WO2018174210A1 - Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition - Google Patents

Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition Download PDF

Info

Publication number
WO2018174210A1
WO2018174210A1 PCT/JP2018/011548 JP2018011548W WO2018174210A1 WO 2018174210 A1 WO2018174210 A1 WO 2018174210A1 JP 2018011548 W JP2018011548 W JP 2018011548W WO 2018174210 A1 WO2018174210 A1 WO 2018174210A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
heat storage
titanium oxide
heat
resin
Prior art date
Application number
PCT/JP2018/011548
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 大越
幸祐 中川
義総 奈須
裕美 紀田
宮田 篤
潤 内藤
日六士 中尾
Original Assignee
国立大学法人東京大学
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 堺化学工業株式会社 filed Critical 国立大学法人東京大学
Priority to JP2019507002A priority Critical patent/JPWO2018174210A1/en
Publication of WO2018174210A1 publication Critical patent/WO2018174210A1/en

Links

Images

Definitions

  • the present invention relates to a resin composition containing a heat storage titanium oxide and a heat storage resin molded product obtained by molding the resin composition, that is, a heat storage material, and more specifically, a resin composition containing a heat storage titanium oxide. And a heat storage material obtained by molding this resin composition into a tangible material, and by applying a lower pressure than before, the heat of transition associated with the change in the crystal structure of the heat storage titanium oxide is desired.
  • the present invention relates to a heat storage material that can be released at a time.
  • concrete is known to have a property of storing given heat, and has been used as a heat storage and heat dissipation material for storing and releasing heat in various fields such as architecture and civil engineering.
  • a heat storage / dissipation material made of concrete cannot freely control the release of the stored heat, and the heat stored in the concrete is released immediately after the heating is finished. Immediately after storing it, it is only used in a system that uses the heat.
  • latent heat storage and heat dissipation materials latent heat accompanying a change in crystal structure of polymorphic reduced titanium oxide (hereinafter referred to as heat storage and heat dissipation titanium oxide) having a composition of Ti 3 O 5 , that is, A new latent heat storage / dissipation material using transition heat has been proposed.
  • heat storage and heat dissipation titanium oxide polymorphic reduced titanium oxide having a composition of Ti 3 O 5
  • the heat storage titanium oxide is heated or irradiated with light to change the crystal structure and absorb the latent heat, and then apply pressure or light at a desired time.
  • the crystal structure changes again and releases latent heat.
  • the heat storage and heat dissipation system disperses the heat storage and heat dissipation titanium oxide in the liquid heat transfer material, heats or heat-irradiates the heat storage and heat dissipation titanium oxide in the liquid heat transfer material, and changes the crystal structure to another.
  • the phase is changed to the original crystal structure, and at that time, the transition heat is released.
  • the heat storage and heat dissipation titanium oxide is a powder, so to use it as a heat storage and heat dissipation material, it must be dispersed in a liquid heat transfer material and accommodated in a sealed system. There are also practical problems.
  • the heat storage and heat dissipation titanium oxide can release the transition heat at a desired time by applying pressure to the titanium oxide.
  • pressure to the titanium oxide.
  • reduction of the pressure is desired. Yes.
  • the present invention was made in order to solve the various problems described above in the use of heat storage and heat dissipation titanium oxide, and is a heat storage material made of a resin molded body containing heat storage and heat dissipation titanium oxide, By applying a low pressure to the heat storage material, the crystal structure of the heat-storing titanium oxide contained in the heat storage material can be changed at the desired time and the transition heat can be released accordingly.
  • the object is to provide a heat storage material with excellent durability.
  • this invention provides the resin composition containing the heat storage and heat dissipation titanium oxide useful for manufacturing the said heat storage material, and the method of manufacturing the said heat storage material using the resin composition. Objective.
  • a heat storage material in which heat storage titanium oxide is dispersed in a resin molded body having a glass transition temperature of 460 K or more,
  • the heat storage titanium oxide has a composition of Ti 3 O 5 ,
  • the ⁇ phase is heated or irradiated with light to a temperature of 460 K or higher, it undergoes a phase transition to the ⁇ phase,
  • the ⁇ phase remains in the ⁇ phase without phase transition to the ⁇ phase even in a temperature range lower than 460 K, and the ⁇ phase undergoes phase transition to the ⁇ phase when pressure is applied, At this time, a heat storage material that releases transition heat is provided.
  • a resin composition comprising a heat storage titanium oxide and a resin material having a glass transition temperature of 460K or higher, or a polymer or a cured product having a glass transition temperature of 460K or higher.
  • the heat storage titanium oxide has a composition of Ti 3 O 5 .
  • heat storage / heat dissipation titanium oxide is obtained by heating or heat-radiating titanium oxide and irradiating light to change the crystal structure from ⁇ phase to ⁇ phase.
  • the heat storage material containing the heat storage titanium oxide is heated or irradiated with light to cause the crystal structure of the heat storage titanium oxide included in the heat storage material to transition from the ⁇ phase to the ⁇ phase.
  • This heat storage material is called an activated heat storage material.
  • the activated heat storage / heat dissipation titanium oxide is pressurized and dissipated, it is heated again or irradiated with light, and the heat storage heat dissipation titanium oxide that is reactivated is called reactivated heat storage heat dissipation titanium oxide.
  • the activated heat storage material is released from pressure, it is heated again or irradiated with light, and the heat storage material that is reactivated is referred to as a reactivated heat storage material.
  • the heat storage and heat dissipation titanium oxide is dispersed in the resin molded body, and the resin storage body including the activated heat storage and heat dissipation titanium oxide, that is, the activated heat storage material, compared to the conventional case.
  • the heat storage material according to the present invention is excellent in practicality and durability.
  • the diffraction peaks of the ⁇ phase and the ⁇ phase are shown together with the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide produced in the present invention.
  • the change of the crystal structure of the thermal storage titanium oxide in the process of producing the heat storage material by this invention is shown.
  • the X-ray-diffraction pattern of the thermal storage titanium oxide in each heat storage material after applying the pressure of 50 MPa and 200 MPa to this after activating the heat storage material by this invention is shown.
  • the respective X-ray diffraction patterns after applying pressures of 50 MPa and 200 MPa to the activated / heat-dissipating titanium oxide are shown.
  • the heat storage material according to the present invention is heated to form an activated heat storage material, which is pressurized, and then heated again to form a reactivated heat storage material, and this reactivated heat storage material is further pressurized.
  • the X-ray-diffraction pattern of the heat storage and heat dissipation titanium oxide in each heat storage material after performing is shown.
  • the heat storage and heat dissipation titanium oxide used as a latent heat storage and heat dissipation material in the present invention is a kind of known reduced titanium oxide, and is Ti 3 O.
  • the crystal structure has a polymorphism including a ⁇ phase, a ⁇ phase, an ⁇ phase, and the like.
  • the ⁇ phase When the ⁇ phase is heated or irradiated with light to a temperature of 460K or higher, it absorbs latent heat and transitions to the ⁇ phase.
  • the ⁇ phase is also in a temperature range lower than 460K. It remains in the ⁇ phase without phase transition to the ⁇ phase.
  • the ⁇ phase undergoes phase transition to the ⁇ phase when pressure is applied, and the latent heat is released as transition heat.
  • the ⁇ phase is set to 460K or more to cause phase transition to the ⁇ phase, and thereafter, in the temperature region lower than 460K, pressure is applied to cause the ⁇ phase to undergo phase transition. Release the heat of transition.
  • the ⁇ phase When the ⁇ phase is further heated, it undergoes a phase transition to the ⁇ phase.
  • This ⁇ phase undergoes a phase transition to the ⁇ phase in the course of cooling, and transitions to the ⁇ phase even in a temperature range lower than 460K. It stays in the ⁇ phase.
  • the heat storage titanium oxide undergoes phase transition to the ⁇ phase and the transition heat is released by irradiating the ⁇ phase with light instead of pressurization.
  • the activated / heat-storing / dissipating titanium oxide having the crystal structure of the ⁇ phase undergoes a phase transition from the ⁇ phase to the ⁇ phase by applying pressure or by light irradiation, and along with this phase transition, Transition heat is released.
  • the ⁇ phase is changed to the ⁇ phase again by heating or irradiating with light, and is thus reactivated.
  • heat storage and heat dissipation titanium oxide absorbs energy by heating or light irradiation as latent heat, undergoes a phase transition from the ⁇ phase to the ⁇ phase, applies pressure to the ⁇ phase, or irradiates with light to store energy.
  • the heat dissipating titanium oxide undergoes a phase transition to the ⁇ phase, and at this time, it is possible to repeatedly dissipate the latent heat as the transition heat.
  • titanium dioxide is used in a hydrogen atmosphere under 1100- By baking at a temperature of 1400 ° C., it can usually be obtained as a mixture of ⁇ phase and ⁇ phase.
  • Titanium dioxide used as a starting material may be either anatase type or rutile type, but heat storage and heat dissipation titanium oxide obtained from anatase type titanium dioxide should apply a pressure of 0.4 GPa (phase transition pressure) or more to the ⁇ phase. Phase transition to the ⁇ phase, and at this time, the heat of transition is released.
  • heat storage and heat dissipation titanium oxide obtained from rutile titanium dioxide undergoes a phase transition to the ⁇ phase by applying a pressure of 60 MPa (phase transition pressure) or more to the ⁇ phase, and at this time, the transition heat is released.
  • any of the above-mentioned phase transition pressures refers to a pressure at which the ratio of the ⁇ phase to the ⁇ phase becomes 1: 1 by pressurizing the heat storage / heat dissipation titanium oxide of the ⁇ phase.
  • the heat storage and heat dissipation titanium oxide is an ultraviolet ray having an intensity in the range of 0.5 ⁇ 10 2 to 15 ⁇ 10 2 mJ ⁇ cm ⁇ 2 ⁇ pulse ⁇ 1 regardless of whether it is obtained from anatase type or rutile type titanium dioxide.
  • the light-induced phase transition from the ⁇ phase to the ⁇ phase is also caused by light irradiation in the light, visible light, or infrared light region, and the phase transition from the ⁇ phase to the ⁇ phase is also caused by the photothermal effect. Even in a temperature range lower than 460 K, the phase remains in the ⁇ phase without phase transition to the ⁇ phase.
  • phase transitions to the ⁇ phase.
  • the heat-radiating titanium oxide undergoes a phase transition from the ⁇ phase to the ⁇ phase by irradiating the ⁇ phase with the light having the above intensity, and the transition heat is released accordingly.
  • the resin composition containing heat storage and heat dissipation titanium oxide according to the present invention includes heat storage and heat dissipation titanium oxide and a resin having a glass transition temperature of 460 K or more as the dispersion medium, or glass transition temperature as the heat storage and heat dissipation titanium oxide and dispersion medium.
  • a resin composition containing a resin raw material capable of forming a resin of 460 K or higher refers to a pre-polymerization or uncured resin raw material in which a polymer or a cured product has a glass transition temperature of 460 K or higher.
  • the said resin raw material may contain the modifier, the hardening
  • a mixture containing a curing agent and a curing catalyst, and containing a pre-polymerization or uncured resin raw material and a heat storage titanium oxide is preferably mixed under heating,
  • the resin composition can be obtained by homogeneously kneading. And if such a resin composition is shape
  • thermoplastic resins which are a dispersion medium for heat storage and heat dissipation titanium oxide
  • various thermoplastic resins called (super) engineering plastics and thermosetting resins are also included.
  • thermoplastic resins called (super) engineering plastics and thermosetting resins are also included.
  • the resin composition is preferably a pre-polymerization or uncured resin raw material and heat storage and heat dissipation titanium oxide, and if necessary, a modifier, a curing agent, a curing agent.
  • a mixture containing a catalyst or the like can be preferably obtained by heating, softening and kneading, and thus dispersing the heat-radiating titanium oxide in the resulting kneaded product.
  • this resin composition is shape
  • thermoplastic resin having a glass transition temperature of 460 K or higher when used as the resin, the thermoplastic resin or the resin raw material before polymerization and the heat storage and titanium oxide are preferably heated, softened or melted. If kneaded, a resin composition in which heat storage and heat dissipation titanium oxide is dispersed in the resin can be obtained, and if this is molded into a tangible resin molded body, the heat storage material according to the present invention can be obtained. it can.
  • the resin composition can be obtained in various shapes such as a kneaded product, a clay, a powder, a particle, a pellet, and a flake, although depending on the production method.
  • the resin in the heat storage material needs to have a glass transition temperature of 460 K or higher. This is because, as described above, the heat storage material according to the present invention is heated to a temperature of 460 K or higher to cause the heat-radiating titanium oxide to undergo a phase transition from the ⁇ phase to the ⁇ phase. In the case of a resin raw material, it is necessary that the finally formed resin has a glass transition temperature of 460K or higher.
  • the heat storage material in the present invention is required to be provided in various shapes depending on the application, but the maximum effect of the present invention is to efficiently dissipate heat with less applied pressure than in the past while maintaining the shape.
  • a resin having a glass transition temperature of 460 K or higher is used.
  • thermosetting resins such as bismaleimide resins and epoxy resins.
  • thermoplastic resin examples include polyimide resin, polysulfone resin, polyamideimide resin, polyetherimide, polyethersulfone resin, and polybenzimidazole resin.
  • a bismaleimide compound can be used as long as it is a bismaleimide resin raw material.
  • a bismaleimide resin raw material for example, “BMI-1000” (Daiwa Kasei) Made by Kogyo Co., Ltd., when the curing agent is diaminodiphenylmethane (also referred to as DDM), the glass transition temperature of the cured resin is 573 K or more, the thermal shrinkage is 5.4 ⁇ 10 ⁇ 5 / K), “BMI-2000” (Yamato Made by Kasei Kogyo Co., Ltd., with a glass transition temperature of 573 K or more and a heat shrinkage of 5.7 ⁇ 10 ⁇ 5 / K when the curing agent is DDM, “BMI-4000” (manufactured by Daiwa Kasei Kogyo Co., Ltd., cured) agent glass transition temperature 550K,
  • an epoxy resin raw material for example, “EPICLON HP-4710” (manufactured by DIC Corporation)
  • the glass transition temperature of the cured resin is 500 K
  • the thermal shrinkage is 8.3 ⁇ 10 ⁇ 5 / K) and the like.
  • a polyimide resin raw material for example, “Aurum (registered trademark)” (manufactured by Mitsui Chemicals, Inc., glass transition temperature 523 K, heat shrinkage rate 5.5 ⁇ 10 ⁇ 5 / K) and the like can be mentioned.
  • Examples of the raw material for polysulfone resin include “ULTRASON (registered trademark) S series” (manufactured by BASF Japan Ltd., glass transition temperature 460K, heat shrinkage rate 5.3 ⁇ 10 ⁇ 5 / K). If it is a polyamideimide resin raw material, for example, “TPS (registered trademark) TI5000 series TI-5013” (manufactured by Toray Plastic Seiko Co., Ltd., glass transition temperature 553 K, heat shrinkage rate 3.1 ⁇ 10 ⁇ 5 / K), etc. Can be mentioned.
  • polyetherimide resin raw material for example, “ULTEM1010” (manufactured by SABIC Innovative Plastics, glass transition temperature 490K, thermal shrinkage rate 5.2 ⁇ 10 ⁇ 5 / K) and the like may be mentioned.
  • the raw material for the polyethersulfone resin include “Sumika Excel 4100G” (manufactured by Sumitomo Chemical Co., Ltd., glass transition temperature 498K, thermal shrinkage rate 5.5 ⁇ 10 ⁇ 5 / K), and the like.
  • the raw material for the polybenzimidazole resin include “Celazole” (manufactured by PBI Performance Products, glass transition temperature 700K, heat shrinkage rate 2.3 ⁇ 10 ⁇ 5 / K).
  • the heat shrinkage ratio and glass transition temperature of the resin are all literature values.
  • bismaleimide resin is one of the resins that can be preferably used.
  • a bismaleimide resin using a diallyl compound (for example, 2,2'-diallylbisphenol A) as a curing agent is preferable.
  • the bismaleimide resin using a diallyl compound as the curing agent includes a bismaleimide compound such as 4,4′-diphenylmethane bismaleimide and 2,2′-diallylbisphenol A as a curing agent. It is a resin obtained by mixing, mixing with this a polymerization initiator such as dicumyl peroxide as a curing catalyst, and heating and curing the resulting mixture.
  • a bismaleimide compound such as 4,4′-diphenylmethane bismaleimide and 2,2′-diallylbisphenol A
  • a resin having a glass transition temperature of 460 K or higher and a heat shrinkage of 2 ⁇ 10 ⁇ 5 / K or higher is preferably used.
  • the upper limit of the heat shrinkage rate of the resin is not particularly limited, but in practice, it is usually sufficient to have a heat shrinkage rate of up to 1 ⁇ 10 ⁇ 4 / K.
  • the ratio of heat storage and heat dissipation titanium oxide to 100 parts by weight of the resin is usually in the range of 100 to 2000 parts by weight, preferably 200 to 1000 parts by weight.
  • the ratio of the heat storage and heat dissipation titanium oxide to the resin is too small, the heat storage heat dissipation amount of the obtained heat storage material is too small and is not practical.
  • the ratio of the heat-radiating titanium oxide to the resin is too large, it is difficult to form the heat storage material.
  • the heat storage material according to the present invention is obtained by dispersing the heat-storing titanium oxide in a resin molded body having a glass transition temperature of 460 K or higher.
  • the heat shrinkage rate of the resin is usually about 2 to 10 times larger than that of the heat storage and heat dissipation titanium oxide.
  • the heat storage material when the heat storage material is heated from room temperature to a predetermined temperature to activate the heat storage and heat dissipation titanium oxide particles in the heat storage material and then cooled to room temperature, the heat storage and heat dissipation titanium oxide particles are Since the surrounding resin contracts more than the heat shrinkage rate of the heat storage and heat dissipation titanium oxide particles, pressure is applied to the heat storage and heat dissipation titanium oxide particles from the surroundings.
  • the activated heat storage material obtained by cooling to the room temperature has already been pressurized, so the heat storage and heat dissipation titanium oxide in the heat storage material
  • the heat storage heat-dissipating titanium oxide particles in the heat storage material are phase-transformed from the ⁇ phase to the ⁇ phase by applying a small amount of pressure to the heat storage material. Can do.
  • the heat storage material of the present invention uses a resin molded body having a glass transition temperature of 460 K or higher as a support or dispersion medium for heat storage / radiation titanium oxide, so that the resin constituting the molded body and the heat storage heat dissipation titanium oxide described above are used. Using the difference in thermal shrinkage rate, we found that pressure can be applied in advance to the heat storage and heat dissipation titanium oxide in the activated heat storage material, and thus heat storage that can efficiently dissipate heat with less applied pressure than before. The material was successfully obtained.
  • the heat storage material according to the present invention is a resin molded body obtained by dispersing heat-radiating titanium oxide in a resin, so that it has high practicality and excellent durability.
  • the glass transition temperature of the resin was measured using a dynamic viscoelasticity measuring device (DMS6100) manufactured by Seiko Instruments Inc.
  • the heat shrinkage rate was measured using a thermomechanical analyzer (TMA8310) manufactured by Rigaku Corporation.
  • Production Example 1 Manufacture of heat dissipation titanium oxide
  • 5 g of rutile-type titanium dioxide (STR-100N manufactured by Sakai Chemical Industry Co., Ltd.) having a BET specific surface area of 90 m 2 / g was put into an alumina sagger and heated at 1200 ° C. for 5 hours in a 100% hydrogen atmosphere.
  • a polymorphic titanium dioxide oxide having a composition of Ti 3 O 5 was obtained.
  • FIG. 1 shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide thus obtained and the peak positions of the ⁇ and ⁇ phases of the heat storage and heat dissipation titanium oxide.
  • the X-ray diffraction pattern confirms that the obtained heat-radiating titanium oxide is a mixture of ⁇ phase and ⁇ phase.
  • Production Example 2 Manufacture of bismaleimide resin
  • 77.7 g of 4,4′-diphenylmethane bismaleimide (Bismaleimide BMI-1100H manufactured by Daiwa Kasei Kogyo Co., Ltd.) and 22.3 g of 2,2′-diallylbisphenol A (DABPA manufactured by Daiwa Kasei Kogyo Co., Ltd.) as a curing agent
  • DABPA 2,2′-diallylbisphenol A
  • the obtained kneaded material was peeled off from the desktop roll mill, filled in a container, heated at 180 ° C. for 2 hours, 200 ° C. for 2 hours, 230 ° C. for 2 hours, and 250 ° C. for 2 hours, The bismaleimide resin was cured to obtain a molded body.
  • the glass transition temperature and the heat shrinkage rate of this molded product were measured, the glass transition temperature was 568K, and the heat shrinkage rate was 4.4 ⁇ 10 ⁇ 5 / K.
  • Example 1 Manufacture of resin composition including heat storage and heat dissipation titanium oxide
  • 7.9 g of a resin raw material similar to the resin raw material obtained in Production Example 2 was heated to 115 ° C. using a desktop roll mill (Toyo Seiki Seisakusho Co., Ltd.) and softened, and dicumyl peroxide was used as a curing catalyst.
  • 0.04 g Nippon Oil Co., Ltd. Park Mill (registered trademark) D) was added and kneaded for 1 minute.
  • the disk-shaped heat storage material is heated in a 100% nitrogen atmosphere at a temperature of 400 ° C. for 2 hours, and then cooled to room temperature, so that the heat storage and heat dissipation titanium oxide in the heat storage material is changed from the ⁇ phase to the ⁇ phase. The phase transition was performed, and thus a disk-shaped activated heat storage material was produced.
  • FIG. 2 shows a change in the crystal structure of the heat storage and heat dissipation titanium oxide in the process of producing the activated heat storage material from the resin composition containing the heat storage and heat dissipation titanium oxide through the heat storage material before activation. .
  • (A) is an X-ray diffraction pattern of the heat storage titanium oxide obtained in Production Example 1 as described above, and is a mixed phase of ⁇ phase and ⁇ phase.
  • (B) is an X-ray diffraction pattern of the heat-storing titanium oxide in the heat storage material before activation obtained in Example 1 above.
  • the heat storage titanium oxide is mainly ⁇ -phase.
  • (C) is an X-ray diffraction pattern of heat storage and heat dissipation titanium oxide in the activated heat storage material obtained in Example 1 above.
  • the heat storage and heat dissipation titanium oxide in the activated heat storage material is mainly ⁇ phase.
  • the activated heat storage material thus obtained was subjected to a pressurization test and a repeated test as follows.
  • the activated heat storage and heat dissipation titanium oxide thus obtained was subjected to a pressurization test and a repetition test as follows in the same manner as the activated heat storage material according to Example 1.
  • FIG. 3 shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide in the activated heat storage material.
  • (B) shows the X-ray diffraction pattern of the heat storage titanium oxide of the heat storage material after applying a pressure of 50 MPa to the activated heat storage material, and (C) shows a pressure of 200 MPa on the activated heat storage material.
  • the X-ray-diffraction pattern of the heat storage and heat dissipation titanium oxide in the heat storage material after adding is shown.
  • FIG. 4 shows the X-ray diffraction pattern of the activated / heat-storing titanium oxide.
  • (B) shows an X-ray diffraction pattern after applying a pressure of 50 MPa to the activated titanium oxide film, and
  • (C) shows X after applying a pressure of 200 MPa to the activated titanium oxide film.
  • a line diffraction pattern is shown.
  • Table 1 shows the composition ratio between the ⁇ phase and ⁇ phase of the heat storage titanium oxide in the activated heat storage material obtained in Example 1, and the respective values after applying pressures of 50 MPa and 200 MPa to the heat storage material.
  • Composition ratio of ⁇ phase and ⁇ phase of heat storage heat dissipation titanium oxide in heat storage material composition ratio of ⁇ phase and ⁇ phase of activated heat storage heat dissipation titanium oxide powder obtained in Comparative Example 1 above, The composition ratio of each (lambda) phase and (beta) phase after applying the pressure of 50 Mpa and 200 Mpa to activated heat storage and heat dissipation titanium oxide is shown.
  • the heat storage and heat dissipation titanium oxide in the activated heat storage material is changed from the ⁇ phase to the ⁇ when the same pressure is applied.
  • the phase transition rate to the phase is high, and the pressure necessary for the phase transition from the ⁇ phase to the ⁇ phase of the heat storage titanium oxide is reduced by the residual stress in the heat storage material.
  • the reactivated heat storage material and the pressurized heat storage material are subjected to X-ray diffraction analysis and Rietveld analysis, respectively, and ⁇ phase and ⁇ phase of the heat storage titanium oxide in each heat storage material.
  • the composition ratio was determined. The results are shown in FIG.
  • FIG. 5 shows the X-ray diffraction pattern of the heat-storing titanium oxide in the activated heat storage material.
  • (B) shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide in the heat storage material after applying a pressure of 200 MPa to the activated heat storage material.
  • (C) shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide in the reactivated heat storage material after activating the heat storage material after pressurization again.
  • D shows the X-ray-diffraction pattern of the heat storage and heat dissipation titanium oxide in the heat storage material after applying the pressure of 200 Mpa to the said reactivation resin molding.
  • Table 2 shows the composition ratio of the ⁇ phase and the ⁇ phase after activation, pressurization, reactivation, and repressurization of the heat storage and heat dissipation titanium oxide in the heat storage material.
  • the heat storage and heat dissipation titanium oxide in the heat storage material after applying a pressure of 200 MPa to the activated heat storage material
  • the composition ratio of the ⁇ phase and the ⁇ phase of the heat storage material after this pressurization is heated to form a reactivated heat storage material.
  • the composition ratio and the composition ratio of the ⁇ phase and the ⁇ phase of the heat storage and heat dissipation titanium oxide in the heat storage material after pressurizing the reactivated heat storage material again are shown.
  • the activated heat storage material can be reactivated and pressurized to cause phase transition.
  • the heat storage material according to the present invention retains a disk-like shape even after the second pressurization in the above-described repeated test, and is excellent in repeated usability and practicality.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides a heat storage material in which a titanium oxide having heat storage and radiation properties is dispersed in a molded article of a resin having a glass transition temperature of 460K or higher, wherein: the titanium oxide having heat storage and radiation properties has the composition Ti3O5; when the titanium oxide having heat storage and radiation properties is heated or irradiated with light and reaches a temperature of 460K or higher, a β phase transitions to a λ phase; the λ phase does not transition to the β phase when in a temperature range less than 460K, but rather remains as a λ phase; and the λ phase transitions to the β phase when pressure is applied, at which time transition heat is radiated. The heat storage material according to the present invention thereby involves application of lower pressure than conventionally required, whereby the crystal structure of the titanium oxide having heat storage and radiation properties included in the heat storage material can be changed at a desired time, and transition heat can be released in accompaniment therewith, the heat storage material of the present invention also having exceptional utility and durability.

Description

蓄放熱性酸化チタンを含有する樹脂組成物とそれより得られるヒートストレージ材RESIN COMPOSITION CONTAINING THERMAL STORAGE TiO2 AND HEAT STORAGE MATERIAL OBTAINED THEREFROM
 本発明は、蓄放熱性酸化チタンを含む樹脂組成物と、それを成形して得られる蓄放熱性樹脂成形体、即ち、ヒートストレージ材に関し、詳細には、蓄放熱性酸化チタンを含む樹脂組成物と、この樹脂組成物を有形物に成形して得られるヒートストレージ材であって、従来よりも低い圧力を加えることによって、上記蓄放熱性酸化チタンの結晶構造の変化に伴う転移熱を望む時点において放出させることができるヒートストレージ材に関する。 TECHNICAL FIELD The present invention relates to a resin composition containing a heat storage titanium oxide and a heat storage resin molded product obtained by molding the resin composition, that is, a heat storage material, and more specifically, a resin composition containing a heat storage titanium oxide. And a heat storage material obtained by molding this resin composition into a tangible material, and by applying a lower pressure than before, the heat of transition associated with the change in the crystal structure of the heat storage titanium oxide is desired. The present invention relates to a heat storage material that can be released at a time.
 従来、コンクリートは、与えられた熱を蓄える性質を備えていることが知られており、建築や土木等の種々の分野において、蓄熱と放熱を行う蓄放熱材として利用されてきた。しかしながら、そのようなコンクリートよりなる蓄放熱材は、蓄えさせた熱の放出を自在に制御することができず、コンクリートに蓄えさせた熱は加熱の終了した直後から直ぐに放出されるので、熱を蓄えさせた直後からその熱を利用するシステムでの利用にとどまっている。 Conventionally, concrete is known to have a property of storing given heat, and has been used as a heat storage and heat dissipation material for storing and releasing heat in various fields such as architecture and civil engineering. However, such a heat storage / dissipation material made of concrete cannot freely control the release of the stored heat, and the heat stored in the concrete is released immediately after the heating is finished. Immediately after storing it, it is only used in a system that uses the heat.
 そこで、化学物質に蓄えさせた熱を望む時点において放出させることができる蓄放熱材が種々、提案されている。代表的には、例えば、物質の状態変化に伴う潜熱を利用した種々の潜熱蓄放熱材がこれまでに既に実用化され、また、研究がなされている。 Therefore, various heat storage / dissipation materials that can release the heat stored in the chemical substance at a desired time have been proposed. Typically, for example, various latent heat storage / heat dissipating materials utilizing latent heat associated with a change in the state of a substance have already been put to practical use and studied.
 最近、そのような潜熱蓄放熱材の一つとして、Tiの組成を有する多形の還元型酸化チタン(以下、蓄放熱性酸化チタンという。)の結晶構造の変化に伴う潜熱、即ち、転移熱を利用した新しい潜熱蓄放熱材が提案されている。 Recently, as one of such latent heat storage and heat dissipation materials, latent heat accompanying a change in crystal structure of polymorphic reduced titanium oxide (hereinafter referred to as heat storage and heat dissipation titanium oxide) having a composition of Ti 3 O 5 , that is, A new latent heat storage / dissipation material using transition heat has been proposed.
 上記蓄放熱性酸化チタンは、これを加熱し、又は光照射することによって、結晶構造が変化すると共に、潜熱を吸収し、その後、望む時点において、これに圧力を加え、又は光照射することによって、その結晶構造が再度、変化すると共に、潜熱を放出する。更に、このような蓄放熱性酸化チタンをシリコーンオイル等のような液体伝熱材に分散させて蓄放熱システムに構成することも提案されている(特許文献1参照)。 The heat storage titanium oxide is heated or irradiated with light to change the crystal structure and absorb the latent heat, and then apply pressure or light at a desired time. The crystal structure changes again and releases latent heat. Furthermore, it has also been proposed to constitute such a heat storage and heat dissipation system by dispersing such heat storage and heat dissipation titanium oxide in a liquid heat transfer material such as silicone oil (see Patent Document 1).
 上記蓄放熱性システムは、液体伝熱材に上記蓄放熱性酸化チタンを分散させ、上記液体伝熱材中の蓄放熱性酸化チタンを加熱し、又は光照射して、その結晶構造を別の結晶構造に変化させ、その別の結晶構造を有する蓄放熱性酸化チタンに圧力を加え、又は光照射することによって、当初の結晶構造に相転移させ、その際に転移熱を放出させるものである。 The heat storage and heat dissipation system disperses the heat storage and heat dissipation titanium oxide in the liquid heat transfer material, heats or heat-irradiates the heat storage and heat dissipation titanium oxide in the liquid heat transfer material, and changes the crystal structure to another. By changing the crystal structure and applying pressure or irradiating light to the heat storage and heat dissipation titanium oxide having another crystal structure, the phase is changed to the original crystal structure, and at that time, the transition heat is released. .
 上述した蓄放熱システムは、蓄放熱性酸化チタンが粉体であることから、それを蓄放熱材として利用するには液体伝熱材に分散させ、これを密閉系に収容しなければならず、実用上の問題もある。 In the above-described heat storage and heat dissipation system, the heat storage and heat dissipation titanium oxide is a powder, so to use it as a heat storage and heat dissipation material, it must be dispersed in a liquid heat transfer material and accommodated in a sealed system. There are also practical problems.
 更に、上述した蓄放熱性酸化チタンは、これに圧力を加えることによって、望む時点において転移熱を放出させることができるが、用途の展開と拡大のためには、上記圧力の低減が望まれている。 Furthermore, the heat storage and heat dissipation titanium oxide can release the transition heat at a desired time by applying pressure to the titanium oxide. However, in order to expand and expand the application, reduction of the pressure is desired. Yes.
国際公開第2015/050269号International Publication No. 2015/050269
 本発明は、蓄放熱性酸化チタンの利用における上述した種々の問題を解決するためになされたものであって、蓄放熱性酸化チタンを含む樹脂成形体からなるヒートストレージ材であって、従来よりも低い圧力をこのヒートストレージ材に加えることによって、ヒートストレージ材が含む蓄放熱性酸化チタンの結晶構造を望む時点において変化させ、それに伴って転移熱を放出させることができ、そのうえ、実用性と耐久性にすぐれるヒートストレージ材を提供することを目的とする。 The present invention was made in order to solve the various problems described above in the use of heat storage and heat dissipation titanium oxide, and is a heat storage material made of a resin molded body containing heat storage and heat dissipation titanium oxide, By applying a low pressure to the heat storage material, the crystal structure of the heat-storing titanium oxide contained in the heat storage material can be changed at the desired time and the transition heat can be released accordingly. The object is to provide a heat storage material with excellent durability.
 更に、本発明は、上記ヒートストレージ材を製造するために有用な蓄放熱性酸化チタンを含む樹脂組成物と、その樹脂組成物を用いて、上記ヒートストレージ材を製造する方法を提供することを目的とする。 Furthermore, this invention provides the resin composition containing the heat storage and heat dissipation titanium oxide useful for manufacturing the said heat storage material, and the method of manufacturing the said heat storage material using the resin composition. Objective.
 本発明によれば、蓄放熱性酸化チタンがガラス転移温度460K以上の樹脂の成形体中に分散されているヒートストレージ材であって、
 上記蓄放熱性酸化チタンはTiの組成を有し、
 β相は、これを加熱し、又は光照射して、温度460K以上としたとき、λ相に相転移し、
 上記λ相は、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっており、上記λ相は、圧力を加えられたときに上記β相に相転移し、
 その際、転移熱を放出するものであるヒートストレージ材が提供される。
According to the present invention, a heat storage material in which heat storage titanium oxide is dispersed in a resin molded body having a glass transition temperature of 460 K or more,
The heat storage titanium oxide has a composition of Ti 3 O 5 ,
When the β phase is heated or irradiated with light to a temperature of 460 K or higher, it undergoes a phase transition to the λ phase,
The λ phase remains in the λ phase without phase transition to the β phase even in a temperature range lower than 460 K, and the λ phase undergoes phase transition to the β phase when pressure is applied,
At this time, a heat storage material that releases transition heat is provided.
 また、本発明によれば、蓄放熱性酸化チタンと、ガラス転移温度460K以上の樹脂か、又は重合体若しくは硬化物のガラス転移温度が460K以上である樹脂原料を含む樹脂組成物であって、
 上記蓄放熱性酸化チタンはTiの組成を有し、
 β相は、これを加熱し、又は光照射して、温度460K以上としたとき、λ相に相転移し、
 上記λ相は、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっており、上記λ相は、圧力を加えられたときに上記β相に相転移し、
 その際、転移熱を放出するものである樹脂組成物が提供される。
Further, according to the present invention, there is provided a resin composition comprising a heat storage titanium oxide and a resin material having a glass transition temperature of 460K or higher, or a polymer or a cured product having a glass transition temperature of 460K or higher.
The heat storage titanium oxide has a composition of Ti 3 O 5 ,
When the β phase is heated or irradiated with light to a temperature of 460 K or higher, it undergoes a phase transition to the λ phase,
The λ phase remains in the λ phase without phase transition to the β phase even in a temperature range lower than 460 K, and the λ phase undergoes phase transition to the β phase when pressure is applied,
In this case, a resin composition that releases transition heat is provided.
 更に、本発明によれば、上記樹脂組成物を成形して、前記ヒートストレージ材を製造する方法が提供される。 Furthermore, according to the present invention, there is provided a method for producing the heat storage material by molding the resin composition.
 以下、本発明においては、蓄放熱性酸化チタンを加熱し、又は光照射して、その結晶構造をβ相からλ相に相転移させてなる蓄放熱性酸化チタンを活性化蓄放熱性酸化チタンといい、また、蓄放熱性酸化チタンを含むヒートストレージ材を加熱し、又は光照射して、上記ヒートストレージ材が含む上記蓄放熱性酸化チタンの結晶構造をβ相からλ相に相転移させてなるヒートストレージ材を活性化ヒートストレージ材ということとする。 Hereinafter, in the present invention, heat storage / heat dissipation titanium oxide is obtained by heating or heat-radiating titanium oxide and irradiating light to change the crystal structure from β phase to λ phase. In addition, the heat storage material containing the heat storage titanium oxide is heated or irradiated with light to cause the crystal structure of the heat storage titanium oxide included in the heat storage material to transition from the β phase to the λ phase. This heat storage material is called an activated heat storage material.
 更に、活性化蓄放熱性酸化チタンを加圧放熱させた後、再度、加熱し、又は光照射して、再活性化してなる蓄放熱性酸化チタンを再活性化蓄放熱性酸化チタンといい、また、活性化ヒートストレージ材を加圧放熱させた後、再度、加熱し、又は光照射して、再活性化してなるヒートストレージ材を再活性化ヒートストレージ材ということとする。 Furthermore, after the activated heat storage / heat dissipation titanium oxide is pressurized and dissipated, it is heated again or irradiated with light, and the heat storage heat dissipation titanium oxide that is reactivated is called reactivated heat storage heat dissipation titanium oxide. In addition, after the activated heat storage material is released from pressure, it is heated again or irradiated with light, and the heat storage material that is reactivated is referred to as a reactivated heat storage material.
 本発明によるヒートストレージ材は、蓄放熱性酸化チタンが樹脂成形体中に分散されてなり、活性化した蓄放熱性酸化チタンを含む樹脂成形体、即ち、活性化ヒートストレージ材に、従来に比べて、より低い圧力を加えることによって、望む時点において、上記活性化蓄放熱性酸化チタンの結晶構造を変化させ、その際に転移熱を放出させるようにしたものである。そのうえ、本発明によるヒートストレージ材は、実用性と耐久性にすぐれる。 In the heat storage material according to the present invention, the heat storage and heat dissipation titanium oxide is dispersed in the resin molded body, and the resin storage body including the activated heat storage and heat dissipation titanium oxide, that is, the activated heat storage material, compared to the conventional case. Thus, by applying a lower pressure, the crystal structure of the activated / heat-accumulating / heat-dissipating titanium oxide is changed at a desired time, and the transition heat is released at that time. Moreover, the heat storage material according to the present invention is excellent in practicality and durability.
本発明において製造した蓄放熱性酸化チタンのX線回折パターンと共に、β相とλ相の回折ピークを示す。The diffraction peaks of the β phase and the λ phase are shown together with the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide produced in the present invention. 本発明によるヒートストレージ材を作製する過程における蓄放熱性酸化チタンの結晶構造の変化を示す。The change of the crystal structure of the thermal storage titanium oxide in the process of producing the heat storage material by this invention is shown. 本発明によるヒートストレージ材を活性化後、これに50MPa及び200MPaの圧力を加えた後のそれぞれのヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。The X-ray-diffraction pattern of the thermal storage titanium oxide in each heat storage material after applying the pressure of 50 MPa and 200 MPa to this after activating the heat storage material by this invention is shown. 活性化蓄放熱性酸化チタンに50MPa及び200MPaの圧力を加えた後のそれぞれのX線回折パターンを示す。The respective X-ray diffraction patterns after applying pressures of 50 MPa and 200 MPa to the activated / heat-dissipating titanium oxide are shown. 本発明によるヒートストレージ材を加熱し、活性化ヒートストレージ材とし、これを加圧し、その後、再度、加熱して、再活性化ヒートストレージ材とし、更に、この再活性化ヒートストレージ材を加圧した後のそれぞれのヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。The heat storage material according to the present invention is heated to form an activated heat storage material, which is pressurized, and then heated again to form a reactivated heat storage material, and this reactivated heat storage material is further pressurized. The X-ray-diffraction pattern of the heat storage and heat dissipation titanium oxide in each heat storage material after performing is shown.
 本発明において潜熱蓄放熱材料として用いる蓄放熱性酸化チタンは、国際公開第2015/050269号に記載されているように、既に、知られている還元型酸化チタンの一種であって、Tiの組成を有し、結晶構造は、β相、λ相及びα相等を含む多形を有する。 As described in International Publication No. 2015/050269, the heat storage and heat dissipation titanium oxide used as a latent heat storage and heat dissipation material in the present invention is a kind of known reduced titanium oxide, and is Ti 3 O. The crystal structure has a polymorphism including a β phase, a λ phase, an α phase, and the like.
 上記β相は、これを加熱し、又は光照射して、温度460K以上としたとき、潜熱を吸収して、λ相に相転移し、上記λ相は、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっている。また、上記λ相は、圧力を加えられたときに上記β相に相転移すると共に、上記潜熱が転移熱として放出される。 When the β phase is heated or irradiated with light to a temperature of 460K or higher, it absorbs latent heat and transitions to the λ phase. The λ phase is also in a temperature range lower than 460K. It remains in the λ phase without phase transition to the β phase. The λ phase undergoes phase transition to the β phase when pressure is applied, and the latent heat is released as transition heat.
 本発明によるヒートストレージ材においては、通常、上記β相を460K以上として、λ相に相転移させ、この後、460Kよりも低い温度領域において、圧力を加えて、上記β相に相転移させると共に、転移熱を放出させる。 In the heat storage material according to the present invention, usually, the β phase is set to 460K or more to cause phase transition to the λ phase, and thereafter, in the temperature region lower than 460K, pressure is applied to cause the β phase to undergo phase transition. Release the heat of transition.
 上記λ相は、更に加熱するときは、α相に相転移するが、このα相は、冷却の過程でλ相に相転移し、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっている。 When the λ phase is further heated, it undergoes a phase transition to the α phase. This α phase undergoes a phase transition to the λ phase in the course of cooling, and transitions to the β phase even in a temperature range lower than 460K. It stays in the λ phase.
 また、上記蓄放熱性酸化チタンは、上記λ相に、加圧に代えて、光照射することによって、β相に相転移すると共に、転移熱が放出される。 In addition, the heat storage titanium oxide undergoes phase transition to the β phase and the transition heat is released by irradiating the λ phase with light instead of pressurization.
 このように、λ相の結晶構造を有する活性化蓄放熱性酸化チタンは、圧力を加えることによって、又は光照射することによって、λ相からβ相に相転移し、この相転移に伴って、転移熱が放出される。上記β相は、これを加熱し、又は光照射することによって、再度、λ相に相転移し、かくして、再活性化される。 As described above, the activated / heat-storing / dissipating titanium oxide having the crystal structure of the λ phase undergoes a phase transition from the λ phase to the β phase by applying pressure or by light irradiation, and along with this phase transition, Transition heat is released. The β phase is changed to the λ phase again by heating or irradiating with light, and is thus reactivated.
 このように、蓄放熱性酸化チタンは、加熱又は光照射によるエネルギーを潜熱として吸収して、β相からλ相に相転移し、このλ相に圧力を加え、又は光照射することによって、蓄放熱性酸化チタンはβ相に相転移し、この際、上記潜熱を転移熱として放熱することを繰り返して行うことができる。 In this way, heat storage and heat dissipation titanium oxide absorbs energy by heating or light irradiation as latent heat, undergoes a phase transition from the β phase to the λ phase, applies pressure to the λ phase, or irradiates with light to store energy. The heat dissipating titanium oxide undergoes a phase transition to the β phase, and at this time, it is possible to repeatedly dissipate the latent heat as the transition heat.
 このような蓄放熱性酸化チタンを製造する方法は、既に、種々知られているが、例えば、前記国際公開第2015/050269号に記載されているように、二酸化チタンを水素雰囲気下、1100~1400℃の温度で焼成することによって、通常、λ相とβ相の混合物として得ることができる。 Various methods for producing such heat storage and heat dissipation titanium oxide are already known. For example, as described in the above-mentioned International Publication No. 2015/050269, titanium dioxide is used in a hydrogen atmosphere under 1100- By baking at a temperature of 1400 ° C., it can usually be obtained as a mixture of λ phase and β phase.
 出発物質として用いる二酸化チタンは、アナターゼ型とルチル型のいずれでもよいが、アナターゼ型二酸化チタンから得られる蓄放熱性酸化チタンは、λ相に0.4GPa(相転移圧力)以上の圧力を加えることによって、β相に相転移し、この際、転移熱が放出される。一方、ルチル型二酸化チタンから得られる蓄放熱性酸化チタンは、λ相に60MPa(相転移圧力)以上の圧力を加えることによって、β相に相転移し、この際、転移熱が放出される。ここに、上記相転移圧力はいずれも、λ相の蓄放熱性酸化チタンを加圧して、λ相とβ相の比率が1:1となったときの圧力をいう。 Titanium dioxide used as a starting material may be either anatase type or rutile type, but heat storage and heat dissipation titanium oxide obtained from anatase type titanium dioxide should apply a pressure of 0.4 GPa (phase transition pressure) or more to the λ phase. Phase transition to the β phase, and at this time, the heat of transition is released. On the other hand, heat storage and heat dissipation titanium oxide obtained from rutile titanium dioxide undergoes a phase transition to the β phase by applying a pressure of 60 MPa (phase transition pressure) or more to the λ phase, and at this time, the transition heat is released. Here, any of the above-mentioned phase transition pressures refers to a pressure at which the ratio of the λ phase to the β phase becomes 1: 1 by pressurizing the heat storage / heat dissipation titanium oxide of the λ phase.
 蓄放熱性酸化チタンは、アナターゼ型とルチル型のいずれの二酸化チタンから得られたものであっても、0.5x102 ~15x102 mJ・cm-2 ・pulse-1 の範囲の強度を有する紫外光、可視光又は赤外光の領域の光照射によっても、β相からλ相へ光誘起相転移し、光熱効果によっても、β相からλ相に相転移し、いずれの場合も、上記λ相は460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっている。 The heat storage and heat dissipation titanium oxide is an ultraviolet ray having an intensity in the range of 0.5 × 10 2 to 15 × 10 2 mJ · cm −2 · pulse −1 regardless of whether it is obtained from anatase type or rutile type titanium dioxide. The light-induced phase transition from the β phase to the λ phase is also caused by light irradiation in the light, visible light, or infrared light region, and the phase transition from the β phase to the λ phase is also caused by the photothermal effect. Even in a temperature range lower than 460 K, the phase remains in the λ phase without phase transition to the β phase.
 例えば、波長532nmのパルスレーザ光をパルス幅6ns、光強度3.0mJ・cm-2 ・pulse-1 にてβ相の蓄放熱性酸化チタンに照射することによって、λ相に相転移する。 For example, when a pulsed laser beam having a wavelength of 532 nm is irradiated onto a β-phase heat-dissipating titanium oxide with a pulse width of 6 ns and a light intensity of 3.0 mJ · cm −2 · pulse −1 , the phase transitions to the λ phase.
 また、蓄放熱性酸化チタンは、λ相に上記強度の光照射を行うことによって、λ相からβ相に相転移し、これに伴って、転移熱が放出される。 Further, the heat-radiating titanium oxide undergoes a phase transition from the λ phase to the β phase by irradiating the λ phase with the light having the above intensity, and the transition heat is released accordingly.
 本発明による蓄放熱性酸化チタンを含む樹脂組成物は、蓄放熱性酸化チタンと分散媒としてのガラス転移温度が460K以上の樹脂を含み、又は蓄放熱性酸化チタンと分散媒としてのガラス転移温度が460K以上の樹脂を形成し得る樹脂原料を含む樹脂組成物である。ここに、上記ガラス転移温度が460K以上の樹脂を形成し得る樹脂原料とは、重合体又は硬化物のガラス転移温度が460K以上である重合前又は未硬化の樹脂原料をいう。上記樹脂原料は、必要に応じて、変性剤や硬化剤や硬化触媒を含んでいてもよい。 The resin composition containing heat storage and heat dissipation titanium oxide according to the present invention includes heat storage and heat dissipation titanium oxide and a resin having a glass transition temperature of 460 K or more as the dispersion medium, or glass transition temperature as the heat storage and heat dissipation titanium oxide and dispersion medium. Is a resin composition containing a resin raw material capable of forming a resin of 460 K or higher. Here, the resin raw material capable of forming a resin having a glass transition temperature of 460 K or higher refers to a pre-polymerization or uncured resin raw material in which a polymer or a cured product has a glass transition temperature of 460 K or higher. The said resin raw material may contain the modifier, the hardening | curing agent, and the curing catalyst as needed.
 かくして、本発明によれば、例えば、必要に応じて、硬化剤や硬化触媒を含み、重合前又は未硬化の樹脂原料と蓄放熱性酸化チタンを含む混合物を、好ましくは加熱下に混合し、均質に混練して、樹脂組成物を得ることができる。そして、そのような樹脂組成物は、これを適宜の条件下に所望の形状を有する有形の樹脂成形体に成形すれば、本発明によるヒートストレージ材を得ることができる。 Thus, according to the present invention, for example, if necessary, a mixture containing a curing agent and a curing catalyst, and containing a pre-polymerization or uncured resin raw material and a heat storage titanium oxide is preferably mixed under heating, The resin composition can be obtained by homogeneously kneading. And if such a resin composition is shape | molded into the tangible resin molding which has a desired shape on appropriate conditions, the heat storage material by this invention can be obtained.
 本発明においては、蓄放熱性酸化チタンのための分散媒であるガラス転移温度が460K以上である樹脂としては、例えば、(スーパー)エンジニアリングプラスチックと呼ばれる種々の熱可塑性樹脂や、熱硬化性樹脂も好ましく用いられる。 In the present invention, as a resin having a glass transition temperature of 460 K or higher, which is a dispersion medium for heat storage and heat dissipation titanium oxide, for example, various thermoplastic resins called (super) engineering plastics and thermosetting resins are also included. Preferably used.
 例えば、樹脂が熱硬化性樹脂の場合であれば、樹脂組成物は、好ましくは、重合前又は未硬化の樹脂原料と蓄放熱性酸化チタンと、必要に応じて、変性剤、硬化剤、硬化触媒等を含む混合物を、好ましくは、加熱し、軟化させ、混練し、かくして、得られる混練物中に上記蓄放熱性酸化チタンを分散させることによって得ることができる。そして、この樹脂組成物を必要に応じて加圧及び/又は加熱下に有形の樹脂成形体に成形すれば、本発明によるヒートストレージ材を得ることができる。 For example, if the resin is a thermosetting resin, the resin composition is preferably a pre-polymerization or uncured resin raw material and heat storage and heat dissipation titanium oxide, and if necessary, a modifier, a curing agent, a curing agent. A mixture containing a catalyst or the like can be preferably obtained by heating, softening and kneading, and thus dispersing the heat-radiating titanium oxide in the resulting kneaded product. And if this resin composition is shape | molded into a tangible resin molding under pressure and / or heating as needed, the heat storage material by this invention can be obtained.
 また、ガラス転移温度が460K以上である熱可塑性樹脂を樹脂として用いる場合であれば、上記熱可塑性樹脂又は重合前の樹脂原料と蓄放熱性酸化チタンを、好ましくは、加熱し、軟化又は溶融させ、混練すれば、上記樹脂中に蓄放熱性酸化チタンが分散されてなる樹脂組成物を得ることができ、これを有形の樹脂成形体に成形すれば、本発明によるヒートストレージ材を得ることができる。 Further, when a thermoplastic resin having a glass transition temperature of 460 K or higher is used as the resin, the thermoplastic resin or the resin raw material before polymerization and the heat storage and titanium oxide are preferably heated, softened or melted. If kneaded, a resin composition in which heat storage and heat dissipation titanium oxide is dispersed in the resin can be obtained, and if this is molded into a tangible resin molded body, the heat storage material according to the present invention can be obtained. it can.
 上記樹脂組成物は、その製造方法にもよるが、例えば、混練物状、粘土状、粉末状、粒子状、ペレット状、フレーク状等の種々の形状のものとして得ることができる。 The resin composition can be obtained in various shapes such as a kneaded product, a clay, a powder, a particle, a pellet, and a flake, although depending on the production method.
 本発明において、ヒートストレージ材における上記樹脂は、ガラス転移温度が460K以上であることが必要である。前述したように、本発明によるヒートストレージ材は、460K以上の温度に加熱し、蓄放熱性酸化チタンをβ相からλ相に相転移させるからである。また、樹脂原料の場合には、最終的に形成される樹脂がガラス転移温度460K以上であることが必要である。 In the present invention, the resin in the heat storage material needs to have a glass transition temperature of 460 K or higher. This is because, as described above, the heat storage material according to the present invention is heated to a temperature of 460 K or higher to cause the heat-radiating titanium oxide to undergo a phase transition from the β phase to the λ phase. In the case of a resin raw material, it is necessary that the finally formed resin has a glass transition temperature of 460K or higher.
 本発明におけるヒートストレージ材は、その用途により、様々な形状で提供されることが求められるが、その形状を維持しながら、従来よりも少ない印加圧力で効率よく放熱させるという本発明の効果を最大限に活用するためにも、ガラス転移温度460K以上の樹脂を用いる。 The heat storage material in the present invention is required to be provided in various shapes depending on the application, but the maximum effect of the present invention is to efficiently dissipate heat with less applied pressure than in the past while maintaining the shape. In order to make the best use, a resin having a glass transition temperature of 460 K or higher is used.
 従って、本発明において好ましく用いることができる樹脂として、熱硬化性樹脂であれば、例えば、ビスマレイミド樹脂、エポキシ樹脂等を挙げることができる。熱可塑性樹脂であれば、例えば、ポリイミド樹脂、ポリスルホン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド、ポリエーテルスルホン樹脂、ポリベンゾイミダゾール樹脂等を挙げることができる。 Therefore, examples of resins that can be preferably used in the present invention include thermosetting resins such as bismaleimide resins and epoxy resins. Examples of the thermoplastic resin include polyimide resin, polysulfone resin, polyamideimide resin, polyetherimide, polyethersulfone resin, and polybenzimidazole resin.
 本発明において、上述したようなガラス転移温度460K以上の樹脂を形成し得る樹脂原料として、ビスマレイミド樹脂原料であれば、ビスマレイミド化合物を用いることができ、例えば、「BMI-1000」(大和化成工業(株)製、硬化剤をジアミノジフェニルメタン(DDMともいう)としたときの硬化樹脂のガラス転移温度は573K以上、熱収縮率は5.4x10-5/K)、「BMI-2000」(大和化成工業(株)製、硬化剤をDDMとしたときのガラス転移温度は573K以上、熱収縮率は5.7x10-5/K)、「BMI-4000」(大和化成工業(株)製、硬化剤をDDMとしたときのガラス転移温度は550K、熱収縮率は8.2x10-5/K)、「BMI-5100」(大和化成工業(株)製、硬化剤をDDMとしたときのガラス転移温度は537K、熱収縮率は8.4x10-5/K)等が挙げられる。 In the present invention, as a resin raw material capable of forming a resin having a glass transition temperature of 460 K or higher as described above, a bismaleimide compound can be used as long as it is a bismaleimide resin raw material. For example, “BMI-1000” (Daiwa Kasei) Made by Kogyo Co., Ltd., when the curing agent is diaminodiphenylmethane (also referred to as DDM), the glass transition temperature of the cured resin is 573 K or more, the thermal shrinkage is 5.4 × 10 −5 / K), “BMI-2000” (Yamato Made by Kasei Kogyo Co., Ltd., with a glass transition temperature of 573 K or more and a heat shrinkage of 5.7 × 10 −5 / K when the curing agent is DDM, “BMI-4000” (manufactured by Daiwa Kasei Kogyo Co., Ltd., cured) agent glass transition temperature 550K, the thermal shrinkage ratio 8.2 × 10 -5 / K) when the DDM and "BMI-5100" (Daiwa Kasei Kogyo Co., cured The glass transition temperature when formed into a DDM is 537K, the thermal shrinkage include 8.4x10 -5 / K) and the like.
 エポキシ樹脂原料であれば、例えば、「EPICLON HP-4710」(DIC(株)製、硬化剤をフェノールノボラックとしたときの硬化樹脂のガラス転移温度は500K、熱収縮率は8.3x10-5/K)等が挙げられる。ポリイミド樹脂原料であれば、例えば、「オーラム(登録商標)」(三井化学(株)製、ガラス転移温度523K、熱収縮率は5.5x10-5/K)等が挙げられる。ポリスルホン樹脂原料であれば、例えば、「ULTRASON(登録商標)Sシリーズ」(BASFジャパン(株)製、ガラス転移温度460K、熱収縮率は5.3x10-5/K)等が挙げられる。ポリアミドイミド樹脂原料であれば、例えば、「TPS(登録商標)TI5000シリーズ TI-5013」(東レプラスチック精工(株)製、ガラス転移温度553K、熱収縮率は3.1x10-5/K)等が挙げられる。ポリエーテルイミド樹脂原料であれば、例えば、「ULTEM1010」(SABICイノベーティブプラスチックス製、ガラス転移温度490K、熱収縮率は5.2x10-5/K)等が挙げられる。ポリエーテルスルホン樹脂原料であれば、例えば、「スミカエクセル4100G」(住友化学(株)製、ガラス転移温度498K、熱収縮率は5.5x10-5/K)、等が挙げられる。ポリベンゾイミダゾール樹脂原料であれば、例えば、「Celazole」(PBI Performance Products社製、ガラス転移温度700K、熱収縮率は2.3x10-5/K)等が挙げられる。尚、上記において、樹脂の熱収縮率とガラス転移温度はすべて文献値である。 In the case of an epoxy resin raw material, for example, “EPICLON HP-4710” (manufactured by DIC Corporation), when the curing agent is phenol novolac, the glass transition temperature of the cured resin is 500 K, and the thermal shrinkage is 8.3 × 10 −5 / K) and the like. If it is a polyimide resin raw material, for example, “Aurum (registered trademark)” (manufactured by Mitsui Chemicals, Inc., glass transition temperature 523 K, heat shrinkage rate 5.5 × 10 −5 / K) and the like can be mentioned. Examples of the raw material for polysulfone resin include “ULTRASON (registered trademark) S series” (manufactured by BASF Japan Ltd., glass transition temperature 460K, heat shrinkage rate 5.3 × 10 −5 / K). If it is a polyamideimide resin raw material, for example, “TPS (registered trademark) TI5000 series TI-5013” (manufactured by Toray Plastic Seiko Co., Ltd., glass transition temperature 553 K, heat shrinkage rate 3.1 × 10 −5 / K), etc. Can be mentioned. If it is a polyetherimide resin raw material, for example, “ULTEM1010” (manufactured by SABIC Innovative Plastics, glass transition temperature 490K, thermal shrinkage rate 5.2 × 10 −5 / K) and the like may be mentioned. Examples of the raw material for the polyethersulfone resin include “Sumika Excel 4100G” (manufactured by Sumitomo Chemical Co., Ltd., glass transition temperature 498K, thermal shrinkage rate 5.5 × 10 −5 / K), and the like. Examples of the raw material for the polybenzimidazole resin include “Celazole” (manufactured by PBI Performance Products, glass transition temperature 700K, heat shrinkage rate 2.3 × 10 −5 / K). In the above, the heat shrinkage ratio and glass transition temperature of the resin are all literature values.
 上述した種々の樹脂のなかでも、ビスマレイミド樹脂は、好ましく用いることができる樹脂の一つである。特に、本発明においては、硬化剤としてジアリル化合物(例えば、2,2’-ジアリルビスフェノールA)を用いるビスマレイミド樹脂が好ましい。 Among the various resins described above, bismaleimide resin is one of the resins that can be preferably used. In particular, in the present invention, a bismaleimide resin using a diallyl compound (for example, 2,2'-diallylbisphenol A) as a curing agent is preferable.
 上記硬化剤としてジアリル化合物を用いるビスマレイミド樹脂は、既に、知られているように、4,4'-ジフェニルメタンビスマレイミドのようなビスマレイミド化合物と硬化剤としての2,2'-ジアリルビスフェノールAを混合し、これに、例えば、ジクミルパーオキサイドのような重合開始剤を硬化触媒として配合し、得られた混合物を加熱し、硬化させて、得られる樹脂である。 As already known, the bismaleimide resin using a diallyl compound as the curing agent includes a bismaleimide compound such as 4,4′-diphenylmethane bismaleimide and 2,2′-diallylbisphenol A as a curing agent. It is a resin obtained by mixing, mixing with this a polymerization initiator such as dicumyl peroxide as a curing catalyst, and heating and curing the resulting mixture.
 上述したように、本発明においては、樹脂は、ガラス転移温度が460K以上であると共に、熱収縮率が2x10-5/K以上であるものが好ましく用いられる。樹脂の熱収縮率の上限は特に限定されるものではないが、実用的には、通常、1x10-4/Kまでの熱収縮率を有すれば十分である。 As described above, in the present invention, a resin having a glass transition temperature of 460 K or higher and a heat shrinkage of 2 × 10 −5 / K or higher is preferably used. The upper limit of the heat shrinkage rate of the resin is not particularly limited, but in practice, it is usually sufficient to have a heat shrinkage rate of up to 1 × 10 −4 / K.
 本発明によるヒートストレージ材において、樹脂100重量部に対する蓄放熱性酸化チタンの割合は、通常、100~2000重量部、好ましくは、200~1000重量部の範囲である。樹脂に対する蓄放熱性酸化チタンの割合が余りに少ないときは、得られるヒートストレージ材の蓄放熱量が小さすぎて、実用的でない。しかし、樹脂に対する蓄放熱性酸化チタンの割合が余りに多いときは、ヒートストレージ材に成形し難い。 In the heat storage material according to the present invention, the ratio of heat storage and heat dissipation titanium oxide to 100 parts by weight of the resin is usually in the range of 100 to 2000 parts by weight, preferably 200 to 1000 parts by weight. When the ratio of the heat storage and heat dissipation titanium oxide to the resin is too small, the heat storage heat dissipation amount of the obtained heat storage material is too small and is not practical. However, when the ratio of the heat-radiating titanium oxide to the resin is too large, it is difficult to form the heat storage material.
 本発明によるヒートストレージ材は、前記蓄放熱性酸化チタンがガラス転移温度460K以上の樹脂の成形体中に分散されてなるものである。ここに、樹脂の熱収縮率は、蓄放熱性酸化チタンのそれよりも、通常、2~10倍程度、大きいので、樹脂と蓄放熱性酸化チタンからなる組成物を成形して樹脂成形体とした後、加熱又は光照射により活性化する際に、樹脂と蓄放熱性酸化チタンの上記熱収縮率の差を利用して、蓄放熱性酸化チタンに予め、圧力を加えることができ、この残留応力によって、蓄放熱性酸化チタンをλ相からβ相に相転移させて、放熱させる際の圧力を低減することができる。 The heat storage material according to the present invention is obtained by dispersing the heat-storing titanium oxide in a resin molded body having a glass transition temperature of 460 K or higher. Here, the heat shrinkage rate of the resin is usually about 2 to 10 times larger than that of the heat storage and heat dissipation titanium oxide. After that, when activated by heating or light irradiation, it is possible to apply pressure to the heat storage and heat dissipation titanium oxide in advance by utilizing the difference in thermal contraction rate between the resin and the heat storage and heat dissipation titanium oxide. The pressure at the time of heat dissipation can be reduced by causing phase transition of the heat storage titanium oxide from the λ phase to the β phase by the stress.
 即ち、例えば、ヒートストレージ材を室温から所定温度に加熱して、上記ヒートストレージ材中の蓄放熱性酸化チタン粒子を活性化した後、これを室温まで冷却するとき、蓄放熱性酸化チタン粒子を取り巻く樹脂が蓄放熱性酸化チタン粒子の熱収縮率を上回って収縮するので、蓄放熱性酸化チタン粒子に周囲から圧力が加わる。従って、ヒートストレージ材を加熱し、活性化させた後、室温まで冷却して得た活性化ヒートストレージ材には既にその分、圧力が加わっているので、ヒートストレージ材中の蓄放熱性酸化チタン粒子をλ相からβ相に相転移させる際に、その分、少ない圧力をヒートストレージ材に加えることによって、ヒートストレージ材中の蓄放熱性酸化チタン粒子をλ相からβ相に相転移させることができる。 That is, for example, when the heat storage material is heated from room temperature to a predetermined temperature to activate the heat storage and heat dissipation titanium oxide particles in the heat storage material and then cooled to room temperature, the heat storage and heat dissipation titanium oxide particles are Since the surrounding resin contracts more than the heat shrinkage rate of the heat storage and heat dissipation titanium oxide particles, pressure is applied to the heat storage and heat dissipation titanium oxide particles from the surroundings. Therefore, after the heat storage material is heated and activated, the activated heat storage material obtained by cooling to the room temperature has already been pressurized, so the heat storage and heat dissipation titanium oxide in the heat storage material When the particles are phase transitioned from the λ phase to the β phase, the heat storage heat-dissipating titanium oxide particles in the heat storage material are phase-transformed from the λ phase to the β phase by applying a small amount of pressure to the heat storage material. Can do.
 本発明のヒートストレージ材は、蓄放熱性酸化チタンの支持体乃至分散媒としてガラス転移温度460K以上の樹脂の成形体を用いることにより、上記成形体を構成する樹脂と蓄放熱性酸化チタンの上記熱収縮率の差を利用して、活性化ヒートストレージ材中の蓄放熱性酸化チタンに予め圧力を加えられることを見出し、かくして、従来よりも少ない印加圧力で効率よく放熱させることができるヒートストレージ材を得ることに成功したものである。 The heat storage material of the present invention uses a resin molded body having a glass transition temperature of 460 K or higher as a support or dispersion medium for heat storage / radiation titanium oxide, so that the resin constituting the molded body and the heat storage heat dissipation titanium oxide described above are used. Using the difference in thermal shrinkage rate, we found that pressure can be applied in advance to the heat storage and heat dissipation titanium oxide in the activated heat storage material, and thus heat storage that can efficiently dissipate heat with less applied pressure than before. The material was successfully obtained.
 しかも、本発明によるヒートストレージ材は、上述したように、蓄放熱性酸化チタンを樹脂中に分散させてなる樹脂成形体であるので、実用性が高く、また、耐久性にもすぐれる。 In addition, as described above, the heat storage material according to the present invention is a resin molded body obtained by dispersing heat-radiating titanium oxide in a resin, so that it has high practicality and excellent durability.
 以下に蓄放熱性酸化チタンの製造例とビスマレイミド樹脂の製造例と共に、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明はこれらの製造例や実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples of the present invention together with examples of production of heat-storing titanium oxide and examples of bismaleimide resin, but the present invention is limited by these examples of production and examples. Is not to be done.
 以下において、蓄放熱性酸化チタンとヒートストレージ材中の蓄放熱性酸化チタンのX線回折分析は、(株)リガク製の試料水平型強力X線回折装置(RINT-TTRIII)を用いて行った。 In the following, X-ray diffraction analysis of the heat storage and heat dissipation titanium oxide and the heat storage and heat dissipation titanium oxide in the heat storage material was performed using a sample horizontal strong X-ray diffractometer (RINT-TTRIII) manufactured by Rigaku Corporation. .
 樹脂のガラス転移温度の測定は、セイコーインスツルメンツ(株)製の動的粘弾性測定装置(DMS6100)を用いて行った。熱収縮率の測定は、(株)リガク製の熱機械分析装置(TMA8310)を用いて行った。 The glass transition temperature of the resin was measured using a dynamic viscoelasticity measuring device (DMS6100) manufactured by Seiko Instruments Inc. The heat shrinkage rate was measured using a thermomechanical analyzer (TMA8310) manufactured by Rigaku Corporation.
製造例1
(蓄放熱性酸化チタンの製造)
 BET比表面積90m/gのルチル型二酸化チタン(堺化学工業(株)製STR-100N)5gをアルミナ製匣鉢に投入し、100%水素雰囲気下、温度1200℃にて5時間加熱して、Tiの組成を有する多形の蓄放熱性酸化チタンを得た。
Production Example 1
(Manufacture of heat dissipation titanium oxide)
5 g of rutile-type titanium dioxide (STR-100N manufactured by Sakai Chemical Industry Co., Ltd.) having a BET specific surface area of 90 m 2 / g was put into an alumina sagger and heated at 1200 ° C. for 5 hours in a 100% hydrogen atmosphere. Thus, a polymorphic titanium dioxide oxide having a composition of Ti 3 O 5 was obtained.
 このようにして得られた蓄放熱性酸化チタンのX線回折パターンと、蓄放熱性酸化チタンのλ相とβ相のそれぞれのピーク位置を図1に示す。上記X線回折パターンによって、得られた蓄放熱性酸化チタンがλ相とβ相の混合物であることが確認される。 FIG. 1 shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide thus obtained and the peak positions of the λ and β phases of the heat storage and heat dissipation titanium oxide. The X-ray diffraction pattern confirms that the obtained heat-radiating titanium oxide is a mixture of λ phase and β phase.
製造例2
(ビスマレイミド樹脂の製造)
 4,4'-ジフェニルメタンビスマレイミド(大和化成工業(株)製ビスマレイミドBMI-1100H)77.7gに硬化剤として2,2'-ジアリルビスフェノールA(大和化成工業(株)製DABPA)22.3gを均一に混合して樹脂原料とした。
Production Example 2
(Manufacture of bismaleimide resin)
77.7 g of 4,4′-diphenylmethane bismaleimide (Bismaleimide BMI-1100H manufactured by Daiwa Kasei Kogyo Co., Ltd.) and 22.3 g of 2,2′-diallylbisphenol A (DABPA manufactured by Daiwa Kasei Kogyo Co., Ltd.) as a curing agent Were mixed uniformly to obtain a resin raw material.
 このようにして得られた樹脂原料7.9gをデスクトップロールミル((株)東洋精機製作所)を用いて115℃に加熱し、軟化させて、これに硬化触媒としてジクミルパーオキサイド(日油(株)製パークミル(登録商標)D)0.04gを加え、1分間混練して、ペースト状の混練物として樹脂組成物を得た。 7.9 g of the resin raw material thus obtained was heated to 115 ° C. using a desktop roll mill (Toyo Seiki Seisakusho Co., Ltd.) and softened, and this was treated with dicumyl peroxide (NOF Corporation). ) Park Mill (registered trademark) D) 0.04 g was added and kneaded for 1 minute to obtain a resin composition as a paste-like kneaded product.
 得られた混練物をデスクトップロールミルから剥がし、これを容器に充填して、180℃で2時間、200℃で2時間、230℃で2時間、250℃で2時間、順次に昇温加熱し、ビスマレイミド樹脂を硬化させ、成形体として得た。この成形体のガラス転移温度と熱収縮率を測定したところ、ガラス転移温度は568Kであり、熱収縮率は4.4x10-5/Kであった。 The obtained kneaded material was peeled off from the desktop roll mill, filled in a container, heated at 180 ° C. for 2 hours, 200 ° C. for 2 hours, 230 ° C. for 2 hours, and 250 ° C. for 2 hours, The bismaleimide resin was cured to obtain a molded body. When the glass transition temperature and the heat shrinkage rate of this molded product were measured, the glass transition temperature was 568K, and the heat shrinkage rate was 4.4 × 10 −5 / K.
実施例1
(蓄放熱性酸化チタンを含む樹脂組成物の製造)
 上記製造例2で得られた樹脂原料と同様の樹脂原料7.9gをデスクトップロールミル((株)東洋精機製作所)を用いて115℃に加熱し、軟化させ、これに硬化触媒としてジクミルパーオキサイド(日油(株)製パークミル(登録商標)D)0.04gを加え、1分間混練した。この混練物に上記製造例1で得られた蓄放熱性酸化チタン42.2g(樹脂100重量部に対して533重量部)を加えて、25分間、混練して、蓄放熱性酸化チタンを含む樹脂組成物を混練物として得た。
Example 1
(Manufacture of resin composition including heat storage and heat dissipation titanium oxide)
7.9 g of a resin raw material similar to the resin raw material obtained in Production Example 2 was heated to 115 ° C. using a desktop roll mill (Toyo Seiki Seisakusho Co., Ltd.) and softened, and dicumyl peroxide was used as a curing catalyst. 0.04 g (Nippon Oil Co., Ltd. Park Mill (registered trademark) D) was added and kneaded for 1 minute. To this kneaded product, 42.2 g (533 parts by weight with respect to 100 parts by weight of the resin) of the heat storage and heat dissipation titanium oxide obtained in Production Example 1 was added and kneaded for 25 minutes to contain the heat storage and heat dissipation titanium oxide. The resin composition was obtained as a kneaded material.
(ヒートストレージ材の作製)
 上記蓄放熱性酸化チタンを含む樹脂組成物を一軸プレス成型機(関西ロール(株)製)を用いて、100MPaの圧力下に直径20mm、厚さ5mmの円盤状の成形物に成形した。この円盤状の成形物を180℃で2時間、200℃で2時間、230℃で2時間、250℃で2時間、順次に昇温加熱し、上記樹脂組成物を硬化させて、円盤状の樹脂成形体であるヒートストレージ材を得た。
(Production of heat storage material)
Using a uniaxial press molding machine (manufactured by Kansai Roll Co., Ltd.), the resin composition containing the heat storage and heat dissipation titanium oxide was molded into a disk-shaped molded product having a diameter of 20 mm and a thickness of 5 mm. The disk-shaped molded product was heated at 180 ° C. for 2 hours, 200 ° C. for 2 hours, 230 ° C. for 2 hours, and 250 ° C. for 2 hours in order to cure the resin composition. A heat storage material which is a resin molding was obtained.
(活性化ヒートストレージ材の作製)
 上記円盤状のヒートストレージ材を100%窒素雰囲気下に温度400℃で2時間、加熱し、この後、室温まで冷却して、ヒートストレージ材中の蓄放熱性酸化チタンをβ相からλ相に相転移させ、かくして、円盤状の活性化ヒートストレージ材を作製した。
(Production of activated heat storage materials)
The disk-shaped heat storage material is heated in a 100% nitrogen atmosphere at a temperature of 400 ° C. for 2 hours, and then cooled to room temperature, so that the heat storage and heat dissipation titanium oxide in the heat storage material is changed from the β phase to the λ phase. The phase transition was performed, and thus a disk-shaped activated heat storage material was produced.
 このように、蓄放熱性酸化チタンを含む樹脂組成物から活性化前のヒートストレージ材を経て、活性化ヒートストレージ材を作製する過程における蓄放熱性酸化チタンの結晶構造の変化を図2に示す。 Thus, FIG. 2 shows a change in the crystal structure of the heat storage and heat dissipation titanium oxide in the process of producing the activated heat storage material from the resin composition containing the heat storage and heat dissipation titanium oxide through the heat storage material before activation. .
 図2中、(A)は、前述したように、上記製造例1で得られた蓄放熱性酸化チタンのX線回折パターンであり、β相とλ相の混相となっている。 2, (A) is an X-ray diffraction pattern of the heat storage titanium oxide obtained in Production Example 1 as described above, and is a mixed phase of β phase and λ phase.
 (B)は、上記実施例1で得られた活性化前のヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンである。蓄放熱性酸化チタンはβ相が主体である。 (B) is an X-ray diffraction pattern of the heat-storing titanium oxide in the heat storage material before activation obtained in Example 1 above. The heat storage titanium oxide is mainly β-phase.
 (C)は、上記実施例1で得られた活性化ヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンである。活性化ヒートストレージ材中の蓄放熱性酸化チタンはλ相が主体である。 (C) is an X-ray diffraction pattern of heat storage and heat dissipation titanium oxide in the activated heat storage material obtained in Example 1 above. The heat storage and heat dissipation titanium oxide in the activated heat storage material is mainly λ phase.
 このようにして得た活性化ヒートストレージ材について、下記のようにして、加圧試験と繰り返し試験を行った。 The activated heat storage material thus obtained was subjected to a pressurization test and a repeated test as follows.
比較例1
 上記製造例1で得られた蓄放熱性酸化チタンを100%窒素雰囲気下に400℃で2時間、加熱した後、室温まで冷却し、λ相として、活性化蓄放熱性酸化チタンを得た。
Comparative Example 1
The heat storage and heat dissipation titanium oxide obtained in Production Example 1 was heated in a 100% nitrogen atmosphere at 400 ° C. for 2 hours and then cooled to room temperature to obtain activated heat storage and heat dissipation titanium oxide as a λ phase.
 このようにして得た活性化蓄放熱性酸化チタンについて、実施例1による活性化ヒートストレージ材と同様に、下記のようにして、加圧試験と繰り返し試験を行った。 The activated heat storage and heat dissipation titanium oxide thus obtained was subjected to a pressurization test and a repetition test as follows in the same manner as the activated heat storage material according to Example 1.
(加圧試験)
 一軸プレス成形機(関西ロール(株)製)を用いて、上記実施例1で得られた活性化ヒートストレージ材に50MPa及び200MPaの圧力をそれぞれ加えた。これら加圧後のヒートストレージ材についてX線回折分析を行い、得られた回折データに基づき、リートベルト解析(PDXL2)を行って、それぞれのヒートストレージ材中のλ相とβ相の組成比を求めた。
(Pressure test)
Using a uniaxial press molding machine (manufactured by Kansai Roll Co., Ltd.), pressures of 50 MPa and 200 MPa were applied to the activated heat storage material obtained in Example 1 above. An X-ray diffraction analysis is performed on the heat storage material after pressurization, and a Rietveld analysis (PDXL2) is performed based on the obtained diffraction data to determine the composition ratio of the λ phase and the β phase in each heat storage material. Asked.
 同様に、上記比較例1で得た活性化蓄放熱性酸化チタンについても、50MPa及び200MPaの圧力をそれぞれ加えた後、X線回折分析を行い、得られた回折データに基づいて、リートベルト解析(PDXL2)を行い、加圧後のそれぞれのλ相とβ相の組成比を求めた。 Similarly, with respect to the activated heat storage / heat dissipation titanium oxide obtained in Comparative Example 1 above, after applying pressures of 50 MPa and 200 MPa, respectively, X-ray diffraction analysis was performed, and Rietveld analysis was performed based on the obtained diffraction data. (PDXL2) was performed to determine the composition ratio of each λ phase and β phase after pressurization.
 上記活性化ヒートストレージ材と活性化蓄放熱性酸化チタンの加圧試験の結果を図3、図4及び表1に示す。 3 and 4 and Table 1 show the results of the pressure test of the activated heat storage material and the activated / heat-storing / dissipating titanium oxide.
 図3において、(A)は活性化ヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。(B)は上記活性化ヒートストレージ材に50MPaの圧力を加えた後のヒートストレージ材の蓄放熱性酸化チタンのX線回折パターンを示し、(C)は上記活性化ヒートストレージ材に200MPaの圧力を加えた後のヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。 In FIG. 3, (A) shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide in the activated heat storage material. (B) shows the X-ray diffraction pattern of the heat storage titanium oxide of the heat storage material after applying a pressure of 50 MPa to the activated heat storage material, and (C) shows a pressure of 200 MPa on the activated heat storage material. The X-ray-diffraction pattern of the heat storage and heat dissipation titanium oxide in the heat storage material after adding is shown.
 図4において、(A)は活性化蓄放熱性酸化チタンのX線回折パターンを示す。(B)は上記活性化蓄放熱性酸化チタンに50MPaの圧力を加えた後のX線回折パターンを示し、(C)は上記活性化蓄放熱性酸化チタンに200MPaの圧力を加えた後のX線回折パターンを示す。 In FIG. 4, (A) shows the X-ray diffraction pattern of the activated / heat-storing titanium oxide. (B) shows an X-ray diffraction pattern after applying a pressure of 50 MPa to the activated titanium oxide film, and (C) shows X after applying a pressure of 200 MPa to the activated titanium oxide film. A line diffraction pattern is shown.
 表1は前記実施例1で得た活性化ヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比と、上記ヒートストレージ材に50MPa及び200MPaの圧力を加えた後のそれぞれのヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比と、前記比較例1で得た活性化蓄放熱性酸化チタンの粉体のλ相とβ相の組成比と、上記活性化蓄放熱性酸化チタンに50MPa及び200MPaの圧力を加えた後のそれぞれのλ相とβ相の組成比を示す。 Table 1 shows the composition ratio between the λ phase and β phase of the heat storage titanium oxide in the activated heat storage material obtained in Example 1, and the respective values after applying pressures of 50 MPa and 200 MPa to the heat storage material. Composition ratio of λ phase and β phase of heat storage heat dissipation titanium oxide in heat storage material, composition ratio of λ phase and β phase of activated heat storage heat dissipation titanium oxide powder obtained in Comparative Example 1 above, The composition ratio of each (lambda) phase and (beta) phase after applying the pressure of 50 Mpa and 200 Mpa to activated heat storage and heat dissipation titanium oxide is shown.
 図3と図4にみられるように、活性化ヒートストレージ材と活性化蓄放熱性酸化チタンの粉体のいずれについても、それらに加えられる圧力が大きくなるにつれて、ヒートストレージ材中の蓄放熱性酸化チタンと蓄放熱性酸化チタンの粉体のいずれも、λ相の結晶構造を示すピーク強度が次第に減少し、反対に、β相の結晶構造を示すピーク強度が次第に増大する。 As can be seen in FIGS. 3 and 4, as for the activated heat storage material and the powder of activated heat storage / heat dissipation titanium oxide, as the pressure applied to them increases, the heat storage performance in the heat storage material. In both of the titanium oxide powder and the heat storage titanium oxide powder, the peak intensity indicating the λ phase crystal structure gradually decreases, and conversely, the peak intensity indicating the β phase crystal structure gradually increases.
 しかし、表1にみられるように、活性化蓄放熱性酸化チタンの粉体に比較して、活性化ヒートストレージ材中の蓄放熱性酸化チタンは、同じ圧力を加えられるとき、λ相からβ相への相転移率が高く、ヒートストレージ材における残留応力によって、蓄放熱性酸化チタンのλ相からβ相への相転移に必要な圧力が低減されている。 However, as can be seen in Table 1, compared with the powder of activated heat storage and heat dissipation titanium oxide, the heat storage and heat dissipation titanium oxide in the activated heat storage material is changed from the λ phase to the β when the same pressure is applied. The phase transition rate to the phase is high, and the pressure necessary for the phase transition from the λ phase to the β phase of the heat storage titanium oxide is reduced by the residual stress in the heat storage material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(繰り返し使用性)
 加圧試験において説明したように、前記実施例1で得られた活性化ヒートストレージ材に200MPaの圧力を加えた後、これを再度、100%窒素雰囲気下、400℃で2時間、加熱して、再活性化し、かくして、再活性化ヒートストレージ材を得た。更に、この後、上記再活性化ヒートストレージ材に前記一軸プレス成形機を用いて、200MPaの圧力を再度、加えた。
(Repeatability)
As explained in the pressure test, after applying a pressure of 200 MPa to the activated heat storage material obtained in Example 1, this was again heated at 400 ° C. for 2 hours in a 100% nitrogen atmosphere. Reactivated, thus obtaining a reactivated heat storage material. Further, thereafter, a pressure of 200 MPa was again applied to the reactivated heat storage material using the uniaxial press molding machine.
 上記再活性化ヒートストレージ材と、その加圧後のヒートストレージ材についてそれぞれ、X線回折分析とリートベルト解析を行って、それぞれのヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比を求めた。結果を図5及び表2に示す。 The reactivated heat storage material and the pressurized heat storage material are subjected to X-ray diffraction analysis and Rietveld analysis, respectively, and λ phase and β phase of the heat storage titanium oxide in each heat storage material. The composition ratio was determined. The results are shown in FIG.
 図5において、(A)は上記活性化ヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。(B)は上記活性化ヒートストレージ材に200MPaの圧力を加えた後のヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。(C)は上記加圧後のヒートストレージ材に再度、活性化させた後の再活性化ヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。(D)は上記再活性化樹脂成形体に200MPaの圧力を加えた後のヒートストレージ材中の蓄放熱性酸化チタンのX線回折パターンを示す。 In FIG. 5, (A) shows the X-ray diffraction pattern of the heat-storing titanium oxide in the activated heat storage material. (B) shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide in the heat storage material after applying a pressure of 200 MPa to the activated heat storage material. (C) shows the X-ray diffraction pattern of the heat storage and heat dissipation titanium oxide in the reactivated heat storage material after activating the heat storage material after pressurization again. (D) shows the X-ray-diffraction pattern of the heat storage and heat dissipation titanium oxide in the heat storage material after applying the pressure of 200 Mpa to the said reactivation resin molding.
 表2はヒートストレージ材中の蓄放熱性酸化チタンの活性化後、加圧後、再活性化後及び再加圧後のλ相とβ相の組成比を示す。 Table 2 shows the composition ratio of the λ phase and the β phase after activation, pressurization, reactivation, and repressurization of the heat storage and heat dissipation titanium oxide in the heat storage material.
 即ち、活性化ヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比と共に、この活性化ヒートストレージ材に200MPaの圧力を加えた後のヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比と、この加圧後のヒートストレージ材を加熱し、再活性化ヒートストレージ材としたときのヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比と、上記再活性化ヒートストレージ材を再度、加圧した後のヒートストレージ材中の蓄放熱性酸化チタンのλ相とβ相の組成比を示す。 That is, together with the composition ratio of the λ phase and β phase of the heat storage and heat dissipation titanium oxide in the activated heat storage material, the heat storage and heat dissipation titanium oxide in the heat storage material after applying a pressure of 200 MPa to the activated heat storage material The composition ratio of the λ phase and the β phase of the heat storage material after this pressurization is heated to form a reactivated heat storage material. The composition ratio and the composition ratio of the λ phase and the β phase of the heat storage and heat dissipation titanium oxide in the heat storage material after pressurizing the reactivated heat storage material again are shown.
 上述した結果から明らかなように、活性化ヒートストレージ材は、これを再活性化し、これを加圧して、相転移させることができる。 As is clear from the results described above, the activated heat storage material can be reactivated and pressurized to cause phase transition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によるヒートストレージ材は、上述した繰り返し試験において、2回目の加圧後も円盤状の形状を保持しており、繰り返し使用性にすぐれ、実用性にすぐれる。
 
 
 
 
 
The heat storage material according to the present invention retains a disk-like shape even after the second pressurization in the above-described repeated test, and is excellent in repeated usability and practicality.




Claims (8)

  1.  蓄放熱性酸化チタンがガラス転移温度460K以上の樹脂の成形体中に分散されているヒートストレージ材であって、
     上記蓄放熱性酸化チタンはTiの組成を有し、
     β相は、これを加熱し、又は光照射して、温度460K以上としたとき、λ相に相転移し、
     上記λ相は、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっており、上記λ相は、圧力を加えられたときに上記β相に相転移し、
     その際、転移熱を放出するものであるヒートストレージ材。
    A heat storage material in which heat storage and heat dissipation titanium oxide is dispersed in a resin molded body having a glass transition temperature of 460 K or more,
    The heat storage titanium oxide has a composition of Ti 3 O 5 ,
    When the β phase is heated or irradiated with light to a temperature of 460 K or higher, it undergoes a phase transition to the λ phase,
    The λ phase remains in the λ phase without phase transition to the β phase even in a temperature range lower than 460 K, and the λ phase undergoes phase transition to the β phase when pressure is applied,
    At that time, a heat storage material that releases the transition heat.
  2.  樹脂100重量部に対する蓄放熱性酸化チタンの割合が100~2000重量部の範囲である請求項1に記載のヒートストレージ材。 2. The heat storage material according to claim 1, wherein the ratio of the heat storage and heat dissipation titanium oxide to 100 parts by weight of the resin is in the range of 100 to 2000 parts by weight.
  3.  樹脂がビスマレイミド樹脂、ポリアミドイミド樹脂又はポリイミド樹脂である請求項1又は2に記載のヒートストレージ材。 The heat storage material according to claim 1 or 2, wherein the resin is a bismaleimide resin, a polyamideimide resin or a polyimide resin.
  4.  蓄放熱性酸化チタンとガラス転移温度が460K以上の樹脂を含み、又は蓄放熱性酸化チタンと重合体若しくは硬化物のガラス転移温度が460K以上である重合前又は未硬化の樹脂原料を含む樹脂組成物であって、
     上記蓄放熱性酸化チタンはTiの組成を有し、
     β相は、これを加熱し、又は光照射して、温度460K以上としたとき、λ相に相転移し、
     上記λ相は、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっており、上記λ相は、圧力を加えられたときに上記β相に相転移し、
     その際、転移熱を放出するものである樹脂組成物。
    Resin composition containing pre-polymerized or uncured resin raw material containing heat storage heat-dissipating titanium oxide and resin having a glass transition temperature of 460K or higher, or heat transfer heat-dissipating titanium oxide and polymer or cured product having a glass transition temperature of 460K or higher A thing,
    The heat storage titanium oxide has a composition of Ti 3 O 5 ,
    When the β phase is heated or irradiated with light to a temperature of 460 K or higher, it undergoes a phase transition to the λ phase,
    The λ phase remains in the λ phase without phase transition to the β phase even in a temperature range lower than 460 K, and the λ phase undergoes phase transition to the β phase when pressure is applied,
    At this time, a resin composition that releases transition heat.
  5.  樹脂100重量部に対する蓄放熱性酸化チタンの割合が100~2000重量部の範囲である請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the ratio of the heat storage and heat dissipation titanium oxide to 100 parts by weight of the resin is in the range of 100 to 2000 parts by weight.
  6.  重合体若しくは硬化物のガラス転移温度が460K以上である樹脂原料がビスマレイミド樹脂原料、ポリアミドイミド樹脂原料又はポリイミド樹脂原料である請求項4又は5に記載の樹脂組成物。 The resin composition according to claim 4 or 5, wherein the resin raw material having a glass transition temperature of the polymer or cured product of 460 K or higher is a bismaleimide resin raw material, a polyamideimide resin raw material, or a polyimide resin raw material.
  7.  蓄放熱性酸化チタンとガラス転移温度が460K以上の樹脂を含み、又は蓄放熱性酸化チタンと重合体若しくは硬化物のガラス転移温度が460K以上である重合前又は未硬化の樹脂原料を含み、
     上記蓄放熱性酸化チタンはTiの組成を有し、
     β相は、これを加熱し、又は光照射して、温度460K以上としたとき、λ相に相転移し、
     上記λ相は、460Kよりも低い温度領域においても、β相に相転移することなく、λ相にとどまっており、上記λ相は、圧力を加えられたときに上記β相に相転移し、
     その際、転移熱を放出するものである樹脂組成物を樹脂成形体に成形する、ヒートストレージ材の製造方法。
    It contains a heat storage and heat dissipation titanium oxide and a resin having a glass transition temperature of 460K or higher, or a preheat or uncured resin raw material having a glass transition temperature of the heat storage and heat dissipation titanium oxide and a polymer or cured product of 460K or more,
    The heat storage titanium oxide has a composition of Ti 3 O 5 ,
    When the β phase is heated or irradiated with light to a temperature of 460 K or higher, it undergoes a phase transition to the λ phase,
    The λ phase remains in the λ phase without phase transition to the β phase even in a temperature range lower than 460 K, and the λ phase undergoes phase transition to the β phase when pressure is applied,
    In that case, the manufacturing method of the heat storage material which shape | molds the resin composition which discharge | releases transition heat to a resin molding.
  8.  樹脂100重量部に対する蓄放熱性酸化チタンの割合が100~2000重量部の範囲である請求項7に記載のヒートストレージ材の製造方法。
     
     
     
     
    The method for producing a heat storage material according to claim 7, wherein the ratio of the heat storage and heat dissipation titanium oxide to 100 parts by weight of the resin is in the range of 100 to 2000 parts by weight.



PCT/JP2018/011548 2017-03-24 2018-03-22 Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition WO2018174210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507002A JPWO2018174210A1 (en) 2017-03-24 2018-03-22 Resin composition containing titanium oxide and heat storage material obtained therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060226 2017-03-24
JP2017-060226 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174210A1 true WO2018174210A1 (en) 2018-09-27

Family

ID=63586083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011548 WO2018174210A1 (en) 2017-03-24 2018-03-22 Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition

Country Status (2)

Country Link
JP (1) JPWO2018174210A1 (en)
WO (1) WO2018174210A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185943A1 (en) * 2021-03-03 2022-09-09 株式会社デンソー Heat storing/releasing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050269A1 (en) * 2013-10-04 2015-04-09 国立大学法人東京大学 Heat storage/dissipation material and heat storage/dissipation system
WO2015087620A1 (en) * 2013-12-11 2015-06-18 富士高分子工業株式会社 Heat-storage composition
WO2015118783A1 (en) * 2014-02-07 2015-08-13 株式会社村田製作所 Cooling device
WO2016042909A1 (en) * 2014-09-17 2016-03-24 株式会社村田製作所 Cooling device
WO2016063478A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Composite heat storage material
JP2017218970A (en) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 Internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050269A1 (en) * 2013-10-04 2015-04-09 国立大学法人東京大学 Heat storage/dissipation material and heat storage/dissipation system
WO2015087620A1 (en) * 2013-12-11 2015-06-18 富士高分子工業株式会社 Heat-storage composition
WO2015118783A1 (en) * 2014-02-07 2015-08-13 株式会社村田製作所 Cooling device
WO2016042909A1 (en) * 2014-09-17 2016-03-24 株式会社村田製作所 Cooling device
WO2016063478A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Composite heat storage material
JP2017218970A (en) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185943A1 (en) * 2021-03-03 2022-09-09 株式会社デンソー Heat storing/releasing device

Also Published As

Publication number Publication date
JPWO2018174210A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
Choong et al. High speed 4D printing of shape memory polymers with nanosilica
JP6942797B2 (en) Compositions and Methods for Producing Molds from High-Purity Transparent Quartz Glass Using Addition Manufacturing
Fang et al. Shape-memory polymer composites selectively triggered by near-infrared light of two certain wavelengths and their applications at macro-/microscale
Goertzen et al. Dynamic mechanical analysis of fumed silica/cyanate ester nanocomposites
JP6148241B2 (en) Nanosilica-containing bismaleimide-containing composition
Li et al. Solvent‐free upcycling vitrimers through digital light processing‐based 3D printing and bond exchange reaction
Zhang et al. Photopolymerization of zeolite/polymer-based composites: Toward 3D and 4D printing applications
JP2016078450A (en) Method for producing fiber-reinforced composite material, resin base and preform
CN110650986A (en) Composition of radiation-curable resin and method for obtaining the same
TW200806696A (en) Process for the preparation of inverse opals having adjustable channel diameters
WO2018174210A1 (en) Resin composition containing titanium oxide having heat storage and radiation properties, and heat storage material obtained using said resin composition
Chartier et al. UV curable systems for tape casting
Gregg et al. Light‐actuated anisotropic microactuators from CNT/hydrogel nanocomposites
KR102171222B1 (en) Composites with enhanced thermal conductivity and method preparing the same
Zhao et al. Microphase separation‐driven sequential self‐folding of nanocomposite hydrogel/elastomer actuators
Zhang et al. Photopolymerization of zeolite filler‐based composites for potential 3D printing application and gas adsorption applications
Rabby et al. Microwave processing of SiC nanoparticles infused polymer composites: comparison of thermal and mechanical properties
Huang et al. Visible light 3D printing of high-resolution superelastic microlattices of poly (ethylene glycol) diacrylate/graphene oxide nanocomposites via continuous liquid interface production
KR100761426B1 (en) Hard coating composition having phtosensitive hardening characteristics, manufacturing method thereof, mobile terminal window, plat display monitor and film coated with the hard coating composition
Li et al. Dual-cure vapor-grown carbon nanofiber-supplemented 3D-printed resin: Implications for improved stiffness and thermal resistance
JP5682824B2 (en) Method for producing colloidal crystal immobilized with polymer, and colloidal crystal immobilized with polymer
Gao et al. Nanoscale Features of Zeolite Fillers Enhance the Depth of Cure, Optical Properties, and Mechanical Properties of 3D-Printed Polymer Composite Structures
JP3893605B2 (en) Irradiation curable unsaturated polyester resin composition and method for molding the composition
JP5402479B2 (en) Method for producing cured molded article of resin composition
CN110819096A (en) Polyurea composite material capable of repairing macroscopic scratches and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771830

Country of ref document: EP

Kind code of ref document: A1