WO2017179418A1 - Optical member, planar lighting device, and machining method - Google Patents

Optical member, planar lighting device, and machining method Download PDF

Info

Publication number
WO2017179418A1
WO2017179418A1 PCT/JP2017/012698 JP2017012698W WO2017179418A1 WO 2017179418 A1 WO2017179418 A1 WO 2017179418A1 JP 2017012698 W JP2017012698 W JP 2017012698W WO 2017179418 A1 WO2017179418 A1 WO 2017179418A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
region
optical member
light
base
Prior art date
Application number
PCT/JP2017/012698
Other languages
French (fr)
Japanese (ja)
Inventor
山田 敦
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to DE112017002033.6T priority Critical patent/DE112017002033T5/en
Publication of WO2017179418A1 publication Critical patent/WO2017179418A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/239Light guides characterised by the shape of the light guide plate-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/242Light guides characterised by the emission area
    • F21S43/245Light guides characterised by the emission area emitting light from one or more of its major surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/249Light guides with two or more light sources being coupled into the light guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to an optical member, a planar illumination device, and a processing method.
  • planar lighting devices used for high-mount stoplights of automobiles have been provided.
  • a planar illumination device for example, a light source, a mirror, and a lens may be used to facilitate light distribution control.
  • the lens transmits light, but the back surface (back surface) of the light emitting surface cannot be seen through, and when a mirror is used, the mirror does not transmit light. Therefore, in the above-described conventional technology, it is possible to perform a desired light distribution control, but when the light source is not turned on, the back surface of the light emitting surface of the optical member can be seen through (hereinafter also referred to as “transparent”). There is a problem that it is difficult to maintain.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an optical member, a planar illumination device, and a processing method capable of enabling desired light distribution control while maintaining transparency.
  • an optical member includes a base that is a transparent body formed in a flat plate shape, and is formed on one surface of the base and aligned in a predetermined direction.
  • a second region having a prism shape is connected to a first region that is a prism portion and has an inclination angle with respect to the opposite surface of the one surface of 0 to 8 degrees in a cross section along the predetermined direction, and the predetermined region And a prism portion in which the ratio of the first region in the length in the direction is 60% or more and less than 100%.
  • desired light distribution control can be achieved while maintaining transparency.
  • FIG. 1 is a front view showing a planar illumination device according to the embodiment.
  • FIG. 2 is a side view showing the planar illumination device according to the embodiment.
  • FIG. 3 is a side cross-sectional view illustrating a main part of the planar lighting device according to the embodiment.
  • FIG. 4 is a side view showing an optical member having a low reflection portion and a luminance suppression portion according to the embodiment.
  • FIG. 5 is a side view showing the planar illumination device according to the first modification.
  • FIG. 6 is a diagram illustrating a change due to lighting of the light source of the planar illumination device according to the first modification.
  • FIG. 7 is a side cross-sectional view showing the main part of the optical member according to Modification 2.
  • FIG. 1 is a front view showing a planar illumination device according to the embodiment.
  • FIG. 2 is a side view showing the planar illumination device according to the embodiment.
  • FIG. 3 is a side cross-sectional view illustrating a main part of the planar lighting
  • FIG. 8 is a side cross-sectional view showing a main part of an optical member according to Modification 3.
  • FIG. 9 is a side view showing a planar illumination device according to Modification 4.
  • FIG. 10 is a front view showing a planar lighting device according to Modification 5.
  • FIG. 11 is a side view showing a planar lighting device according to Modification 5.
  • FIG. 12 is a front view showing a main part of a planar lighting device according to Modification 6.
  • an object of the present embodiment is to provide an optical member, a planar illumination device, and a processing method capable of enabling desired light distribution control while maintaining transparency.
  • a planar illumination device is further provided that emits desired light to the light extraction surface side of the optical member and can suppress an increase in light leaking to the back surface side of the optical member. Also aimed.
  • an object of the present embodiment is to provide a planar illumination device that emits desired light to the light extraction surface side of the optical member and can suppress an increase in light leaking to the back surface side of the optical member.
  • the planar lighting device is a back surface of the light extraction surface of the base that is a transparent body formed in a flat plate shape.
  • desired light can be emitted to the light extraction surface side of the optical member, and an increase in light leaking to the back surface side of the optical member can be suppressed.
  • FIG. 1 is a front view showing a planar illumination device according to the embodiment.
  • FIG. 2 is a side view showing the planar illumination device according to the embodiment.
  • the planar illumination device 1 includes an optical member 2 and a light source unit 3.
  • the optical member 2 has a base 20 that is a transparent body formed in a flat plate shape.
  • the base portion 20 is formed of a light transmissive material.
  • the base 20 may be formed of acrylic resin, polycarbonate, or the like.
  • the base 20 may be a so-called light guide plate.
  • the base 20 may be formed of any material as long as it has desired translucency (for example, it is transparent), desired strength, heat resistance, and the like.
  • one surface 21 hereinafter also referred to as “light extraction surface 21”) illustrated in FIG. 1 is a light emitting surface.
  • the desired translucency here may be that the back surface (back surface) of the light extraction surface 21 that is a light emitting surface is seen through, that is, transparent.
  • the base portion 20 of the optical member 2 is formed with a prism portion 22 on one side in the thickness direction of the base portion 20.
  • the prism portion 22 is formed on the back surface (hereinafter also referred to as “back surface”) of the light extraction surface 21 of the optical member 2.
  • the prism portions 22 are formed side by side in a predetermined direction.
  • the prism portion 22 is formed side by side in the longitudinal direction of the base portion 20 (left-right direction in FIG. 2).
  • FIG. 3 is a side cross-sectional view illustrating a main part of the planar lighting device according to the embodiment.
  • the prism portion 22 is formed in a shape having a predetermined prism function.
  • the prism portion 22 has a prism shape in the first region 221 in which the inclination angle ⁇ 1 with respect to the plane in which the thickness direction of the base portion 20 is orthogonal in the cross section along the longitudinal direction of the base portion 20 is 0 degree (°) or more and 8 degrees or less.
  • region 222 which has is continuous.
  • the first region 221 of one prism portion 22 continues to the height of the first region 221 of one prism portion 22, that is, the second region 222 of another prism portion 22.
  • the height of the position is defined as “first height”.
  • the height of the position where the first region 221 and the second region 222 of one prism portion 22 are continuous is referred to as a “second height”.
  • the prism portion 22 may be formed along the width direction of the base portion 20 (hereinafter, also referred to as “short direction”), or may be formed inclined with respect to the short direction of the base portion 20. .
  • the first region 221 of the prism portion 22 may be formed along the short direction of the base portion 20.
  • the second region 222 of the prism portion 22 may be formed along the short direction of the base portion 20.
  • the light extraction surface 21 is a flat surface and the thickness direction of the base portion 20 is perpendicular to the surface. Therefore, the surface where the thickness direction of the base portion 20 is orthogonal will be described as the light extraction surface 21 hereinafter. .
  • the first tilt angle ⁇ ⁇ b> 1 with respect to the light extraction surface 21 in the section along the longitudinal direction of the base portion 20 is 0 degree (°) or more and 8 degrees or less.
  • a second region 222 having a prism shape is continuous with the region 221. Further, it is more preferable that the inclination angle ⁇ 1 of the first region 221 of the prism portion 22 is not less than 0 degrees and not more than 4 degrees. Further, as shown in FIG. 3, the second region 222 of one prism portion 22 is continuous with the first region 221 of another prism portion 22.
  • the first region 221 of one prism portion 22 is in one direction (a direction away from the light extraction surface 21).
  • the second region 222 of one prism portion 22 has an inclined shape, and one end of the second region 222 is continuous with the first region 221, and is opposite to one direction with respect to the light extraction surface 21 (with respect to the light extraction surface 21.
  • the other end portion is continuous with the first region 221 of the other prism portion 22.
  • the first region 221 of one prism portion 22 has a shape that inclines in a direction away from the light extraction surface 21 from the left to the right in FIG.
  • the second region 222 of one prism portion 22 has a shape in which one end portion is continuous with the first region 221 and is inclined in a direction approaching the light extraction surface 21 from left to right in FIG.
  • the other end portion is continuous with the first region 221 of the other prism portion 22.
  • the first region 221 of one prism portion 22 extends from a first height in the thickness direction of the base portion 20 to a second height higher than the first height.
  • the second region 222 of one prism portion 22 has a shape in which one end portion is continuous with the first region 221 at the second height and extends to the first height, and the other end at the first height.
  • the portion is continuous with the first region 221 of the other prism portion 22.
  • the second region 222 of the leftmost prism portion 22 in FIG. 3 is continuous with the first region 221 of the adjacent (right) prism portion 22.
  • the inclination angle with respect to the light extraction surface 21 of the second region 222 in the cross section along the longitudinal direction of the base 20 may be appropriately set according to a desired light distribution.
  • the ratio R11 of the first region 221 in the length of the base portion 20 in the longitudinal direction is 60% or more and less than 100%.
  • the length L11 of the first region 221 in the length in the longitudinal direction of the base 20 is the length L10 of the entire prism portion 22 in the length in the longitudinal direction of the base 20 (hereinafter referred to as “structural unit length”).
  • R11 is 60% or more and less than 100%.
  • the ratio R11 described above is calculated by the following mathematical formula (1).
  • Ratio R11 length L11 of first region 221 / constituent unit length L10 (1)
  • the structural unit length L10 corresponds to the total length of the first region 221 and the second region 222 in the length of the base 20 in the longitudinal direction.
  • the ratio R11 of the first region 221 in the length of the base portion 20 in the longitudinal direction is more preferably 75% or more and less than 100%.
  • the prism portion 22 is formed so that the structural unit length L10 of the prism portion 22 is 40 ⁇ m or more and 500 ⁇ m or less.
  • the prism unit 22 more preferably has a structural unit length L10 of the prism unit 22 of not less than 80 ⁇ m and not more than 250 ⁇ m.
  • the optical member 2 has a desired light-transmitting property (for example, is transparent) even in the base portion 20 on which the prism portion 22 is formed.
  • the optical member 2 is transparent, and when the light source unit 3 is in a non-lighting state, the back side can be seen through from the light extraction surface 21 side of the base 20, and from the back side of the base 20. The light extraction surface 21 side can be seen through.
  • the plurality of prism portions 22 may be formed symmetrically (symmetric in FIG. 2) with respect to a center line passing through the central portion in the longitudinal direction on the back surface of the light extraction surface 21 of the optical member 2.
  • a plurality of prism portions 22 are arranged in the order of the first region 221 and the second region 222 from the side surface 23 on the left side in FIG. 2 to the central portion in the longitudinal direction.
  • the prism portion 22 arranged in the order of the first region 221 and the second region 222 from the right side surface 24 side in FIG. Multiple lines.
  • the plurality of prism portions 22 may be formed mirror-symmetrically with respect to the center line in the longitudinal direction on the back surface of the light extraction surface 21 of the optical member 2.
  • the light source unit 3 includes a holding member 30, a light source 31 such as an LED (Light Emitting Diode), and a light incident element 32.
  • the light source unit 3 is disposed along the side surfaces 23 and 24 of the base 20 of the optical member 2.
  • the light source unit 3 is provided as a pair at both ends of the optical member 2.
  • the light source part 3 may be provided in only one of the both end parts of the optical member 2.
  • the pair of holding members 30 hold the optical member 2 from both sides.
  • a pair of light sources 3 is provided at both ends of the optical member 2 in the longitudinal direction of the base 20 and holds the optical member 2.
  • Each holding member 30 holds the light source 31 and the light incident element 32. 1 illustrates a state in which the light source 31 and the light incident element 32 are exposed in a front view.
  • the cover member 30 may be covered.
  • the optical member 2 may be held by the holding member 30 by covering the vicinity of the side surfaces 23 and 24 with the holding member 30.
  • Each light source unit 3 is provided with a plurality (four in FIG. 1) of light sources 31.
  • the plurality of light sources 31 are provided side by side in a predetermined direction.
  • the light source unit 3 is provided side by side along the short direction of the base 20.
  • the light incident element 32 has a function of converting light emitted from the light source 31 that is a point light source into light of a linear light source.
  • the light incident element 32 is formed of a light transmissive material.
  • the light incident element 32 is provided between the light source 31 and the side surfaces 23 and 24 of the base 20.
  • the light incident element 32 is provided between the light source 31 and the side surface 23 of the base 20.
  • the light incident element 32 is provided along the side surface 23 of the base 20.
  • the light incident element 32 is provided between the light source 31 and the side surface 24 of the base 20.
  • the light incident element 32 is provided along the side surface 24 of the base 20.
  • a mechanism for performing predetermined optical control is provided on the surface 321 on the light source 31 side of the light incident element 32 (hereinafter also referred to as “light incident surface 321”).
  • the light incident surface 321 on the light source 31 side of the light incident element 32 may be a TIR (Total Internal Reflection) -Fresnel lens surface.
  • the light incident surface 321 of the light incident element 32 is provided with a mechanism for performing predetermined optical control at a location corresponding to each light source 31. 1 schematically illustrates the case where one light incident element 32 is used for the four light sources 31, but the light incident elements 32 may be provided for each light source 31, respectively.
  • the light incident element 32 may have any configuration as long as desired light distribution control is possible.
  • the luminance of the surface of the light incident element 32 facing the side surfaces 23 and 24 of the base 20, that is, the surface 322 opposite to the light incident surface 321 of the light incident element 32 is uniform.
  • the luminance in the vertical direction of the surface of the light incident element 32 that faces the side surfaces 23 and 24 of the base 20 is uniform.
  • a predetermined light distribution member may be provided on the surface of the light incident element 32 that faces the side surfaces 23 and 24 of the base 20.
  • a lenticular lens, a diffusing element, a prism, or a TIR-Fresnel lens may be provided as a light distribution member on the surface of the light incident element 32 that faces the side surfaces 23 and 24 of the base 20.
  • a light distribution member may be arrange
  • the light incident element 32 may be continuous with the side surfaces 23 and 24 of the base 20.
  • the light incident element 32 may be integrally formed with the base 20.
  • a mechanism for performing predetermined optical control may be provided on the opposite surface 322 side of the light incident element 32.
  • an optical element such as a TIR-Fresnel lens or lenticular may be disposed on the opposite surface 322 of the light incident element 32.
  • the width W11 of the region where the luminance is uniform in the light incident element 32 is equal to or greater than the width W10 of the base 20 in the short direction.
  • the term “uniform brightness” means, for example, that a brightness ratio between a bright part and a dark part (dark part brightness / bright part brightness) described later is 70% or more, preferably 80% or more.
  • the width W11 of the region where the luminance is uniform in the light incident element 32 is the same as the width of the light incident element 32 is illustrated.
  • the width W11 of the region where the luminance is uniform in the optical element 32 may be narrower than the width of the light incident element 32.
  • the luminance distribution is focused on the light incident end surfaces (side surfaces 23 and 24) of the light guide plate (base 20).
  • the luminance distribution (averaged in the thickness direction) is calculated at a pitch of at least 1 mm, preferably 0.5 mm, in the width direction (short direction) of the light guide plate.
  • the width W11 of the region where the luminance is uniform in the light incident element 32 is set to be equal to or larger than the width W10 in the short direction of the base portion 20, the bright portion and the dark portion of the luminance obtained by the calculation method described above are used.
  • the luminance ratio (dark portion luminance / bright portion luminance) can be 70% or more, preferably 80% or more.
  • the pitch of the optical elements of the linear light source (the light incident surface 321 of the light incident element 32) is more preferably 10 to 1000 ⁇ m.
  • the pitch of the optical elements of the linear light source (the light incident surface 321 of the light incident element 32) is more preferably 20 to 200 ⁇ m.
  • FIG. 4 is a side view showing an optical member having a low reflection portion and a luminance suppression portion according to the embodiment. As shown in FIG. 4, the optical member 2 may include a low reflection portion 25 and a luminance suppression portion 26.
  • the low reflection part 25 which suppresses the reflection in the base 20 is provided in the optical extraction surface 21 side of the base 20 in the optical member 2.
  • the optical member 2 is formed with a low reflection portion 25 having a low reflection function so as to overlap the light extraction surface 21.
  • the low reflection portion 25 may have a fine uneven shape of 1 ⁇ m or less such as a dielectric multilayer film formed by sputtering or vapor deposition or a moth-eye shape.
  • the low reflection part 25 may be formed by performing the low reflection process on the light extraction surface 21.
  • the above-described processing methods include direct processing (sputtering, vapor deposition, shaping, etc.) on the base 20 as a light guide plate, insert molding of a low reflection film, and application of a low reflection film via an adhesive or adhesive. Any processing method such as combination may be used.
  • the regular reflectance of the light extraction surface 21 is preferably 1.6% or less.
  • the regular reflectance of the light extraction surface 21 may be 1.6% or less by forming the low reflection portion 25 so as to overlap the light extraction surface 21 of the optical member 2.
  • the regular reflectance of the light extraction surface 21 is further preferably 0.8% or less.
  • the regular reflectance of the light extraction surface 21 is further preferably 0.4% or less.
  • the optical member 2 may be any configuration as long as the regular reflectance of the light extraction surface 21 satisfies a desired value. For example, if the regular reflectance of the light extraction surface 21 satisfies a desired value, the optical member 2 may not have the low reflection portion 25.
  • a luminance suppression unit 26 that suppresses the emission of light to the back side is provided on the back side of the base 20 in the optical member 2.
  • the optical member 2 is formed with a luminance suppressing portion 26 that suppresses light emission to the back surface side so as to cover the back surface.
  • the luminance suppression unit 26 may be a louver film, a film that reflects the wavelength of light from a light source (dielectric multilayer film), a film that absorbs light (dielectric multilayer film), a transparent film containing a dye-based pigment, or the like. Good.
  • the luminance suppressing unit 26 may have any configuration as long as it has a desired function.
  • the luminance ratio LR1 that is the ratio of the luminance of the light extraction surface 21 to the luminance of the back surface is 20 or more.
  • the luminance ratio LR1 is calculated by the following mathematical formula (2).
  • Luminosity ratio LR1 luminance of light extraction surface 21 / luminance of back surface (2)
  • the luminance ratio LR1 may be 20 or more by arranging the luminance suppressing unit 26 on the back side of the base 20. Further, it is preferable that the luminance ratio LR1 is 40 or more. Further, it is more preferable that the luminance ratio LR1 is 100 or more.
  • the luminance of the light extraction surface 21 may be the luminance in the vertical direction of the light extraction surface 21.
  • the luminance on the back surface may be the luminance in the thickness direction of the base portion 20 on the back surface of the light extraction surface 21 (surface on which the prism portion 22 is formed).
  • the luminance ratio LR1 may be a ratio of the front luminance on the light extraction surface 21 side to the front luminance on the back surface side.
  • the optical member 2 may have any configuration as long as the luminance ratio LR1 satisfies a desired value. For example, if the luminance ratio LR1 satisfies a desired value, the optical member 2 may not have the luminance suppressing unit 26.
  • Light rays IL11 to IL15 shown in FIG. 4 virtually indicate the light distribution in the optical member 2.
  • some of the light beams IL12 are reflected in the direction of the light extraction surface 21 by the second region 222 having a prism function.
  • the planar illumination device 1 can suppress an increase in the amount of light reflected from the light extraction surface 21 side into the base 20 when the regular reflectance of the light extraction surface 21 satisfies a desired value. The light extraction efficiency can be improved.
  • the optical member 2 is able to reduce the light leaking from the back surface by suppressing reflection on the light emitting surface (light extraction surface 21).
  • the light beam IL15 becomes light that leaks in an oblique direction from the back surface when it is virtually planar.
  • Such light leaking from the back surface may be visually recognized by a person on the back surface side, for example, a person inside or outside the vehicle in which the planar lighting device 1 is used as a high-mount light.
  • the luminance ratio LR ⁇ b> 1 satisfies a desired value by the luminance suppressing unit 26 or the like, so that light leaking to the back side is suppressed and the influence on the person on the back side can be suppressed.
  • FIG. 5 is a side view showing the planar illumination device according to the first modification.
  • FIG. 6 is a diagram illustrating a change due to lighting of the light source of the planar illumination device according to the first modification.
  • the planar illumination device 100 includes an optical member 200 and a light source unit 3.
  • the optical member 200 has a base 201 that is a transparent body formed in a flat plate shape.
  • the base 201 is formed of a light-transmitting material like the base 20 of the optical member 2.
  • a prism region 202 to be subjected to prism processing is formed on the back surface of the light emitting surface (the upper surface in FIG. 5) of the optical member 200.
  • the prism region 202 is formed by arranging prism structures in the longitudinal direction of the base 201 (left and right direction in FIG. 5).
  • the prism region 202 is formed by arranging a plurality of prism portions 22 as shown in FIG. 3 in a predetermined direction.
  • non-prism regions 203 that are not subjected to prism processing are formed at both ends of the base 201 in the longitudinal direction (left-right direction in FIG. 5). Note that the length of the non-prism region 203 may be appropriately set according to the application of the planar illumination device 100 or the like.
  • a prism region 202 in which a prism processing is performed on a predetermined region on the back surface of the base 201 may be formed by post processing as a processing method for performing prism processing.
  • a prism area 202 is formed by applying a prism process to a predetermined area on the back surface of the base 201, and a non-prism area 203 is formed in another area.
  • the non-prism region 203 is formed by removing the prism processing in the region corresponding to the non-prism region 203 by post-processing. It may be formed.
  • a prism area 202 is formed by applying a prism process to a predetermined area on the back surface of the base 201, and a non-prism area 203 is formed in another area.
  • the optical member 200 forms the prism region 202 by post-processing after the region corresponding to the non-prism region 203 is generated on the back surface of the base 201 lower than the height of the region subjected to the prism processing. Accordingly, the prism region 202 may be formed. Thereby, in the optical member 200, a prism area 202 is formed by applying a prism process to a predetermined area on the back surface of the base 201, and a non-prism area 203 is formed in another area.
  • the processing method for forming the prism region 202 and the non-prism region 203 is not limited to the above, and any processing method can be used as long as the prism region 202 and the non-prism region 203 can be formed in a desired region. There may be.
  • the optical member 200 may be molded by the above processing method using a predetermined mold.
  • a planar lighting device 100-1 illustrated in FIG. 6 represents the planar lighting device 100 in a non-lighting state
  • a planar lighting device 100-2 represents the planar lighting device 100 in a lighting state.
  • the planar illumination devices 100-1 and 100-2 are referred to as the planar illumination device 100 when not distinguished from each other.
  • the planar illumination device 100 shown in FIG. 6 shows a case where the planar illumination device 100 is viewed from the front.
  • the entire base 201 of the optical member 200 is transparent, and an object located behind can be visually recognized. That is, in the planar lighting device 100-1 in the non-lighting state, the member located behind in both the prism region 202 subjected to the prism processing and the non-prism region 203 not subjected to the prism processing. Is visible. Further, in the planar lighting device 100-1 in the non-lighting state, when viewed from the back of the planar lighting device 100, the entire base portion 201 of the optical member 200 is transparent, and an object positioned in the front is also the same. It may be visible.
  • the prism region 202 of the base 201 of the optical member 200 emits light, and the member located behind cannot be visually recognized. Further, in the planar lighting device 100-2 in the lighting state, since the non-prism region 203 of the base 201 of the optical member 200 does not emit light, the member located behind can be visually recognized. As described above, the planar illumination device 100 forms the prism region 202 and the non-prism region 203 in an appropriate region, thereby performing surface light emission using a desired region, and the other regions are desired even in a lighting state. Light transmittance can be maintained.
  • FIG. 7 is a side cross-sectional view showing the main part of the optical member according to Modification 2.
  • the optical member 2A has a base 20A that is a transparent body formed in a flat plate shape.
  • the base 20 ⁇ / b> A is formed of a light-transmitting material like the base 20 of the optical member 2.
  • a prism portion 22A is formed on the back surface of the light extraction surface 21A of the optical member 2A.
  • the prism portion 22A is formed side by side in a predetermined direction.
  • the prism portion 22A is formed side by side in the longitudinal direction of the base portion 20A (the left-right direction in FIG. 7).
  • the prism portion 22A is formed in a shape having a predetermined prism function.
  • the second region 222A having a prism shape is continuous with the first region 221A parallel to the light extraction surface 21A in the cross section along the longitudinal direction of the base portion 20A.
  • the first region 221A is formed to be parallel to the light extraction surface 21A, that is, to have an inclination angle of 0 degree, but in the cross section along the longitudinal direction of the base 20A, the first region 221A is formed with respect to the light extraction surface 21A.
  • the inclination angle may be 0 degree or more and 8 degrees or less.
  • it is more preferable that the inclination angle of the first region 221A of the prism portion 22A is not less than 0 degrees and not more than 4 degrees.
  • the second region 222A of the prism portion 22A is formed in a shape protruding from the back surface.
  • the second region 222A is formed in a triangular shape that protrudes from the back surface to the outside in a cross section along the longitudinal direction of the base portion 20A.
  • the ratio R21 of the first region 221A in the length of the base portion 20A in the longitudinal direction is the same as the ratio R11 in the prism portion 22.
  • the length L21 of the first region 221A in the length in the longitudinal direction of the base portion 20A is the length L20 of the entire prism portion 22A in the length in the longitudinal direction of the base portion 20A (hereinafter also referred to as “structural unit length L20”).
  • the ratio R21 to is 60% or more and less than 100%.
  • the ratio R21 is more preferably 75% or more and less than 100%.
  • the prism portion 22A is formed so that the structural unit length L20 of the prism portion 22A is 40 ⁇ m or more and 500 ⁇ m or less.
  • the prism unit 22A more preferably has a structural unit length L20 of the prism unit 22A of not less than 80 ⁇ m and not more than 250 ⁇ m.
  • the optical member 2A has a desired translucency (for example, is transparent) even in the base portion 20A where the prism portion 22A is formed.
  • the light distribution in the optical member 2A will be described using the light beams IL21 to IL28 shown in FIG.
  • the light beams IL21 to IL28 shown in FIG. 7 virtually indicate the light distribution in the optical member 2A.
  • a part of the light beams IL22 is reflected in the direction of the light extraction surface 21A by the second region 222A having a prism function.
  • a part of the light beam IL23 is emitted outside the light extraction surface 21A. Further, out of the light beam IL22 from the base 20A toward the light extraction surface 21A, a part of the light beam IL24 is reflected by the light extraction surface 21A and emitted to the back surface side of the base 20A.
  • the light beam IL21 that travels from the inside of the base portion 20A toward the second region 222A
  • a part of the light beam IL25 passes through the second region 222A and is radiated out of the base portion 20A, and is reflected by the adjacent second region 222A.
  • the light beam IL26 is emitted to the back surface side of the base portion 20A.
  • the light beam IL27 traveling from the inside of the base portion 20A toward the second region 222A passes through the second region 222A and is radiated to the back surface side of the base portion 20A as the light beam IL28.
  • the optical member 2A it is difficult to suppress the light emitted to the back surface side of the base portion 20A than the optical member 2 according to the embodiment.
  • the member 2 is more preferable than the optical member 2A.
  • FIG. 8 is a side cross-sectional view showing a main part of an optical member according to Modification 3.
  • the optical member 2B has a base portion 20B which is a transparent body formed in a flat plate shape.
  • the base portion 20 ⁇ / b> B is formed of a light transmissive material like the base portion 20 of the optical member 2.
  • a prism portion 22B is formed on the back surface of the light extraction surface 21B of the optical member 2B.
  • the prism portions 22B are formed side by side in a predetermined direction.
  • the prism portion 22B is formed side by side in the longitudinal direction of the base portion 20B (the left-right direction in FIG. 8).
  • the prism portion 22B is formed in a shape having a predetermined prism function.
  • a second region 222B having a prism shape is continuous with the first region 221B parallel to the light extraction surface 21B in the cross section along the longitudinal direction of the base portion 20B.
  • the first region 221B is formed so as to be parallel to the light extraction surface 21B, that is, to have an inclination angle of 0 degree, but in the cross section along the longitudinal direction of the base 20B, the first region 221B is formed with respect to the light extraction surface 21B.
  • the inclination angle may be 0 degree or more and 8 degrees or less.
  • the inclination angle of the first region 221B of the prism portion 22B is 0 degree or more and 4 degrees or less.
  • the inclination angle of the first region 221B of the prism portion 22B includes a negative value (for example, ⁇ 1 degree). That is, here, 0 degree regarding the inclination angle of the first region 221B of the prism portion 22B includes a minus value in a range caused by processing accuracy (manufacturing error) or the like.
  • the second region 222B of the prism portion 22B is formed in a shape recessed from the back surface into the base portion 20B.
  • the second region 222B is formed in a triangular shape that is recessed from the back surface into the base 20B in the cross section along the longitudinal direction of the base 20B.
  • the ratio R31 of the first region 221B in the length of the base portion 20B in the longitudinal direction is the same as the ratio R11 in the prism portion 22.
  • the length L31 of the first region 221B in the length in the longitudinal direction of the base portion 20B is the length L30 of the entire prism portion 22B in the length in the longitudinal direction of the base portion 20B (hereinafter also referred to as “structural unit length L30”).
  • the ratio R31 to is 60% or more and less than 100%.
  • the ratio R31 is more preferably 75% or more and less than 100%.
  • the prism portion 22B is formed so that the structural unit length L30 of the prism portion 22B is 40 ⁇ m or more and 500 ⁇ m or less. In the prism portion 22B, it is more preferable that the structural unit length L30 of the prism portion 22B is 80 ⁇ m or more and 250 ⁇ m or less. With the above-described configuration, the optical member 2B has a desired translucency (for example, is transparent) even in the base portion 20B where the prism portion 22B is formed.
  • Light rays IL31 to IL37 shown in FIG. 8 virtually indicate the light distribution in the optical member 2B.
  • a part of the light beams IL32 is reflected in the direction of the light extraction surface 21B by the second region 222B having a prism function.
  • some of the light beams IL33 are emitted outside the light extraction surface 21B.
  • some of the light beams IL34 are reflected by the light extraction surface 21B and emitted to the back surface side of the base portion 20B.
  • some of the light beams IL35 are radiated to the outside from one surface of the second region 222B having a prism function, and are transmitted by the other surface of the second region 222B. It is reflected and emitted to the back side of the base 20B.
  • the light beam IL36 traveling from the inside of the base portion 20B toward the second region 222B passes through the second region 222B and is radiated to the back surface side of the base portion 20B as the light beam IL37.
  • the optical member used for the planar illumination device 100 is optical.
  • the member 2 is more preferable than the optical member 2B.
  • the light emitting surface (light extraction surface) is a flat surface, such as the light extraction surface 21 of the planar lighting device 1, is illustrated.
  • the light emission surface (light extraction surface) is not limited to a flat surface. It may be formed in various shapes depending on the purpose.
  • the light guide direction of the light guide plate (optical member) in the surface illumination device that is, the cross-sectional shape of the light emitting surface (light extraction surface) is not limited to a rectangle, but may be a pyramid shape, an inverted pyramid shape, a barrel shape, or an inverted barrel shape. . This point will be described with reference to FIG.
  • FIG. 9 is a side view showing a planar illumination device according to Modification 4.
  • FIG. 9 is a side view showing the optical member 2C in which the cross-sectional shape of the light emitting surface (light extraction surface) is formed in a kamaboko shape.
  • FIG. 9 shows an example in which the shape of the front surface is deformed, the deformation may be applied to the back surface, or may be applied to both the front surface and the back surface.
  • the optical member 2C of the planar illumination device 1C has a base portion 20C that is a transparent body formed in a semi-cylindrical shape whose height increases as the light extraction surface 21C moves toward the central portion in the longitudinal direction.
  • the base portion 20 ⁇ / b> C is formed of a light transmissive material like the base portion 20 of the optical member 2.
  • a prism portion 22C is formed on the back surface of the light extraction surface 21C of the optical member 2C.
  • the prism portions 22C are formed side by side in a predetermined direction.
  • the prism portion 22C is formed side by side in the longitudinal direction of the base portion 20C (the left-right direction in FIG. 9).
  • the light source unit 3 is disposed along the side surfaces 23C and 24C of the base 20C of the optical member 2C.
  • FIG. 10 is a front view showing a planar lighting device according to Modification 5.
  • FIG. 11 is a side view showing a planar lighting device according to Modification 5.
  • the planar illumination device 1 ⁇ / b> D includes an optical member 2 ⁇ / b> D and a light source unit 3 ⁇ / b> D.
  • the optical member 2D has a base portion 20D that is a transparent body formed in a flat plate shape.
  • the base portion 20 ⁇ / b> D is formed of a light-transmitting material like the base portion 20 of the optical member 2.
  • a prism portion 22D is formed on the back surface of the light extraction surface 21D of the optical member 2D.
  • the prism portions 22D are formed side by side in a predetermined direction.
  • the prism portion 22D is formed side by side in the longitudinal direction of the base portion 20D (the left-right direction in FIG. 11).
  • the prism portion 22D may be formed in the same shape as the prism portion 22, the prism portion 22A, and the prism portion 22B. That is, the prism portion 22D may be formed in any shape as long as a desired light distribution condition is satisfied.
  • the light source unit 3D includes a holding member 30D, a light source 31D such as an LED, and a light incident element 32D.
  • the light source unit 3D is disposed along the side surfaces 23D and 24D of the base 20D of the optical member 2D.
  • the light source unit 3D is provided as a pair at both ends of the optical member 2D.
  • the pair of holding members 30D holds the optical member 2D from both sides.
  • a pair of light sources 3D is provided at both ends of the optical member 2D in the longitudinal direction of the base 20D, and holds the optical member 2D.
  • Each holding member 30D holds the light source 31D and the light incident element 32D.
  • the 10 illustrates a state in which the light source 31D and the light incident element 32D are exposed in a front view.
  • the cover member 30D may be covered.
  • the optical member 2D may be held by the holding member 30D by covering the vicinity of the side surfaces 23D and 24D with the holding member 30D.
  • Each light source section 3D is provided with a light source 31D at a position sandwiching the light incident element 32D from the longitudinal direction (vertical direction in FIG. 10) of the light incident element 32D.
  • the two light sources 31D are arranged so that light enters the light incident element 32D from the side end of the light incident element 32D.
  • only one light source 31D may be used, and the light source 31D may be arranged so that light enters the light incident element 32D from one of the side end portions of the light incident element 32D.
  • the light incident element 32D has a function of converting light emitted from the light source 31D, which is a point light source, into light of a linear light source.
  • the light incident element 32 ⁇ / b> D is formed of a light transmissive material like the light incident element 32.
  • the light incident element 32D may be a so-called light bar.
  • the light incident element 32D is provided with one surface intersecting the longitudinal direction facing the optical member 2D.
  • the light incident element 32D is provided with one surface facing the side surfaces 23D and 24D of the base portion 20D.
  • the light incident element 32D is provided along the side surface 23D of the base 20D.
  • the light incident element 32D is provided with one surface facing the side surface 23D of the base 20D.
  • the light incident element 32D is provided along the side surface 24D of the base unit 20D.
  • the light incident element 32D is provided with one surface facing the side surface 24D of the base 20D.
  • a mechanism for performing predetermined optical control is provided on a surface 321D (hereinafter also referred to as “reflecting surface 321D”) opposite to the surfaces facing the side surfaces 23D and 24D of the light incident element 32D.
  • the reflecting surface 321D of the light incident element 32D has a function of controlling the light distribution of the light incident from the side end of the light incident element 32D in the direction of the optical member 2D.
  • the reflection surface 321D of the light incident element 32D may include a portion that is roughened to form minute irregularities, has a light scattering function, and a portion that is not roughened.
  • a prism may be disposed on the reflection surface 321D of the light incident element 32D.
  • the reflection surface 321D of the light incident element 32D may have any configuration as long as light incident from the side end of the light incident element 32D can be distributed in the direction of the optical member 2D.
  • a predetermined light distribution member may be provided on a surface of the light incident element 32D that faces the side surfaces 23D and 24D of the base 20D, that is, a surface 322D opposite to the reflective surface 321D of the light incident element 32D.
  • a lenticular lens, a diffusing element, a prism, or a TIR-Fresnel lens may be provided as a light distribution member on the surface of the light incident element 32D that faces the side surfaces 23D and 24D of the base 20D.
  • the light incident element 32D may be continuous with the side surfaces 23D and 24D of the base portion 20D.
  • the light incident element 32D may be integrally formed with the base 20D.
  • the width of the light incident element 32D is preferably equal to or larger than the width of the base portion 20D in the short direction.
  • FIG. 12 is a front view showing a main part of a planar lighting device according to Modification 6.
  • the planar illumination device 1E is different from the planar illumination device 1D in that the number of light incident elements 32E and 33E corresponding to the light sources 311E and 312E is used. Since the other points are the same as those of the planar illumination device 1D in the modified example 5, “** D” in the description of the planar illumination device 1D is replaced with “** E”.
  • a plurality of light incident elements 32E may be stacked, or may be formed in a wedge shape and the light source 31E may be arranged on one side.
  • the planar illumination device 1E includes an optical member 2E and a light source unit 3E.
  • the optical member 2E has a base portion 20E that is a transparent body formed in a flat plate shape.
  • the base portion 20 ⁇ / b> E is formed of a light transmissive material like the base portion 20 of the optical member 2.
  • a prism portion (not shown) is formed on the back surface of the light extraction surface 21E of the optical member 2E.
  • the prism portion may be formed in the same shape as the prism portion 22, the prism portion 22A, and the prism portion 22B. In other words, the prism portion may be formed in any shape as long as a desired light distribution condition is satisfied.
  • the light source unit 3E includes a holding member 30E, two light sources 311E and 312E, and two light incident elements 32E and 33E corresponding to the light sources 311E and 312E, respectively.
  • the light source unit 3E is provided as a pair at both ends of the optical member 2E.
  • the light source part 3E shows the case where it arrange
  • the light incident element 32E is provided along the short side direction of the base portion 20E with the one surface facing the side surface 23E of the base portion 20E.
  • the light incident element 32E is arranged so that the thickness decreases as it goes in one direction along the short direction of the base 20E.
  • the light incident element 32E is arranged so that the thickness decreases as it goes from top to bottom along the short direction of the base 20E.
  • the light incident element 33E is disposed between the light incident element 32E and the base portion 20E, and is provided so as to face one side of the side surface 23E of the base portion 20E along the short direction of the base portion 20E.
  • the light incident element 33E is arranged so that the thickness decreases as it goes in one direction along the short direction of the base 20E.
  • the light incident element 33 ⁇ / b> E is arranged so that the thickness decreases as it goes from the bottom to the top along the short direction of the base portion 20 ⁇ / b> E.
  • a mechanism for performing predetermined optical control is provided on a surface 321E opposite to the surface facing the side surface 23E of the light incident element 32E (hereinafter also referred to as “reflecting surface 321E”).
  • the reflecting surface 321E of the light incident element 32E has a function of controlling the light distribution from the side end of the light incident element 32E in the direction of the optical member 2E.
  • the reflection surface 321E of the light incident element 32E is formed in the same manner as the reflection surface 321D of the light incident element 32D.
  • the reflection surface 321E of the light incident element 32E may have any configuration as long as light incident from the side end of the light incident element 32E can be distributed in the direction of the optical member 2E.
  • reflection surface 331E opposite to the surface facing the side surface 23E of the light incident element 33E (hereinafter, also referred to as “reflection surface 331E”), a mechanism for performing predetermined optical control is provided in the same manner as the reflection surface 321E.
  • the reflection surface 331E of the light incident element 33E has a function of controlling light distribution from the side end of the light incident element 33E in the direction of the optical member 2E.
  • planar illumination device 1 may be used for a high-mount light of an automobile.
  • the planar lighting device 1 may be attached to the rear window of an automobile.
  • the optical member 2 is not limited to the object for automobiles, and may be used for a planar lighting device that needs to suppress light emission from the back surface.

Abstract

According to an embodiment of the present invention, an optical member(2, 2A, 2B, 2C, 2D, 2E) has a base section (20, 20A, 20B, 20C, 20D, 20E) and prism sections (22, 22A, 22B, 22C, 22D). The base section (20, 20A, 20B, 20C, 20D, 20E) is a planarly formed transparent body. The prism sections (22, 22A, 22B, 22C, 22D) are formed on one surface of the base section (20, 20A, 20B, 20C, 20D, 20E), and are aligned in the predetermined direction. In a cross-section of each of the prism sections (22, 22A, 22B, 22C, 22D), said cross-section being in the predetermined direction, a second region (222, 222A, 222B) having a prism shape is continuous from a first region (221, 221A, 221B) having a tilt angle of 0-8 degrees with respect to a surface on the reverse side of the one surface, and the ratio of the first region with respect to the length in the predetermined direction is 60% or more but less than 100%.

Description

光学部材、面状照明装置、及び加工方法Optical member, planar illumination device, and processing method
 本発明は、光学部材、面状照明装置、及び加工方法に関する。 The present invention relates to an optical member, a planar illumination device, and a processing method.
 従来から、自動車のハイマウントストップライト等に用いられる面状照明装置が提供されている。このような面状照明装置では、配光制御を容易化するために、例えば光源、ミラー、及びレンズが用いられる場合がある。 Conventionally, planar lighting devices used for high-mount stoplights of automobiles have been provided. In such a planar illumination device, for example, a light source, a mirror, and a lens may be used to facilitate light distribution control.
特開2015-179603号公報JP2015-179603A
 しかしながら、従来の面状照明装置においては、レンズは光が透過するが、発光面の背面(裏面)が透けて見えず、ミラーを用いた場合、ミラーは光を透過しない。そのため、上記の従来技術では、所望の配光制御を行うことは可能となるが、光源の非点灯時において光学部材の発光面の背面が透けて見えること(以下、「透明」ともいう)を維持することが難しいといった課題がある。 However, in the conventional planar illumination device, the lens transmits light, but the back surface (back surface) of the light emitting surface cannot be seen through, and when a mirror is used, the mirror does not transmit light. Therefore, in the above-described conventional technology, it is possible to perform a desired light distribution control, but when the light source is not turned on, the back surface of the light emitting surface of the optical member can be seen through (hereinafter also referred to as “transparent”). There is a problem that it is difficult to maintain.
 本発明は、上記に鑑みてなされたものであって、透明を維持しつつ、所望の配光制御を可能にすることができる光学部材、面状照明装置、及び加工方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an optical member, a planar illumination device, and a processing method capable of enabling desired light distribution control while maintaining transparency. And
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光学部材は、平板状に形成された透明体である基部と、前記基部の一面に形成され所定の方向に並ぶプリズム部であって、前記所定の方向に沿う断面において前記一面の反対面に対する傾斜角度が0度以上8度以内である第1領域に、プリズム形状を有する第2領域が連続し、前記所定の方向の長さにおける前記第1領域の割合が60%以上100%未満であるプリズム部と、を備える。 In order to solve the above-described problems and achieve the object, an optical member according to an aspect of the present invention includes a base that is a transparent body formed in a flat plate shape, and is formed on one surface of the base and aligned in a predetermined direction. A second region having a prism shape is connected to a first region that is a prism portion and has an inclination angle with respect to the opposite surface of the one surface of 0 to 8 degrees in a cross section along the predetermined direction, and the predetermined region And a prism portion in which the ratio of the first region in the length in the direction is 60% or more and less than 100%.
 本発明の一態様によれば、透明を維持しつつ、所望の配光制御を可能にすることができる。 According to one embodiment of the present invention, desired light distribution control can be achieved while maintaining transparency.
図1は、実施形態に係る面状照明装置を示す正面図である。FIG. 1 is a front view showing a planar illumination device according to the embodiment. 図2は、実施形態に係る面状照明装置を示す側面図である。FIG. 2 is a side view showing the planar illumination device according to the embodiment. 図3は、実施形態に係る面状照明装置の要部を示す側断面図である。FIG. 3 is a side cross-sectional view illustrating a main part of the planar lighting device according to the embodiment. 図4は、実施形態に係る低反射部及び輝度抑制部を有する光学部材を示す側面図である。FIG. 4 is a side view showing an optical member having a low reflection portion and a luminance suppression portion according to the embodiment. 図5は、変形例1に係る面状照明装置を示す側面図である。FIG. 5 is a side view showing the planar illumination device according to the first modification. 図6は、変形例1に係る面状照明装置の光源の点灯による変化を示す図である。FIG. 6 is a diagram illustrating a change due to lighting of the light source of the planar illumination device according to the first modification. 図7は、変形例2に係る光学部材の要部を示す側断面図である。FIG. 7 is a side cross-sectional view showing the main part of the optical member according to Modification 2. 図8は、変形例3に係る光学部材の要部を示す側断面図である。FIG. 8 is a side cross-sectional view showing a main part of an optical member according to Modification 3. 図9は、変形例4に係る面状照明装置を示す側面図である。FIG. 9 is a side view showing a planar illumination device according to Modification 4. 図10は、変形例5に係る面状照明装置を示す正面図である。FIG. 10 is a front view showing a planar lighting device according to Modification 5. 図11は、変形例5に係る面状照明装置を示す側面図である。FIG. 11 is a side view showing a planar lighting device according to Modification 5. 図12は、変形例6に係る面状照明装置の要部を示す正面図である。FIG. 12 is a front view showing a main part of a planar lighting device according to Modification 6.
 以下、実施形態に係る光学部材を有する面状照明装置について図面を参照して説明する。なお、以下に説明する実施形態により光学部材の用途が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, the planar illumination device having the optical member according to the embodiment will be described with reference to the drawings. The application of the optical member is not limited by the embodiments described below. It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included.
 上述したように、本実施形態においては、透明を維持しつつ、所望の配光制御を可能にすることができる光学部材、面状照明装置、及び加工方法を提供することを目的とする。ここで、本実施形態においては、さらに、光学部材の光取出面側へ所望の光を放出し、光学部材の裏面側へ漏れる光の増大を抑制することができる面状照明装置を提供することも目的とする。 As described above, an object of the present embodiment is to provide an optical member, a planar illumination device, and a processing method capable of enabling desired light distribution control while maintaining transparency. Here, in the present embodiment, a planar illumination device is further provided that emits desired light to the light extraction surface side of the optical member and can suppress an increase in light leaking to the back surface side of the optical member. Also aimed.
 例えば、ミラーを用いた面状照明装置においては、所望の配光制御を行うことは可能となるが、ミラーにより発光面(光取出面)の裏面側へ光を透過しない。そのため、面状照明装置が自動車のハイマウントストップライト等に用いられた場合における視認性等の向上のために、発光面に交差する方向へ光を透過する面状照明装置が望まれている。しかしながら、発光面に交差する方向へ光を透過する面状照明装置においては、光学部材の発光面側へ所望の光を放出し、光取出面の裏面側へ漏れる光の増大を抑制することが難しいといった課題がある。そこで、本実施形態では、光学部材の光取出面側へ所望の光を放出し、光学部材の裏面側へ漏れる光の増大を抑制することができる面状照明装置を提供することも目的とする。 For example, in a planar illumination device using a mirror, desired light distribution control can be performed, but light is not transmitted to the back side of the light emitting surface (light extraction surface) by the mirror. Therefore, a planar illumination device that transmits light in a direction intersecting the light emitting surface is desired in order to improve visibility and the like when the planar illumination device is used in a high-mount stoplight of an automobile or the like. However, in a planar illumination device that transmits light in a direction intersecting the light emitting surface, it is possible to emit desired light to the light emitting surface side of the optical member and suppress an increase in light leaking to the back surface side of the light extraction surface. There is a problem that it is difficult. Therefore, an object of the present embodiment is to provide a planar illumination device that emits desired light to the light extraction surface side of the optical member and can suppress an increase in light leaking to the back surface side of the optical member. .
 具体的には、上述した課題を解決し、目的を達成するために、本実施形態の一態様に係る面状照明装置は、平板状に形成された透明体である基部の光取出面の裏面に所定のプリズム加工が施される光学部材と、前記光学部材の前記基部の一側面に沿って配置される光源部と、を備え、前記光取出面の輝度の前記裏面の輝度に対する比率である輝度比が20以上である。この一態様によれば、光学部材の光取出面側へ所望の光を放出し、光学部材の裏面側へ漏れる光の増大を抑制することができる。 Specifically, in order to solve the above-described problems and achieve the object, the planar lighting device according to one aspect of the present embodiment is a back surface of the light extraction surface of the base that is a transparent body formed in a flat plate shape. A light source part disposed along one side surface of the base part of the optical member, and a ratio of luminance of the light extraction surface to luminance of the back surface The luminance ratio is 20 or more. According to this aspect, desired light can be emitted to the light extraction surface side of the optical member, and an increase in light leaking to the back surface side of the optical member can be suppressed.
(実施形態)
 まず、図1及び図2を用いて、面状照明装置1の構成の概要を説明する。図1は、実施形態に係る面状照明装置を示す正面図である。図2は、実施形態に係る面状照明装置を示す側面図である。
(Embodiment)
First, the outline | summary of a structure of the planar illuminating device 1 is demonstrated using FIG.1 and FIG.2. FIG. 1 is a front view showing a planar illumination device according to the embodiment. FIG. 2 is a side view showing the planar illumination device according to the embodiment.
 図1に示すように、面状照明装置1は、光学部材2と、光源部3とを有する。 As shown in FIG. 1, the planar illumination device 1 includes an optical member 2 and a light source unit 3.
 光学部材2は、平板状に形成された透明体である基部20を有する。例えば、基部20は光透過性を有する材料により形成される。例えば、基部20は、アクリル樹脂やポリカーボネート等により形成されてもよい。また、例えば、基部20は、いわゆる導光板であってもよい。なお、基部20は、所望の透光性(例えば、透明であること)や所望の強度や耐熱性等を有すればどのような材料により形成されてもよい。また、光学部材2において、図1に示す一面21(以下、「光取出面21」ともいう)が発光面となる。なお、ここでいう所望の透光性とは、発光面である光取出面21の背面(裏面)が透けて見えること、すなわち透明であることであってもよい。 The optical member 2 has a base 20 that is a transparent body formed in a flat plate shape. For example, the base portion 20 is formed of a light transmissive material. For example, the base 20 may be formed of acrylic resin, polycarbonate, or the like. For example, the base 20 may be a so-called light guide plate. The base 20 may be formed of any material as long as it has desired translucency (for example, it is transparent), desired strength, heat resistance, and the like. Further, in the optical member 2, one surface 21 (hereinafter also referred to as “light extraction surface 21”) illustrated in FIG. 1 is a light emitting surface. In addition, the desired translucency here may be that the back surface (back surface) of the light extraction surface 21 that is a light emitting surface is seen through, that is, transparent.
 また、図2に示すように、光学部材2の基部20には、基部20の厚み方向に一方側にプリズム部22が形成される。例えば、光学部材2の光取出面21の裏側の面(以下、「裏面」ともいう)には、プリズム部22が形成される。プリズム部22は、所定の方向に並んで形成される。例えば、プリズム部22は、基部20の長手方向(図2中の左右方向)に並んで形成される。 Further, as shown in FIG. 2, the base portion 20 of the optical member 2 is formed with a prism portion 22 on one side in the thickness direction of the base portion 20. For example, the prism portion 22 is formed on the back surface (hereinafter also referred to as “back surface”) of the light extraction surface 21 of the optical member 2. The prism portions 22 are formed side by side in a predetermined direction. For example, the prism portion 22 is formed side by side in the longitudinal direction of the base portion 20 (left-right direction in FIG. 2).
 ここで、図3を用いてプリズム部22について説明する。図3は、実施形態に係る面状照明装置の要部を示す側断面図である。プリズム部22は、所定のプリズム機能を有する形状に形成される。また、プリズム部22は、基部20の長手方向に沿う断面において基部20の厚み方向が直交する面に対する傾斜角度θ1が0度(°)以上8度以内である第1領域221に、プリズム形状を有する第2領域222が連続する。なお、以下では、一のプリズム部22の第1領域221の始点となる部分の高さ、すなわち他のプリズム部22の第2領域222に、一のプリズム部22の第1領域221が連続する位置の高さを「第1の高さ」とする。また、一のプリズム部22の第1領域221と第2領域222とが連続する位置の高さを「第2の高さ」とする。 Here, the prism portion 22 will be described with reference to FIG. FIG. 3 is a side cross-sectional view illustrating a main part of the planar lighting device according to the embodiment. The prism portion 22 is formed in a shape having a predetermined prism function. In addition, the prism portion 22 has a prism shape in the first region 221 in which the inclination angle θ1 with respect to the plane in which the thickness direction of the base portion 20 is orthogonal in the cross section along the longitudinal direction of the base portion 20 is 0 degree (°) or more and 8 degrees or less. The 2nd area | region 222 which has is continuous. In the following description, the first region 221 of one prism portion 22 continues to the height of the first region 221 of one prism portion 22, that is, the second region 222 of another prism portion 22. The height of the position is defined as “first height”. In addition, the height of the position where the first region 221 and the second region 222 of one prism portion 22 are continuous is referred to as a “second height”.
 なお、プリズム部22は、基部20の幅方向(以下、「短手方向」ともいう)に沿って形成されてもよいし、基部20の短手方向に対して傾斜して形成されてもよい。例えば、プリズム部22の第1領域221は、基部20の短手方向に沿って形成されてもよい。また、例えば、プリズム部22の第2領域222は、基部20の短手方向に沿って形成されてもよい。また、図3に示す例では、光取出面21が平面であり、基部20の厚み方向が直交する面であるため、以下、基部20の厚み方向が直交する面を光取出面21として説明する。 The prism portion 22 may be formed along the width direction of the base portion 20 (hereinafter, also referred to as “short direction”), or may be formed inclined with respect to the short direction of the base portion 20. . For example, the first region 221 of the prism portion 22 may be formed along the short direction of the base portion 20. Further, for example, the second region 222 of the prism portion 22 may be formed along the short direction of the base portion 20. In the example shown in FIG. 3, the light extraction surface 21 is a flat surface and the thickness direction of the base portion 20 is perpendicular to the surface. Therefore, the surface where the thickness direction of the base portion 20 is orthogonal will be described as the light extraction surface 21 hereinafter. .
 例えば、図3では、プリズム部22においては、図3に示すように、基部20の長手方向に沿う断面において光取出面21に対する傾斜角度θ1が0度(°)以上8度以内である第1領域221に、プリズム形状を有する第2領域222が連続する。また、プリズム部22の第1領域221の傾斜角度θ1は0度以上4度以内であることがより好適である。また、図3に示すように、一のプリズム部22の第2領域222は、他のプリズム部22の第1領域221に連続する。 For example, in FIG. 3, in the prism portion 22, as shown in FIG. 3, the first tilt angle θ <b> 1 with respect to the light extraction surface 21 in the section along the longitudinal direction of the base portion 20 is 0 degree (°) or more and 8 degrees or less. A second region 222 having a prism shape is continuous with the region 221. Further, it is more preferable that the inclination angle θ1 of the first region 221 of the prism portion 22 is not less than 0 degrees and not more than 4 degrees. Further, as shown in FIG. 3, the second region 222 of one prism portion 22 is continuous with the first region 221 of another prism portion 22.
 図3に示すように、例えば、光学部材2において、基部20の長手方向に沿う断面において、一のプリズム部22の第1領域221は、一方向(光取出面21に対して離れる方向)に傾斜する形状を有し、一のプリズム部22の第2領域222は、一端部が第1領域221に連続し、光取出面21に対して一方向とは反対方向(光取出面21に対して近づく方向)へ傾斜する形状を有し、他端部が他のプリズム部22の第1領域221に連続する。例えば、基部20の長手方向に沿う断面において、一のプリズム部22の第1領域221は、図3中の左から右へ向かうにつれて光取出面21に対して離れる方向に傾斜する形状を有し、一のプリズム部22の第2領域222は、一端部が第1領域221に連続し、図3中の左から右へ向かうにつれて光取出面21に対して近づく方向へ傾斜する形状を有し、他端部が他のプリズム部22の第1領域221に連続する。 As shown in FIG. 3, for example, in the optical member 2, in the cross section along the longitudinal direction of the base portion 20, the first region 221 of one prism portion 22 is in one direction (a direction away from the light extraction surface 21). The second region 222 of one prism portion 22 has an inclined shape, and one end of the second region 222 is continuous with the first region 221, and is opposite to one direction with respect to the light extraction surface 21 (with respect to the light extraction surface 21. The other end portion is continuous with the first region 221 of the other prism portion 22. For example, in the cross section along the longitudinal direction of the base portion 20, the first region 221 of one prism portion 22 has a shape that inclines in a direction away from the light extraction surface 21 from the left to the right in FIG. The second region 222 of one prism portion 22 has a shape in which one end portion is continuous with the first region 221 and is inclined in a direction approaching the light extraction surface 21 from left to right in FIG. The other end portion is continuous with the first region 221 of the other prism portion 22.
 また、例えば、基部20の長手方向に沿う断面において、一のプリズム部22の第1領域221は、基部20の厚み方向における第1の高さから第1の高さより高い第2の高さまで延びる形状を有する。また、一のプリズム部22の第2領域222は、第2の高さにおいて一端部が第1領域221に連続し、第1の高さまで延びる形状を有し、第1の高さにおいて他端部が他のプリズム部22の第1領域221に連続する。例えば、図3中の左端のプリズム部22の第2領域222は、その隣(右側)のプリズム部22の第1領域221に連続する。なお、基部20の長手方向に沿う断面における第2領域222の光取出面21に対する傾斜角度は、所望の配光に応じて適宜設定されてもよい。 Further, for example, in the cross section along the longitudinal direction of the base portion 20, the first region 221 of one prism portion 22 extends from a first height in the thickness direction of the base portion 20 to a second height higher than the first height. Has a shape. The second region 222 of one prism portion 22 has a shape in which one end portion is continuous with the first region 221 at the second height and extends to the first height, and the other end at the first height. The portion is continuous with the first region 221 of the other prism portion 22. For example, the second region 222 of the leftmost prism portion 22 in FIG. 3 is continuous with the first region 221 of the adjacent (right) prism portion 22. In addition, the inclination angle with respect to the light extraction surface 21 of the second region 222 in the cross section along the longitudinal direction of the base 20 may be appropriately set according to a desired light distribution.
 また、プリズム部22においては、基部20の長手方向の長さにおける第1領域221の割合R11が60%以上100%未満である。図3に示すように、基部20の長手方向の長さにおける第1領域221の長さL11は、基部20の長手方向の長さにおけるプリズム部22全体の長さL10(以下、「構成単位長L10」ともいう)に対する割合R11が、60%以上100%未満である。例えば、上述した割合R11は、以下の数式(1)により算出される。 In the prism portion 22, the ratio R11 of the first region 221 in the length of the base portion 20 in the longitudinal direction is 60% or more and less than 100%. As shown in FIG. 3, the length L11 of the first region 221 in the length in the longitudinal direction of the base 20 is the length L10 of the entire prism portion 22 in the length in the longitudinal direction of the base 20 (hereinafter referred to as “structural unit length”). R11 ”) is 60% or more and less than 100%. For example, the ratio R11 described above is calculated by the following mathematical formula (1).
 割合R11 = 第1領域221の長さL11/構成単位長L10 ・・・ (1) Ratio R11 = length L11 of first region 221 / constituent unit length L10 (1)
 例えば、構成単位長L10は、基部20の長手方向の長さにおける第1領域221と第2領域222との合計の長さに対応する。また、プリズム部22においては、基部20の長手方向の長さにおける第1領域221の割合R11が75%以上100%未満であることがより好適である。 For example, the structural unit length L10 corresponds to the total length of the first region 221 and the second region 222 in the length of the base 20 in the longitudinal direction. In the prism portion 22, the ratio R11 of the first region 221 in the length of the base portion 20 in the longitudinal direction is more preferably 75% or more and less than 100%.
 また、プリズム部22は、プリズム部22の構成単位長L10が40μm以上500μm以下になるように形成される。なお、プリズム部22は、プリズム部22の構成単位長L10が80μm以上250μm以下であることがより好適である。上述した構成により、光学部材2は、プリズム部22が形成された基部20においても、所望の透光性を有する(例えば、透明である)。例えば、上述した構成により、光学部材2は、透明であり、光源部3が非点灯状態においては、基部20の光取出面21側から裏面側を透視することができ、基部20の裏面側から光取出面21側を透視することができる。 The prism portion 22 is formed so that the structural unit length L10 of the prism portion 22 is 40 μm or more and 500 μm or less. The prism unit 22 more preferably has a structural unit length L10 of the prism unit 22 of not less than 80 μm and not more than 250 μm. With the above-described configuration, the optical member 2 has a desired light-transmitting property (for example, is transparent) even in the base portion 20 on which the prism portion 22 is formed. For example, with the configuration described above, the optical member 2 is transparent, and when the light source unit 3 is in a non-lighting state, the back side can be seen through from the light extraction surface 21 side of the base 20, and from the back side of the base 20. The light extraction surface 21 side can be seen through.
 また、複数のプリズム部22は、光学部材2の光取出面21の裏面における長手方向の中央部を通る中心線に対して対称(図2では左右対称)に形成されてもよい。例えば、光学部材2の光取出面21の裏面において、図2中の左側の側面23側から長手方向の中央部まで、第1領域221と第2領域222との順に並ぶプリズム部22が複数並ぶ。また、例えば、光学部材2の光取出面21の裏面において、図2中の右側の側面24側から長手方向の中央部まで、第1領域221と第2領域222との順に並ぶプリズム部22が複数並ぶ。このように、複数のプリズム部22は、光学部材2の光取出面21の裏面における長手方向の中心線に対して鏡像対称に形成されてもよい。 Further, the plurality of prism portions 22 may be formed symmetrically (symmetric in FIG. 2) with respect to a center line passing through the central portion in the longitudinal direction on the back surface of the light extraction surface 21 of the optical member 2. For example, on the back surface of the light extraction surface 21 of the optical member 2, a plurality of prism portions 22 are arranged in the order of the first region 221 and the second region 222 from the side surface 23 on the left side in FIG. 2 to the central portion in the longitudinal direction. . Further, for example, on the back surface of the light extraction surface 21 of the optical member 2, the prism portion 22 arranged in the order of the first region 221 and the second region 222 from the right side surface 24 side in FIG. Multiple lines. As described above, the plurality of prism portions 22 may be formed mirror-symmetrically with respect to the center line in the longitudinal direction on the back surface of the light extraction surface 21 of the optical member 2.
 光源部3は、保持部材30と、例えばLED(Light Emitting Diode)等である光源31と、入光素子32とを有する。光源部3は、光学部材2の基部20の側面23、24に沿って配置される。例えば、光源部3は、光学部材2の両端部に一対設けられる。なお、光源部3は、光学部材2の両端部のうち、一方のみに設けられてもよい。 The light source unit 3 includes a holding member 30, a light source 31 such as an LED (Light Emitting Diode), and a light incident element 32. The light source unit 3 is disposed along the side surfaces 23 and 24 of the base 20 of the optical member 2. For example, the light source unit 3 is provided as a pair at both ends of the optical member 2. In addition, the light source part 3 may be provided in only one of the both end parts of the optical member 2.
 例えば、一対の保持部材30は、両側から光学部材2を保持する。図1では、光源部3は、基部20の長手方向における光学部材2の両端部に一対設けられ、光学部材2を保持する。また、各保持部材30は、光源31及び入光素子32を各々保持する。なお、図1では、光源31及び入光素子32が正面視において露出した状態を図示するが、光源31及び入光素子32は、光学部材2に対して所定の位置に配置されれば、例えば、保持部材30により覆われてもよい。また、光学部材2は、側面23、24付近を保持部材30に覆われることにより、保持部材30に保持されてもよい。 For example, the pair of holding members 30 hold the optical member 2 from both sides. In FIG. 1, a pair of light sources 3 is provided at both ends of the optical member 2 in the longitudinal direction of the base 20 and holds the optical member 2. Each holding member 30 holds the light source 31 and the light incident element 32. 1 illustrates a state in which the light source 31 and the light incident element 32 are exposed in a front view. However, if the light source 31 and the light incident element 32 are disposed at predetermined positions with respect to the optical member 2, for example, The cover member 30 may be covered. The optical member 2 may be held by the holding member 30 by covering the vicinity of the side surfaces 23 and 24 with the holding member 30.
 各光源部3には、複数(図1では4個)の光源31が設けられる。例えば、複数の光源31は、所定の方向に並べて設けられる。図1では、光源部3は、基部20の短手方向に沿って並べて設けられる。 Each light source unit 3 is provided with a plurality (four in FIG. 1) of light sources 31. For example, the plurality of light sources 31 are provided side by side in a predetermined direction. In FIG. 1, the light source unit 3 is provided side by side along the short direction of the base 20.
 例えば、入光素子32は、点状光源である光源31から放射される光を線状光源の光に変換する機能を有する。例えば、入光素子32は、光透過性を有する材料により形成される。入光素子32は、光源31と基部20の側面23、24との間に設けられる。例えば、図1中の左側の光源部3において、入光素子32は、光源31と基部20の側面23との間に設けられる。また、図1中の左側の光源部3において、入光素子32は、基部20の側面23に沿って設けられる。また、例えば、図1中の右側の光源部3において、入光素子32は、光源31と基部20の側面24との間に設けられる。また、図1中の右側の光源部3において、入光素子32は、基部20の側面24に沿って設けられる。 For example, the light incident element 32 has a function of converting light emitted from the light source 31 that is a point light source into light of a linear light source. For example, the light incident element 32 is formed of a light transmissive material. The light incident element 32 is provided between the light source 31 and the side surfaces 23 and 24 of the base 20. For example, in the light source unit 3 on the left side in FIG. 1, the light incident element 32 is provided between the light source 31 and the side surface 23 of the base 20. Further, in the light source unit 3 on the left side in FIG. 1, the light incident element 32 is provided along the side surface 23 of the base 20. Further, for example, in the light source unit 3 on the right side in FIG. 1, the light incident element 32 is provided between the light source 31 and the side surface 24 of the base 20. Further, in the light source unit 3 on the right side in FIG. 1, the light incident element 32 is provided along the side surface 24 of the base 20.
 また、入光素子32における光源31側の面321(以下、「入光面321」ともいう)には、所定の光学的制御を行う機構が設けられる。例えば、入光素子32における光源31側の入光面321は、TIR(Total Internal Reflection)-フレネルレンズ面であってもよい。なお、入光素子32の入光面321には、各光源31に対応する箇所に所定の光学的制御を行う機構が設けられる。また、図1では、4つの光源31に対して1つの入光素子32を用いる場合を模式的に示したが、入光素子32は各光源31に対して各々設けられてもよい。また、入光素子32は、所望の配光制御が可能であれば、どのような構成であってもよい。 Further, a mechanism for performing predetermined optical control is provided on the surface 321 on the light source 31 side of the light incident element 32 (hereinafter also referred to as “light incident surface 321”). For example, the light incident surface 321 on the light source 31 side of the light incident element 32 may be a TIR (Total Internal Reflection) -Fresnel lens surface. The light incident surface 321 of the light incident element 32 is provided with a mechanism for performing predetermined optical control at a location corresponding to each light source 31. 1 schematically illustrates the case where one light incident element 32 is used for the four light sources 31, but the light incident elements 32 may be provided for each light source 31, respectively. The light incident element 32 may have any configuration as long as desired light distribution control is possible.
 また、入光素子32において基部20の側面23、24と対向する面、すなわち入光素子32の入光面321の反対面322の輝度は、均一であることが望ましい。例えば、入光素子32において基部20の側面23、24と対向する面の垂直方向の輝度は、均一であることが望ましい。また、入光素子32において基部20の側面23、24と対向する面には、所定の配光部材が設けられてもよい。例えば、入光素子32において基部20の側面23、24と対向する面には、配光部材としてレンチキュラレンズや拡散素子やプリズムやTIR-フレネルレンズが設けられてもよい。なお、基部20の側面23、24に配光部材を配置してもよいが、この場合、側面23、24を透過した後の輝度が均一であることが望ましい。また、入光素子32は、基部20の側面23、24に連続してもよい。例えば、入光素子32は、基部20と一体形成されてもよい。また、入光素子32の反対面322側にも、所定の光学的制御を行う機構が設けられてもよい。例えば、入光素子32の反対面322は、TIR-フレネルレンズやレンチキュラなどの光学素子が配置されてもよい。 In addition, it is desirable that the luminance of the surface of the light incident element 32 facing the side surfaces 23 and 24 of the base 20, that is, the surface 322 opposite to the light incident surface 321 of the light incident element 32 is uniform. For example, it is desirable that the luminance in the vertical direction of the surface of the light incident element 32 that faces the side surfaces 23 and 24 of the base 20 is uniform. A predetermined light distribution member may be provided on the surface of the light incident element 32 that faces the side surfaces 23 and 24 of the base 20. For example, a lenticular lens, a diffusing element, a prism, or a TIR-Fresnel lens may be provided as a light distribution member on the surface of the light incident element 32 that faces the side surfaces 23 and 24 of the base 20. In addition, although a light distribution member may be arrange | positioned to the side surfaces 23 and 24 of the base 20, it is desirable that the brightness | luminance after transmitting the side surfaces 23 and 24 is uniform in this case. The light incident element 32 may be continuous with the side surfaces 23 and 24 of the base 20. For example, the light incident element 32 may be integrally formed with the base 20. Also, a mechanism for performing predetermined optical control may be provided on the opposite surface 322 side of the light incident element 32. For example, an optical element such as a TIR-Fresnel lens or lenticular may be disposed on the opposite surface 322 of the light incident element 32.
 また、入光素子32において輝度が均一となる領域の幅W11は、基部20の短手方向の幅W10以上であることが望ましい。ここでいう、輝度が均一とは、例えば、後述する輝度の明部と暗部の輝度比(暗部輝度/明部輝度)が70%以上、好ましくは80%以上である。これにより、面状照明装置1は、光学部材2の側面23、24の短手方向の全体に亘って入光素子32からの光が照射されるため、より均一に基部20の光取出面21から光を放射することができる。なお、入光素子32の厚みは、基部20の厚みと同程度であってもよい。なお、図1に示す例では、説明を簡単にするために、入光素子32において輝度が均一となる領域の幅W11が、入光素子32の幅と同じである場合を図示するが、入光素子32において輝度が均一となる領域の幅W11は、入光素子32の幅よりも狭くてもよい。 In addition, it is desirable that the width W11 of the region where the luminance is uniform in the light incident element 32 is equal to or greater than the width W10 of the base 20 in the short direction. Here, the term “uniform brightness” means, for example, that a brightness ratio between a bright part and a dark part (dark part brightness / bright part brightness) described later is 70% or more, preferably 80% or more. Thereby, since the planar illumination device 1 is irradiated with light from the light incident element 32 over the entire lateral direction of the side surfaces 23 and 24 of the optical member 2, the light extraction surface 21 of the base 20 is more evenly distributed. Can emit light. The light incident element 32 may have the same thickness as the base 20. In the example shown in FIG. 1, for simplicity of explanation, the case where the width W11 of the region where the luminance is uniform in the light incident element 32 is the same as the width of the light incident element 32 is illustrated. The width W11 of the region where the luminance is uniform in the optical element 32 may be narrower than the width of the light incident element 32.
 例えば、発光エリア(光取出面21)の正面輝度、すなわち光取出面21の垂直方向の輝度において、輝度分布は導光板(基部20)の入光端面(側面23、24)に焦点を合わせた状態で、導光板の幅方向(短手方向)に少なくとも1mmピッチ、好ましくは0.5mmピッチで輝度分布(厚さ方向には平均化)を算出する。また、例えば、入光素子32において輝度が均一となる領域の幅W11を基部20の短手方向の幅W10以上に設定することにより、上述した算出方法により得られた輝度の明部と暗部の輝度比(暗部輝度/明部輝度)が70%以上、好ましくは80%以上とすることが可能となる。また、例えば、線状光源の光学素子(入光素子32の入光面321)のピッチは、10-1000μmであることがさらに好適である。また、例えば、線状光源の光学素子(入光素子32の入光面321)のピッチは20-200μmであることがさらに好適である。 For example, in the front luminance of the light emitting area (light extraction surface 21), that is, the luminance in the vertical direction of the light extraction surface 21, the luminance distribution is focused on the light incident end surfaces (side surfaces 23 and 24) of the light guide plate (base 20). In the state, the luminance distribution (averaged in the thickness direction) is calculated at a pitch of at least 1 mm, preferably 0.5 mm, in the width direction (short direction) of the light guide plate. Further, for example, by setting the width W11 of the region where the luminance is uniform in the light incident element 32 to be equal to or larger than the width W10 in the short direction of the base portion 20, the bright portion and the dark portion of the luminance obtained by the calculation method described above are used. The luminance ratio (dark portion luminance / bright portion luminance) can be 70% or more, preferably 80% or more. Further, for example, the pitch of the optical elements of the linear light source (the light incident surface 321 of the light incident element 32) is more preferably 10 to 1000 μm. Further, for example, the pitch of the optical elements of the linear light source (the light incident surface 321 of the light incident element 32) is more preferably 20 to 200 μm.
 また、面状照明装置1の光学部材2は、所望の配光制御を行うために種々の構成を有してもよい。この点について、図4を用いて説明する。図4は、実施形態に係る低反射部及び輝度抑制部を有する光学部材を示す側面図である。図4に示すように、光学部材2は、低反射部25や輝度抑制部26を有してもよい。 Moreover, the optical member 2 of the surface illumination device 1 may have various configurations in order to perform desired light distribution control. This point will be described with reference to FIG. FIG. 4 is a side view showing an optical member having a low reflection portion and a luminance suppression portion according to the embodiment. As shown in FIG. 4, the optical member 2 may include a low reflection portion 25 and a luminance suppression portion 26.
 図4に示すように、光学部材2における基部20の光取出面21側には、基部20内への反射を抑制する低反射部25が設けられる。例えば、光学部材2には、光取出面21に重ねて低反射機能を有する低反射部25が形成される。例えば、低反射部25は、スパッタや蒸着により形成した誘電体多層膜やモスアイ形状のような1μm以下の微細な凹凸形状を有してもよい。また、例えば、低反射部25は、光取出面21に低反射処理が施されることにより形成されてもよい。例えば、低反射処理は、光取出面21を鏡面状態に処理することが好ましい。例えば、上述の処理方法は、導光板としての基部20への直接処理(スパッタ、蒸着、賦形など)や、低反射フィルムのインサート成型や、粘着剤や接着剤を介した低反射フィルムの貼り合せ等、どのような処理方法であってもよい。 As shown in FIG. 4, the low reflection part 25 which suppresses the reflection in the base 20 is provided in the optical extraction surface 21 side of the base 20 in the optical member 2. As shown in FIG. For example, the optical member 2 is formed with a low reflection portion 25 having a low reflection function so as to overlap the light extraction surface 21. For example, the low reflection portion 25 may have a fine uneven shape of 1 μm or less such as a dielectric multilayer film formed by sputtering or vapor deposition or a moth-eye shape. For example, the low reflection part 25 may be formed by performing the low reflection process on the light extraction surface 21. For example, in the low reflection process, it is preferable to process the light extraction surface 21 into a mirror surface state. For example, the above-described processing methods include direct processing (sputtering, vapor deposition, shaping, etc.) on the base 20 as a light guide plate, insert molding of a low reflection film, and application of a low reflection film via an adhesive or adhesive. Any processing method such as combination may be used.
 光取出面21の正反射率は、1.6%以下であることが好適である。例えば、光取出面21の正反射率が1.6%以下とは、図4に示す例では、光取出面21に向かう光線IL12のうち、基部20内に反射される光線IL14の割合が1.6%(=IL14の光量/IL12の光量*100)以下である場合をいう。また、例えば、光学部材2の光取出面21に重ねて低反射部25を形成することにより、光取出面21の正反射率は1.6%以下としてもよい。また、光取出面21の正反射率は0.8%以下であることがさらに好適である。また、光取出面21の正反射率は0.4%以下であることがさらに好適である。 The regular reflectance of the light extraction surface 21 is preferably 1.6% or less. For example, when the regular reflectance of the light extraction surface 21 is 1.6% or less, in the example illustrated in FIG. 4, the ratio of the light beam IL14 reflected in the base 20 out of the light beams IL12 toward the light extraction surface 21 is 1. .. 6% (= light amount of IL14 / light amount of IL12 * 100) or less. Further, for example, the regular reflectance of the light extraction surface 21 may be 1.6% or less by forming the low reflection portion 25 so as to overlap the light extraction surface 21 of the optical member 2. In addition, the regular reflectance of the light extraction surface 21 is further preferably 0.8% or less. In addition, the regular reflectance of the light extraction surface 21 is further preferably 0.4% or less.
 なお、上述した低反射部25の形成は一例であり、光取出面21の正反射率が所望の値を満たせば、光学部材2はどのような構成であってもよい。例えば、光取出面21の正反射率が所望の値を満たせば、光学部材2は低反射部25を有さなくてもよい。 In addition, formation of the low reflection part 25 mentioned above is an example, and the optical member 2 may be any configuration as long as the regular reflectance of the light extraction surface 21 satisfies a desired value. For example, if the regular reflectance of the light extraction surface 21 satisfies a desired value, the optical member 2 may not have the low reflection portion 25.
 図4に示すように、光学部材2における基部20の裏面側には、裏面側への光の放射を抑制する輝度抑制部26が設けられる。例えば、光学部材2には、裏面を覆うように裏面側への光の放射を抑制する輝度抑制部26が形成される。例えば、輝度抑制部26は、ルーバフィルムや光源の光の波長を反射するフィルム(誘電体多層膜)もしくは吸収するフィルム(誘電体多層膜)や染料系色素を含有する透明フィルム等であってもよい。また、斜め方向に出射する光を遮光するには、ルーバフィルムが用いられることが好適である。なお、輝度抑制部26は、所望の機能を有すればどのような構成であってもよい。 As shown in FIG. 4, a luminance suppression unit 26 that suppresses the emission of light to the back side is provided on the back side of the base 20 in the optical member 2. For example, the optical member 2 is formed with a luminance suppressing portion 26 that suppresses light emission to the back surface side so as to cover the back surface. For example, the luminance suppression unit 26 may be a louver film, a film that reflects the wavelength of light from a light source (dielectric multilayer film), a film that absorbs light (dielectric multilayer film), a transparent film containing a dye-based pigment, or the like. Good. In addition, it is preferable to use a louver film to shield light emitted in an oblique direction. Note that the luminance suppressing unit 26 may have any configuration as long as it has a desired function.
 光取出面21の輝度の裏面の輝度に対する比率である輝度比LR1が20以上であることが好適である。例えば、輝度比LR1は以下の数式(2)により算出される。 It is preferable that the luminance ratio LR1 that is the ratio of the luminance of the light extraction surface 21 to the luminance of the back surface is 20 or more. For example, the luminance ratio LR1 is calculated by the following mathematical formula (2).
 輝度比LR1=光取出面21の輝度/裏面の輝度 ・・・ (2) Luminosity ratio LR1 = luminance of light extraction surface 21 / luminance of back surface (2)
 例えば、基部20の裏面側に輝度抑制部26が配置されることにより、輝度比LR1が20以上としてもよい。また、輝度比LR1が40以上であることが好適である。また、輝度比LR1が100以上であることがさらに好適である。例えば、光取出面21の輝度とは、光取出面21の垂直方向の輝度であってもよい。また、裏面の輝度とは、光取出面21の裏面(プリズム部22が形成される面)の基部20の厚み方向の輝度であってもよい。例えば、輝度比LR1は、光取出面21側の正面輝度の裏面側の正面輝度に対する比率であってもよい。 For example, the luminance ratio LR1 may be 20 or more by arranging the luminance suppressing unit 26 on the back side of the base 20. Further, it is preferable that the luminance ratio LR1 is 40 or more. Further, it is more preferable that the luminance ratio LR1 is 100 or more. For example, the luminance of the light extraction surface 21 may be the luminance in the vertical direction of the light extraction surface 21. Further, the luminance on the back surface may be the luminance in the thickness direction of the base portion 20 on the back surface of the light extraction surface 21 (surface on which the prism portion 22 is formed). For example, the luminance ratio LR1 may be a ratio of the front luminance on the light extraction surface 21 side to the front luminance on the back surface side.
 なお、上述した輝度抑制部26の配置は一例であり、輝度比LR1が所望の値を満たせば、光学部材2はどのような構成であってもよい。例えば、輝度比LR1が所望の値を満たせば、光学部材2は輝度抑制部26を有さなくてもよい。 The arrangement of the luminance suppressing unit 26 described above is an example, and the optical member 2 may have any configuration as long as the luminance ratio LR1 satisfies a desired value. For example, if the luminance ratio LR1 satisfies a desired value, the optical member 2 may not have the luminance suppressing unit 26.
 ここで、図4に示す光線IL11~IL15を用いて光学部材2における配光について説明する。なお、図4に示す光線IL11~IL15は、光学部材2における配光を仮想的に示す。例えば、基部20内から第2領域222に向かう光線IL11のうち、一部の光線IL12はプリズム機能を有する第2領域222により光取出面21の方向へ反射される。 Here, the light distribution in the optical member 2 will be described using the light beams IL11 to IL15 shown in FIG. Light rays IL11 to IL15 shown in FIG. 4 virtually indicate the light distribution in the optical member 2. For example, among the light beams IL11 that travel from the base 20 toward the second region 222, some of the light beams IL12 are reflected in the direction of the light extraction surface 21 by the second region 222 having a prism function.
 そして、基部20内から光取出面21へ向かう光線IL12のうち、一部の光線IL13は光取出面21外へ放射される。例えば、低反射部25により反射が抑制されること等により光取出面21の正反射率が所望の値を満たすため、光線IL12のうち、大部分の光線IL13は光取出面21外へ放射される。このように、面状照明装置1は、光取出面21の正反射率が所望の値を満たすことにより、光取出面21側から基部20内へ反射される光量の増大を抑制することができ、光取出し効率を向上させることができる。 Of the light beams IL12 that travel from the base 20 toward the light extraction surface 21, some of the light beams IL13 are emitted to the outside of the light extraction surface 21. For example, since the regular reflectance of the light extraction surface 21 satisfies a desired value due to suppression of reflection by the low reflection portion 25, most of the light beam IL13 is radiated out of the light extraction surface 21. The Thus, the planar illumination device 1 can suppress an increase in the amount of light reflected from the light extraction surface 21 side into the base 20 when the regular reflectance of the light extraction surface 21 satisfies a desired value. The light extraction efficiency can be improved.
 また、基部20内から光取出面21へ向かう光線IL12のうち、一部の光線IL14は光取出面21により反射される。例えば、低反射部25により反射が抑制されるため、光線IL12のうち、僅かな光線IL14は光取出面21により反射される。このように、光学部材2は、発光面(光取出面21)での反射が抑制され、裏面から漏れる光を軽減することが可能となる。 In addition, a part of the light beam IL14 out of the light beam IL12 from the base 20 toward the light extraction surface 21 is reflected by the light extraction surface 21. For example, since the reflection is suppressed by the low reflection portion 25, a small amount of the light beam IL14 out of the light beam IL12 is reflected by the light extraction surface 21. As described above, the optical member 2 is able to reduce the light leaking from the back surface by suppressing reflection on the light emitting surface (light extraction surface 21).
 また、例えば、基部20内から第2領域222に向かう光線IL11のうち、一部の光線IL15は第2領域222を通過して基部20外へ放射される。すなわち、光線IL15は仮想的に平面とした場合の裏面から斜め方向に漏れる光となる。このような、裏面から漏れる光は、裏面側にいる人、例えば面状照明装置1がハイマウントライトとして用いられた自動車中や車外の人に視認される場合がある。しかし、面状照明装置1においては、輝度抑制部26等により輝度比LR1が所望の値を満たすため、裏面側へ漏れる光が抑制され、裏面側にいる人に与える影響を抑制することができる。 Further, for example, among the light beams IL11 that travel from the inside of the base portion 20 toward the second region 222, some of the light beams IL15 pass through the second region 222 and are emitted to the outside of the base portion 20. That is, the light beam IL15 becomes light that leaks in an oblique direction from the back surface when it is virtually planar. Such light leaking from the back surface may be visually recognized by a person on the back surface side, for example, a person inside or outside the vehicle in which the planar lighting device 1 is used as a high-mount light. However, in the planar lighting device 1, the luminance ratio LR <b> 1 satisfies a desired value by the luminance suppressing unit 26 or the like, so that light leaking to the back side is suppressed and the influence on the person on the back side can be suppressed. .
 (変形例1-6)
 実施形態の変形例に係る面状照射装置を図面に基づいて説明する。なお、実施形態と同様の構成については、実施形態と同じ符号を付し、適宜説明を省略する。
(Modification 1-6)
A planar irradiation apparatus according to a modification of the embodiment will be described with reference to the drawings. In addition, about the structure similar to embodiment, the code | symbol same as embodiment is attached | subjected and description is abbreviate | omitted suitably.
 (変形例1)
 まず、図5及び図6を用いて変形例1に係る面状照明装置100について説明する。図5は、変形例1に係る面状照明装置を示す側面図である。図6は、変形例1に係る面状照明装置の光源の点灯による変化を示す図である。
(Modification 1)
First, the planar lighting device 100 according to the first modification will be described with reference to FIGS. 5 and 6. FIG. 5 is a side view showing the planar illumination device according to the first modification. FIG. 6 is a diagram illustrating a change due to lighting of the light source of the planar illumination device according to the first modification.
 図5に示すように、面状照明装置100は、光学部材200と、光源部3とを有する。 As shown in FIG. 5, the planar illumination device 100 includes an optical member 200 and a light source unit 3.
 光学部材200は、平板状に形成された透明体である基部201を有する。例えば、基部201は、光学部材2の基部20と同様に光透過性を有する材料により形成される。また、光学部材200において、光学部材200の発光面(図5中の上側の面)の裏面には、プリズム加工が施されるプリズム領域202が形成される。例えば、プリズム領域202は、基部201の長手方向(図5中の左右方向)にプリズム構造が並んで形成される。例えば、プリズム領域202は、図3に示すようなプリズム部22が所定の方向に複数並ぶことにより形成される。 The optical member 200 has a base 201 that is a transparent body formed in a flat plate shape. For example, the base 201 is formed of a light-transmitting material like the base 20 of the optical member 2. Further, in the optical member 200, a prism region 202 to be subjected to prism processing is formed on the back surface of the light emitting surface (the upper surface in FIG. 5) of the optical member 200. For example, the prism region 202 is formed by arranging prism structures in the longitudinal direction of the base 201 (left and right direction in FIG. 5). For example, the prism region 202 is formed by arranging a plurality of prism portions 22 as shown in FIG. 3 in a predetermined direction.
 また、図5に示す例において、基部201の長手方向(図5中の左右方向)の両端部には、プリズム加工が施されない非プリズム領域203が形成される。なお、非プリズム領域203の長さは、面状照明装置100の用途等に応じて適宜設定されてもよい。 Further, in the example shown in FIG. 5, non-prism regions 203 that are not subjected to prism processing are formed at both ends of the base 201 in the longitudinal direction (left-right direction in FIG. 5). Note that the length of the non-prism region 203 may be appropriately set according to the application of the planar illumination device 100 or the like.
 ここで、プリズム領域202や非プリズム領域203を形成するための加工方法について説明する。 Here, a processing method for forming the prism region 202 and the non-prism region 203 will be described.
 例えば、光学部材200は、プリズム加工を施す加工方法としての後加工により、基部201の裏面における所定の領域にプリズム加工を施されたプリズム領域202が形成されてもよい。これにより、光学部材200には、基部201の裏面における所定の領域にプリズム加工を施されたプリズム領域202が形成され、他の領域に非プリズム領域203が形成される。 For example, in the optical member 200, a prism region 202 in which a prism processing is performed on a predetermined region on the back surface of the base 201 may be formed by post processing as a processing method for performing prism processing. Thereby, in the optical member 200, a prism area 202 is formed by applying a prism process to a predetermined area on the back surface of the base 201, and a non-prism area 203 is formed in another area.
 また、例えば、光学部材200は、基部201の裏面の全域に亘ってプリズム加工が施された後、後加工により非プリズム領域203に対応する領域のプリズム加工を除去することにより非プリズム領域203が形成されてもよい。これにより、光学部材200には、基部201の裏面における所定の領域にプリズム加工を施されたプリズム領域202が形成され、他の領域に非プリズム領域203が形成される。 Further, for example, after the optical member 200 is subjected to prism processing over the entire back surface of the base 201, the non-prism region 203 is formed by removing the prism processing in the region corresponding to the non-prism region 203 by post-processing. It may be formed. Thereby, in the optical member 200, a prism area 202 is formed by applying a prism process to a predetermined area on the back surface of the base 201, and a non-prism area 203 is formed in another area.
 また、例えば、光学部材200は、基部201の裏面に非プリズム領域203に対応する領域が、プリズム加工が施される領域の高さよりも低く生成された後、後加工によりプリズム領域202を形成することにより、プリズム領域202が形成されてもよい。これにより、光学部材200には、基部201の裏面における所定の領域にプリズム加工を施されたプリズム領域202が形成され、他の領域に非プリズム領域203が形成される。 Further, for example, the optical member 200 forms the prism region 202 by post-processing after the region corresponding to the non-prism region 203 is generated on the back surface of the base 201 lower than the height of the region subjected to the prism processing. Accordingly, the prism region 202 may be formed. Thereby, in the optical member 200, a prism area 202 is formed by applying a prism process to a predetermined area on the back surface of the base 201, and a non-prism area 203 is formed in another area.
 なお、プリズム領域202や非プリズム領域203を形成するための加工方法については、上記に限らず、所望の領域にプリズム領域202や非プリズム領域203が形成可能であれば、どのような加工方法であってもよい。例えば、光学部材200は、所定の金型を用いた上記加工方法により成型されてもよい。 The processing method for forming the prism region 202 and the non-prism region 203 is not limited to the above, and any processing method can be used as long as the prism region 202 and the non-prism region 203 can be formed in a desired region. There may be. For example, the optical member 200 may be molded by the above processing method using a predetermined mold.
 次に、図6を用いて面状照明装置100の非点灯状態と点灯状態とについて説明する。
図6に示す面状照明装置100-1は、非点灯状態の面状照明装置100を示し、面状照明装置100-2は、点灯状態の面状照明装置100を示す。なお、面状照明装置100-1、100-2を区別しない場合、面状照明装置100と記載する。図6に示す面状照明装置100は、面状照明装置100を正面視した場合を示す。
Next, the non-lighting state and the lighting state of the planar lighting device 100 will be described with reference to FIG.
A planar lighting device 100-1 illustrated in FIG. 6 represents the planar lighting device 100 in a non-lighting state, and a planar lighting device 100-2 represents the planar lighting device 100 in a lighting state. The planar illumination devices 100-1 and 100-2 are referred to as the planar illumination device 100 when not distinguished from each other. The planar illumination device 100 shown in FIG. 6 shows a case where the planar illumination device 100 is viewed from the front.
 図6に示すように、非点灯状態における面状照明装置100-1では、光学部材200の基部201全体に亘って透明であり、背後に位置する物体が視認できる。すなわち、非点灯状態における面状照明装置100-1では、プリズム加工を施されたプリズム領域202と、プリズム加工が施されていない非プリズム領域203とのいずれの領域においても、背後に位置する部材が視認できる。また、非点灯状態における面状照明装置100-1では、面状照明装置100の背後から見た場合も同様に、光学部材200の基部201全体に亘って透明であり、前方に位置する物体が視認可能であってもよい。 As shown in FIG. 6, in the planar lighting device 100-1 in the non-lighted state, the entire base 201 of the optical member 200 is transparent, and an object located behind can be visually recognized. That is, in the planar lighting device 100-1 in the non-lighting state, the member located behind in both the prism region 202 subjected to the prism processing and the non-prism region 203 not subjected to the prism processing. Is visible. Further, in the planar lighting device 100-1 in the non-lighting state, when viewed from the back of the planar lighting device 100, the entire base portion 201 of the optical member 200 is transparent, and an object positioned in the front is also the same. It may be visible.
 一方、図6に示すように、点灯状態における面状照明装置100-2では、光学部材200の基部201のプリズム領域202は発光しており、背後に位置する部材が視認できない。また、点灯状態における面状照明装置100-2では、光学部材200の基部201の非プリズム領域203は発光していないため、背後に位置する部材が視認できる。このように、面状照明装置100は、適宜の領域にプリズム領域202や非プリズム領域203を形成することにより、所望の領域を用いて面発光を行い、他の領域は点灯状態においても所望の光透過性を維持することができる。 On the other hand, as shown in FIG. 6, in the planar lighting device 100-2 in the lighting state, the prism region 202 of the base 201 of the optical member 200 emits light, and the member located behind cannot be visually recognized. Further, in the planar lighting device 100-2 in the lighting state, since the non-prism region 203 of the base 201 of the optical member 200 does not emit light, the member located behind can be visually recognized. As described above, the planar illumination device 100 forms the prism region 202 and the non-prism region 203 in an appropriate region, thereby performing surface light emission using a desired region, and the other regions are desired even in a lighting state. Light transmittance can be maintained.
 (変形例2)
 次に、図7を用いて、変形例2に係る光学部材2Aについて説明する。図7は、変形例2に係る光学部材の要部を示す側断面図である。
(Modification 2)
Next, an optical member 2A according to Modification 2 will be described with reference to FIG. FIG. 7 is a side cross-sectional view showing the main part of the optical member according to Modification 2.
 光学部材2Aは、平板状に形成された透明体である基部20Aを有する。例えば、基部20Aは、光学部材2の基部20と同様に光透過性を有する材料により形成される。光学部材2Aの光取出面21Aの裏面には、プリズム部22Aが形成される。プリズム部22Aは、所定の方向に並んで形成される。例えば、プリズム部22Aは、基部20Aの長手方向(図7中の左右方向)に並んで形成される。 The optical member 2A has a base 20A that is a transparent body formed in a flat plate shape. For example, the base 20 </ b> A is formed of a light-transmitting material like the base 20 of the optical member 2. A prism portion 22A is formed on the back surface of the light extraction surface 21A of the optical member 2A. The prism portion 22A is formed side by side in a predetermined direction. For example, the prism portion 22A is formed side by side in the longitudinal direction of the base portion 20A (the left-right direction in FIG. 7).
 プリズム部22Aは、所定のプリズム機能を有する形状に形成される。例えば、プリズム部22Aにおいては、基部20Aの長手方向に沿う断面において光取出面21Aに対して平行な第1領域221Aに、プリズム形状を有する第2領域222Aが連続する。なお、図7では、第1領域221Aは、光取出面21Aに対して平行、つまり傾斜角度が0度となるように形成されるが、基部20Aの長手方向に沿う断面において光取出面21Aに対する傾斜角度が0度以上8度以内であってもよい。また、プリズム部22Aの第1領域221Aの傾斜角度は0度以上4度以内であることがより好適である。 The prism portion 22A is formed in a shape having a predetermined prism function. For example, in the prism portion 22A, the second region 222A having a prism shape is continuous with the first region 221A parallel to the light extraction surface 21A in the cross section along the longitudinal direction of the base portion 20A. In FIG. 7, the first region 221A is formed to be parallel to the light extraction surface 21A, that is, to have an inclination angle of 0 degree, but in the cross section along the longitudinal direction of the base 20A, the first region 221A is formed with respect to the light extraction surface 21A. The inclination angle may be 0 degree or more and 8 degrees or less. In addition, it is more preferable that the inclination angle of the first region 221A of the prism portion 22A is not less than 0 degrees and not more than 4 degrees.
 プリズム部22Aの第2領域222Aは、裏面から突出する形状に形成される。例えば、第2領域222Aは、基部20Aの長手方向に沿う断面において、裏面から外部へ突出する三角形状に形成される。 The second region 222A of the prism portion 22A is formed in a shape protruding from the back surface. For example, the second region 222A is formed in a triangular shape that protrudes from the back surface to the outside in a cross section along the longitudinal direction of the base portion 20A.
 また、プリズム部22Aにおいては、基部20Aの長手方向の長さにおける第1領域221Aの割合R21は、プリズム部22における割合R11と同様である。例えば、基部20Aの長手方向の長さにおける第1領域221Aの長さL21は、基部20Aの長手方向の長さにおけるプリズム部22A全体の長さL20(以下、「構成単位長L20」ともいう)に対する割合R21が、60%以上100%未満であることが好適である。また、プリズム部22Aにおいては、割合R21が75%以上100%未満であることがより好適である。 In the prism portion 22A, the ratio R21 of the first region 221A in the length of the base portion 20A in the longitudinal direction is the same as the ratio R11 in the prism portion 22. For example, the length L21 of the first region 221A in the length in the longitudinal direction of the base portion 20A is the length L20 of the entire prism portion 22A in the length in the longitudinal direction of the base portion 20A (hereinafter also referred to as “structural unit length L20”). It is preferable that the ratio R21 to is 60% or more and less than 100%. In the prism portion 22A, the ratio R21 is more preferably 75% or more and less than 100%.
 また、プリズム部22Aは、プリズム部22Aの構成単位長L20が40μm以上500μm以下になるように形成される。なお、プリズム部22Aは、プリズム部22Aの構成単位長L20が80μm以上250μm以下であることがより好適である。上述した構成により、光学部材2Aは、プリズム部22Aが形成された基部20Aにおいても、所望の透光性を有する(例えば、透明である)。 The prism portion 22A is formed so that the structural unit length L20 of the prism portion 22A is 40 μm or more and 500 μm or less. The prism unit 22A more preferably has a structural unit length L20 of the prism unit 22A of not less than 80 μm and not more than 250 μm. With the above-described configuration, the optical member 2A has a desired translucency (for example, is transparent) even in the base portion 20A where the prism portion 22A is formed.
 ここで、図7に示す光線IL21~IL28を用いて光学部材2Aにおける配光について説明する。なお、図7に示す光線IL21~IL28は、光学部材2Aにおける配光を仮想的に示す。例えば、基部20A内から第2領域222Aに向かう光線IL21のうち、一部の光線IL22はプリズム機能を有する第2領域222Aにより光取出面21Aの方向へ反射される。 Here, the light distribution in the optical member 2A will be described using the light beams IL21 to IL28 shown in FIG. Note that the light beams IL21 to IL28 shown in FIG. 7 virtually indicate the light distribution in the optical member 2A. For example, among the light beams IL21 traveling from the base 20A toward the second region 222A, a part of the light beams IL22 is reflected in the direction of the light extraction surface 21A by the second region 222A having a prism function.
 そして、基部20A内から光取出面21Aへ向かう光線IL22のうち、一部の光線IL23は光取出面21A外へ放射される。また、基部20A内から光取出面21Aへ向かう光線IL22のうち、一部の光線IL24は光取出面21Aにより反射され、基部20Aの裏面側へ放射される。 Of the light beam IL22 that travels from the inside of the base 20A toward the light extraction surface 21A, a part of the light beam IL23 is emitted outside the light extraction surface 21A. Further, out of the light beam IL22 from the base 20A toward the light extraction surface 21A, a part of the light beam IL24 is reflected by the light extraction surface 21A and emitted to the back surface side of the base 20A.
 また、例えば、基部20A内から第2領域222Aに向かう光線IL21のうち、一部の光線IL25は第2領域222Aを通過して基部20A外へ放射され、隣に位置する第2領域222Aに反射され、光線IL26として基部20Aの裏面側へ放射される。また、例えば、基部20A内から第2領域222Aに向かう光線IL27は、第2領域222Aを通過して光線IL28として基部20Aの裏面側へ放射される。このように、光学部材2Aにおいては、実施形態に係る光学部材2よりも基部20Aの裏面側へ放射される光を抑制することが難しいため、面状照明装置100に用いる光学部材としては、光学部材2のほうが光学部材2Aよりも好適である。 Further, for example, of the light beam IL21 that travels from the inside of the base portion 20A toward the second region 222A, a part of the light beam IL25 passes through the second region 222A and is radiated out of the base portion 20A, and is reflected by the adjacent second region 222A. Then, the light beam IL26 is emitted to the back surface side of the base portion 20A. Further, for example, the light beam IL27 traveling from the inside of the base portion 20A toward the second region 222A passes through the second region 222A and is radiated to the back surface side of the base portion 20A as the light beam IL28. As described above, in the optical member 2A, it is difficult to suppress the light emitted to the back surface side of the base portion 20A than the optical member 2 according to the embodiment. The member 2 is more preferable than the optical member 2A.
 (変形例3)
 次に、図8を用いて、変形例3に係る光学部材2Bについて説明する。図8は、変形例3に係る光学部材の要部を示す側断面図である。
(Modification 3)
Next, an optical member 2B according to Modification 3 will be described with reference to FIG. FIG. 8 is a side cross-sectional view showing a main part of an optical member according to Modification 3.
 光学部材2Bは、平板状に形成された透明体である基部20Bを有する。例えば、基部20Bは、光学部材2の基部20と同様に光透過性を有する材料により形成される。光学部材2Bの光取出面21Bの裏面には、プリズム部22Bが形成される。プリズム部22Bは、所定の方向に並んで形成される。例えば、プリズム部22Bは、基部20Bの長手方向(図8中の左右方向)に並んで形成される。 The optical member 2B has a base portion 20B which is a transparent body formed in a flat plate shape. For example, the base portion 20 </ b> B is formed of a light transmissive material like the base portion 20 of the optical member 2. A prism portion 22B is formed on the back surface of the light extraction surface 21B of the optical member 2B. The prism portions 22B are formed side by side in a predetermined direction. For example, the prism portion 22B is formed side by side in the longitudinal direction of the base portion 20B (the left-right direction in FIG. 8).
 プリズム部22Bは、所定のプリズム機能を有する形状に形成される。例えば、プリズム部22Bにおいては、基部20Bの長手方向に沿う断面において光取出面21Bに対して平行な第1領域221Bに、プリズム形状を有する第2領域222Bが連続する。なお、図8では、第1領域221Bは、光取出面21Bに対して平行、つまり傾斜角度が0度となるように形成されるが、基部20Bの長手方向に沿う断面において光取出面21Bに対する傾斜角度が0度以上8度以内であってもよい。また、プリズム部22Bの第1領域221Bの傾斜角度は0度以上4度以内であることがより好適である。なお、加工精度によっては、プリズム部22Bの第1領域221Bの傾斜角度は、マイナス値(例えば-1度)等である場合も含まれるものとする。すなわち、ここでプリズム部22Bの第1領域221Bの傾斜角度についていう0度には、加工精度(製造誤差)等により生じる範囲のマイナス値も含まれるものとする。 The prism portion 22B is formed in a shape having a predetermined prism function. For example, in the prism portion 22B, a second region 222B having a prism shape is continuous with the first region 221B parallel to the light extraction surface 21B in the cross section along the longitudinal direction of the base portion 20B. In FIG. 8, the first region 221B is formed so as to be parallel to the light extraction surface 21B, that is, to have an inclination angle of 0 degree, but in the cross section along the longitudinal direction of the base 20B, the first region 221B is formed with respect to the light extraction surface 21B. The inclination angle may be 0 degree or more and 8 degrees or less. Further, it is more preferable that the inclination angle of the first region 221B of the prism portion 22B is 0 degree or more and 4 degrees or less. Depending on the processing accuracy, the inclination angle of the first region 221B of the prism portion 22B includes a negative value (for example, −1 degree). That is, here, 0 degree regarding the inclination angle of the first region 221B of the prism portion 22B includes a minus value in a range caused by processing accuracy (manufacturing error) or the like.
 プリズム部22Bの第2領域222Bは、裏面から基部20B内に窪んだ形状に形成される。例えば、第2領域222Bは、基部20Bの長手方向に沿う断面において、裏面から基部20B内に窪んだ三角形状に形成される。 The second region 222B of the prism portion 22B is formed in a shape recessed from the back surface into the base portion 20B. For example, the second region 222B is formed in a triangular shape that is recessed from the back surface into the base 20B in the cross section along the longitudinal direction of the base 20B.
 また、プリズム部22Bにおいては、基部20Bの長手方向の長さにおける第1領域221Bの割合R31は、プリズム部22における割合R11と同様である。例えば、基部20Bの長手方向の長さにおける第1領域221Bの長さL31は、基部20Bの長手方向の長さにおけるプリズム部22B全体の長さL30(以下、「構成単位長L30」ともいう)に対する割合R31が、60%以上100%未満であることが好適である。また、プリズム部22Bにおいては、割合R31が75%以上100%未満であることがより好適である。 In the prism portion 22B, the ratio R31 of the first region 221B in the length of the base portion 20B in the longitudinal direction is the same as the ratio R11 in the prism portion 22. For example, the length L31 of the first region 221B in the length in the longitudinal direction of the base portion 20B is the length L30 of the entire prism portion 22B in the length in the longitudinal direction of the base portion 20B (hereinafter also referred to as “structural unit length L30”). It is preferable that the ratio R31 to is 60% or more and less than 100%. In the prism portion 22B, the ratio R31 is more preferably 75% or more and less than 100%.
 また、プリズム部22Bは、プリズム部22Bの構成単位長L30が40μm以上500μm以下になるように形成される。なお、プリズム部22Bは、プリズム部22Bの構成単位長L30が80μm以上250μm以下であることがより好適である。上述した構成により、光学部材2Bは、プリズム部22Bが形成された基部20Bにおいても、所望の透光性を有する(例えば、透明である)。 The prism portion 22B is formed so that the structural unit length L30 of the prism portion 22B is 40 μm or more and 500 μm or less. In the prism portion 22B, it is more preferable that the structural unit length L30 of the prism portion 22B is 80 μm or more and 250 μm or less. With the above-described configuration, the optical member 2B has a desired translucency (for example, is transparent) even in the base portion 20B where the prism portion 22B is formed.
 ここで、図8に示す光線IL31~IL37を用いて光学部材2Bにおける配光について説明する。なお、図8に示す光線IL31~IL37は、光学部材2Bにおける配光を仮想的に示す。例えば、基部20B内において第2領域222Bに向かう光線IL31のうち、一部の光線IL32はプリズム機能を有する第2領域222Bにより光取出面21Bの方向へ反射される。 Here, the light distribution in the optical member 2B will be described using the light beams IL31 to IL37 shown in FIG. Light rays IL31 to IL37 shown in FIG. 8 virtually indicate the light distribution in the optical member 2B. For example, in the base portion 20B, among the light beams IL31 heading toward the second region 222B, a part of the light beams IL32 is reflected in the direction of the light extraction surface 21B by the second region 222B having a prism function.
 そして、基部20B内から光取出面21Bへ向かう光線IL32のうち、一部の光線IL33は光取出面21B外へ放射される。また、基部20B内から光取出面21Bへ向かう光線IL32のうち、一部の光線IL34は光取出面21Bにより反射され、基部20Bの裏面側へ放射される。 Of the light beams IL32 that travel from the base 20B toward the light extraction surface 21B, some of the light beams IL33 are emitted outside the light extraction surface 21B. In addition, among the light beams IL32 that travel from the base portion 20B toward the light extraction surface 21B, some of the light beams IL34 are reflected by the light extraction surface 21B and emitted to the back surface side of the base portion 20B.
 また、例えば、基部20B内において第2領域222Bに向かう光線IL31のうち、一部の光線IL35は、プリズム機能を有する第2領域222Bの一面から外部へ放射され、第2領域222Bの他面により反射され基部20Bの裏面側へ放射される。また、例えば、基部20B内から第2領域222Bに向かう光線IL36は、第2領域222Bを通過して光線IL37として基部20Bの裏面側へ放射される。このように、光学部材2Bにおいては、実施形態に係る光学部材2よりも基部20Bの裏面側へ放射される光を抑制することが難しいため、面状照明装置100に用いる光学部材としては、光学部材2のほうが光学部材2Bよりも好適である。 In addition, for example, among the light beams IL31 that travel toward the second region 222B in the base portion 20B, some of the light beams IL35 are radiated to the outside from one surface of the second region 222B having a prism function, and are transmitted by the other surface of the second region 222B. It is reflected and emitted to the back side of the base 20B. Further, for example, the light beam IL36 traveling from the inside of the base portion 20B toward the second region 222B passes through the second region 222B and is radiated to the back surface side of the base portion 20B as the light beam IL37. Thus, in the optical member 2B, since it is difficult to suppress the light radiated to the back surface side of the base 20B than the optical member 2 according to the embodiment, the optical member used for the planar illumination device 100 is optical. The member 2 is more preferable than the optical member 2B.
(変形例4)
 上述した例においては、例えば面状照明装置1の光取出面21のように、発光面(光取出面)が平面である場合を示したが、発光面(光取出面)は平面に限らず目的に応じて種々の形状に形成されてもよい。例えば、面状照明装置における導光板(光学部材)の導光方向、すなわち発光面(光取出面)の断面形状は長方形だけでなく、ピラミッド型、逆ピラミッド型、樽型、逆樽型でもいい。この点について、図9を用いて説明する。図9は、変形例4に係る面状照明装置を示す側面図である。具体的には、図9は、発光面(光取出面)の断面形状がかまぼこ状に形成された光学部材2Cを示す側面図である。なお、図9では、表面の形状が変形した例を示すが、変形は裏面に施されてもよいし、表面と裏面の両面に施されてもよい。
(Modification 4)
In the above-described example, the case where the light emitting surface (light extraction surface) is a flat surface, such as the light extraction surface 21 of the planar lighting device 1, is illustrated. However, the light emission surface (light extraction surface) is not limited to a flat surface. It may be formed in various shapes depending on the purpose. For example, the light guide direction of the light guide plate (optical member) in the surface illumination device, that is, the cross-sectional shape of the light emitting surface (light extraction surface) is not limited to a rectangle, but may be a pyramid shape, an inverted pyramid shape, a barrel shape, or an inverted barrel shape. . This point will be described with reference to FIG. FIG. 9 is a side view showing a planar illumination device according to Modification 4. Specifically, FIG. 9 is a side view showing the optical member 2C in which the cross-sectional shape of the light emitting surface (light extraction surface) is formed in a kamaboko shape. Although FIG. 9 shows an example in which the shape of the front surface is deformed, the deformation may be applied to the back surface, or may be applied to both the front surface and the back surface.
 面状照明装置1Cの光学部材2Cは、光取出面21Cが長手方向の中央部に向かうにつれて高さが高くなるかまぼこ状に形成された透明体である基部20Cを有する。例えば、基部20Cは、光学部材2の基部20と同様に光透過性を有する材料により形成される。光学部材2Cの光取出面21Cの裏面には、プリズム部22Cが形成される。プリズム部22Cは、所定の方向に並んで形成される。例えば、プリズム部22Cは、基部20Cの長手方向(図9中の左右方向)に並んで形成される。光源部3は、光学部材2Cの基部20Cの側面23C、24Cに沿って配置される。 The optical member 2C of the planar illumination device 1C has a base portion 20C that is a transparent body formed in a semi-cylindrical shape whose height increases as the light extraction surface 21C moves toward the central portion in the longitudinal direction. For example, the base portion 20 </ b> C is formed of a light transmissive material like the base portion 20 of the optical member 2. A prism portion 22C is formed on the back surface of the light extraction surface 21C of the optical member 2C. The prism portions 22C are formed side by side in a predetermined direction. For example, the prism portion 22C is formed side by side in the longitudinal direction of the base portion 20C (the left-right direction in FIG. 9). The light source unit 3 is disposed along the side surfaces 23C and 24C of the base 20C of the optical member 2C.
(変形例5)
 次に、図10及び図11を用いて、面状照明装置1Dの構成の概要を説明する。図10は、変形例5に係る面状照明装置を示す正面図である。図11は、変形例5に係る面状照明装置を示す側面図である。
(Modification 5)
Next, the outline of the configuration of the planar illumination device 1D will be described with reference to FIGS. 10 and 11. FIG. 10 is a front view showing a planar lighting device according to Modification 5. FIG. 11 is a side view showing a planar lighting device according to Modification 5.
 図10に示すように、面状照明装置1Dは、光学部材2Dと、光源部3Dとを有する。 As shown in FIG. 10, the planar illumination device 1 </ b> D includes an optical member 2 </ b> D and a light source unit 3 </ b> D.
 光学部材2Dは、平板状に形成された透明体である基部20Dを有する。例えば、基部20Dは、光学部材2の基部20と同様に光透過性を有する材料により形成される。 The optical member 2D has a base portion 20D that is a transparent body formed in a flat plate shape. For example, the base portion 20 </ b> D is formed of a light-transmitting material like the base portion 20 of the optical member 2.
 また、図11に示すように、光学部材2Dの光取出面21Dの裏面には、プリズム部22Dが形成される。プリズム部22Dは、所定の方向に並んで形成される。例えば、プリズム部22Dは、基部20Dの長手方向(図11中の左右方向)に並んで形成される。プリズム部22Dは、プリズム部22やプリズム部22Aやプリズム部22Bと同様の形状に形成されてもよい。すなわち、プリズム部22Dは、所望の配光条件を満たせば、どのような形状に形成されてもよい。 Further, as shown in FIG. 11, a prism portion 22D is formed on the back surface of the light extraction surface 21D of the optical member 2D. The prism portions 22D are formed side by side in a predetermined direction. For example, the prism portion 22D is formed side by side in the longitudinal direction of the base portion 20D (the left-right direction in FIG. 11). The prism portion 22D may be formed in the same shape as the prism portion 22, the prism portion 22A, and the prism portion 22B. That is, the prism portion 22D may be formed in any shape as long as a desired light distribution condition is satisfied.
 光源部3Dは、保持部材30Dと、例えばLED等である光源31Dと、入光素子32Dとを有する。光源部3Dは、光学部材2Dの基部20Dの側面23D、24Dに沿って配置される。例えば、光源部3Dは、光学部材2Dの両端部に一対設けられる。例えば、一対の保持部材30Dは、両側から光学部材2Dを保持する。図10では、光源部3Dは、基部20Dの長手方向における光学部材2Dの両端部に一対設けられ、光学部材2Dを保持する。また、各保持部材30Dは、光源31D及び入光素子32Dを各々保持する。なお、図10では、光源31D及び入光素子32Dが正面視において露出した状態を図示するが、光源31D及び入光素子32Dは、光学部材2Dに対して所定の位置に配置されれば、例えば、保持部材30Dにより覆われてもよい。また、光学部材2Dは、側面23D、24D付近を保持部材30Dに覆われることにより、保持部材30Dに保持されてもよい。 The light source unit 3D includes a holding member 30D, a light source 31D such as an LED, and a light incident element 32D. The light source unit 3D is disposed along the side surfaces 23D and 24D of the base 20D of the optical member 2D. For example, the light source unit 3D is provided as a pair at both ends of the optical member 2D. For example, the pair of holding members 30D holds the optical member 2D from both sides. In FIG. 10, a pair of light sources 3D is provided at both ends of the optical member 2D in the longitudinal direction of the base 20D, and holds the optical member 2D. Each holding member 30D holds the light source 31D and the light incident element 32D. 10 illustrates a state in which the light source 31D and the light incident element 32D are exposed in a front view. However, if the light source 31D and the light incident element 32D are disposed at predetermined positions with respect to the optical member 2D, for example, The cover member 30D may be covered. The optical member 2D may be held by the holding member 30D by covering the vicinity of the side surfaces 23D and 24D with the holding member 30D.
 各光源部3Dには、入光素子32Dの長手方向(図10中では上下方向)から入光素子32Dを挟む位置に光源31Dが各々設けられる。例えば、2つの光源31Dは、入光素子32Dの側端部から入光素子32D内に光を入光するように配置される。なお、光源31Dは、1つだけ用いられてもよく、光源31Dは、入光素子32Dの側端部の一方から入光素子32D内に光を入光するように配置されてもよい。 Each light source section 3D is provided with a light source 31D at a position sandwiching the light incident element 32D from the longitudinal direction (vertical direction in FIG. 10) of the light incident element 32D. For example, the two light sources 31D are arranged so that light enters the light incident element 32D from the side end of the light incident element 32D. Note that only one light source 31D may be used, and the light source 31D may be arranged so that light enters the light incident element 32D from one of the side end portions of the light incident element 32D.
 例えば、入光素子32Dは、点状光源である光源31Dから放射される光を線状光源の光に変換する機能を有する。例えば、入光素子32Dは、入光素子32と同様に、光透過性を有する材料により形成される。また、入光素子32Dは、いわゆるライトバーであってもよい。入光素子32Dは、長手方向に交差する一面を光学部材2Dへ向けて設けられる。入光素子32Dは、基部20Dの側面23D、24Dに一面を対向させて設けられる。例えば、図10中の左側の光源部3Dにおいて、入光素子32Dは、基部20Dの側面23Dに沿って設けられる。また、図10中の左側の光源部3Dにおいて、入光素子32Dは、基部20Dの側面23Dに一面を対向させて設けられる。例えば、図10中の右側の光源部3Dにおいて、入光素子32Dは、基部20Dの側面24Dに沿って設けられる。また、図10中の右側の光源部3Dにおいて、入光素子32Dは、基部20Dの側面24Dに一面を対向させて設けられる。 For example, the light incident element 32D has a function of converting light emitted from the light source 31D, which is a point light source, into light of a linear light source. For example, the light incident element 32 </ b> D is formed of a light transmissive material like the light incident element 32. The light incident element 32D may be a so-called light bar. The light incident element 32D is provided with one surface intersecting the longitudinal direction facing the optical member 2D. The light incident element 32D is provided with one surface facing the side surfaces 23D and 24D of the base portion 20D. For example, in the light source unit 3D on the left side in FIG. 10, the light incident element 32D is provided along the side surface 23D of the base 20D. Further, in the light source unit 3D on the left side in FIG. 10, the light incident element 32D is provided with one surface facing the side surface 23D of the base 20D. For example, in the light source unit 3D on the right side in FIG. 10, the light incident element 32D is provided along the side surface 24D of the base unit 20D. Further, in the light source unit 3D on the right side in FIG. 10, the light incident element 32D is provided with one surface facing the side surface 24D of the base 20D.
 また、入光素子32Dにおける側面23D、24Dに対向する面の反対面321D(以下、「反射面321D」ともいう)には、所定の光学的制御を行う機構が設けられる。例えば、入光素子32Dの反射面321Dは、入光素子32Dの側端部から入光した光を光学部材2Dの方向へ配光制御する機能を有する。例えば、入光素子32Dにおける反射面321Dは、粗面化加工を施し微小な凹凸が形成され、光散乱機能を有する部分と、粗面化加工を施さない部分とを含んでもよい。また、例えば、入光素子32Dにおける反射面321Dには、プリズムが配置されてもよい。なお、入光素子32Dにおける反射面321Dは、入光素子32Dの側端部から入光した光を光学部材2Dの方向へ配光可能であれば、どのような構成であってもよい。 In addition, a mechanism for performing predetermined optical control is provided on a surface 321D (hereinafter also referred to as “reflecting surface 321D”) opposite to the surfaces facing the side surfaces 23D and 24D of the light incident element 32D. For example, the reflecting surface 321D of the light incident element 32D has a function of controlling the light distribution of the light incident from the side end of the light incident element 32D in the direction of the optical member 2D. For example, the reflection surface 321D of the light incident element 32D may include a portion that is roughened to form minute irregularities, has a light scattering function, and a portion that is not roughened. In addition, for example, a prism may be disposed on the reflection surface 321D of the light incident element 32D. The reflection surface 321D of the light incident element 32D may have any configuration as long as light incident from the side end of the light incident element 32D can be distributed in the direction of the optical member 2D.
 また、入光素子32Dにおいて基部20Dの側面23D、24Dと対向する面、すなわち入光素子32Dの反射面321Dの反対面322Dには、所定の配光部材が設けられてもよい。例えば、入光素子32Dにおいて基部20Dの側面23D、24Dと対向する面には、配光部材としてレンチキュラレンズや拡散素子やプリズムやTIR-フレネルレンズが設けられてもよい。なお、入光素子32Dは、基部20Dの側面23D、24Dに連続してもよい。例えば、入光素子32Dは、基部20Dと一体形成されてもよい。 Further, a predetermined light distribution member may be provided on a surface of the light incident element 32D that faces the side surfaces 23D and 24D of the base 20D, that is, a surface 322D opposite to the reflective surface 321D of the light incident element 32D. For example, a lenticular lens, a diffusing element, a prism, or a TIR-Fresnel lens may be provided as a light distribution member on the surface of the light incident element 32D that faces the side surfaces 23D and 24D of the base 20D. The light incident element 32D may be continuous with the side surfaces 23D and 24D of the base portion 20D. For example, the light incident element 32D may be integrally formed with the base 20D.
 また、入光素子32Dの幅は、基部20Dの短手方向の幅以上であることが望ましい。これにより、面状照明装置1Dは、光学部材2Dの側面23D、24Dの短手方向の全体に亘って入光素子32Dからの光が照射されるため、より均一に基部20Dの光取出面21Dから光を放射することができる。 Further, the width of the light incident element 32D is preferably equal to or larger than the width of the base portion 20D in the short direction. Thereby, since the planar illumination device 1D is irradiated with the light from the light incident element 32D over the entire lateral direction of the side surfaces 23D and 24D of the optical member 2D, the light extraction surface 21D of the base 20D is more evenly distributed. Can emit light.
(変形例6)
 次に、図12を用いて、面状照明装置1Eの構成の概要を説明する。図12は、変形例6に係る面状照明装置の要部を示す正面図である。面状照明装置1Eは、各光源311E、312Eに対応する数の入光素子32E、33Eを用いる点で面状照明装置1Dと相違する。その他の点については、変形例5における面状照明装置1Dと同様であるので、面状照明装置1Dの説明中の「**D」を「**E」と読み替えるものとする。例えば、入光素子32Eは、複数積層されてもよいし、楔状に形成されて光源31Eを片辺に配置してもよい。
(Modification 6)
Next, the outline of the configuration of the planar illumination device 1E will be described with reference to FIG. FIG. 12 is a front view showing a main part of a planar lighting device according to Modification 6. The planar illumination device 1E is different from the planar illumination device 1D in that the number of light incident elements 32E and 33E corresponding to the light sources 311E and 312E is used. Since the other points are the same as those of the planar illumination device 1D in the modified example 5, “** D” in the description of the planar illumination device 1D is replaced with “** E”. For example, a plurality of light incident elements 32E may be stacked, or may be formed in a wedge shape and the light source 31E may be arranged on one side.
 図12に示すように、面状照明装置1Eは、光学部材2Eと、光源部3Eとを有する。 As shown in FIG. 12, the planar illumination device 1E includes an optical member 2E and a light source unit 3E.
 光学部材2Eは、平板状に形成された透明体である基部20Eを有する。例えば、基部20Eは、光学部材2の基部20と同様に光透過性を有する材料により形成される。また、光学部材2Eの光取出面21Eの裏面には、プリズム部(図示省略)が形成される。プリズム部は、プリズム部22やプリズム部22Aやプリズム部22Bと同様の形状に形成されてもよい。すなわち、プリズム部は、所望の配光条件を満たせば、どのような形状に形成されてもよい。 The optical member 2E has a base portion 20E that is a transparent body formed in a flat plate shape. For example, the base portion 20 </ b> E is formed of a light transmissive material like the base portion 20 of the optical member 2. Further, a prism portion (not shown) is formed on the back surface of the light extraction surface 21E of the optical member 2E. The prism portion may be formed in the same shape as the prism portion 22, the prism portion 22A, and the prism portion 22B. In other words, the prism portion may be formed in any shape as long as a desired light distribution condition is satisfied.
 光源部3Eは、保持部材30Eと、2つの光源311E、312Eと、その各々に対応する2つの入光素子32E、33Eとを有する。例えば、光源部3Eは、光学部材2Eの両端部に一対設けられる。図12では、光源部3Eは、光学部材2Eの基部20Eの側面23Eに沿って配置される場合を示す。 The light source unit 3E includes a holding member 30E, two light sources 311E and 312E, and two light incident elements 32E and 33E corresponding to the light sources 311E and 312E, respectively. For example, the light source unit 3E is provided as a pair at both ends of the optical member 2E. In FIG. 12, the light source part 3E shows the case where it arrange | positions along the side surface 23E of the base 20E of the optical member 2E.
 入光素子32Eは、基部20Eの短手方向に沿って、基部20Eの側面23Eに一面を向けて設けられる。例えば、入光素子32Eは、基部20Eの短手方向に沿って一方向に向かうにつれて、厚みが薄くなるように配置される。図12では、入光素子32Eは、基部20Eの短手方向に沿って上から下に向かうにつれて、厚みが薄くなるように配置される。 The light incident element 32E is provided along the short side direction of the base portion 20E with the one surface facing the side surface 23E of the base portion 20E. For example, the light incident element 32E is arranged so that the thickness decreases as it goes in one direction along the short direction of the base 20E. In FIG. 12, the light incident element 32E is arranged so that the thickness decreases as it goes from top to bottom along the short direction of the base 20E.
 また、入光素子33Eは、入光素子32Eと基部20Eとの間に配置され、基部20Eの短手方向に沿って、基部20Eの側面23Eに一面を対向させて設けられる。例えば、入光素子33Eは、基部20Eの短手方向に沿って一方向に向かうにつれて、厚みが薄くなるように配置される。図12では、入光素子33Eは、基部20Eの短手方向に沿って下から上に向かうにつれて、厚みが薄くなるように配置される。 Further, the light incident element 33E is disposed between the light incident element 32E and the base portion 20E, and is provided so as to face one side of the side surface 23E of the base portion 20E along the short direction of the base portion 20E. For example, the light incident element 33E is arranged so that the thickness decreases as it goes in one direction along the short direction of the base 20E. In FIG. 12, the light incident element 33 </ b> E is arranged so that the thickness decreases as it goes from the bottom to the top along the short direction of the base portion 20 </ b> E.
 また、入光素子32Eにおける側面23Eに臨む面の反対面321E(以下、「反射面321E」ともいう)には、所定の光学的制御を行う機構が設けられる。例えば、入光素子32Eの反射面321Eは、入光素子32Eの側端部から入光した光を光学部材2Eの方向へ配光制御する機能を有する。例えば、入光素子32Eにおける反射面321Eは、入光素子32Dの反射面321Dと同様に形成される。なお、入光素子32Eにおける反射面321Eは、入光素子32Eの側端部から入光した光を光学部材2Eの方向へ配光可能であれば、どのような構成であってもよい。 Further, a mechanism for performing predetermined optical control is provided on a surface 321E opposite to the surface facing the side surface 23E of the light incident element 32E (hereinafter also referred to as “reflecting surface 321E”). For example, the reflecting surface 321E of the light incident element 32E has a function of controlling the light distribution from the side end of the light incident element 32E in the direction of the optical member 2E. For example, the reflection surface 321E of the light incident element 32E is formed in the same manner as the reflection surface 321D of the light incident element 32D. The reflection surface 321E of the light incident element 32E may have any configuration as long as light incident from the side end of the light incident element 32E can be distributed in the direction of the optical member 2E.
 また、入光素子33Eにおける側面23Eに臨む面の反対面331E(以下、「反射面331E」ともいう)には、反射面321Eと同様に、所定の光学的制御を行う機構が設けられる。例えば、入光素子33Eの反射面331Eは、入光素子33Eの側端部から入光した光を光学部材2Eの方向へ配光制御する機能を有する。 Also, on the surface 331E opposite to the surface facing the side surface 23E of the light incident element 33E (hereinafter, also referred to as “reflection surface 331E”), a mechanism for performing predetermined optical control is provided in the same manner as the reflection surface 321E. For example, the reflection surface 331E of the light incident element 33E has a function of controlling light distribution from the side end of the light incident element 33E in the direction of the optical member 2E.
 なお、上述した面状照明装置1は、自動車のハイマウントライトに用いられてもよい。例えば、面状照明装置1は、自動車のリアウインドに取り付けられてもよい。また、光学部材2は、自動車用に限定されず、裏面からの発光を抑制する必要のある面状照明装置に用いられてもよい。 Note that the above-described planar illumination device 1 may be used for a high-mount light of an automobile. For example, the planar lighting device 1 may be attached to the rear window of an automobile. Moreover, the optical member 2 is not limited to the object for automobiles, and may be used for a planar lighting device that needs to suppress light emission from the back surface.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 1  面状照明装置
 2  光学部材
 20 基部
 21 光取出面
 22 プリズム部
 221 第1領域
 222 第2領域
 23 側面
 24 側面
 3  光源部
 30 保持部材
 31 光源
 32 入光素子
 321 入光面
DESCRIPTION OF SYMBOLS 1 Planar illuminating device 2 Optical member 20 Base 21 Light extraction surface 22 Prism part 221 1st area | region 222 2nd area | region 23 Side surface 24 Side surface 3 Light source part 30 Holding member 31 Light source 32 Light incident element 321 Light incident surface

Claims (20)

  1.  平板状に形成された透明体である基部と、
     前記基部の厚み方向の一方側に形成され所定の方向に並ぶプリズム部であって、前記所定の方向に沿う断面において前記基部の厚み方向が直交する面に対する傾斜角度が0度以上8度以内である第1領域に、プリズム形状を有する第2領域が連続し、前記所定の方向の長さにおける前記第1領域の割合が60%以上100%未満であるプリズム部と、
     を備える、光学部材。
    A base which is a transparent body formed in a flat plate shape;
    A prism portion formed on one side in the thickness direction of the base portion and arranged in a predetermined direction, wherein an inclination angle with respect to a plane perpendicular to the thickness direction of the base portion in a cross section along the predetermined direction is 0 degree or more and 8 degrees or less A prism portion in which a second region having a prism shape is continuous with a certain first region, and a ratio of the first region in a length in the predetermined direction is 60% or more and less than 100%;
    An optical member comprising:
  2.  前記プリズム部の前記第1領域の傾斜角度が0度以上4度以内である請求項1に記載の光学部材。 The optical member according to claim 1, wherein an inclination angle of the first region of the prism portion is 0 degree or more and 4 degrees or less.
  3.  前記所定の方向の長さにおける前記プリズム部の前記第1領域の割合が75%以上100%未満である請求項1または請求項2に記載の光学部材。 The optical member according to claim 1 or 2, wherein a ratio of the first region of the prism portion in the length in the predetermined direction is 75% or more and less than 100%.
  4.  前記プリズム部の前記所定の方向の長さが、40μm以上500μm以下である請求項1~3のいずれか1項に記載の光学部材。 4. The optical member according to claim 1, wherein a length of the prism portion in the predetermined direction is not less than 40 μm and not more than 500 μm.
  5.  前記プリズム部の前記所定の方向の長さが、80μm以上250μm以下である請求項4に記載の光学部材。 The optical member according to claim 4, wherein a length of the prism portion in the predetermined direction is not less than 80 μm and not more than 250 μm.
  6.  前記所定の方向に沿う断面において、一のプリズム部の第1領域は、前記基部の厚み方向における第1の高さから前記第1の高さより高い第2の高さまで延びる形状を有し、前記一のプリズム部の第2領域は、前記第2の高さにおいて一端部が前記第1領域に連続し、前記第1の高さまで延びる形状を有し、前記第1の高さにおいて他端部が他のプリズム部の第1領域に連続する請求項1~5のいずれか1項に記載の光学部材。 In the cross section along the predetermined direction, the first region of one prism portion has a shape extending from a first height in the thickness direction of the base portion to a second height higher than the first height, The second region of one prism portion has a shape in which one end portion is continuous with the first region at the second height and extends to the first height, and the other end portion at the first height. 6. The optical member according to claim 1, wherein is continuous with the first region of the other prism portion.
  7.  請求項1~6のいずれか1項に記載の光学部材と、
     前記光学部材の前記基部の一側面に沿って配置される光源部と、
     を備える、面状照明装置。
    The optical member according to any one of claims 1 to 6,
    A light source portion disposed along one side surface of the base portion of the optical member;
    A planar lighting device.
  8.  前記光源部において輝度が均一となる領域の幅は、前記基部の前記一側面の幅以上である請求項7に記載の面状照明装置。 The planar illumination device according to claim 7, wherein a width of a region where the luminance is uniform in the light source unit is equal to or greater than a width of the one side surface of the base portion.
  9.  前記光学部材は、前記基部の光取出面の裏面に前記プリズム部が形成され、
     前記光取出面の輝度の前記裏面の輝度に対する比率である輝度比が20以上である請求項7または8に記載の面状照明装置。
    The optical member has the prism portion formed on the back surface of the light extraction surface of the base,
    The planar illumination device according to claim 7 or 8, wherein a luminance ratio, which is a ratio of the luminance of the light extraction surface to the luminance of the back surface, is 20 or more.
  10.  前記基部の前記光取出面の正反射率は1.6%以下である請求項9に記載の面状照明装置。 The planar illumination device according to claim 9, wherein the regular reflectance of the light extraction surface of the base is 1.6% or less.
  11.  前記基部の前記光取出面側には、前記基部内への反射を抑制する低反射部が設けられる請求項10に記載の面状照明装置。 The planar illumination device according to claim 10, wherein a low reflection portion that suppresses reflection into the base portion is provided on the light extraction surface side of the base portion.
  12.  前記基部の前記光取出面の正反射率は0.8%以下である請求項10または請求項11に記載の面状照明装置。 The planar illumination device according to claim 10 or 11, wherein the regular reflectance of the light extraction surface of the base is 0.8% or less.
  13.  前記基部の前記光取出面の正反射率は0.4%以下である請求項12に記載の面状照明装置。 The planar illumination device according to claim 12, wherein the regular reflectance of the light extraction surface of the base is 0.4% or less.
  14.  前記光取出面の輝度の前記裏面の輝度に対する前記輝度比が40以上である請求項9~13のいずれか1項に記載の面状照明装置。 The planar illumination device according to any one of claims 9 to 13, wherein the luminance ratio of the luminance of the light extraction surface to the luminance of the back surface is 40 or more.
  15.  前記基部の前記裏面側には、前記裏面側への光の放射を抑制する輝度抑制部が設けられる請求項14に記載の面状照明装置。 The planar illumination device according to claim 14, wherein a luminance suppression unit that suppresses light emission to the back side is provided on the back side of the base.
  16.  前記光取出面の輝度の前記裏面の輝度に対する前記輝度比が100以上である請求項14または15に記載の面状照明装置。 The planar illumination device according to claim 14 or 15, wherein the luminance ratio of the luminance of the light extraction surface to the luminance of the back surface is 100 or more.
  17.  前記輝度比は、前記光取出面側の正面輝度の前記裏面側の正面輝度に対する比率である請求項9~16のいずれか1項に記載の面状照明装置。 The planar illumination device according to any one of claims 9 to 16, wherein the luminance ratio is a ratio of a front luminance on the light extraction surface side to a front luminance on the back surface side.
  18.  平板状に形成された透明体である基部の一面にプリズム加工が施されるプリズム領域とプリズム加工が施されない非プリズム領域とを含む光学部材の加工方法であって、
     前記一面にプリズム加工が施されていない光学部材に後加工により前記プリズム領域を形成することにより前記光学部材の前記プリズム領域にプリズム加工を施す加工方法。
    A method of processing an optical member including a prism region where prism processing is performed on one surface of a base portion which is a flat plate-shaped transparent body and a non-prism region where prism processing is not performed,
    A processing method of performing prism processing on the prism region of the optical member by forming the prism region by post-processing on an optical member that is not subjected to prism processing on the one surface.
  19.  平板状に形成された透明体である基部の一面にプリズム加工が施されるプリズム領域とプリズム加工が施されない非プリズム領域とを含む光学部材の加工方法であって、
     前記一面にプリズム加工が施されている光学部材に後加工によりプリズム加工を除去することにより前記非プリズム領域を形成することにより、
    前記光学部材の前記プリズム領域にプリズム加工を施す加工方法。
    A method of processing an optical member including a prism region where prism processing is performed on one surface of a base portion which is a flat plate-shaped transparent body and a non-prism region where prism processing is not performed,
    By forming the non-prism region by removing the prism processing by post-processing on the optical member on which the one surface is subjected to prism processing,
    A processing method for performing prism processing on the prism region of the optical member.
  20.  平板状に形成された透明体である基部の一面にプリズム加工が施されるプリズム領域とプリズム加工が施されない非プリズム領域とを含む光学部材の加工方法であって、
     前記一面に前記非プリズム領域をプリズム加工が施される領域の高さよりも低く生成された光学部材に後加工により前記プリズム領域を形成することにより、
    前記光学部材の前記プリズム領域にプリズム加工を施す加工方法。
    A method of processing an optical member including a prism region where prism processing is performed on one surface of a base portion which is a flat plate-shaped transparent body and a non-prism region where prism processing is not performed,
    By forming the non-prism area on the one surface by forming the prism area by post-processing on an optical member generated lower than the height of the area where the prism processing is performed,
    A processing method for performing prism processing on the prism region of the optical member.
PCT/JP2017/012698 2016-04-15 2017-03-28 Optical member, planar lighting device, and machining method WO2017179418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017002033.6T DE112017002033T5 (en) 2016-04-15 2017-03-28 Optical element, planar lighting device and processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016082054 2016-04-15
JP2016082055 2016-04-15
JP2016-082054 2016-04-15
JP2016-082055 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179418A1 true WO2017179418A1 (en) 2017-10-19

Family

ID=60041569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012698 WO2017179418A1 (en) 2016-04-15 2017-03-28 Optical member, planar lighting device, and machining method

Country Status (2)

Country Link
DE (1) DE112017002033T5 (en)
WO (1) WO2017179418A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081997A (en) * 2009-10-06 2011-04-21 Panasonic Corp Light guide body, lighting system and original reading device equipped with the same, die for manufacturing the light guide body, and method of manufacturing the die
WO2011115124A1 (en) * 2010-03-17 2011-09-22 三菱レイヨン株式会社 Surface light source device, light guide element used for surface light source device, and method for producing light guide element
JP2012164511A (en) * 2011-01-21 2012-08-30 Hitachi Chemical Co Ltd Light guide plate and planar light source device
JP2013118139A (en) * 2011-12-05 2013-06-13 Sharp Corp Lighting device, display device, and television receiver
JP2013164921A (en) * 2012-02-09 2013-08-22 Minebea Co Ltd Planar lighting device
WO2016035611A1 (en) * 2014-09-03 2016-03-10 シャープ株式会社 Liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334974B2 (en) 2014-03-19 2018-05-30 スタンレー電気株式会社 Light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081997A (en) * 2009-10-06 2011-04-21 Panasonic Corp Light guide body, lighting system and original reading device equipped with the same, die for manufacturing the light guide body, and method of manufacturing the die
WO2011115124A1 (en) * 2010-03-17 2011-09-22 三菱レイヨン株式会社 Surface light source device, light guide element used for surface light source device, and method for producing light guide element
JP2012164511A (en) * 2011-01-21 2012-08-30 Hitachi Chemical Co Ltd Light guide plate and planar light source device
JP2013118139A (en) * 2011-12-05 2013-06-13 Sharp Corp Lighting device, display device, and television receiver
JP2013164921A (en) * 2012-02-09 2013-08-22 Minebea Co Ltd Planar lighting device
WO2016035611A1 (en) * 2014-09-03 2016-03-10 シャープ株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
DE112017002033T5 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP5779590B2 (en) Automotive signal lamp device
JP6560514B2 (en) Vehicle lighting
JP5911397B2 (en) Vehicle headlamp
JP6709095B2 (en) Vehicle lighting
US10174902B2 (en) Vehicle lighting fixture
JP5581824B2 (en) Vehicle lighting
JP2014007014A (en) Lighting appliance for vehicle
KR20130011779A (en) Lamp assembly
JP3176743U (en) High-mount stop lamp for vehicles
JP5707661B2 (en) VEHICLE LIGHT UNIT AND LIGHT GUIDE USED FOR VEHICLE LIGHT
JP2009032564A (en) Vehicular lamp, and light guide lens used in vehicular lamp
JP6948156B2 (en) Vehicle lighting
JP2014038733A (en) Lamp for vehicle
JP2004103503A (en) Light guide body and lamp for vehicle having the light guide body
JP2014063736A (en) Light device with three-dimentional effect for motor vehicle
JP6484096B2 (en) Vehicle light guide, vehicle lamp
JP2015221637A (en) Exterior lighting unit
JP2012064534A (en) Vehicle lighting fixture
JP2019204729A (en) Vehicular lighting fixture
JP5708991B2 (en) Vehicle lamp and light guide lens used in vehicle lamp
TWM611948U (en) Vehicle lamp device
WO2017179418A1 (en) Optical member, planar lighting device, and machining method
JP5773189B2 (en) Lamp
JP2017195177A (en) Planar luminaire
JP2017204367A (en) Planar illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782236

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782236

Country of ref document: EP

Kind code of ref document: A1