WO2016042909A1 - Cooling device - Google Patents
Cooling device Download PDFInfo
- Publication number
- WO2016042909A1 WO2016042909A1 PCT/JP2015/070489 JP2015070489W WO2016042909A1 WO 2016042909 A1 WO2016042909 A1 WO 2016042909A1 JP 2015070489 W JP2015070489 W JP 2015070489W WO 2016042909 A1 WO2016042909 A1 WO 2016042909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling device
- resin
- particles
- manufacturing
- insulating
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/04—Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/82—Coating or impregnation with organic materials
- C04B41/83—Macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a material for manufacturing a cooling device and a cooling device obtained using the material.
- the cooling device combining the Peltier element, fan, heat sink, and the like as described above has a relatively complicated structure, and the size of the device is large. It is also disadvantageous. Moreover, since power is consumed, it is also disadvantageous from the viewpoint of low power consumption (battery life). Therefore, there is a strong demand for a cooling device that can be used without a power source and is small.
- a heat sink or a graphite sheet is used as a cooling device without a power source.
- the heat sink simply assists in heat dissipation, and the graphite sheet only has the effect of diffusing heat and eliminating heat spots.
- the installation location is limited in accordance with the shape. For example, the graphite sheet is difficult to install in a place where the surface is uneven.
- the present inventor paid attention to a ceramic material that absorbs heat accompanying a crystal structure phase transition, a magnetic phase transition, or the like, and first examined the configuration of a cooling device using such a ceramic material. And when ceramic material was used with the form of particle
- the ceramic materials as described above are not sufficiently insulating (electrically insulating, the same applies hereinafter).
- the ceramic material is mounted on an electronic circuit board and has electrodes, leads, and the like. When applied to an exposed electronic component, it has been found that the reliability of the electronic component or an electronic device including the electronic component may be impaired.
- the thermal conductivity to the soft magnetic metal particles is not a problem, but when the insulating particles made of silicone resin are coated with the ceramic particles that absorb heat as described above, Heat conduction to the ceramic particles is hindered and is not suitable for use as a material for manufacturing a cooling device.
- a heat-resistant insulating oxide powder such as alumina or magnesia powder is adhered to a member such as a ribbon made of a metal magnetic material such as permalloy by a treatment method using an air stream or a suspension.
- a metal magnetic material such as a metal magnetic material
- the heat-resistant insulating oxide powder is used to insulate the component surface or layer surface in order to prevent fusion during annealing due to metal-to-metal contact between components formed between metal magnetic materials. It is required to withstand the heat during annealing.
- thermal conductivity to the main body portion made of the metal magnetic material is not considered.
- it is not easy to coat the ceramic particles as described above with the insulating oxide powder it is not easy to coat the ceramic particles as described above with the insulating oxide powder, and there is a problem in terms of production and cost.
- An object of the present invention is to provide a material for manufacturing a cooling device that can be used without a power source and can obtain high reliability even when applied to an electronic component or an electronic device.
- a cooling device manufacturing material including composite particles in which first particles composed of a ceramic material that absorbs heat by latent heat are surface-coated with an insulating coating,
- the conductive film includes a first insulating resin and a material for manufacturing a cooling device, which includes second particles having insulating properties and thermal conductivity dispersed in the first insulating resin.
- a cooling device obtained by using the cooling device manufacturing material or including the cooling device manufacturing material or a material derived therefrom.
- an electronic component comprising the cooling device.
- the first particles composed of a ceramic material that absorbs heat by latent heat are insulated from the first insulating resin and the insulating and thermally conductive second particles dispersed therein.
- Composite particles whose surface is coated with a conductive film are used as materials for manufacturing cooling devices, so that both high cooling performance and high insulation can be realized.
- a cooling device manufacturing material capable of obtaining high reliability even when applied to an electronic apparatus is provided.
- the electronic device using such a material for cooling device manufacture is also provided.
- cooling device manufacturing material and the electronic component on which the cooling device is formed in one embodiment of the present invention will be described in detail, the present invention is not limited to such an embodiment.
- the cooling device manufacturing material 10 in the present embodiment is a first particle (hereinafter also referred to as “endothermic particle”) 1 made of a ceramic material that absorbs heat by latent heat.
- the material 10 for manufacturing a cooling device includes an insulating film 7 in which an endothermic particle (first particle) 1 includes an insulating resin (first insulating resin) 3 and a heat conductive particle (second particle) 5.
- first particle an endothermic particle
- second particle a heat conductive particle
- the endothermic particles 1 are not particularly limited as long as they are made of a ceramic material that absorbs heat by latent heat (hereinafter also simply referred to as “ceramic material”). The heat absorption of this ceramic material is done by absorbing latent heat. Such a ceramic material obtains a high cooling effect as compared with a conventional cooling device such as a graphite sheet by temporarily absorbing excess heat by latent heat to standardize temporal heat. It becomes possible.
- the ceramic material a ceramic material mainly composed of vanadium oxide is preferable.
- the ceramic material mainly composed of vanadium oxide means a ceramic material containing V and O.
- V and O a ceramic material containing V and O.
- VO 2 , V 2 O 3 , V 4 O 7 , V 6 O 11, etc. Including those doped with the above atoms.
- the ceramic material preferably has a latent heat amount of 5 J / g or more, more preferably 20 J / g or more.
- latent heat is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
- Specific ceramic material is not particularly limited, for example, JP-ceramic material described in JP 2010-163510, specifically, VO 2, LiVS 2, LiVO 2, V 2 O 3, V 4 O 7 , V 6 O 11 , A y VO 2 (wherein A is Li or Na, 0.1 ⁇ y ⁇ 2.0, preferably 0.5 ⁇ y ⁇ 1.0), V 1-x M x O 2 (wherein M is W, Ta, Mo, Nb, Ru or Re, and 0 ⁇ x ⁇ 0.2, preferably 0 ⁇ x ⁇ 0.05).
- the ceramic material is an oxide containing vanadium V and M (where M is at least one selected from W, Ta, Mo and Nb), and the total of V and M is 100 mol parts.
- the molar part of M is 0 mol part or more and about 5 mol part or less, preferably 1 mol part or less. Note that M is not an essential component, and the content molar part of M may be 0.
- the ceramic material is an oxide containing A (where A is Li or Na) and vanadium V, and when A is 100 mol parts, It is 50 to about 100 parts by mole.
- the ceramic material has the composition formula: V 1-x M x O 2 (Wherein, M is W, Ta, Mo or Nb, 0 ⁇ x ⁇ 0.05) Or the composition formula: A y VO 2 (Wherein, A is Li or Na, 0.5 ⁇ y ⁇ 1.0)
- a y VO 2 As a main component, one or more substances represented by the formula:
- the ceramic material has a composition formula: V 1-x W x O 2 (Where 0 ⁇ x ⁇ 0.01) The substance shown by is included as a main component.
- the main component means a component contained in the ceramic material by 50% by mass or more, particularly 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 98% by mass. For example, it means 98.0 to 99.8% by mass.
- Other components include VO x having a different oxygen content from VO 2 .
- the temperature indicating the latent heat of the ceramic material that is, the temperature at which the ceramic material undergoes phase transition can be adjusted by the amount of element to be added (dope).
- the ceramic material has the composition formula: V 1-x W x O 2 When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
- the temperature at which the ceramic material undergoes phase transition is appropriately selected according to the object to be cooled, the purpose of cooling, and the like.
- the heat generating component or object to be cooled
- the temperature is raised to 20 to 100 ° C., preferably The phase transition is preferably performed at 30 to 70 ° C.
- the endothermic particles 1 made of the ceramic material have a particle (powder) form.
- the ceramic material By using the ceramic material as particles, the occurrence of cracks can be suppressed even when the phase transition is repeated, and the durability of the cooling device is enhanced.
- the average particle diameter of the endothermic particles is not particularly limited, but is, for example, 0.1 to several hundred ⁇ m, specifically 0.1 to 900 ⁇ m, typically 0.2 to 50 ⁇ m, and preferably 0 .5 to 50 ⁇ m.
- the average particle diameter of the endothermic particles is preferably 0.2 ⁇ m or more from the viewpoint of ease of handling, and from the viewpoint of being applicable to a more complicated surface shape and a narrower space, it may be 50 ⁇ m or less. preferable.
- the average particle diameter means D50 (the particle diameter at which the cumulative value is 50% in a cumulative curve obtained by determining the particle size distribution on a volume basis and the total volume is 100%), and the average The particle size can be measured using a laser diffraction / scattering particle size / particle size distribution measuring device or an electronic scanning microscope.
- the endothermic particles are coated with an insulating film to form composite particles 9.
- the cooling device is formed by applying the material for manufacturing a cooling device of the present invention to an electronic component or an electronic device by coating the surface of the endothermic particles with an insulating film, the cooling device exhibits insulating properties as a whole. Therefore, high reliability can be obtained. Specifically, even when the composite particles come into contact with each other for some reason, the composite particles themselves appear to be electrically insulating, so that short-circuiting between electrodes or wirings of electronic devices can be prevented more reliably. be able to.
- the material for manufacturing a cooling device of the present invention is used in an extremely fine space, for example, a space having a width equivalent to the particle diameter of the composite particle, it is possible to more reliably prevent short-circuiting by the composite particle. It becomes possible.
- the insulating film includes the insulating resin 3 and the thermally conductive particles 5 dispersed in the insulating resin 3, and may include any other component as long as it exhibits insulating properties as a whole.
- the heat conductive particles 5 are not particularly limited as long as they are made of a material having insulating properties and heat conductivity.
- the heat conductive particles may be made of a metal oxide having an insulating property.
- metal oxides have high thermal conductivity and contribute greatly to the improvement of heat exchange efficiency.
- the metal oxide having insulating properties include oxides of metals such as aluminum, magnesium, and iron, and a mixture of two or more selected from these.
- the average particle size of the heat conductive particles is not particularly limited, but in order to effectively coat the surface of the endothermic particles and contribute to providing insulation and improving heat exchange efficiency, the average particle size of the endothermic particles is not limited. It is preferably smaller than the diameter.
- the average particle size of the thermally conductive particles is, for example, preferably about 50% or less, particularly about 10% or less, more particularly about 10% or less about 1% or more of the average particle size of the endothermic particles.
- the insulating resin 3 covers the surface of the endothermic particles 1 with an insulating material including the insulating resin 3 and the heat conductive particles 5 in a state where the heat conductive particles 5 are arranged in the vicinity of the endothermic particles 1. Fulfills the function of
- the specific insulating resin is not particularly limited, but is preferably a thermosetting resin such as a fluorine resin, a silicone resin, a urethane resin, an epoxy resin, a polyimide resin, a liquid crystal polymer resin, a polyphenyl sulfide resin, and these.
- a thermosetting resin such as a fluorine resin, a silicone resin, a urethane resin, an epoxy resin, a polyimide resin, a liquid crystal polymer resin, a polyphenyl sulfide resin, and these.
- silica resins obtained by mixing silica into any of the above can be used.
- the content of the heat conductive particles in the insulating film can be appropriately selected according to the thermal conductivity, average particle diameter, and the like of the heat conductive particles to be used.
- the content of the heat conductive particles may be, for example, about 5% by weight or more, preferably about 10% by weight or more, and for example, about 50% by weight or less, preferably about 30% by weight or less, By setting it within such a numerical range, a sufficiently high heat exchange efficiency can be obtained.
- Insulating coatings contain, in addition to thermally conductive particles and insulating resins, additives such as dispersants, curing accelerators, antifoaming agents, and residues such as solvents that may remain due to the production method of composite particles. You may go out.
- a dispersing agent, a hardening accelerator, an antifoaming agent, etc. can be suitably selected as needed from what is used in a general polymer composition.
- the shape of the insulating film covering the endothermic particles is not limited as long as the cooling device exhibits insulating properties as a whole.
- the thickness of the insulating film is not particularly limited, but is preferably in the range of 5 nm to 1 ⁇ m, for example. By setting the thickness to 5 nm or more, it is possible to ensure the insulation more reliably. Further, by setting the thickness to 1 ⁇ m or less, the composite particles can be made smaller, and the composite particles can be provided even in a finer region.
- the method for coating the surface of the endothermic particles with an insulating film is not particularly limited, and known coating methods such as sol-gel method, mechanochemical method, spray drying method, fluidized bed granulation method, atomizing method, barrel sputtering. It can be performed using a law or the like.
- the following method can be used.
- the insulating resin is dissolved in a solvent.
- the solvent can be appropriately selected according to the insulating resin to be used, and for example, alcohol or the like can be used.
- the endothermic particles, the thermally conductive particles, and the liquid mixture in which the insulating resin is dissolved in the solvent are mixed (with additives when used) to form a slurry. These may be mixed simultaneously or sequentially in any order.
- the slurry is subjected to a treatment such as stirring and / or spraying to remove (volatilize) the solvent, and thereby coat the surface of the endothermic particles with an insulating material containing thermally conductive particles and an insulating resin. be able to.
- thermosetting resin When a thermosetting resin is used as the insulating resin, the resin can be subsequently cured by heat treatment.
- a curing treatment may be appropriately performed.
- the cooling device manufacturing material of the present embodiment further includes a second insulating resin, and the composite particles 9 may be dispersed in the second insulating resin.
- a second insulating resin is in an uncured state before the cooling device is manufactured, and can impart fluidity to the cooling device manufacturing material.
- the composition for manufacturing a cooling device may be in a liquid or pasty form. When it does not have fluidity at room temperature, it may be fluidized, for example, by heating or adding a solvent.
- the cooling device is obtained by providing the cooling device manufacturing material to a predetermined portion of the electronic component or the electronic apparatus, where the material is cured and / or solidified there.
- the material for manufacturing a cooling device of this embodiment When the material for manufacturing a cooling device of this embodiment is provided to a predetermined part of an electronic component or an electronic device, the material for manufacturing a cooling device of this embodiment has a shape corresponding to the part provided by its fluidity, and is substantially Thus, it is cured and solidified in that shape to form a cooling device (cured and / or solidified product). Therefore, by using the material for manufacturing a cooling device of the present embodiment, it is possible to install the cooling device at a location having a fine and complicated shape.
- the second insulating resin is not particularly limited, and for example, a thermosetting resin, more specifically, the same one as described above for the first insulating resin obtained 3 can be used.
- the second insulating resin may be the same as or different from the first insulating resin.
- the second insulating resin can be appropriately selected according to the type and application of the electronic device to which the cooling device manufacturing material of the present embodiment is applied.
- an epoxy resin or polyimide resin having solder heat resistance and high versatility is preferable.
- a glass such as a phenol novolac type epoxy resin or polyimide resin is used.
- a resin having a transition temperature of 150 ° C. or higher is preferred.
- the composition for manufacturing a cooling device further includes the second insulating resin
- the composition for manufacturing a cooling device includes third particles having insulating properties and thermal conductivity dispersed in the second insulating resin. May further be included.
- the third particle is not particularly limited as long as it is made of a material having insulating properties and thermal conductivity. More specifically, the same particles as the heat conductive particles described above can be used as the second particles 5. The third particles may be the same as or different from the second particles.
- the cooling device manufacturing material of the present embodiment may further contain a solvent.
- a solvent for example, dipropylene methyl ether acetate, toluene, methyl ethyl ketone and the like are used.
- the material for manufacturing a cooling device of the present embodiment may appropriately include additives such as a dispersant, a curing accelerator, and an antifoaming agent.
- the effective content of the ceramic material in the cooling device manufacturing material is preferably 20 vol% or more, from the viewpoint of obtaining a larger endothermic amount, and 30 vol. % Or more is more preferable, and it is further more preferable that it is 50 vol% or more. Moreover, it is preferable that it is 90 vol% or less from a viewpoint of ensuring the intensity
- a cooling device By using the cooling device manufacturing material of the present embodiment as described above, a cooling device can be obtained, and more specifically, a cooling device can be provided in an electronic device.
- the cooling device 11 formed of the cooling device manufacturing material is replaced with the heat generating component 15. Can be placed in contact.
- the cooling device 11 exhibits high heat exchange efficiency between the outside of the cooling device, in the illustrated case, the heat generating component 15 and the endothermic particles 1, and also exhibits high insulation as the entire cooling device.
- the cooling device 11 can exhibit a resistance value of 10 5 ⁇ ⁇ cm or more at room temperature, but is not limited thereto.
- the cooling device 11 may be formed by providing the cooling device manufacturing material in contact with the heat generating component 15 and then performing post-processing as appropriate as necessary.
- the post-processing is performed by heat drying for the purpose of thermosetting the second insulating resin and removing the solvent when a solvent is present.
- the cooling device manufacturing material can be cured and solidified in situ.
- Such a cooling device can be of any shape and size.
- a method for providing a material for manufacturing a cooling device having fluidity is not particularly limited, and examples thereof include dispenser application, dispenser injection, screen printing, electrostatic application, inkjet printing, spray spraying, dipping, die coating, blade coating, and the like. It is done.
- the heat generating component 15 is not particularly limited.
- an integrated circuit such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR).
- IC integrated circuit
- CPU central processing unit
- PMIC power management IC
- PA power amplifier
- VR voltage regulator
- LEDs Light emitting diodes
- LEDs incandescent bulbs
- FETs field effect transistors
- the cooling device of the present embodiment may be disposed so as to be thermally coupled to other components, for example, components commonly used in electronic devices such as a substrate, a heat sink, and a housing.
- the cooling device of the present embodiment may be formed integrally with such a component to constitute an electronic component.
- the electronic device including the cooling device and / or the electronic component of the present embodiment is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), and a tablet terminal.
- the present invention is not limited to such an embodiment.
- the second insulating resin is not essential in the cooling device manufacturing material of the present invention, and only the composite particles may be used alone as the cooling device manufacturing material. In this case, it is possible to use the composite particles as they are, for example, by filling at least part of the space between the heat generating component and the housing of the electronic device.
- the material for manufacturing a cooling device of the present invention is applicable to electronic devices such as small communication terminals, for example, where the problem of countermeasures against heat has become prominent, and can be used to cool heat-generating components, but is limited to such applications. It is not something.
- First particle (endothermic particle) 3 First insulating resin 5 Second particle (thermally conductive particle) 7 Insulating film 9 Composite particle 10 Cooling device manufacturing material 11 Cooling device 13 Substrate 15 Heating component 20 Electronic equipment
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A cooling device-manufacturing material which comprises composite particles in which first particles composed of a ceramic material that absorbs heat via latent heat are surface coated with an insulating film, the insulating film including a first insulating resin and second particles having insulation properties and thermal conductivity and being dispersed in the first insulating resin.
Description
本発明は、冷却デバイス製造用材料およびこれを用いて得られる冷却デバイスに関する。
The present invention relates to a material for manufacturing a cooling device and a cooling device obtained using the material.
近年、小型通信機器の進歩により薄くて軽いスマートフォンやタブレット型端末が広く普及し始めている。このような機器においてもパーソナルコンピュータと同様に高性能化が進められ、それに伴いCPUなどの発熱に関する問題が顕著化しており、機器の内部温度を、より高度に制御することが求められている。このような課題に対しては、従来からペルチェ素子、ファン、ヒートシンクなどを組み合わせた冷却装置が知られている(特許文献1を参照)。
In recent years, thin and light smartphones and tablet terminals have begun to spread widely due to the progress of small communication devices. In such devices as well as personal computers, higher performance has been promoted, and accordingly, problems related to heat generation of the CPU and the like have become more prominent, and it is required to control the internal temperature of the devices to a higher degree. Conventionally, a cooling device combining a Peltier element, a fan, a heat sink, and the like is known for such a problem (see Patent Document 1).
上記のようなペルチェ素子、ファン、ヒートシンクなどを組み合わせた冷却装置は、構造が比較的複雑であることに加え、機器が大きくなり、特に薄型の機器には使用しにくく、機器の小型化の観点からも不利である。また、電力を消費するので、低消費電力(バッテリーの持ち時間)の観点からも不利である。したがって、無電源で使用可能で、かつ小型の冷却デバイスが強く望まれている。
The cooling device combining the Peltier element, fan, heat sink, and the like as described above has a relatively complicated structure, and the size of the device is large. It is also disadvantageous. Moreover, since power is consumed, it is also disadvantageous from the viewpoint of low power consumption (battery life). Therefore, there is a strong demand for a cooling device that can be used without a power source and is small.
無電源での冷却デバイスとしては、一般的に、ヒートシンクまたはグラファイトシートが用いられる。しかしながら、ヒートシンクは単に放熱を補助するだけであり、グラファイトシートは熱を拡散し、ヒートスポットをなくすという効果しかない。また、ヒートシンクまたはグラファイトシートは、特定の形状を有していることから、その形状に合わせて設置箇所が限定され、例えばグラファイトシートは、表面に凹凸があるような場所に設置しづらい。
Generally, a heat sink or a graphite sheet is used as a cooling device without a power source. However, the heat sink simply assists in heat dissipation, and the graphite sheet only has the effect of diffusing heat and eliminating heat spots. Moreover, since the heat sink or the graphite sheet has a specific shape, the installation location is limited in accordance with the shape. For example, the graphite sheet is difficult to install in a place where the surface is uneven.
かかる状況下、本発明者は、結晶構造相転移や磁気相転移等に伴う熱を吸収するセラミック材料に着目し、まず、このようなセラミック材料を用いた冷却デバイスの構成について検討した。そして、セラミック材料を粒子の形態で用いれば、冷却デバイスの形状および構造等について何ら制約のない冷却デバイス製造用材料として使用可能であるという着想を得た。しかしながら、本発明者の鋭意研究の結果、上記のようなセラミック材料は絶縁性(電気的絶縁性、以下も同様)が十分でなく、例えば、電子回路基板上に実装され、電極やリードなどが露出した電子部品に適用した場合、電子部品ないしこれを備える電子機器の信頼性を損ねる恐れがあることが判明した。
Under such circumstances, the present inventor paid attention to a ceramic material that absorbs heat accompanying a crystal structure phase transition, a magnetic phase transition, or the like, and first examined the configuration of a cooling device using such a ceramic material. And when ceramic material was used with the form of particle | grains, the idea that it can be used as a material for cooling device manufacture without any restrictions about the shape of a cooling device, a structure, etc. was obtained. However, as a result of intensive studies by the inventor, the ceramic materials as described above are not sufficiently insulating (electrically insulating, the same applies hereinafter). For example, the ceramic material is mounted on an electronic circuit board and has electrodes, leads, and the like. When applied to an exposed electronic component, it has been found that the reliability of the electronic component or an electronic device including the electronic component may be impaired.
一方、圧粉磁心に使用される軟磁性材料においては、軟磁性金属粒子の表面に絶縁性皮膜としてシリコーン樹脂から成る皮膜を形成することが知られている(特許文献2~3を参照)。かかる軟磁性材料において、絶縁性皮膜は、圧粉磁心として使用する際の渦電流の発生を抑制するために、軟磁性金属粒子間を絶縁すべく設けられるものであり、軟磁性材料を圧粉磁心の形状に加圧成形する時の圧力に耐え、更に、加圧成形体から歪みや転移を除去するためにこれを熱処理する時の熱に耐えることが求められる。かかる軟磁性材料の場合、軟磁性金属粒子への熱伝導性は問題とならないが、シリコーン樹脂から成る絶縁性皮膜で、上述したような熱を吸収するセラミック粒子を被覆した場合、シリコーン樹脂皮膜によりセラミック粒子への熱伝導が阻害され、冷却デバイス製造用材料として用いるには適切でない。
On the other hand, in soft magnetic materials used for dust cores, it is known that a film made of a silicone resin is formed as an insulating film on the surface of soft magnetic metal particles (see Patent Documents 2 to 3). In such a soft magnetic material, the insulating film is provided to insulate the soft magnetic metal particles in order to suppress the generation of eddy currents when used as a dust core. It is required to withstand the pressure at the time of pressure forming into the shape of the magnetic core and to withstand the heat at the time of heat treatment in order to remove distortion and transition from the pressure formed body. In the case of such a soft magnetic material, the thermal conductivity to the soft magnetic metal particles is not a problem, but when the insulating particles made of silicone resin are coated with the ceramic particles that absorb heat as described above, Heat conduction to the ceramic particles is hindered and is not suitable for use as a material for manufacturing a cooling device.
また、パーマロイ等の金属磁性材料から成る薄帯等の部材に、アルミナまたはマグネシア粉末等の耐熱絶縁性酸化物粉末を、気流または懸濁液を利用した処理方法により付着させることも知られている(特許文献4を参照)。かかる金属磁性材料において、耐熱絶縁性酸化物粉末は、金属磁性材料から形成した部品同士または層間における金属間接触に起因する焼鈍時の融着を防止するために、部品表面または層表面を絶縁処理すべく用いられているものであり、焼鈍時の熱に耐えることが求められる。しかし、かかる金属磁性材料の場合、金属磁性材料から成る本体部分への熱伝導性は考慮されない。また、このような処理方法では、絶縁酸化物粉末によって上述したようなセラミックの粒子を被覆することは容易ではなく、更に、生産量やコスト面でも問題がある。
It is also known that a heat-resistant insulating oxide powder such as alumina or magnesia powder is adhered to a member such as a ribbon made of a metal magnetic material such as permalloy by a treatment method using an air stream or a suspension. (See Patent Document 4). In such a metal magnetic material, the heat-resistant insulating oxide powder is used to insulate the component surface or layer surface in order to prevent fusion during annealing due to metal-to-metal contact between components formed between metal magnetic materials. It is required to withstand the heat during annealing. However, in the case of such a metal magnetic material, thermal conductivity to the main body portion made of the metal magnetic material is not considered. Further, in such a treatment method, it is not easy to coat the ceramic particles as described above with the insulating oxide powder, and there is a problem in terms of production and cost.
本発明の目的は、無電源で使用可能であり、かつ、電子部品ないし電子機器に適用した場合にも高い信頼性を得ることができる冷却デバイス製造用材料を提供することにある。
An object of the present invention is to provide a material for manufacturing a cooling device that can be used without a power source and can obtain high reliability even when applied to an electronic component or an electronic device.
本発明の1つの要旨によれば、潜熱により熱を吸収するセラミック材料から構成される第1の粒子が絶縁性皮膜で表面被覆された複合粒子を含む冷却デバイス製造用材料であって、該絶縁性皮膜は、第1の絶縁性樹脂と、該第1の絶縁性樹脂中に分散した絶縁性および熱伝導性を有する第2の粒子とを含む、冷却デバイス製造用材料が提供される。
According to one aspect of the present invention, there is provided a cooling device manufacturing material including composite particles in which first particles composed of a ceramic material that absorbs heat by latent heat are surface-coated with an insulating coating, The conductive film includes a first insulating resin and a material for manufacturing a cooling device, which includes second particles having insulating properties and thermal conductivity dispersed in the first insulating resin.
また、本発明の第2の要旨によれば、上記冷却デバイス製造用材料を用いて得られる、または上記冷却デバイス製造用材料もしくはこれに由来する材料を含む冷却デバイスが提供される。
Further, according to the second aspect of the present invention, there is provided a cooling device obtained by using the cooling device manufacturing material or including the cooling device manufacturing material or a material derived therefrom.
本発明の第3の要旨によれば、上記冷却デバイスを有して成る電子部品が提供される。
According to a third aspect of the present invention, there is provided an electronic component comprising the cooling device.
本発明によれば、潜熱により熱を吸収するセラミック材料から構成される第1の粒子を、第1の絶縁性樹脂とこれに分散した絶縁性かつ熱伝導性の第2の粒子とを含む絶縁性皮膜で表面被覆した複合粒子を冷却デバイス製造用材料に使用しているので、高い冷却性能と高い絶縁性の双方を実現でき、これにより、無電源で使用可能であり、かつ、電子部品ないし電子機器に適用した場合にも高い信頼性を得ることが可能な冷却デバイス製造用材料が提供される。また、本発明によれば、かかる冷却デバイス製造用材料を用いた電子機器もまた提供される。
According to the present invention, the first particles composed of a ceramic material that absorbs heat by latent heat are insulated from the first insulating resin and the insulating and thermally conductive second particles dispersed therein. Composite particles whose surface is coated with a conductive film are used as materials for manufacturing cooling devices, so that both high cooling performance and high insulation can be realized. A cooling device manufacturing material capable of obtaining high reliability even when applied to an electronic apparatus is provided. Moreover, according to this invention, the electronic device using such a material for cooling device manufacture is also provided.
以下、本発明の1つの実施形態における冷却デバイス製造用材料および冷却デバイスを形成した電子部品について詳述するが、本発明はかかる実施形態に限定されない。
Hereinafter, although the cooling device manufacturing material and the electronic component on which the cooling device is formed in one embodiment of the present invention will be described in detail, the present invention is not limited to such an embodiment.
図1に模式的に示すように、本実施形態における冷却デバイス製造用材料10は、潜熱により熱を吸収するセラミック材料から構成される第1の粒子(以下、「吸熱性粒子」とも言う)1が、第1の絶縁性樹脂(以下、「絶縁性樹脂」とも言う)3とこの絶縁性樹脂3中に複数個分散した絶縁性かつ熱伝導性の第2の粒子(以下、「熱伝導性粒子」とも言う)5と含む絶縁性皮膜7で表面被覆されて成る複合粒子9を複数個含む。
As schematically shown in FIG. 1, the cooling device manufacturing material 10 in the present embodiment is a first particle (hereinafter also referred to as “endothermic particle”) 1 made of a ceramic material that absorbs heat by latent heat. However, the first insulating resin (hereinafter also referred to as “insulating resin”) 3 and a plurality of insulating and thermally conductive second particles dispersed in the insulating resin 3 (hereinafter referred to as “thermal conductivity”). A plurality of composite particles 9 that are surface-coated with an insulating film 7 including 5).
かかる冷却デバイス製造用材料10は、吸熱性粒子(第1の粒子)1が絶縁性樹脂(第1の絶縁性樹脂)3および熱伝導性粒子(第2の粒子)5を含む絶縁性皮膜7で被覆されているので、例えば吸熱性粒子が絶縁性樹脂のみから成る絶縁性皮膜で被覆されている場合に比べて、吸熱性粒子1と冷却デバイス製造用材料10の外部(例えば後述する発熱部品)との間で高い熱交換効率を得ることができる。
The material 10 for manufacturing a cooling device includes an insulating film 7 in which an endothermic particle (first particle) 1 includes an insulating resin (first insulating resin) 3 and a heat conductive particle (second particle) 5. For example, compared with the case where the endothermic particles are covered with an insulating film made of only an insulating resin, for example, the endothermic particles 1 and the outside of the cooling device manufacturing material 10 (for example, a heating component described later) High heat exchange efficiency can be obtained.
吸熱性粒子1は、潜熱により熱を吸収するセラミック材料(以下、単に「セラミック材料」とも言う)から構成される限り、特に限定されない。このセラミック材料の熱の吸収は、潜熱を吸収することにより為される。このようなセラミック材料は、過剰な熱を潜熱により一時的に吸収することにより、時間的な熱の標準化をすることで、グラファイトシートのような従来の冷却デバイスと比較して高い冷却効果を得ることが可能になる。
The endothermic particles 1 are not particularly limited as long as they are made of a ceramic material that absorbs heat by latent heat (hereinafter also simply referred to as “ceramic material”). The heat absorption of this ceramic material is done by absorbing latent heat. Such a ceramic material obtains a high cooling effect as compared with a conventional cooling device such as a graphite sheet by temporarily absorbing excess heat by latent heat to standardize temporal heat. It becomes possible.
なお、本発明において、特定の要素(ないし部分)がある材料から「構成される」と言う場合、該要素の大部分が、その材料でできていることを意味し、該要素が、所望の機能を発揮し得る範囲で他の材料を含んでいてもよく、好ましくはその材料から実質的に成ることを意味する。
In the present invention, when a specific element (or part) is said to be “constructed” from a material, it means that most of the element is made of the material, Other materials may be contained within a range where the function can be exerted, and preferably means substantially consisting of the materials.
上記セラミック材料としては、酸化バナジウムを主成分とするセラミック材料が好ましい。ここに、酸化バナジウムを主成分とするセラミック材料とは、VおよびOを含んだセラミック材料を意味し、例えばVO2、V2O3、V4O7、V6O11等に加え、他の原子がドープされたものも含む。
As the ceramic material, a ceramic material mainly composed of vanadium oxide is preferable. Here, the ceramic material mainly composed of vanadium oxide means a ceramic material containing V and O. For example, in addition to VO 2 , V 2 O 3 , V 4 O 7 , V 6 O 11, etc. Including those doped with the above atoms.
上記セラミック材料は、好ましくは5J/g以上、より好ましくは20J/g以上の潜熱量を有する。このように大きな潜熱量を有することにより、より小さな体積で大きな冷却効果を発揮できるので、小型化の点で有利である。ここに、「潜熱」とは、物質の相が変化するときに必要とされる熱エネルギーの総量であり、本明細書においては、固体-固体の相転移、例えば電気・磁気・構造相転移に伴う吸発熱量の事をいう。
The ceramic material preferably has a latent heat amount of 5 J / g or more, more preferably 20 J / g or more. By having such a large amount of latent heat, a large cooling effect can be exhibited with a smaller volume, which is advantageous in terms of downsizing. Here, “latent heat” is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
具体的なセラミック材料としては、特に限定されないが、例えば特開2010-163510号公報に記載のセラミック材料、具体的には、VO2、LiVS2、LiVO2、V2O3、V4O7、V6O11、AyVO2(式中、AはLiまたはNaであり、0.1≦y≦2.0、好ましくは0.5≦y≦1.0)、V1-xMxO2(式中、Mは、W、Ta、Mo、Nb、RuまたはReであり、0≦x≦0.2、好ましくは0≦x≦0.05)等が挙げられる。
Specific ceramic material is not particularly limited, for example, JP-ceramic material described in JP 2010-163510, specifically, VO 2, LiVS 2, LiVO 2, V 2 O 3, V 4 O 7 , V 6 O 11 , A y VO 2 (wherein A is Li or Na, 0.1 ≦ y ≦ 2.0, preferably 0.5 ≦ y ≦ 1.0), V 1-x M x O 2 (wherein M is W, Ta, Mo, Nb, Ru or Re, and 0 ≦ x ≦ 0.2, preferably 0 ≦ x ≦ 0.05).
好ましい態様において、セラミック材料はバナジウムVおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下、好ましくは1モル部以下である。なお、Mは必須成分ではなく、Mの含有モル部は0であってもよい。
In a preferred embodiment, the ceramic material is an oxide containing vanadium V and M (where M is at least one selected from W, Ta, Mo and Nb), and the total of V and M is 100 mol parts. The molar part of M is 0 mol part or more and about 5 mol part or less, preferably 1 mol part or less. Note that M is not an essential component, and the content molar part of M may be 0.
別の好ましい態様において、セラミック材料は、A(ここに、AはLiまたはNaである)およびバナジウムVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下である。
In another preferred embodiment, the ceramic material is an oxide containing A (where A is Li or Na) and vanadium V, and when A is 100 mol parts, It is 50 to about 100 parts by mole.
また、別の好ましい態様において、セラミック材料は、組成式:
V1-xMxO2
(式中、Mは、W、Ta、MoまたはNbであり、0≦x≦0.05)
または、組成式:
AyVO2
(式中、AはLiまたはNaであり、0.5≦y≦1.0)
で表される1種またはそれ以上の物質を主成分として含む。 In another preferred embodiment, the ceramic material has the composition formula:
V 1-x M x O 2
(Wherein, M is W, Ta, Mo or Nb, 0 ≦ x ≦ 0.05)
Or the composition formula:
A y VO 2
(Wherein, A is Li or Na, 0.5 ≦ y ≦ 1.0)
As a main component, one or more substances represented by the formula:
V1-xMxO2
(式中、Mは、W、Ta、MoまたはNbであり、0≦x≦0.05)
または、組成式:
AyVO2
(式中、AはLiまたはNaであり、0.5≦y≦1.0)
で表される1種またはそれ以上の物質を主成分として含む。 In another preferred embodiment, the ceramic material has the composition formula:
V 1-x M x O 2
(Wherein, M is W, Ta, Mo or Nb, 0 ≦ x ≦ 0.05)
Or the composition formula:
A y VO 2
(Wherein, A is Li or Na, 0.5 ≦ y ≦ 1.0)
As a main component, one or more substances represented by the formula:
より好ましい態様において、セラミック材料は、組成式:
V1-xWxO2
(式中、0≦x≦0.01)
で示される物質を主成分として含む。 In a more preferred embodiment, the ceramic material has a composition formula:
V 1-x W x O 2
(Where 0 ≦ x ≦ 0.01)
The substance shown by is included as a main component.
V1-xWxO2
(式中、0≦x≦0.01)
で示される物質を主成分として含む。 In a more preferred embodiment, the ceramic material has a composition formula:
V 1-x W x O 2
(Where 0 ≦ x ≦ 0.01)
The substance shown by is included as a main component.
ここで、主成分とは、セラミック材料中に50質量%以上含まれる成分を意味し、特に60質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは98質量%以上、例えば98.0~99.8質量%含むことを意味する。その他の成分としては、VO2と酸素量の異なるVOxが挙げられる。
Here, the main component means a component contained in the ceramic material by 50% by mass or more, particularly 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 98% by mass. For example, it means 98.0 to 99.8% by mass. Other components include VO x having a different oxygen content from VO 2 .
セラミック材料の潜熱を示す温度、即ち、セラミック材料が相転移する温度は、添加(ドープ)する元素の添加量により調節することができる。
The temperature indicating the latent heat of the ceramic material, that is, the temperature at which the ceramic material undergoes phase transition can be adjusted by the amount of element to be added (dope).
例えば、セラミック材料が、組成式:
V1-xWxO2
で示される場合、xを0.005とすると、相転移は約50℃で起こり、xを0.01とすると、相転移は約40℃で起こる。 For example, the ceramic material has the composition formula:
V 1-x W x O 2
When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
V1-xWxO2
で示される場合、xを0.005とすると、相転移は約50℃で起こり、xを0.01とすると、相転移は約40℃で起こる。 For example, the ceramic material has the composition formula:
V 1-x W x O 2
When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
上記セラミック材料が相転移する温度は、冷却対象物、冷却目的などに応じて適宜選択され、例えば発熱部品(または冷却対象物)がCPUである場合、昇温時、20~100℃、好ましくは30~70℃で相転移することが好ましい。
The temperature at which the ceramic material undergoes phase transition is appropriately selected according to the object to be cooled, the purpose of cooling, and the like. For example, when the heat generating component (or object to be cooled) is a CPU, the temperature is raised to 20 to 100 ° C., preferably The phase transition is preferably performed at 30 to 70 ° C.
上記セラミック材料から構成される吸熱性粒子1は、粒子(粉末)の形態を有する。セラミック材料を粒子として用いることにより、相転移を繰り返した場合にもクラックの発生を抑制することができ、冷却デバイスの耐久性が高くなる。
The endothermic particles 1 made of the ceramic material have a particle (powder) form. By using the ceramic material as particles, the occurrence of cracks can be suppressed even when the phase transition is repeated, and the durability of the cooling device is enhanced.
吸熱性粒子の平均粒径は、特に限定されないが、例えば、0.1~数百μm、具体的には0.1~900μm、代表的には0.2~50μmであり、好ましくは、0.5~50μmである。吸熱性粒子の平均粒径は、取り扱いの容易性の観点から、0.2μm以上であることが好ましく、より複雑な表面形状、より狭い空間にも適用できるという観点から、50μm以下であることが好ましい。なお、本発明において、平均粒径は、D50(体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径)を意味し、かかる平均粒径は、レーザー回折・散乱式粒子径/粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。
The average particle diameter of the endothermic particles is not particularly limited, but is, for example, 0.1 to several hundred μm, specifically 0.1 to 900 μm, typically 0.2 to 50 μm, and preferably 0 .5 to 50 μm. The average particle diameter of the endothermic particles is preferably 0.2 μm or more from the viewpoint of ease of handling, and from the viewpoint of being applicable to a more complicated surface shape and a narrower space, it may be 50 μm or less. preferable. In the present invention, the average particle diameter means D50 (the particle diameter at which the cumulative value is 50% in a cumulative curve obtained by determining the particle size distribution on a volume basis and the total volume is 100%), and the average The particle size can be measured using a laser diffraction / scattering particle size / particle size distribution measuring device or an electronic scanning microscope.
本発明において、吸熱性粒子は、絶縁性皮膜で表面被覆(コーティング)されて、複合粒子9を成している。吸熱性粒子を絶縁性皮膜により表面被覆することにより、本発明の冷却デバイス製造用材料を電子部品ないし電子機器に適用して冷却デバイスを形成した場合にも、冷却デバイスが全体として絶縁性を示し、よって、高い信頼性を得ることができる。具体的には、何らかの原因により複合粒子が相互接触した場合であっても、複合粒子自体がみかけ上絶縁性示すことになるので、電子機器の電極間または配線間のショートをより確実に防止することができる。また、本発明の冷却デバイス製造用材料を極微細な空間、例えば複合粒子の粒子径と同等の幅である空間に用いた場合であっても、複合粒子によるショートをより確実に防止することが可能になる。
In the present invention, the endothermic particles are coated with an insulating film to form composite particles 9. Even when the cooling device is formed by applying the material for manufacturing a cooling device of the present invention to an electronic component or an electronic device by coating the surface of the endothermic particles with an insulating film, the cooling device exhibits insulating properties as a whole. Therefore, high reliability can be obtained. Specifically, even when the composite particles come into contact with each other for some reason, the composite particles themselves appear to be electrically insulating, so that short-circuiting between electrodes or wirings of electronic devices can be prevented more reliably. be able to. Further, even when the material for manufacturing a cooling device of the present invention is used in an extremely fine space, for example, a space having a width equivalent to the particle diameter of the composite particle, it is possible to more reliably prevent short-circuiting by the composite particle. It becomes possible.
絶縁性皮膜は、絶縁性樹脂3と絶縁性樹脂3中に分散した熱伝導性粒子5と含むものであり、全体として絶縁性を示す限り、任意の他の成分を含んでいてもよい。
The insulating film includes the insulating resin 3 and the thermally conductive particles 5 dispersed in the insulating resin 3, and may include any other component as long as it exhibits insulating properties as a whole.
熱伝導性粒子5は、絶縁性および熱伝導性を有する材料から構成される限り、特に限定されない。
The heat conductive particles 5 are not particularly limited as long as they are made of a material having insulating properties and heat conductivity.
好ましくは、熱伝導性粒子は、絶縁性を有する金属酸化物から構成され得る。かかる金属酸化物は、熱伝導性が高く、熱交換効率の向上に対する寄与が大きい。上記絶縁性を有する金属酸化物としては、例えば、アルミニウム、マグネシウム、鉄などの金属の酸化物、ならびにこれらから選択される2種以上の混合物が挙げられる。
Preferably, the heat conductive particles may be made of a metal oxide having an insulating property. Such metal oxides have high thermal conductivity and contribute greatly to the improvement of heat exchange efficiency. Examples of the metal oxide having insulating properties include oxides of metals such as aluminum, magnesium, and iron, and a mixture of two or more selected from these.
熱伝導性粒子の平均粒径は、特に限定されないが、吸熱性粒子の表面を効果的に被覆して、絶縁性の提供と熱交換効率の向上に資するためには、吸熱性粒子の平均粒径より小さいことが好ましい。熱伝導性粒子の平均粒径は、例えば吸熱性粒子の平均粒径の約50%以下、特に約10%以下、より特に約10%以下約1%以上であることが好ましい。
The average particle size of the heat conductive particles is not particularly limited, but in order to effectively coat the surface of the endothermic particles and contribute to providing insulation and improving heat exchange efficiency, the average particle size of the endothermic particles is not limited. It is preferably smaller than the diameter. The average particle size of the thermally conductive particles is, for example, preferably about 50% or less, particularly about 10% or less, more particularly about 10% or less about 1% or more of the average particle size of the endothermic particles.
絶縁性樹脂3は、熱伝導性粒子5を吸熱性粒子1の近傍に配置した状態で、これら絶縁性樹脂3と熱伝導性粒子5とを含む絶縁性材料により吸熱性粒子1の表面を被覆するという機能を果たす。
The insulating resin 3 covers the surface of the endothermic particles 1 with an insulating material including the insulating resin 3 and the heat conductive particles 5 in a state where the heat conductive particles 5 are arranged in the vicinity of the endothermic particles 1. Fulfills the function of
具体的な絶縁性樹脂としては、特に限定されないが、好ましくは熱硬化性樹脂、例えばフッ素系樹脂、シリコーン系樹脂、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、液晶ポリマー樹脂、ポリフェニルサルファイド樹脂、およびこれらのいずれかにシリカを混入してなるシリカ樹脂からなる群より選択される1種またはそれ以上を使用することができる。
The specific insulating resin is not particularly limited, but is preferably a thermosetting resin such as a fluorine resin, a silicone resin, a urethane resin, an epoxy resin, a polyimide resin, a liquid crystal polymer resin, a polyphenyl sulfide resin, and these. One or more selected from the group consisting of silica resins obtained by mixing silica into any of the above can be used.
絶縁性皮膜における熱伝導性粒子の含有量は、使用する熱伝導性粒子の熱伝導率および平均粒径などに応じて適宜選択され得る。具体的には、熱伝導性粒子の含有量は、例えば約5重量%以上、好ましくは約10重量%以上で、また、例えば約50重量%以下、好ましくは約30重量%以下であり得、かかる数値範囲内とすることにより、十分に高い熱交換効率を得ることができる。
The content of the heat conductive particles in the insulating film can be appropriately selected according to the thermal conductivity, average particle diameter, and the like of the heat conductive particles to be used. Specifically, the content of the heat conductive particles may be, for example, about 5% by weight or more, preferably about 10% by weight or more, and for example, about 50% by weight or less, preferably about 30% by weight or less, By setting it within such a numerical range, a sufficiently high heat exchange efficiency can be obtained.
絶縁性皮膜は、熱伝導性粒子および絶縁性樹脂に加えて、分散剤、硬化促進剤、消泡剤等の添加剤や、複合粒子の製法に起因して残留し得る溶媒等の残渣を含んでいてもよい。分散剤、硬化促進剤、消泡剤等は、一般的なポリマー組成物において用いられるものから、必要に応じて適宜選択することができる。
Insulating coatings contain, in addition to thermally conductive particles and insulating resins, additives such as dispersants, curing accelerators, antifoaming agents, and residues such as solvents that may remain due to the production method of composite particles. You may go out. A dispersing agent, a hardening accelerator, an antifoaming agent, etc. can be suitably selected as needed from what is used in a general polymer composition.
本実施形態において、吸熱性粒子を被覆する絶縁性皮膜は、冷却デバイスが全体として絶縁性を示す限り、その形状は限定されない。例えば、個々の吸熱性粒子を、絶縁性材料により実質的に完全に被覆することが望ましいが、一部または全部が絶縁性材料で被覆されずに露出している吸熱性粒子が混在していてもよい。
In the present embodiment, the shape of the insulating film covering the endothermic particles is not limited as long as the cooling device exhibits insulating properties as a whole. For example, it is desirable that the individual endothermic particles are substantially completely covered with the insulating material, but some or all of the endothermic particles are exposed without being covered with the insulating material. Also good.
絶縁性皮膜の厚みは、特に限定されないが、例えば、5nm~1μmの範囲であることが好ましい。厚みを5nm以上とすることにより、絶縁性をより確実に確保することができる。また、厚みを1μm以下とすることにより、複合粒子をより小さくすることができ、より微細な領域にも複合粒子を提供することが可能になる。
The thickness of the insulating film is not particularly limited, but is preferably in the range of 5 nm to 1 μm, for example. By setting the thickness to 5 nm or more, it is possible to ensure the insulation more reliably. Further, by setting the thickness to 1 μm or less, the composite particles can be made smaller, and the composite particles can be provided even in a finer region.
吸熱性粒子を絶縁性皮膜で表面被覆する方法は、特に限定されず、既知のコーティング法、例えば、ゾル-ゲル法、メカノケミカル法、スプレードライ法、流動層造粒法、アトマイズ法、バレルスパッタ法等を用いて行うことができる。
The method for coating the surface of the endothermic particles with an insulating film is not particularly limited, and known coating methods such as sol-gel method, mechanochemical method, spray drying method, fluidized bed granulation method, atomizing method, barrel sputtering. It can be performed using a law or the like.
一例として、次のような方法を利用することができる。まず、絶縁性樹脂を溶媒に溶解させる。溶媒は、使用する絶縁性樹脂に応じて適宜選択され得るが、例えばアルコール等を使用できる。次に、吸熱性粒子と、熱伝導性粒子と、絶縁性樹脂を溶媒に溶解させた液状混合物とを(使用する場合には添加剤と共に)混合してスラリーを形成する。これらは、同時に混合しても、任意の順序で順次混合してもよい。そして、スラリーを撹拌および/または噴霧等の処理に付して、溶媒を除去(揮発)し、これにより、吸熱性粒子の表面を熱伝導性粒子と絶縁性樹脂とを含む絶縁材料で被覆することができる。絶縁性樹脂として熱硬化性樹脂を用いる場合には、その後、熱処理により樹脂を硬化させ得る。絶縁性樹脂として他の硬化性樹脂、例えば光硬化性または湿気硬化性の樹脂を用いる場合には、適宜、硬化処理を施してよい。
As an example, the following method can be used. First, the insulating resin is dissolved in a solvent. The solvent can be appropriately selected according to the insulating resin to be used, and for example, alcohol or the like can be used. Next, the endothermic particles, the thermally conductive particles, and the liquid mixture in which the insulating resin is dissolved in the solvent are mixed (with additives when used) to form a slurry. These may be mixed simultaneously or sequentially in any order. Then, the slurry is subjected to a treatment such as stirring and / or spraying to remove (volatilize) the solvent, and thereby coat the surface of the endothermic particles with an insulating material containing thermally conductive particles and an insulating resin. be able to. When a thermosetting resin is used as the insulating resin, the resin can be subsequently cured by heat treatment. In the case of using another curable resin as the insulating resin, for example, a photocurable or moisture curable resin, a curing treatment may be appropriately performed.
本実施形態の冷却デバイス製造用材料は、第2の絶縁性樹脂を更に含み、この第2の絶縁性樹脂中に複合粒子9が分散していてよい。かかる第2の絶縁性樹脂は、冷却デバイスを製造する前は未硬化の状態にあり、冷却デバイス製造用材料に流動性を付与し得る。換言すれば、冷却デバイス製造用組成物は、液状またはペースト状の形態であり得る。常温下で流動性を有しない場合、例えば、加熱する、あるいは溶剤を添加することにより流動性を持たせてもよい。この冷却デバイス製造用材料を、電子部品または電子機器の所定の箇所に提供し、そこで硬化および/または固化させることにより冷却デバイスが得られる。本実施形態の冷却デバイス製造用材料を電子部品または電子機器の所定の箇所に提供した場合、本実施形態の冷却デバイス製造用材料は、その流動性により提供される箇所に応じた形状となり、実質的にその形状で硬化・固化して冷却デバイス(硬化および/または固化物)となる。したがって、本実施形態の冷却デバイス製造用材料を用いることにより、微細で複雑な形状を有する箇所にも、冷却デバイスを設置することが可能になる。
The cooling device manufacturing material of the present embodiment further includes a second insulating resin, and the composite particles 9 may be dispersed in the second insulating resin. Such a second insulating resin is in an uncured state before the cooling device is manufactured, and can impart fluidity to the cooling device manufacturing material. In other words, the composition for manufacturing a cooling device may be in a liquid or pasty form. When it does not have fluidity at room temperature, it may be fluidized, for example, by heating or adding a solvent. The cooling device is obtained by providing the cooling device manufacturing material to a predetermined portion of the electronic component or the electronic apparatus, where the material is cured and / or solidified there. When the material for manufacturing a cooling device of this embodiment is provided to a predetermined part of an electronic component or an electronic device, the material for manufacturing a cooling device of this embodiment has a shape corresponding to the part provided by its fluidity, and is substantially Thus, it is cured and solidified in that shape to form a cooling device (cured and / or solidified product). Therefore, by using the material for manufacturing a cooling device of the present embodiment, it is possible to install the cooling device at a location having a fine and complicated shape.
上記第2の絶縁性樹脂としては、特に限定されず、例えば熱硬化性樹脂、より具体的には第1の絶縁性樹脂得3について上述したものと同様のものを用いることができる。第2の絶縁性樹脂は、第1の絶縁性樹脂と同じであっても、異なっていてもよい。
The second insulating resin is not particularly limited, and for example, a thermosetting resin, more specifically, the same one as described above for the first insulating resin obtained 3 can be used. The second insulating resin may be the same as or different from the first insulating resin.
第2の絶縁性樹脂は、本実施形態の冷却デバイス製造用材料を適用する電子機器の種類・用途等に応じて適宜選択することができる。例えば、一般的な電子機器に用いる場合、半田耐熱性があり、汎用性が高いエポキシ樹脂またはポリイミド樹脂が好ましく、耐熱性を要する機器に用いる場合、フェノールノボラック型エポキシ樹脂またはポリイミド樹脂のようなガラス転移温度が150℃以上の樹脂が好ましい。また、冷却デバイス製造用材料の熱伝導性を高めるためには、メソゲン基を有する液晶ポリマー樹脂を用いることが好ましい。
The second insulating resin can be appropriately selected according to the type and application of the electronic device to which the cooling device manufacturing material of the present embodiment is applied. For example, when used for general electronic equipment, an epoxy resin or polyimide resin having solder heat resistance and high versatility is preferable. When used for equipment requiring heat resistance, a glass such as a phenol novolac type epoxy resin or polyimide resin is used. A resin having a transition temperature of 150 ° C. or higher is preferred. In order to increase the thermal conductivity of the cooling device manufacturing material, it is preferable to use a liquid crystal polymer resin having a mesogenic group.
冷却デバイス製造用組成物が、かかる第2の絶縁性樹脂を更に含む場合、冷却デバイス製造用組成物は、第2の絶縁性樹脂中に分散した絶縁性および熱伝導性を有する第3の粒子を更に含んでいてもよい。
When the composition for manufacturing a cooling device further includes the second insulating resin, the composition for manufacturing a cooling device includes third particles having insulating properties and thermal conductivity dispersed in the second insulating resin. May further be included.
上記第3の粒子は、絶縁性および熱伝導性を有する材料から構成される限り、特に限定されない。より具体的には第2の粒子5として上述した熱伝導性粒子と同様のものを用いることができる。第3の粒子は、第2の粒子と同じであっても、異なっていてもよい。
The third particle is not particularly limited as long as it is made of a material having insulating properties and thermal conductivity. More specifically, the same particles as the heat conductive particles described above can be used as the second particles 5. The third particles may be the same as or different from the second particles.
本実施形態の冷却デバイス製造用材料は、更に溶剤を含んでいてもよい。かかる溶剤としては、例えば、ジプロピレンメチルエーテルアセテート、トルエン、メチルエチルケトン等が用いられる。また、本実施形態の冷却デバイス製造用材料は、適宜、分散剤、硬化促進剤、消泡剤等の添加剤も含み得る。
The cooling device manufacturing material of the present embodiment may further contain a solvent. As such a solvent, for example, dipropylene methyl ether acetate, toluene, methyl ethyl ketone and the like are used. Moreover, the material for manufacturing a cooling device of the present embodiment may appropriately include additives such as a dispersant, a curing accelerator, and an antifoaming agent.
冷却デバイス製造用材料におけるセラミック材料の有効含有量(冷却デバイスを形成した場合に残留する成分の合計に対するセラミック材料の含有量)は、より大きな吸熱量を得る観点から、20vol%以上が好ましく、30vol%以上がより好ましく、50vol%以上であることがさらに好ましい。また、冷却デバイス製造用材料を用いて得られる冷却デバイスの強度を確保する観点から、90vol%以下であることが好ましく、80vol%以下であることがより好ましい。
The effective content of the ceramic material in the cooling device manufacturing material (the content of the ceramic material relative to the total of the components remaining when the cooling device is formed) is preferably 20 vol% or more, from the viewpoint of obtaining a larger endothermic amount, and 30 vol. % Or more is more preferable, and it is further more preferable that it is 50 vol% or more. Moreover, it is preferable that it is 90 vol% or less from a viewpoint of ensuring the intensity | strength of the cooling device obtained using the material for cooling device manufacture, and it is more preferable that it is 80 vol% or less.
以上のような本実施形態の冷却デバイス製造用材料を用いて、冷却デバイスを得ること、より詳細には電子機器に冷却デバイスを設けることができる。
By using the cooling device manufacturing material of the present embodiment as described above, a cooling device can be obtained, and more specifically, a cooling device can be provided in an electronic device.
代表的には、図2に模式的に示すように、電子機器20が、例えば基板13上に発熱部品15を備える場合、冷却デバイス製造用材料から形成される冷却デバイス11を、発熱部品15に接触して配置し得る。
Typically, as schematically shown in FIG. 2, when the electronic device 20 includes, for example, the heat generating component 15 on the substrate 13, the cooling device 11 formed of the cooling device manufacturing material is replaced with the heat generating component 15. Can be placed in contact.
冷却デバイス11は、冷却デバイスの外部、図示する場合は発熱部品15と、吸熱性粒子1との間で高い熱交換効率を示し、かつ、冷却デバイス全体として高い絶縁性を示す。例えば、冷却デバイス11は、常温で105Ω・cm以上の抵抗値を示し得るが、これに限定されるものではない。
The cooling device 11 exhibits high heat exchange efficiency between the outside of the cooling device, in the illustrated case, the heat generating component 15 and the endothermic particles 1, and also exhibits high insulation as the entire cooling device. For example, the cooling device 11 can exhibit a resistance value of 10 5 Ω · cm or more at room temperature, but is not limited thereto.
冷却デバイス11は、冷却デバイス製造用材料を発熱部品15に接触させて提供し、その後、必要に応じて適宜、後処理することによって形成され得る。
The cooling device 11 may be formed by providing the cooling device manufacturing material in contact with the heat generating component 15 and then performing post-processing as appropriate as necessary.
例えば、上述したような流動性を有する冷却デバイス製造用材料を用いる場合、後処理は、第2の絶縁性樹脂の熱硬化、および溶剤が存在する場合には溶剤除去等の目的で、加熱乾燥を実施するものであってよく、これにより、冷却デバイス製造用材料をその場で硬化・固化させることができる。かかる冷却デバイスは、任意の形状および大きさとすることができる。
For example, when the cooling device manufacturing material having fluidity as described above is used, the post-processing is performed by heat drying for the purpose of thermosetting the second insulating resin and removing the solvent when a solvent is present. Thus, the cooling device manufacturing material can be cured and solidified in situ. Such a cooling device can be of any shape and size.
流動性を有する冷却デバイス製造用材料の提供方法は、特に限定されないが、例えば、ディスペンサ塗布、ディスペンサ注入、スクリーン印刷、静電塗布、インクジェット印刷、スプレー噴霧、ディッピング、ダイコーティング、ブレードコーティング等が挙げられる。
A method for providing a material for manufacturing a cooling device having fluidity is not particularly limited, and examples thereof include dispenser application, dispenser injection, screen printing, electrostatic application, inkjet printing, spray spraying, dipping, die coating, blade coating, and the like. It is done.
発熱部品15としては、特に限定するものではないが、例えば、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品が挙げられる。しかしながら、本実施形態の冷却デバイスは、その他の部品、例えば、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品に対して熱的に結合するように配置されてもよい。
The heat generating component 15 is not particularly limited. For example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR). ), Light emitting diodes (LEDs), incandescent bulbs, light emitting elements such as semiconductor lasers, and parts that can serve as heat sources such as field effect transistors (FETs). However, the cooling device of the present embodiment may be disposed so as to be thermally coupled to other components, for example, components commonly used in electronic devices such as a substrate, a heat sink, and a housing.
本実施形態の冷却デバイスは、このような部品と一体に形成されて、電子部品を構成していてよい。
The cooling device of the present embodiment may be formed integrally with such a component to constitute an electronic component.
本実施形態の冷却デバイスおよび/または電子部品を備える電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末等が挙げられる。
The electronic device including the cooling device and / or the electronic component of the present embodiment is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), and a tablet terminal.
以上、本発明の1つの実施形態における冷却デバイス製造用材料、冷却デバイス、電子機器等について説明したが、本発明はかかる実施形態に限定されない。例えば、本発明の冷却デバイス製造用材料において第2の絶縁性樹脂は必須でなく、冷却デバイス製造用材料として、複合粒子のみを単独で使用してもよい。この場合、複合粒子をそのまま、例えば発熱部品と電子機器の筐体との間の空間の少なくとも一部に充填して用いることが可能である。
As mentioned above, although the cooling device manufacturing material, the cooling device, the electronic device, and the like in one embodiment of the present invention have been described, the present invention is not limited to such an embodiment. For example, the second insulating resin is not essential in the cooling device manufacturing material of the present invention, and only the composite particles may be used alone as the cooling device manufacturing material. In this case, it is possible to use the composite particles as they are, for example, by filling at least part of the space between the heat generating component and the housing of the electronic device.
本発明の冷却デバイス製造用材料は、例えば、熱対策問題が顕著化している小型通信端末等の電子機器に適用されて、発熱部品を冷却するために利用可能であるが、かかる用途に限定されるものではない。
The material for manufacturing a cooling device of the present invention is applicable to electronic devices such as small communication terminals, for example, where the problem of countermeasures against heat has become prominent, and can be used to cool heat-generating components, but is limited to such applications. It is not something.
本願は、2014年9月17日付けで出願された特願2014-188832に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2014-188832 filed on September 17, 2014, the entire contents of which are incorporated herein by reference.
1 第1の粒子(吸熱性粒子)
3 第1の絶縁性樹脂
5 第2の粒子(熱伝導性粒子)
7 絶縁性皮膜
9 複合粒子
10 冷却デバイス製造用材料
11 冷却デバイス
13 基板
15 発熱部品
20 電子機器 1 First particle (endothermic particle)
3 First insulatingresin 5 Second particle (thermally conductive particle)
7 Insulatingfilm 9 Composite particle 10 Cooling device manufacturing material 11 Cooling device 13 Substrate 15 Heating component 20 Electronic equipment
3 第1の絶縁性樹脂
5 第2の粒子(熱伝導性粒子)
7 絶縁性皮膜
9 複合粒子
10 冷却デバイス製造用材料
11 冷却デバイス
13 基板
15 発熱部品
20 電子機器 1 First particle (endothermic particle)
3 First insulating
7 Insulating
Claims (12)
- 潜熱により熱を吸収するセラミック材料から構成される第1の粒子が絶縁性皮膜で表面被覆された複合粒子を含む冷却デバイス製造用材料であって、該絶縁性皮膜は、第1の絶縁性樹脂と、該第1の絶縁性樹脂中に分散した絶縁性および熱伝導性を有する第2の粒子とを含む、冷却デバイス製造用材料。 A cooling device manufacturing material comprising composite particles in which first particles composed of a ceramic material that absorbs heat by latent heat are surface-coated with an insulating coating, the insulating coating comprising a first insulating resin And a material for manufacturing a cooling device, comprising: second particles having insulating properties and thermal conductivity dispersed in the first insulating resin.
- 第2の粒子が、絶縁性を有する金属酸化物から構成される、請求項1に記載の冷却デバイス製造用材料。 The material for manufacturing a cooling device according to claim 1, wherein the second particles are made of an insulating metal oxide.
- 第2の粒子の平均粒径が、第1の粒子の平均粒径より小さい、請求項1または2に記載の冷却デバイス製造用材料。 The cooling device manufacturing material according to claim 1 or 2, wherein the average particle size of the second particles is smaller than the average particle size of the first particles.
- セラミック材料が、バナジウムVおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下である、請求項1~3のいずれかに記載の冷却デバイス製造用材料。 When the ceramic material is an oxide containing vanadium V and M (where M is at least one selected from W, Ta, Mo and Nb), and the total of V and M is 100 mol parts The material for manufacturing a cooling device according to any one of claims 1 to 3, wherein the molar part of M is from 0 to about 5 parts by mole.
- セラミック材料が、A(ここに、AはLiまたはNaである)およびバナジウムVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下であることを特徴とする、請求項1~3のいずれかに記載の冷却デバイス製造用材料。 The ceramic material is an oxide containing A (where A is Li or Na) and vanadium V, and when V is 100 mole parts, the content mole part of A is about 50 mole parts or more and about 100 mole parts. The material for manufacturing a cooling device according to any one of claims 1 to 3, wherein the material is in a molar part or less.
- セラミック材料が、式:
V1-xMxO2
(式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
または、式:
AyVO2
(式中、Aは、LiまたはNaであり、yは、0.5以上1.0以下である)
で表される1種またはそれ以上の材料を含むことを特徴とする、請求項1~3のいずれかに記載の冷却デバイス製造用材料。 Ceramic material has the formula:
V 1-x M x O 2
(In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less)
Or the formula:
A y VO 2
(In the formula, A is Li or Na, and y is 0.5 or more and 1.0 or less)
The material for manufacturing a cooling device according to any one of claims 1 to 3, comprising one or more materials represented by the formula: - 第1の絶縁性樹脂が、フッ素系樹脂、シリコーン系樹脂、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、液晶ポリマー樹脂、ポリフェニルサルファイド樹脂、およびこれらのいずれかにシリカを混入してなるシリカ樹脂からなる群より選択される1種またはそれ以上の熱硬化性樹脂であることを特徴とする、請求項1~6のいずれかに記載の冷却デバイス製造用材料。 The first insulating resin is composed of a fluorine resin, a silicone resin, a urethane resin, an epoxy resin, a polyimide resin, a liquid crystal polymer resin, a polyphenyl sulfide resin, and a silica resin obtained by mixing silica in any of these. The material for manufacturing a cooling device according to any one of claims 1 to 6, wherein the material is one or more thermosetting resins selected from the group.
- 第2の絶縁性樹脂を更に含み、該第2の絶縁性樹脂中に前記複合粒子が分散している、請求項1~7のいずれかに記載の冷却デバイス製造用材料。 The cooling device manufacturing material according to any one of claims 1 to 7, further comprising a second insulating resin, wherein the composite particles are dispersed in the second insulating resin.
- 第2の絶縁性樹脂中に分散した絶縁性および熱伝導性を有する第3の粒子を更に含む、請求項8に記載の冷却デバイス製造用材料。 The cooling device manufacturing material according to claim 8, further comprising third particles having insulating properties and thermal conductivity dispersed in the second insulating resin.
- 請求項1~9のいずれかに記載の冷却デバイス製造用材料を用いて得られる冷却デバイス。 A cooling device obtained using the material for manufacturing a cooling device according to any one of claims 1 to 9.
- 請求項10に記載の冷却デバイスを有する電子部品。 An electronic component having the cooling device according to claim 10.
- 請求項10に記載の冷却デバイスまたは請求項11に記載の電子部品を備えた電子機器。 An electronic apparatus comprising the cooling device according to claim 10 or the electronic component according to claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014188832 | 2014-09-17 | ||
JP2014-188832 | 2014-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016042909A1 true WO2016042909A1 (en) | 2016-03-24 |
Family
ID=55532954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070489 WO2016042909A1 (en) | 2014-09-17 | 2015-07-17 | Cooling device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016042909A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018174210A1 (en) * | 2017-03-24 | 2018-09-27 | 国立大学法人東京大学 | Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition |
EP3827974A1 (en) | 2016-11-03 | 2021-06-02 | Continuous Composites Inc. | Composite vehicle body |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181612A (en) * | 1999-12-24 | 2001-07-03 | Sekisui Chem Co Ltd | Microcapsule for heat storage |
JP2006016573A (en) * | 2004-07-05 | 2006-01-19 | Honda Motor Co Ltd | Microcapsule and heat transfer fluid |
JP2010163510A (en) * | 2009-01-14 | 2010-07-29 | Institute Of Physical & Chemical Research | Heat storage material |
WO2013107081A1 (en) * | 2012-01-19 | 2013-07-25 | 中国科学院上海硅酸盐研究所 | Vanadium dioxide coating for intelligent temperature control |
-
2015
- 2015-07-17 WO PCT/JP2015/070489 patent/WO2016042909A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181612A (en) * | 1999-12-24 | 2001-07-03 | Sekisui Chem Co Ltd | Microcapsule for heat storage |
JP2006016573A (en) * | 2004-07-05 | 2006-01-19 | Honda Motor Co Ltd | Microcapsule and heat transfer fluid |
JP2010163510A (en) * | 2009-01-14 | 2010-07-29 | Institute Of Physical & Chemical Research | Heat storage material |
WO2013107081A1 (en) * | 2012-01-19 | 2013-07-25 | 中国科学院上海硅酸盐研究所 | Vanadium dioxide coating for intelligent temperature control |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3827974A1 (en) | 2016-11-03 | 2021-06-02 | Continuous Composites Inc. | Composite vehicle body |
WO2018174210A1 (en) * | 2017-03-24 | 2018-09-27 | 国立大学法人東京大学 | Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010157563A (en) | Heat conductive sheet and power module | |
JP2014162697A (en) | Boron nitride molding, and production method and application of the same | |
JP2015122463A (en) | Cooling structure | |
CN103144377A (en) | Composite electromagnetic-shielding copper clad laminate with heat conduction effect and manufacture method thereof | |
CN104303605B (en) | Metal base printed circuit board | |
US20210345518A1 (en) | Device and heat radiation method | |
JPWO2009142036A1 (en) | Heat-dissipating cured coating film, coating composition, method for producing heat-dissipating cured coating film, and electronic device having heat-dissipating cured coating film | |
WO2016042909A1 (en) | Cooling device | |
JP2017208505A (en) | Structure, and electronic component and electronic apparatus including the structure | |
WO2015115481A1 (en) | Thermally conductive sheet and semiconductor device | |
CN106133900B (en) | Thermally conductive sheet and semiconductor device | |
WO2015033691A1 (en) | Cooling device | |
JP2013008724A (en) | High dielectric insulating heat dissipation sheet and method for producing the same | |
CN114874656B (en) | Composite powder, preparation method thereof and application thereof in heat dissipation coating | |
WO2015118783A1 (en) | Cooling device | |
WO2015118784A1 (en) | Insulating ceramic particles | |
WO2017179454A1 (en) | Ceramic-particle-containing composition | |
JP2017065984A (en) | Ceramic particle | |
JP6414636B2 (en) | Cooling device | |
Park et al. | High thermally conductive epoxy composite inks cured by infrared laser irradiation for two-dimensional/three-dimensional printing technology | |
JP6589975B2 (en) | Vanadium dioxide | |
KR20210008184A (en) | Composition for thermally conductive sheet and thermally conductive sheet prepared therefrom | |
CN112820485B (en) | Insulating cooling composite film | |
KR101527376B1 (en) | Multi-layered heat emission film and processing method thereof | |
CN203157260U (en) | Compound type electromagnetic shielding copper foil base plate with high heat conducting effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841999 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15841999 Country of ref document: EP Kind code of ref document: A1 |