating ceramic particles. The ceramic particles containing vanadium tend to decrease in resistance after absorbing heat and undergoing phase transition. In the composition, when the ceramic particles containing vanadium are connected to form a path, Insulation can be reduced. In particular, in a paste filled with ceramic particles containing vanadium (particles having an average particle size D99 of 30 μm or more and 120 μm or less, preferably 50 μm or more and 120 μm or less), the particles are selected during the time until curing after the paste is applied. Therefore, the path is formed on the bottom surface contacting the substrate mounting surface, which may cause a problem of deterioration in insulation. However, when the insulating ceramic particles are included in the composition, the presence of the insulating ceramic particles between the ceramic particles containing vanadium suppresses the formation of a path of the ceramic particles containing vanadium. As a result, the insulating property of the composition, and thus the insulating property of the cooling device formed from this composition is improved. Therefore, the composition of the present invention can be applied directly to a location where current can flow, such as on a circuit board.
 上記絶縁性セラミック粒子を構成する絶縁性セラミック材料としては、絶縁性であれば特に限定されず、例えば、ガラス、金属酸化物、金属窒化物、金属炭化物などが挙げられる。 The insulating ceramic material constituting the insulating ceramic particles is not particularly limited as long as it is insulative, and examples thereof include glass, metal oxide, metal nitride, and metal carbide.
 上記絶縁性セラミック材料は、25℃で、好ましくは1×10Ω・cm以上、より好ましくは1×10Ω・cm以上、さらに好ましくは1×1010Ω・cm以上の抵抗率を有する。 The insulating ceramic material has a resistivity at 25 ° C. of preferably 1 × 10 6 Ω · cm or more, more preferably 1 × 10 8 Ω · cm or more, and further preferably 1 × 10 10 Ω · cm or more. .
 好ましい態様において、上記絶縁性セラミック材料は、熱伝導性を有する。このような熱伝導性を有する絶縁性セラミック材料は、好ましくは1.0W/(m・K)以上、好ましくは10W/(m・K)以上、より好ましくは30W/(m・K)以上の熱伝導率を有する。 In a preferred embodiment, the insulating ceramic material has thermal conductivity. The insulating ceramic material having such thermal conductivity is preferably 1.0 W / (m · K) or more, preferably 10 W / (m · K) or more, more preferably 30 W / (m · K) or more. Has thermal conductivity.
 好ましい態様において、上記絶縁性セラミック材料は、放熱性を有する。放熱性を有する絶縁性セラミック材料を用いることにより、本発明の組成物から形成された冷却デバイスの冷却特性が向上する。 In a preferred embodiment, the insulating ceramic material has heat dissipation. By using the insulating ceramic material having heat dissipation, the cooling characteristics of the cooling device formed from the composition of the present invention are improved.
 好ましい態様において、上記絶縁性セラミック材料としては、アルミナ(Al)、シリカ(SiO)が挙げられる。 In a preferred embodiment, the insulating ceramic material includes alumina (Al 2 O 3 ) and silica (SiO 2 ).
 好ましい態様において、上記絶縁性セラミック材料から構成される絶縁性セラミック粒子は、好ましくは50μm以上120μm以下、より好ましくは60μm以上100μm以下の平均粒径(D99)を有する。絶縁性セラミック粒子の平均粒径は、バナジウムを含むセラミック粒子と同程度であることが好ましい。 In a preferred embodiment, the insulating ceramic particles composed of the insulating ceramic material preferably have an average particle diameter (D99) of 50 μm to 120 μm, more preferably 60 μm to 100 μm. The average particle size of the insulating ceramic particles is preferably about the same as the ceramic particles containing vanadium.
 絶縁性セラミック粒子は、1種のみを用いても、2種以上を組み合わせて用いてもよい。 Insulating ceramic particles may be used alone or in combination of two or more.
 一の態様において、本発明の組成物中の絶縁性セラミック粒子の含有量は、好ましくは10vol%以上、より好ましくは15vol%以上である。絶縁性セラミック粒子の含有量を10vol%以上とすることにより、高い絶縁性を確保することができる。また、絶縁性セラミック粒子の含有量は、好ましくは25vol%以下、より好ましくは20vol%以下、さらに好ましくは18vol%以下である。絶縁性セラミック粒子の含有量を25vol%以下とすることにより、組成物の適正な粘度を確保することができる。 In one embodiment, the content of the insulating ceramic particles in the composition of the present invention is preferably 10 vol% or more, more preferably 15 vol% or more. By setting the content of the insulating ceramic particles to 10 vol% or more, high insulating properties can be ensured. Further, the content of the insulating ceramic particles is preferably 25 vol% or less, more preferably 20 vol% or less, and still more preferably 18 vol% or less. By setting the content of the insulating ceramic particles to 25 vol% or less, an appropriate viscosity of the composition can be ensured.
 別の態様において、本発明の組成物中の絶縁性セラミック粒子の含有量は、好ましくは20vol%以上、より好ましくは25vol%以上である。絶縁性セラミック粒子の含有量を20vol%以上とすることにより、より高い熱伝導性を確保することができる。また、絶縁性セラミック粒子の含有量は、好ましくは40vol%以下、より好ましくは35vol%以下である。絶縁性セラミック粒子の含有量を40vol%以下とすることにより、組成物の粘度を小さくすることができる。 In another embodiment, the content of the insulating ceramic particles in the composition of the present invention is preferably 20 vol% or more, more preferably 25 vol% or more. By setting the content of the insulating ceramic particles to 20 vol% or more, higher thermal conductivity can be ensured. The content of the insulating ceramic particles is preferably 40 vol% or less, more preferably 35 vol% or less. By setting the content of the insulating ceramic particles to 40 vol% or less, the viscosity of the composition can be reduced.
 好ましい態様において、バナジウムを含むセラミック粒子の含有量は、30vol%以上、好ましくは30vol%以上50vol%以下であり、絶縁性セラミック粒子の含有量は、10vol%以上、好ましくは10vol%以上20vol%以下である。 In a preferred embodiment, the content of the ceramic particles containing vanadium is 30 vol% or more, preferably 30 vol% or more and 50 vol% or less, and the content of the insulating ceramic particles is 10 vol% or more, preferably 10 vol% or more and 20 vol% or less. It is.
 別の好ましい態様において、バナジウムを含むセラミック粒子の含有量は、30vol%以上、好ましくは30vol%以上50vol%以下であり、絶縁性セラミック粒子の含有量は、20vol%以上40vol%以下である。 In another preferred embodiment, the content of the ceramic particles containing vanadium is 30 vol% or more, preferably 30 vol% or more and 50 vol% or less, and the content of the insulating ceramic particles is 20 vol% or more and 40 vol% or less.
 バナジウムを含むセラミック粒子および絶縁性セラミック粒子の合計含有量は、好ましくは40vol%以上90vol%以下、より好ましくは50vol%以上70vol%以下である。 The total content of the ceramic particles containing vanadium and the insulating ceramic particles is preferably 40 vol% or more and 90 vol% or less, more preferably 50 vol% or more and 70 vol% or less.
 本発明の組成物は、さらに、絶縁性樹脂を含んで成る。この絶縁性樹脂は、流動性を有し、液状またはペースト状の形態であり得る。常温下で流動性を有しない場合、例えば、加熱することにより、あるいは溶剤を添加することにより流動性を持たせてもよい。本発明の組成物を、電子部品または電子機器の所定の箇所に提供し、そこで硬化および/または固化させることにより冷却デバイスが得ることができる。本発明の組成物を電子部品または電子機器の所定の箇所に提供した場合、本発明の組成物は、その流動性により提供される箇所に応じた形状となり、実質的にその形状で硬化または固化して冷却デバイスとなる。従って、本発明の組成物を用いることにより、微細で複雑な形状を有する箇所にも、冷却デバイスを設置することが可能になる。 The composition of the present invention further comprises an insulating resin. This insulating resin has fluidity and may be in a liquid or paste form. When it does not have fluidity at room temperature, it may be fluidized, for example, by heating or by adding a solvent. A cooling device can be obtained by providing the composition of the present invention to a predetermined part of an electronic component or an electronic device, where it is cured and / or solidified. When the composition of the present invention is provided to a predetermined part of an electronic component or electronic device, the composition of the present invention has a shape corresponding to the part provided by its fluidity, and is substantially cured or solidified in that shape. And become a cooling device. Therefore, by using the composition of the present invention, it is possible to install a cooling device at a location having a fine and complicated shape.
 上記絶縁性樹脂としては、特に限定されず、例えば、種々の熱硬化性樹脂および熱可塑性樹脂を用いることができる。 The insulating resin is not particularly limited, and for example, various thermosetting resins and thermoplastic resins can be used.
 上記熱硬化性樹脂としては、特に限定されないが、例えば、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フッ素樹脂、液晶ポリマー樹脂およびポリフェニルサルファイド樹脂が挙げられる。これらは、単独で用いてもよく、または2種以上を混合して用いてもよい。 The thermosetting resin is not particularly limited, and examples thereof include urethane resin, epoxy resin, polyimide resin, silicone resin, fluorine resin, liquid crystal polymer resin, and polyphenyl sulfide resin. These may be used alone or in admixture of two or more.
 絶縁性樹脂として熱硬化性樹脂を用いる場合、所望により、冷却デバイス製造用組成物は、硬化剤を含んでいてもよい。かかる硬化剤としては、特に限定されないが、例えば、フェノール樹脂、ポリアミン、およびイミダゾールが挙げられる。 When a thermosetting resin is used as the insulating resin, the cooling device manufacturing composition may contain a curing agent, if desired. Such a curing agent is not particularly limited, and examples thereof include phenol resins, polyamines, and imidazoles.
 上記熱可塑性樹脂としては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、ナイロンおよびポリエステルが挙げられる。これらは、単独で用いてもよく、または2種以上を混合して用いてもよい。 The thermoplastic resin is not particularly limited, and examples thereof include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, acrylic resin, nylon, and polyester. These may be used alone or in admixture of two or more.
 上記絶縁性樹脂は、低密着性樹脂であることが好ましい。低密着性樹脂を用いることにより、冷却デバイスとして設置した後の取り外しが容易になる。 The insulating resin is preferably a low adhesion resin. By using the low-adhesion resin, it becomes easy to remove after installing as a cooling device.
 用いる絶縁性樹脂は、本発明の組成物を用いて冷却デバイスを設置する電子機器の種類・用途等に応じて適宜選択することができる。例えば、一般的な電子機器に用いる場合、半田耐熱性があり、汎用性が高いエポキシ樹脂またはポリイミド樹脂が好ましく、耐熱性を要する機器に用いる場合、フェノールノボラック型エポキシ樹脂またはポリイミド樹脂のようなガラス転移温度が150℃以上の樹脂が好ましい。また、冷却デバイスの熱伝導性を高めるためには、メソゲン基を有する液晶ポリマー樹脂を用いることが好ましい。 The insulating resin to be used can be appropriately selected according to the type and application of the electronic device in which the cooling device is installed using the composition of the present invention. For example, when used for general electronic equipment, an epoxy resin or polyimide resin having solder heat resistance and high versatility is preferable. When used for equipment requiring heat resistance, a glass such as a phenol novolac type epoxy resin or polyimide resin is used. A resin having a transition temperature of 150 ° C. or higher is preferred. In order to increase the thermal conductivity of the cooling device, it is preferable to use a liquid crystal polymer resin having a mesogenic group.
 本発明の組成物は、さらに溶剤を含んでいてもよい。 The composition of the present invention may further contain a solvent.
 上記溶剤は、用いる絶縁性樹脂の種類および量、組成物に要求される特性等の種々の因子に応じて汎用の溶媒から適宜選択することができ、例えば、ジプロピレンメチルエーテルアセテート、トルエン、メチルエチルケトン等が用いられる。 The solvent can be appropriately selected from general-purpose solvents according to various factors such as the type and amount of the insulating resin used and the properties required for the composition. For example, dipropylene methyl ether acetate, toluene, methyl ethyl ketone Etc. are used.
 本発明の組成物は、さらに分散剤、硬化促進剤、消泡剤等の添加剤を含んでいてもよい。分散剤、硬化促進剤、消泡剤等は、一般的なポリマー組成物において用いられるものから、必要に応じて適宜選択することができる。 The composition of the present invention may further contain additives such as a dispersant, a curing accelerator, and an antifoaming agent. A dispersing agent, a hardening accelerator, an antifoaming agent, etc. can be suitably selected as needed from what is used in a general polymer composition.
 本発明の組成物は、特に限定されないが、例えば、上記バナジウムを含むセラミック粒子、絶縁性セラミック粒子、および絶縁性樹脂、および所望により硬化剤、溶剤、添加剤等を市販のミキサー等で混合することにより製造することができる。 The composition of the present invention is not particularly limited. For example, the ceramic particles containing vanadium, the insulating ceramic particles, and the insulating resin, and optionally a curing agent, a solvent, an additive, and the like are mixed with a commercially available mixer or the like. Can be manufactured.
 本発明の組成物の粘度は、組成物の電子機器への提供方法、得ようとする冷却デバイスの形状等に応じて選択し得るが、好ましくは0.5Pa・s以上120Pa・s以下、より好ましくは1.0Pa・s以上80Pa・s以下、さらに好ましくは5Pa・s以上50Pa・s以下であり得る(E型粘度、せん断速度10s-1)。 The viscosity of the composition of the present invention can be selected according to the method of providing the composition to electronic equipment, the shape of the cooling device to be obtained, etc., but preferably 0.5 Pa · s to 120 Pa · s, more It may be preferably 1.0 Pa · s or more and 80 Pa · s or less, and more preferably 5 Pa · s or more and 50 Pa · s or less (E-type viscosity, shear rate 10 s −1 ).
 本発明の組成物の粘度は、種々の方法により調整することができる。例えば、用いるセラミック粒子の量および粒径を調整する、用いる絶縁性樹脂の種類、組み合わせおよび配合量を調整する、絶縁性樹脂を化学修飾する、添加剤を加える、溶剤を加えること等により調整することができる。 The viscosity of the composition of the present invention can be adjusted by various methods. For example, adjusting the amount and particle size of ceramic particles to be used, adjusting the type, combination and amount of insulating resin to be used, chemically modifying the insulating resin, adding additives, adding solvents, etc. be able to.
 本発明の組成物は、電子部品または電子機器の熱源と接触する箇所、または熱源近傍、例えば熱源からの熱の影響を受ける箇所に提供される。本発明の組成物は、上記のように流動性を有し得るので、微細で複雑な形状を有する表面および/または空間に提供することができる。また、絶縁性が高いことから、回路基板上等、電流が流れ得る箇所にも提供することができる。従って、従来、デッドスペースであった箇所にも提供することができる。 The composition of the present invention is provided in a place where it comes into contact with a heat source of an electronic component or an electronic device, or in the vicinity of the heat source, for example, a place affected by heat from the heat source. Since the composition of the present invention can have fluidity as described above, it can be provided on a surface and / or space having a fine and complicated shape. In addition, since the insulating property is high, it can also be provided on a circuit board or the like where current can flow. Therefore, it can also be provided in places that have conventionally been dead spaces.
 本発明の組成物の提供方法は、特に限定されないが、例えば、ディスペンサ塗布、ディスペンサ注入、スクリーン印刷、静電塗布、インクジェット印刷、スプレー噴霧、ディッピング、ダイコーティング、ブレードコーティング等が挙げられる。 The method for providing the composition of the present invention is not particularly limited, and examples thereof include dispenser application, dispenser injection, screen printing, electrostatic application, inkjet printing, spray spraying, dipping, die coating, blade coating, and the like.
 上記のように提供された組成物は、そこで硬化または固化することにより、冷却デバイスを形成する。従って、本発明は、本発明の組成物を用いて製造された冷却デバイスをも提供する。 The composition provided as described above forms a cooling device by curing or solidifying there. Accordingly, the present invention also provides a cooling device manufactured using the composition of the present invention.
 上記したように、本発明の組成物は流動性を有することから、これを硬化または固化して得られる本発明の冷却デバイスは、任意の形状および大きさとすることができる。 As described above, since the composition of the present invention has fluidity, the cooling device of the present invention obtained by curing or solidifying the composition can have any shape and size.
 本発明の冷却デバイスは、絶縁性セラミックを含有することから、高い絶縁性を示す。 Since the cooling device of the present invention contains an insulating ceramic, it exhibits high insulating properties.
 本発明の冷却デバイスは、2mmの絶縁耐圧が、好ましくは0.1kV以上、より好ましくは0.5kV以上、さらに好ましくは1.0kV以上、さらにより好ましくは1.5kV以上である。 The cooling device of the present invention has a dielectric breakdown voltage of 2 mm, preferably 0.1 kV or more, more preferably 0.5 kV or more, still more preferably 1.0 kV or more, and even more preferably 1.5 kV or more.
 本発明の冷却デバイスは、表面抵抗値が、好ましくは10GΩ以上、より好ましくは100GΩ以上、さらに好ましくは1000GΩ以上である。 The surface resistance of the cooling device of the present invention is preferably 10 GΩ or more, more preferably 100 GΩ or more, and even more preferably 1000 GΩ or more.
 また、本発明は、本発明の冷却デバイスを有する電子部品および電子機器をも提供する。 The present invention also provides an electronic component and an electronic apparatus having the cooling device of the present invention.
 電子部品としては、特に限定するものではないが、例えば、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、および、その他の部品、例えば、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。 The electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR). Light emitting diodes (LEDs), incandescent bulbs, semiconductor lasers and other light emitting elements, field effect transistors (FETs) and other components that can be heat sources, and other components such as substrates, heat sinks, housings, etc. Examples of parts that are commonly used.
 電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピューター(PC)、タブレット型端末等が挙げられる。 The electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), and a tablet terminal.
 合成例
・バナジウムを含むセラミック粒子の調製
 出発原料として、三酸化バナジウム(V)、五酸化バナジウム(V)、酸化タングステン(WO)、および酸化チタン(TiO)を用い、これらを、V:W:T:O=0.895:0.005:0.1:2(モル比)となるように秤量し、乾式混合した。その後、窒素/水素/水雰囲気下で1000℃、4時間熱処理し、セラミック材料としてV0.8950.005Ti0.1の粉末(以下、実施例において「VWTi粉」ともいう)を得た。
Preparation starting material of the ceramic particles comprising a synthetic example vanadium, vanadium trioxide (V 2 O 3), vanadium pentoxide (V 2 O 5), tungsten oxide (WO 3), and titanium oxide (TiO 2) using These were weighed so that V: W: T: O = 0.895: 0.005: 0.1: 2 (molar ratio), and dry-mixed. Thereafter, heat treatment was performed at 1000 ° C. for 4 hours in a nitrogen / hydrogen / water atmosphere, and a powder of V 0.895 W 0.005 Ti 0.1 O 2 (hereinafter, also referred to as “VWTi powder” in the examples) as a ceramic material. Got.
・ペースト組成物の調製1
 上記で得られたV0.8950.005Ti0.1の粉末、Al粉末、およびシリコーン樹脂を、下記表1に示す割合となるように配合し、プラネタリー型ミキサーで約2時間混合して、本発明のペースト組成物(試料1~8)を得た。その後、120℃で1時間硬化した樹脂硬化物を作製し、吸熱、放熱特性評価等を実施した。
-Preparation of paste composition 1
The above-obtained V 0.895 W 0.005 Ti 0.1 O 2 powder, Al 2 O 2 powder, and silicone resin were blended in the proportions shown in Table 1 below, and a planetary mixer Were mixed for about 2 hours to obtain paste compositions of the present invention (samples 1 to 8). Thereafter, a cured resin cured at 120 ° C. for 1 hour was prepared, and endothermic and heat dissipation characteristics were evaluated.
 評価
・吸熱、放熱特性評価
 上記で得られた樹脂硬化物について、DSC(示差走査熱量測定)法により、窒素雰囲気中、昇温速度:10K/分、0℃から100℃、そして0℃へと掃引して、昇温時の吸熱量および降温時の放熱量を測定した。単位体積および単位質量当たりのピーク吸熱量を表1に示す。尚、吸熱時には約58℃に、放熱時には約55℃にピークが存在した。
Evaluation / Endotherm, Evaluation of Heat Dissipation Characteristics About the cured resin obtained above, by DSC (Differential Scanning Calorimetry) method, the heating rate is 10 K / min, from 0 ° C. to 100 ° C., and then to 0 ° C. in a nitrogen atmosphere By sweeping, the amount of heat absorbed during temperature rise and the amount of heat released during temperature drop were measured. Table 1 shows the peak heat absorption per unit volume and unit mass. A peak was present at about 58 ° C. during endotherm and at about 55 ° C. during heat release.
・粘度測定
 上記で得られたペースト組成物について、E型粘度計(試料番号5については、せん断速度20s-1、試料番号6~8については、せん断速度10s-1)で粘度を測定した。結果を表1に示す。
Viscosity measurement The viscosity of the paste composition obtained above was measured with an E-type viscometer (shear rate 20 s -1 for sample number 5 and shear rate 10 s -1 for sample numbers 6 to 8). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、V0.8950.005Ti0.1粉末の含有量が30vol%以上である試料4~8は、50J/cm以上の吸熱量を示し、冷却デバイスとして有用であり得ることが確認された。また、試料番号5~8のペースト組成物の粘度から、Al粉末の含有量が20.0vol%である試料番号5および6が、50Pa・s以下の粘度を有しており、基板等への塗布性を考慮すると好ましいことが確認された。 From the above results, Samples 4 to 8 having a V 0.895 W 0.005 Ti 0.1 O 2 powder content of 30 vol% or more show an endotherm of 50 J / cm 2 or more, and are useful as a cooling device. It was confirmed that it could be. Further, from the viscosity of the paste compositions of sample numbers 5 to 8, the sample numbers 5 and 6 in which the content of Al 2 O 3 powder is 20.0 vol% have a viscosity of 50 Pa · s or less, and the substrate It was confirmed that it was preferable in view of the applicability to etc.
・表面抵抗値および絶縁耐圧の測定
 2つの電極を、0.2mm幅で実装基板に設け、その電極を跨ぐように、試料4~8のペースト組成物を塗布し、120℃で1時間硬化した。表面抵抗値は、絶縁抵抗計 YHP4329A(測定電圧10V・試料数n=5)で測定し、絶縁耐圧は、絶縁耐圧計 KIKUSUI TOS8650(試料数n=5)で測定した。また、対象として、ペーストの塗布なしの場合、およびセラミック粒子を含まない樹脂のみを塗布した場合についても、表面抵抗値および絶縁耐圧の測定を測定した。結果を、それぞれ、表2および表3に示す。
・ Measurement of surface resistance value and dielectric strength voltage Two electrodes were provided on a mounting substrate with a width of 0.2 mm, the paste composition of Samples 4 to 8 was applied so as to straddle the electrodes, and cured at 120 ° C. for 1 hour. . The surface resistance value was measured with an insulation resistance meter YHP4329A (measurement voltage 10 V, number of samples n = 5), and the withstand voltage was measured with an insulation voltage meter KIKUUSUI TOS8650 (number of samples n = 5). Moreover, the measurement of the surface resistance value and the withstand voltage was also measured when the paste was not applied and when only the resin not containing ceramic particles was applied. The results are shown in Table 2 and Table 3, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の結果から、Al粉末を含む試料5~8は、Al粉末を含まない試料4と比較して、高い絶縁耐圧および表面抵抗を有することが確認された。 From the above results, the samples 5-8 containing Al 2 O 3 powder, as compared to Sample 4 containing no Al 2 O 3 powder, it was confirmed that a high withstand voltage and surface resistance.
・冷却効果の評価
 試料5のペースト組成物を、ディスペンサ(ノズル内径250μm)を用いて、発熱部品を想定した固定抵抗ヒーターの周囲に、塗布厚約0.2mmで塗布した。次いで、120℃で1時間硬化させて、冷却デバイスを形成した。固定抵抗ヒーターを動作させ、固定抵抗表面の温度を熱電対で測定し、温度プロファイルを得た。対象として、冷却デバイスを設置しない場合の温度プロファイルを得た。結果を、図1に示す。
Evaluation of Cooling Effect The paste composition of Sample 5 was applied at a coating thickness of about 0.2 mm around a fixed resistance heater assuming a heat generating component using a dispenser (nozzle inner diameter 250 μm). Then, it was cured at 120 ° C. for 1 hour to form a cooling device. The fixed resistance heater was operated and the temperature of the fixed resistance surface was measured with a thermocouple to obtain a temperature profile. As a target, a temperature profile was obtained when no cooling device was installed. The results are shown in FIG.
 上記の結果から、本発明のペースト組成物から得られる冷却デバイスを設置することにより、固定抵抗表面の温度の上昇を抑制できることが確認された。 From the above results, it was confirmed that an increase in the temperature of the surface of the fixed resistance can be suppressed by installing a cooling device obtained from the paste composition of the present invention.
・ペースト組成物の調製2
 Al粉末の代わりに、SiO粉末を表4に示す割合で用いること以外は、試料5~8と同様にして、本発明のペースト組成物(試料9~12)を得た。
-Preparation of paste composition 2
Paste compositions (Samples 9 to 12) of the present invention were obtained in the same manner as Samples 5 to 8, except that SiO 2 powder was used in the ratio shown in Table 4 instead of Al 2 O 2 powder.
 評価
 試料9~12のペースト組成物について、上記と同様に、絶縁耐圧を評価した。結果を表3に示す。
Evaluation The withstand voltage of the paste compositions of Samples 9 to 12 was evaluated in the same manner as described above. The results are shown in Table 3.
・熱伝導性の測定
 試料5~12のペースト組成物について、
 バーコーターでペーストを印刷し、120℃で1時間硬化した後、10mmφ、厚さ約1mmの円板状に加工した試験片を作製した。得られた試験片の密度と比重、熱拡散係数を測定し、熱伝導率を測定した。熱拡散係数にはXeフラッシュ装置を用いた。結果を表4に示す。
・ Measurement of thermal conductivity About paste compositions of Samples 5 to 12,
A paste was printed with a bar coater and cured at 120 ° C. for 1 hour, and then a test piece processed into a disk shape having a diameter of 10 mmφ and a thickness of about 1 mm was produced. The density, specific gravity, and thermal diffusion coefficient of the obtained test piece were measured, and the thermal conductivity was measured. A Xe flash apparatus was used for the thermal diffusion coefficient. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記の結果から、Al粉末を含む試料5~8のペースト組成物は、SiO粉末を含む試料9~12のペースト組成物よりも、高い熱伝導率を有することが確認された。 From the above results, it was confirmed that the paste compositions of Samples 5 to 8 containing Al 2 O 3 powder had higher thermal conductivity than the paste compositions of Samples 9 to 12 containing SiO 2 powder.
・粒度調整1
 上記合成例で得られたV0.8950.005Ti0.1の粉末を、ジェットミル(エアー圧:それぞれ0.25、0.35および0.45MPa)により粉砕し、粒径のより小さな粉末を得た(試料13~15)。
・ Granularity adjustment 1
The powder of V 0.895 W 0.005 Ti 0.1 O 2 obtained in the above synthesis example was pulverized by a jet mill (air pressure: 0.25, 0.35 and 0.45 MPa, respectively), and the particle size Of smaller powders (Samples 13-15).
・粒度調整2
 上記合成例で得られたV0.8950.005Ti0.1の粉末を、メッシュパス(それぞれ、100μmおよび40μm)により選り分け、粒径のより小さな粉末を得た(試料16~17)。
・ Granularity adjustment 2
The powders of V 0.895 W 0.005 Ti 0.1 O 2 obtained in the above synthesis example were selected by a mesh pass (100 μm and 40 μm, respectively) to obtain powders with smaller particle sizes (Samples 16 to 17).
・粒度調整3
 上記合成例で得られたV0.8950.005Ti0.1の粉末を、分級機の分級ローター回転数、エアー風量、原料供給量を調整することにより分級点を制御して分級し、粒径の異なる2種の粉末を得た(試料18~19)。
・ Granularity adjustment 3
The V 0.895 W 0.005 Ti 0.1 O 2 powder obtained in the above synthesis example was controlled by adjusting the classification point by adjusting the classification rotor rotation speed, air flow rate, and raw material supply amount of the classifier. Classification was performed to obtain two kinds of powders having different particle sizes (Samples 18 to 19).
・粒径の測定
 合成例で得られた粉末、および試料13~19の粉末について、画像解析式粒子径分布測定装置(QICPIC、日本レーザー製)を用いて、乾式で測定し、D10、D50、D90およびD99を得た。結果を表5に示す。
Measurement of particle size The powder obtained in the synthesis example and the powders of Samples 13 to 19 were measured by a dry method using an image analysis type particle size distribution measuring apparatus (QICPIC, manufactured by Nippon Laser), and D10, D50, D90 and D99 were obtained. The results are shown in Table 5.
・表面特性の評価
 試料1のペースト組成物、および試料13~19の粉末を用いたペースト組成物を、基板上に、厚さ1mmで塗布し、120℃で1時間硬化した。目視により表面が滑らかであったものを○、表面に凹凸があるものを×として評価した。結果を表5に示す。
Evaluation of surface characteristics The paste composition of sample 1 and the paste composition using the powders of samples 13 to 19 were applied on a substrate at a thickness of 1 mm and cured at 120 ° C. for 1 hour. The case where the surface was smooth by visual observation was evaluated as ◯, and the surface having irregularities was evaluated as ×. The results are shown in Table 5.
・積分幅の測定
 合成例で得られた粉末、および試料13~19の粉末について、下記の装置および条件を用いて、粉末X線回折(XRD)解析を行い、メインピーク(面指数011)の積分幅を測定した。結果を表5に示す。
 XRD解析:
測定装置:Rigaku製 粉末X線回折装置
測定条件:光学系     集中法光学系
     2θ      20°~80°
     ステップ幅   0.02°
     走査速度    10°/min
解析方法:Rigaku製 積分強度計算ソフトを使用
・ Measurement of integral width The powder obtained in the synthesis example and the powders of samples 13 to 19 were subjected to powder X-ray diffraction (XRD) analysis using the following apparatus and conditions, and the main peak (surface index 011) was measured. The integral width was measured. The results are shown in Table 5.
XRD analysis:
Measuring device: Rigaku powder X-ray diffractometer Measuring conditions: Optical system Concentration method optical system 2θ 20 ° -80 °
Step width 0.02 °
Scanning speed 10 ° / min
Analysis method: Rigaku integrated intensity calculation software is used
・耐湿性評価
 合成例で得られた粉末、および試料13~19の粉末について、初期値として、DSCピーク吸熱量を測定した。次いで、粉体を、85℃、相対湿度85%の環境下で、500時間放置し、再度DSCピーク吸熱量を測定し、初期値からの変化率を求めた。結果を表5に示す。また、上記積分幅との関係を、図2に示す。
-Humidity resistance evaluation The DSC peak endotherm was measured as an initial value for the powder obtained in the synthesis example and the powders of Samples 13 to 19. Next, the powder was allowed to stand for 500 hours in an environment of 85 ° C. and a relative humidity of 85%, and the DSC peak endotherm was measured again to determine the rate of change from the initial value. The results are shown in Table 5. The relationship with the integration width is shown in FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記の結果から、V0.8950.005Ti0.1粉末のD99が120μm以上であるペースト組成物、およびD99が30μm以下であるペースト組成物は、良好な平坦性が得られなかった。D99が120μm以上であると粒径が大きすぎで表面が荒れ、D99が30μm以下であると比表面積が大きくなり、ペースト組成物の流動性が低下するために表面が荒れると考えられる。 From the above results, the V 0.895 W 0.005 Ti 0.1 O 2 powder has a D99 having a D99 of 120 μm or more, and a D99 having a D99 of 30 μm or less has good flatness. There wasn't. When D99 is 120 μm or more, the particle size is too large and the surface becomes rough, and when D99 is 30 μm or less, the specific surface area becomes large and the fluidity of the paste composition is lowered, so that the surface is considered rough.
 また、表5および図2から、熱処理で得られたV0.8950.005Ti0.1粉末を物理的に粉砕した試料13~15は、耐湿性試験において、吸熱量の大幅な低下が確認された。これらの粉末は、積分幅が粉砕前よりも大きくなっていることが確認された。一方、熱処理で得られたV0.8950.005Ti0.1粉末の粉砕を行わず、最適な粒径を有する粉末を選り分けた試料16~19は、吸熱量の低下はわずかであり、積分幅の拡大もわずかであった。耐湿性試験における吸熱量の変化率と積分幅との関係を示す図2から、積分幅が小さい、即ち結晶性が高い粉末は、耐湿性試験後も吸熱量の低下を抑制できることが確認された。 Also, from Table 5 and FIG. 2, samples 13 to 15 obtained by physically pulverizing the V 0.895 W 0.005 Ti 0.1 O 2 powder obtained by the heat treatment showed a large endothermic amount in the moisture resistance test. A significant decrease was confirmed. It was confirmed that these powders had an integral width larger than that before pulverization. On the other hand, samples 16 to 19 in which the powders having the optimum particle diameter were selected without pulverizing the V 0.895 W 0.005 Ti 0.1 O 2 powder obtained by the heat treatment showed a slight decrease in the endothermic amount. The integration width was also slightly increased. FIG. 2 showing the relationship between the rate of change of the endothermic amount and the integral width in the moisture resistance test confirmed that the powder having a small integral width, that is, high crystallinity, can suppress a decrease in the endothermic amount even after the moisture resistance test. .
 本開示は、以下の態様を含む。
 態様1.
  潜熱により熱を吸収するバナジウムを含むセラミック粒子、絶縁性セラミック粒子、および絶縁性樹脂を含む組成物;
 態様2. 
  バナジウムを含むセラミック粒子が、V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウム粒子であって、V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下であることを特徴とする、態様1に記載の組成物;
 態様3.
  酸化バナジウム粒子において、V、TiおよびMの合計を100モル部としたときのTiの含有モル部が5モル部以上10モル部以下であることを特徴とする、態様2に記載の組成物;
 態様4.
  バナジウムを含むセラミック粒子が、式:
   V1-x-yTi
[式中:
 Mは、W、Ta、MoまたはNbであり、
 xは、0以上0.15以下であり、
 yは、0以上0.30以下である。]
で表される酸化バナジウムの粒子であることを特徴とする、態様1に記載の組成物;
 態様5.
  xが0.05以上0.10以下であることを特徴とする、態様4に記載の組成物;
 態様6. 
 バナジウムを含むセラミック粒子の平均粒径D99が、50μm以上120μm以下であることを特徴とする態様1~5のいずれか1項に記載の組成物;
 態様7. 
 バナジウムを含むセラミック粒子の粉末X線回折分析における積分幅が、0.230°以下であることを特徴とする態様1~6のいずれか1項に記載の組成物;
 態様8. 
 バナジウムを含むセラミック粒子が、絶縁層により被覆されていることを特徴とする、態様1~7のいずれか1項に記載の組成物;
 態様9. 
 絶縁性セラミック粒子が、熱伝導性を有することを特徴とする、態様1~8のいずれか1項に記載の組成物;
 態様10. 
 絶縁性セラミック粒子が、シリカ粒子またはアルミナ粒子であることを特徴とする、態様1~9のいずれか1項に記載の組成物;
 態様11. 
 バナジウムを含むセラミック粒子の含有量が30vol%以上であり、絶縁性セラミック粒子の含有量が10vol%以上である、態様1~10のいずれか1項に記載の組成物;
 態様12.
  バナジウムを含むセラミック粒子の含有量が、30vol%以上50vol%以下である、態様1~11のいずれか1項に記載の組成物;
 態様13. 
  絶縁性セラミック粒子の含有量が、10vol%以上20vol%以下である、態様1~12のいずれか1項に記載の組成物;
 態様14. 
  絶縁性セラミック粒子の含有量が、20vol%以上40vol%以下である、態様1~12のいずれか1項に記載の組成物;
 態様15. 
  絶縁性樹脂が、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、ナイロンおよびポリエステルから選択される1種またはそれ以上の熱可塑性樹脂であることを特徴とする、態様1~14のいずれかに記載の組成物;
 態様16. 
  態様1~15のいずれかに記載の組成物から形成された冷却デバイス;
 態様17. 
  態様16に記載の冷却デバイスを有する電子部品;
 態様18. 
  V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウム粒子であって、
 V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下であり、
 粒径D99が、50μm以上120μm以下である
酸化バナジウム粒子;
 態様19.
  式:
   V1-x-yTi
[式中:
 Mは、W、Ta、MoまたはNbであり、
 xは、0以上0.15以下であり、
 yは、0以上0.30以下である。]
で表される酸化バナジウムの粒子であって、50μm以上120μm以下の粒径D99を有する酸化バナジウム粒子;
 態様20.
  V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウム粒子であって、
 V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下であり、
 粉末X線回折分析における積分幅が、0.230°以下である
酸化バナジウム粒子;
 態様21.
  式:
   V1-x-yTi
[式中:
 Mは、W、Ta、MoまたはNbであり、
 xは、0以上0.15以下であり、
 yは、0以上0.30以下である。]
で表される酸化バナジウムの粒子であって、粉末X線回折分析における積分幅が0.230°以下である酸化バナジウム粒子。
The present disclosure includes the following aspects.
Aspect 1.
A composition comprising ceramic particles containing vanadium that absorbs heat by latent heat, insulating ceramic particles, and insulating resin;
Aspect 2.
The vanadium-containing ceramic particles are vanadium oxide particles containing V, Ti, and M (where M is at least one selected from W, Ta, Mo, and Nb), and the sum of V, Ti, and M Aspect 1 is characterized in that the content mole part of M is from 0 to 15 mole parts, and the content mole part of Ti is from 0 to 30 mole parts, with 100 mole parts being 100 mole parts. A composition as described;
Aspect 3.
In the vanadium oxide particles, the content mole part of Ti when the sum of V, Ti, and M is 100 mole parts is 5 mole parts or more and 10 mole parts or less;
Aspect 4.
Ceramic particles containing vanadium have the formula:
V 1-xy M x Ti y O 2
[Where:
M is W, Ta, Mo or Nb,
x is 0 or more and 0.15 or less,
y is 0 or more and 0.30 or less. ]
The composition according to aspect 1, wherein the composition is a particle of vanadium oxide represented by:
Aspect 5
The composition according to aspect 4, wherein x is 0.05 or more and 0.10 or less;
Aspect 6
The composition according to any one of aspects 1 to 5, wherein the ceramic particles containing vanadium have an average particle diameter D99 of 50 μm or more and 120 μm or less;
Aspect 7.
The composition according to any one of embodiments 1 to 6, wherein the integral width in the powder X-ray diffraction analysis of the ceramic particles containing vanadium is 0.230 ° or less;
Aspect 8
The composition according to any one of embodiments 1 to 7, wherein the ceramic particles containing vanadium are covered with an insulating layer;
Aspect 9.
The composition according to any one of embodiments 1 to 8, wherein the insulating ceramic particles have thermal conductivity;
Aspect 10
The composition according to any one of embodiments 1 to 9, wherein the insulating ceramic particles are silica particles or alumina particles;
Aspect 11
The composition according to any one of embodiments 1 to 10, wherein the content of the ceramic particles containing vanadium is 30 vol% or more and the content of the insulating ceramic particles is 10 vol% or more;
Aspect 12
The composition according to any one of embodiments 1 to 11, wherein the content of the ceramic particles containing vanadium is 30 vol% or more and 50 vol% or less;
Aspect 13
The composition according to any one of embodiments 1 to 12, wherein the content of the insulating ceramic particles is 10 vol% or more and 20 vol% or less;
Aspect 14.
The composition according to any one of embodiments 1 to 12, wherein the content of the insulating ceramic particles is 20 vol% or more and 40 vol% or less;
Aspect 15
Embodiments 1 to 14 characterized in that the insulating resin is one or more thermoplastic resins selected from polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, acrylic resin, nylon and polyester. A composition according to any of the above;
Aspect 16.
A cooling device formed from the composition according to any of embodiments 1-15;
Aspect 17
An electronic component having the cooling device according to aspect 16;
Aspect 18.
Vanadium oxide particles containing V, Ti and M (where M is at least one selected from W, Ta, Mo and Nb),
When the total amount of V, Ti and M is 100 mole parts, the mole content of M is 0 to 15 mole parts, and the mole content of Ti is 0 to 30 mole parts,
Vanadium oxide particles having a particle size D99 of 50 μm or more and 120 μm or less;
Aspect 19
formula:
V 1-xy M x Ti y O 2
[Where:
M is W, Ta, Mo or Nb,
x is 0 or more and 0.15 or less,
y is 0 or more and 0.30 or less. ]
Vanadium oxide particles represented by the formula: Vanadium oxide particles having a particle diameter D99 of 50 μm or more and 120 μm or less;
Aspect 20
Vanadium oxide particles containing V, Ti and M (where M is at least one selected from W, Ta, Mo and Nb),
When the total amount of V, Ti and M is 100 mole parts, the mole content of M is 0 to 15 mole parts, and the mole content of Ti is 0 to 30 mole parts,
Vanadium oxide particles having an integral width in powder X-ray diffraction analysis of 0.230 ° or less;
Aspect 21.
formula:
V 1-xy M x Ti y O 2
[Where:
M is W, Ta, Mo or Nb,
x is 0 or more and 0.15 or less,
y is 0 or more and 0.30 or less. ]
The vanadium oxide particle | grains which are the particle | grains represented by these, Comprising: The integral width in a powder X-ray-diffraction analysis is 0.230 degrees or less.
 本発明の組成物は、例えば、熱対策問題が顕著化している小型通信端末の冷却デバイスを製造するために用いることができる。 The composition of the present invention can be used, for example, to manufacture a cooling device for a small communication terminal in which the problem of countermeasures against heat has become prominent.

Claims (22)

  1.  潜熱により熱を吸収するバナジウムを含むセラミック粒子、絶縁性セラミック粒子、および絶縁性樹脂を含む組成物。 A composition comprising ceramic particles containing vanadium that absorbs heat by latent heat, insulating ceramic particles, and an insulating resin.
  2.  バナジウムを含むセラミック粒子が、V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウム粒子であって、V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下であることを特徴とする、請求項1に記載の組成物。 The vanadium-containing ceramic particles are vanadium oxide particles containing V, Ti, and M (where M is at least one selected from W, Ta, Mo, and Nb), and the sum of V, Ti, and M The content mole part of M is from 0 mole part to 15 mole parts, and the content mole part of Ti is from 0 mole part to 30 mole parts, when the content is 100 mole parts. A composition according to 1.
  3.  酸化バナジウム粒子において、V、TiおよびMの合計を100モル部としたときのTiの含有モル部が5モル部以上10モル部以下であることを特徴とする、請求項2に記載の組成物。 3. The composition according to claim 2, wherein in the vanadium oxide particles, the content mole part of Ti is 5 mole parts or more and 10 mole parts or less when the total of V, Ti, and M is 100 mole parts. .
  4.  バナジウムを含むセラミック粒子が、式:
       V1-x-yTi
    [式中:
     Mは、W、Ta、MoまたはNbであり、
     xは、0以上0.15以下であり、
     yは、0以上0.30以下である。]
    で表される酸化バナジウムの粒子であることを特徴とする、請求項1に記載の組成物。
    Ceramic particles containing vanadium have the formula:
    V 1-xy M x Ti y O 2
    [Where:
    M is W, Ta, Mo or Nb,
    x is 0 or more and 0.15 or less,
    y is 0 or more and 0.30 or less. ]
    The composition according to claim 1, wherein the composition is vanadium oxide particles represented by the formula:
  5.  yが0.05以上0.10以下であることを特徴とする、請求項4に記載の組成物。 Y is 0.05 or more and 0.10 or less, The composition of Claim 4 characterized by the above-mentioned.
  6.  バナジウムを含むセラミック粒子の平均粒径D99が、30μm以上120μm以下であることを特徴とする請求項1~5のいずれか1項に記載の組成物。 6. The composition according to claim 1, wherein the average particle diameter D99 of the ceramic particles containing vanadium is 30 μm or more and 120 μm or less.
  7.  バナジウムを含むセラミック粒子の平均粒径D99が、50μm以上120μm以下であることを特徴とする請求項6に記載の組成物。 The composition according to claim 6, wherein the average particle diameter D99 of the ceramic particles containing vanadium is 50 µm or more and 120 µm or less.
  8.  バナジウムを含むセラミック粒子の粉末X線回折分析における積分幅が、0.230°以下であることを特徴とする請求項1~7のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the integral width in the powder X-ray diffraction analysis of the ceramic particles containing vanadium is 0.230 ° or less.
  9.  バナジウムを含むセラミック粒子が、絶縁層により被覆されていることを特徴とする、請求項1~8のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the ceramic particles containing vanadium are coated with an insulating layer.
  10.  絶縁性セラミック粒子が、熱伝導性を有することを特徴とする、請求項1~9のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 9, wherein the insulating ceramic particles have thermal conductivity.
  11.  絶縁性セラミック粒子が、シリカ粒子またはアルミナ粒子であることを特徴とする、請求項1~10のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 10, wherein the insulating ceramic particles are silica particles or alumina particles.
  12.  バナジウムを含むセラミック粒子の含有量が30vol%以上であり、絶縁性セラミック粒子の含有量が10vol%以上である、請求項1~11のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 11, wherein the content of the ceramic particles containing vanadium is 30 vol% or more and the content of the insulating ceramic particles is 10 vol% or more.
  13.  バナジウムを含むセラミック粒子の含有量が、30vol%以上50vol%以下である、請求項1~12のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 12, wherein the content of the ceramic particles containing vanadium is 30 vol% or more and 50 vol% or less.
  14.  絶縁性セラミック粒子の含有量が、10vol%以上20vol%以下である、請求項1~13のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 13, wherein the content of the insulating ceramic particles is 10 vol% or more and 20 vol% or less.
  15.  絶縁性セラミック粒子の含有量が、20vol%以上40vol%以下である、請求項1~13のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 13, wherein the content of the insulating ceramic particles is 20 vol% or more and 40 vol% or less.
  16.  絶縁性樹脂が、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、ナイロンおよびポリエステルから選択される1種またはそれ以上の熱可塑性樹脂であることを特徴とする、請求項1~15のいずれかに記載の組成物。 The insulating resin is one or more thermoplastic resins selected from polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, acrylic resin, nylon and polyester, characterized in that 15. The composition according to any one of 15.
  17.  請求項1~16のいずれかに記載の組成物から形成された冷却デバイス。 A cooling device formed from the composition according to any one of claims 1 to 16.
  18.  請求項17に記載の冷却デバイスを有する電子部品。 An electronic component having the cooling device according to claim 17.
  19.  V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウム粒子であって、
     V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下であり、
     粒径D99が、30μm以上120μm以下である
    酸化バナジウム粒子。
    Vanadium oxide particles containing V, Ti and M (where M is at least one selected from W, Ta, Mo and Nb),
    When the total amount of V, Ti and M is 100 mole parts, the mole content of M is 0 to 15 mole parts, and the mole content of Ti is 0 to 30 mole parts,
    Vanadium oxide particles having a particle size D99 of 30 μm or more and 120 μm or less.
  20.  式:
       V1-x-yTi
    [式中:
     Mは、W、Ta、MoまたはNbであり、
     xは、0以上0.15以下であり、
     yは、0以上0.30以下である。]
    で表される酸化バナジウムの粒子であって、30μm以上120μm以下の粒径D99を有する酸化バナジウム粒子。
    formula:
    V 1-xy M x Ti y O 2
    [Where:
    M is W, Ta, Mo or Nb,
    x is 0 or more and 0.15 or less,
    y is 0 or more and 0.30 or less. ]
    Vanadium oxide particles represented by the formula (1), having a particle size D99 of 30 μm or more and 120 μm or less.
  21.  V、TiおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化バナジウム粒子であって、
     V、TiおよびMの合計を100モル部としたときのMの含有モル部が0モル部以上15モル部以下であり、Tiの含有モル部が0モル部以上30モル部以下であり、
     粉末X線回折分析における積分幅が、0.230°以下である
    酸化バナジウム粒子。
    Vanadium oxide particles containing V, Ti and M (where M is at least one selected from W, Ta, Mo and Nb),
    When the total amount of V, Ti and M is 100 mole parts, the mole content of M is 0 to 15 mole parts, and the mole content of Ti is 0 to 30 mole parts,
    Vanadium oxide particles having an integral width of 0.230 ° or less in powder X-ray diffraction analysis.
  22.  式:
       V1-x-yTi
    [式中:
     Mは、W、Ta、MoまたはNbであり、
     xは、0以上0.15以下であり、
     yは、0以上0.30以下である。]
    で表される酸化バナジウムの粒子であって、粉末X線回折分析における積分幅が0.230°以下である酸化バナジウム粒子。
    formula:
    V 1-xy M x Ti y O 2
    [Where:
    M is W, Ta, Mo or Nb,
    x is 0 or more and 0.15 or less,
    y is 0 or more and 0.30 or less. ]
    The vanadium oxide particle | grains which are the particle | grains represented by these, Comprising: The integral width in a powder X-ray-diffraction analysis is 0.230 degrees or less.
PCT/JP2017/013957 2016-04-12 2017-04-03 Ceramic-particle-containing composition WO2017179454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-079619 2016-04-12
JP2016079619 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179454A1 true WO2017179454A1 (en) 2017-10-19

Family

ID=60042096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013957 WO2017179454A1 (en) 2016-04-12 2017-04-03 Ceramic-particle-containing composition

Country Status (1)

Country Link
WO (1) WO2017179454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446761B2 (en) 2019-10-11 2024-03-11 新日本電工株式会社 Vanadium dioxide particles having a surface protective layer, method for producing the same, and heat dissipation sheet and heat dissipation compound containing the vanadium dioxide particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140754A (en) * 2010-12-28 2012-07-26 Hiraoka & Co Ltd Variable lighting-sheet with heat-shielding and heat-releasing properties
WO2015087620A1 (en) * 2013-12-11 2015-06-18 富士高分子工業株式会社 Heat-storage composition
WO2015118784A1 (en) * 2014-02-07 2015-08-13 株式会社村田製作所 Insulating ceramic particles
WO2016063478A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Composite heat storage material
WO2016111139A1 (en) * 2015-01-06 2016-07-14 富士高分子工業株式会社 Heat-storage, thermally conductive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140754A (en) * 2010-12-28 2012-07-26 Hiraoka & Co Ltd Variable lighting-sheet with heat-shielding and heat-releasing properties
WO2015087620A1 (en) * 2013-12-11 2015-06-18 富士高分子工業株式会社 Heat-storage composition
WO2015118784A1 (en) * 2014-02-07 2015-08-13 株式会社村田製作所 Insulating ceramic particles
WO2016063478A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Composite heat storage material
WO2016111139A1 (en) * 2015-01-06 2016-07-14 富士高分子工業株式会社 Heat-storage, thermally conductive sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446761B2 (en) 2019-10-11 2024-03-11 新日本電工株式会社 Vanadium dioxide particles having a surface protective layer, method for producing the same, and heat dissipation sheet and heat dissipation compound containing the vanadium dioxide particles

Similar Documents

Publication Publication Date Title
JP5036696B2 (en) Thermally conductive sheet and power module
TWI481563B (en) Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
US20160115343A1 (en) Thermosetting resin composition, method of producing thermal conductive sheet, and power module
TWI553673B (en) Electromagnetic wave absorptive heat conducting sheet and electromagnetic wave absorptive heat conducting sheet
JP6364883B2 (en) Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device
JP2005306718A (en) Inorganic powder, resin composition filled with the powder, and use thereof
KR20110079843A (en) Zinc oxide particles, process for producing same, heat-releasing filler, resin composition, heat-releasing grease, and heat-releasing coating composition
JP6500339B2 (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
CN108788164B (en) Metal powder sintering slurry, method for producing same, and method for producing conductive material
JP5791488B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JPWO2020153505A1 (en) Filler composition, silicone resin composition and heat dissipation parts
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
WO2015115481A1 (en) Thermally conductive sheet and semiconductor device
JP2016011358A (en) Resin composition, heat radiation sheet comprising resin composition, and power device unit comprising heat radiation sheet
US20110014469A1 (en) Magnesium oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition
WO2017179454A1 (en) Ceramic-particle-containing composition
JP2010285569A (en) Thermoconductive resin material and production method thereof
JP2022048574A (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipating component
JP7476482B2 (en) Thermally conductive sheet
JP2012224676A (en) Resin composition for thermal conductivity sheet, thermal conductivity sheet, and power module
JP2016169281A (en) Composite filler and resin composition containing the same
JP6395153B2 (en) COATING FILM, ITS MANUFACTURING METHOD, AND COATING FILM FORMING METHOD
WO2016042909A1 (en) Cooling device
JP6196779B2 (en) Insulating heat dissipation filler and method for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782272

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP