JP2017204367A - Planar illumination device - Google Patents

Planar illumination device Download PDF

Info

Publication number
JP2017204367A
JP2017204367A JP2016094880A JP2016094880A JP2017204367A JP 2017204367 A JP2017204367 A JP 2017204367A JP 2016094880 A JP2016094880 A JP 2016094880A JP 2016094880 A JP2016094880 A JP 2016094880A JP 2017204367 A JP2017204367 A JP 2017204367A
Authority
JP
Japan
Prior art keywords
light
base
light source
illumination device
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016094880A
Other languages
Japanese (ja)
Inventor
山田 敦
Atsushi Yamada
山田  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2016094880A priority Critical patent/JP2017204367A/en
Publication of JP2017204367A publication Critical patent/JP2017204367A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase a visual effect.SOLUTION: A planar illumination device includes an optical member and a light source part. The optical member has a base formed like a flat plate. The light source part is arranged along a side face of the base of the optical member. In the brightness distribution, in the base, of light incoming from a light source part, a boundary between a bright area and a dark area is inclined with respect to a line orthogonal to the side face.SELECTED DRAWING: Figure 1

Description

本発明は、面状照明装置に関する。   The present invention relates to a planar lighting device.

従来、自動車のハイマウントストップライト等に用いられる面状照明装置が提供されている。このような面状照明装置では、配光制御のため、例えば光源、ミラー、及びレンズが用いられる場合がある。   2. Description of the Related Art Conventionally, planar illumination devices used for automobile high-mount stoplights and the like have been provided. In such a planar illumination device, for example, a light source, a mirror, and a lens may be used for light distribution control.

また、視覚効果を高めるために、光の出射面を観測する観測者の出射面における2つの地点から出射された光に対する両目の視差を利用した立体表示が可能となるよう、光学部材を形成する技術が知られている。   In order to enhance the visual effect, the optical member is formed so that stereoscopic display using the parallax of both eyes with respect to light emitted from two points on the exit surface of the observer observing the light exit surface is possible. Technology is known.

特開2015−87769号公報JP-A-2015-87769

しかしながら、上記した従来技術では、観測者の両目の視差を利用するため、例えば、観測者の位置によっては立体表示されない場合があり、また、例えば、観測者が出射面を片目で観測した場合は立体表示されない。すなわち、従来の面状照明装置は、視覚効果を高める点について改良の余地がある。   However, in the above-described conventional technology, since the parallax of the observer's eyes is used, for example, the stereoscopic display may not be performed depending on the position of the observer, and for example, when the observer observes the emission surface with one eye It is not displayed in 3D. That is, the conventional planar lighting device has room for improvement in terms of enhancing the visual effect.

本発明は、上記に鑑みてなされたものであって、視覚効果を高めることができる面状照明装置を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the planar illuminating device which can improve a visual effect.

上述した課題を解決し、目的を達成するために、本発明の一態様に係る面状照明装置は、平板状に形成された基部を有する光学部材と、前記光学部材の前記基部の側面に沿って配置される光源部とを備え、前記光源部から入光された光の前記基部における輝度分布において、明部と暗部の境界が前記側面と直交する線に対して傾斜する。   In order to solve the above-described problems and achieve the object, a planar illumination device according to one aspect of the present invention includes an optical member having a base formed in a flat plate shape, and a side surface of the base of the optical member. In the luminance distribution in the base portion of the light incident from the light source portion, the boundary between the bright portion and the dark portion is inclined with respect to a line orthogonal to the side surface.

本発明の一態様によれば、視覚効果を高めることができる。   According to one embodiment of the present invention, the visual effect can be enhanced.

図1は、実施形態に係る面状照明装置を示す正面図である。FIG. 1 is a front view showing a planar illumination device according to the embodiment. 図2は、実施形態に係る面状照明装置を示す側面図である。FIG. 2 is a side view showing the planar illumination device according to the embodiment. 図3は、実施形態に係るプリズム部を示す側断面図である。FIG. 3 is a side sectional view showing the prism portion according to the embodiment. 図4は、実施形態に係る低反射部及び輝度抑制部を有する光学部材を示す側断面図である。FIG. 4 is a side sectional view showing an optical member having a low reflection portion and a luminance suppression portion according to the embodiment. 図5は、実施形態に係る面状照明装置の照明態様を示す図である。FIG. 5 is a diagram illustrating an illumination mode of the planar illumination device according to the embodiment. 図6は、実施形態に係る光取出面における輝度分布を示す図である。FIG. 6 is a diagram illustrating a luminance distribution on the light extraction surface according to the embodiment. 図7は、変形例1に係る面状照明装置を示す正面図である。FIG. 7 is a front view showing the planar illumination device according to the first modification. 図8は、変形例1に係る面状照明装置を示す側面図である。FIG. 8 is a side view showing the planar illumination device according to the first modification. 図9は、変形例1に係る面状照明装置の他の例を示す正面図である。FIG. 9 is a front view illustrating another example of the planar lighting device according to the first modification. 図10は、変形例1に係る光取出面における輝度分布を示す図である。FIG. 10 is a diagram illustrating a luminance distribution on the light extraction surface according to the first modification. 図11は、変形例2に係る面状照明装置を示す正面図である。FIG. 11 is a front view showing a planar illumination device according to the second modification. 図12は、変形例2に係る光取出面における輝度分布を示す図である。FIG. 12 is a diagram illustrating a luminance distribution on the light extraction surface according to the second modification. 図13は、変形例3−1に係る面状照明装置を示す正面図である。FIG. 13 is a front view showing a planar illumination device according to Modification 3-1. 図14は、変形例3−1に係る光取出面における輝度分布を示す図である。FIG. 14 is a diagram illustrating a luminance distribution on the light extraction surface according to Modification 3-1. 図15は、変形例3−2に係る面状照明装置を示す正面図である。FIG. 15 is a front view illustrating a planar illumination device according to Modification 3-2. 図16は、変形例3−2に係る光取出面における輝度分布を示す図である。FIG. 16 is a diagram illustrating a luminance distribution on the light extraction surface according to Modification 3-2. 図17は、変形例3−3に係る面状照明装置を示す正面図である。FIG. 17 is a front view showing a planar illumination device according to Modification 3-3. 図18は、変形例3−3に係る光取出面における輝度分布を示す図である。FIG. 18 is a diagram illustrating a luminance distribution on the light extraction surface according to Modification 3-3.

以下、実施形態に係る面状照明装置について図面を参照して説明する。なお、以下に説明する実施形態により面状照明装置の用途が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。   Hereinafter, a planar illumination device according to an embodiment will be described with reference to the drawings. Note that the application of the planar lighting device is not limited by the embodiment described below. It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included.

(実施形態)
まず、図1及び図2を用いて、面状照明装置1の構成の概要を説明する。図1は、実施形態に係る面状照明装置を示す正面図である。なお、図1中、面状照明装置1の左方に、基部の側面に焦点を合わせた状態で光源部から放射される光の輝度分布を波形で模式的に示す。図2は、実施形態に係る面状照明装置を示す側面図である。
(Embodiment)
First, the outline | summary of a structure of the planar illuminating device 1 is demonstrated using FIG.1 and FIG.2. FIG. 1 is a front view showing a planar illumination device according to the embodiment. In FIG. 1, the luminance distribution of light emitted from the light source unit in a state of focusing on the side surface of the base part is schematically shown as a waveform on the left side of the planar illumination device 1. FIG. 2 is a side view showing the planar illumination device according to the embodiment.

図1に示すように、面状照明装置1は、光学部材2と、光源部3とを備える。   As shown in FIG. 1, the planar illumination device 1 includes an optical member 2 and a light source unit 3.

光学部材2は、平板状に形成された透明体である基部20を有する。例えば、基部20は光透過性を有する材料により形成される。例えば、基部20は、アクリル樹脂やポリカーボネート等により形成されてもよい。また、例えば、基部20は、いわゆる導光板であってもよい。なお、基部20は、所望の強度や耐熱性等を有すればどのような材料により形成されてもよい。また、光学部材2において、図1に示す一面21(以下、「光取出面21」ともいう)が発光面となる。   The optical member 2 has a base 20 that is a transparent body formed in a flat plate shape. For example, the base portion 20 is formed of a light transmissive material. For example, the base 20 may be formed of acrylic resin, polycarbonate, or the like. For example, the base 20 may be a so-called light guide plate. Note that the base 20 may be formed of any material as long as it has desired strength, heat resistance, and the like. Further, in the optical member 2, one surface 21 (hereinafter also referred to as “light extraction surface 21”) illustrated in FIG. 1 is a light emitting surface.

また、図2に示すように、光学部材2の基部20には、基部20の厚み方向の一方側にプリズム部22が形成される。例えば、光学部材2の光取出面21の裏側の面(以下、「裏面」ともいう)には、プリズム部22が形成される。プリズム部22は、所定の方向に並んで形成される。例えば、プリズム部22は、基部20の長手方向(図2中の左右方向)に並んで形成される。   As shown in FIG. 2, the base portion 20 of the optical member 2 is formed with a prism portion 22 on one side in the thickness direction of the base portion 20. For example, the prism portion 22 is formed on the back surface (hereinafter also referred to as “back surface”) of the light extraction surface 21 of the optical member 2. The prism portions 22 are formed side by side in a predetermined direction. For example, the prism portion 22 is formed side by side in the longitudinal direction of the base portion 20 (left-right direction in FIG. 2).

ここで、図3を用いてプリズム部22について説明する。図3は、実施形態に係るプリズム部を示す側断面図である。プリズム部22は、所定のプリズム機能を有する形状に形成される。また、プリズム部22は、基部20の長手方向に沿う断面において基部20の厚み方向が直交する面に対する所定の傾斜角度θ1の第1領域221に、プリズム形状を有する第2領域222が連続する。なお、以下では、一のプリズム部22の第1領域221の始点となる部分の高さ、すなわち他のプリズム部22の第2領域222に、一のプリズム部22の第1領域221が連続する位置の高さを「第1の高さ」とする。また、一のプリズム部22の第1領域221と第2領域222とが連続する位置の高さを「第2の高さ」とする。   Here, the prism portion 22 will be described with reference to FIG. FIG. 3 is a side sectional view showing the prism portion according to the embodiment. The prism portion 22 is formed in a shape having a predetermined prism function. In the prism portion 22, a second region 222 having a prism shape is continuous with a first region 221 having a predetermined inclination angle θ <b> 1 with respect to a plane in which the thickness direction of the base portion 20 is orthogonal in a cross section along the longitudinal direction of the base portion 20. In the following description, the first region 221 of one prism portion 22 continues to the height of the first region 221 of one prism portion 22, that is, the second region 222 of another prism portion 22. The height of the position is defined as “first height”. In addition, the height of the position where the first region 221 and the second region 222 of one prism portion 22 are continuous is referred to as a “second height”.

なお、プリズム部22は、基部20の幅方向(以下、「短手方向」ともいう)に沿って形成されてもよいし、基部20の短手方向に対して傾斜して形成されてもよい。例えば、プリズム部22の第1領域221は、基部20の短手方向に沿って形成されてもよい。また、例えば、プリズム部22の第2領域222は、基部20の短手方向に沿って形成されてもよい。また、図3に示す例では、光取出面21が平面であり、基部20の厚み方向が直交する面であるため、以下、基部20の厚み方向が直交する面を光取出面21として説明する。   The prism portion 22 may be formed along the width direction of the base portion 20 (hereinafter, also referred to as “short direction”), or may be formed inclined with respect to the short direction of the base portion 20. . For example, the first region 221 of the prism portion 22 may be formed along the short direction of the base portion 20. Further, for example, the second region 222 of the prism portion 22 may be formed along the short direction of the base portion 20. In the example shown in FIG. 3, the light extraction surface 21 is a flat surface and the thickness direction of the base portion 20 is perpendicular to the surface. Therefore, the surface where the thickness direction of the base portion 20 is orthogonal will be described as the light extraction surface 21 hereinafter. .

例えば、プリズム部22においては、図3に示すように、基部20の長手方向に沿う断面において光取出面21に対する傾斜角度θ1が例えば0度(°)以上8度以内である第1領域221に、プリズム形状を有する第2領域222が連続する。また、図3に示すように、一のプリズム部22の第2領域222は、他のプリズム部22の第1領域221に連続する。   For example, in the prism portion 22, as shown in FIG. 3, in the first region 221 whose inclination angle θ <b> 1 with respect to the light extraction surface 21 is, for example, not less than 0 degrees (°) and not more than 8 degrees in the cross section along the longitudinal direction of the base portion 20. The second region 222 having a prism shape is continuous. Further, as shown in FIG. 3, the second region 222 of one prism portion 22 is continuous with the first region 221 of another prism portion 22.

図3に示すように、基部20の長手方向に沿う断面において、一のプリズム部22の第1領域221は、基部20の厚み方向における第1の高さから第1の高さより高い第2の高さまで延びる形状を有する。また、一のプリズム部22の第2領域222は、第2の高さにおいて一端部が第1領域221に連続し、第1の高さまで延びる形状を有し、第1の高さにおいて他端部が他のプリズム部22の第1領域221に連続する。例えば、図3中の左端のプリズム部22の第2領域222は、その隣(右側)のプリズム部22の第1領域221に連続する。なお、基部20の長手方向に沿う断面における第2領域222の光取出面21に対する傾斜角度は、所望の配光に応じて適宜設定されてもよい。   As shown in FIG. 3, in the cross section along the longitudinal direction of the base portion 20, the first region 221 of one prism portion 22 has a second height higher than the first height from the first height in the thickness direction of the base portion 20. It has a shape that extends to the height. The second region 222 of one prism portion 22 has a shape in which one end portion is continuous with the first region 221 at the second height and extends to the first height, and the other end at the first height. The portion is continuous with the first region 221 of the other prism portion 22. For example, the second region 222 of the leftmost prism portion 22 in FIG. 3 is continuous with the first region 221 of the adjacent (right) prism portion 22. In addition, the inclination angle with respect to the light extraction surface 21 of the second region 222 in the cross section along the longitudinal direction of the base 20 may be appropriately set according to a desired light distribution.

また、プリズム部22においては、基部20の長手方向の長さにおける第1領域221の割合R11が例えば60%以上100%未満である。図3に示すように、基部20の長手方向の長さにおける第1領域221の長さL11は、基部20の長手方向の長さにおけるプリズム部22全体の長さL10(以下、「構成単位長L10」ともいう)に対する割合R11が例えば60%以上100%未満である。例えば、上述した割合R11は、以下の数式(1)により算出される。   In the prism portion 22, the ratio R11 of the first region 221 in the length of the base portion 20 in the longitudinal direction is, for example, 60% or more and less than 100%. As shown in FIG. 3, the length L11 of the first region 221 in the length in the longitudinal direction of the base 20 is the length L10 of the entire prism portion 22 in the length in the longitudinal direction of the base 20 (hereinafter referred to as “structural unit length”). R11 ”) is, for example, 60% or more and less than 100%. For example, the ratio R11 described above is calculated by the following mathematical formula (1).

割合R11 = 第1領域221の長さL11/構成単位長L10 ・・・ (1)   Ratio R11 = length L11 of first region 221 / constituent unit length L10 (1)

例えば、構成単位長L10は、基部20の長手方向の長さにおける第1領域221と第2領域222との合計の長さに対応する。   For example, the structural unit length L10 corresponds to the total length of the first region 221 and the second region 222 in the length of the base 20 in the longitudinal direction.

また、プリズム部22は、プリズム部22の構成単位長L10が例えば40μm以上500μm以下になるように形成される。上述した構成により、光学部材2は、プリズム部22が形成された基部20において透明である。例えば、光学部材2は、透明であり、光源部3が非点灯状態においては、基部20の光取出面21側から裏面側を透視することができ、基部20の裏面側から光取出面21側を透視することができる。   The prism unit 22 is formed such that the structural unit length L10 of the prism unit 22 is, for example, 40 μm or more and 500 μm or less. With the configuration described above, the optical member 2 is transparent at the base portion 20 on which the prism portion 22 is formed. For example, the optical member 2 is transparent, and when the light source unit 3 is in a non-lighting state, the back surface side can be seen through from the light extraction surface 21 side of the base 20, and the light extraction surface 21 side from the back surface side of the base 20. Can be seen through.

また、図2に示すように、例えば、光学部材2の光取出面21の裏面において、プリズム加工が施されるプリズム領域(例えばプリズム部22)が形成される。例えば、プリズム領域は、基部20の長手方向にプリズム構造が並んで形成される。また、基部20の長手方向の両端部には、プリズム加工が施されない非プリズム領域(以下、「非プリズム部23」ともいう)が形成される。なお、非プリズム領域の長さは、面状照明装置1の用途等に応じて適宜設定されてもよい。   Further, as shown in FIG. 2, for example, a prism region (for example, a prism portion 22) to be subjected to prism processing is formed on the back surface of the light extraction surface 21 of the optical member 2. For example, the prism region is formed by arranging prism structures in the longitudinal direction of the base 20. In addition, non-prism regions (hereinafter also referred to as “non-prism portions 23”) that are not subjected to prism processing are formed at both ends in the longitudinal direction of the base portion 20. Note that the length of the non-prism region may be appropriately set according to the use of the planar illumination device 1 or the like.

また、プリズム領域(プリズム部22)や非プリズム領域(非プリズム部23)を形成するために、例えば、光学部材2において、プリズム加工を施す加工方法としての後加工により、基部20の裏面における所定の領域にプリズム加工が施されたプリズム領域が形成されてもよい。また、例えば、光学部材2において、基部20の裏面の全域に亘ってプリズム加工が施された後、後加工により非プリズム領域に対応する領域のプリズム加工を除去することにより非プリズム領域が形成されてもよい。また、例えば、光学部材2において、基部20の裏面に非プリズム領域に対向する領域が、プリズム加工が施される領域の高さよりも低く形成された後、後加工によりプリズム領域を形成することにより、プリズム領域が形成されてもよい。このような加工方法でプリズム領域や非プリズム領域を形成することにより、光学部材2には、基部20の裏面における所定の領域にプリズム加工が施されたプリズム領域が形成され、他の領域に非プリズム領域が形成される。   Further, in order to form the prism region (prism portion 22) and the non-prism region (non-prism portion 23), for example, the optical member 2 is subjected to predetermined processing on the back surface of the base portion 20 by post-processing as a processing method for performing prism processing. A prism region in which prism processing is performed may be formed in this region. Further, for example, in the optical member 2, after the prism processing is performed over the entire back surface of the base portion 20, the non-prism region is formed by removing the prism processing in the region corresponding to the non-prism region by post-processing. May be. Further, for example, in the optical member 2, the region facing the non-prism region on the back surface of the base 20 is formed lower than the height of the region subjected to the prism processing, and then the prism region is formed by post-processing. A prism region may be formed. By forming the prism region and the non-prism region by such a processing method, the optical member 2 is formed with a prism region in which a prism processing is performed on a predetermined region on the back surface of the base 20 and is not formed on the other regions. A prism region is formed.

なお、プリズム領域や非プリズム領域を形成するための加工方法については、上記した例に限らず、所望の領域にプリズム領域や非プリズム領域が形成可能であれば、どのような加工方法であってもよい。また、例えば、光学部材2は、所定の金型を用いた上記加工方法により成型されてもよい。   The processing method for forming the prism region and the non-prism region is not limited to the above example, and any processing method can be used as long as the prism region or the non-prism region can be formed in a desired region. Also good. Further, for example, the optical member 2 may be molded by the above processing method using a predetermined mold.

なお、複数のプリズム部22は、光学部材2の光取出面21の裏面における長手方向の中央部を通る中心線に対して対称に形成されてもよい。図2中の左側の側面24側から長手方向の中央部まで、第1領域221と第2領域222との順に並ぶプリズム部22が複数並ぶ。また、例えば、光学部材2の光取出面21の裏面において、図2中の右側の側面25側から長手方向の中央部まで、第1領域221と第2領域222との順に並ぶプリズム部22が複数並ぶ。このように、複数のプリズム部22は、光学部材2の光取出面21の裏面における長手方向の中心線に対して鏡像対称に形成されてもよい。   Note that the plurality of prism portions 22 may be formed symmetrically with respect to a center line passing through a central portion in the longitudinal direction on the back surface of the light extraction surface 21 of the optical member 2. A plurality of prism portions 22 are arranged in the order of the first region 221 and the second region 222 from the side surface 24 on the left side in FIG. 2 to the central portion in the longitudinal direction. Further, for example, on the back surface of the light extraction surface 21 of the optical member 2, the prism portion 22 arranged in the order of the first region 221 and the second region 222 from the right side surface 25 side in FIG. Multiple lines. As described above, the plurality of prism portions 22 may be formed mirror-symmetrically with respect to the center line in the longitudinal direction on the back surface of the light extraction surface 21 of the optical member 2.

また、面状照明装置1の光学部材2は、所望の配光制御を行うために種々の構成を有してもよい。この点について、図4を用いて説明する。図4は、実施形態に係る低反射部及び輝度抑制部を有する光学部材を示す側面図である。図4に示すように、光学部材2は、低反射部26や輝度抑制部27を有してもよい。   Moreover, the optical member 2 of the planar illumination device 1 may have various configurations in order to perform desired light distribution control. This point will be described with reference to FIG. FIG. 4 is a side view showing an optical member having a low reflection portion and a luminance suppression portion according to the embodiment. As shown in FIG. 4, the optical member 2 may include a low reflection portion 26 and a luminance suppression portion 27.

図4に示すように、光学部材2における基部20の光取出面21側には、基部20内への反射を抑制する低反射部26が設けられる。例えば、光学部材2には、光取出面21に重ねて低反射機能を有する低反射部26が形成される。例えば、低反射部26は、スパッタや蒸着により形成した誘電体多層膜やモスアイ形状のような1μm以下の微細な凹凸形状を有してもよい。また、例えば、低反射部26は、光取出面21に低反射処理が施されることにより形成されてもよい。例えば、低反射処理は、光取出面21を鏡面状態に処理することが好ましい。例えば、上述の処理方法は、導光板としての基部20への直接処理(スパッタ、蒸着、賦形など)や、低反射フィルムのインサート成型や、粘着剤や接着剤を介した低反射フィルムの貼り合せ等、どのような処理方法であってもよい。   As shown in FIG. 4, a low reflection portion 26 that suppresses reflection into the base 20 is provided on the light extraction surface 21 side of the base 20 in the optical member 2. For example, the optical member 2 is formed with a low reflection portion 26 having a low reflection function so as to overlap the light extraction surface 21. For example, the low reflection portion 26 may have a fine uneven shape of 1 μm or less such as a dielectric multilayer film formed by sputtering or vapor deposition or a moth-eye shape. For example, the low reflection part 26 may be formed by performing the low reflection process on the light extraction surface 21. For example, in the low reflection process, it is preferable to process the light extraction surface 21 into a mirror surface state. For example, the above-described processing methods include direct processing (sputtering, vapor deposition, shaping, etc.) on the base 20 as a light guide plate, insert molding of a low reflection film, and application of a low reflection film via an adhesive or adhesive. Any processing method such as combination may be used.

なお、光取出面21の正反射率は、例えば1.6%以下である。例えば、光取出面21の正反射率が1.6%以下とは、図4に示す例では、光取出面21に向かう光線IL12のうち、基部20内に反射される光線IL14の割合が1.6%(=IL14の光量/IL12の光量*100)以下である場合をいう。また、例えば、光学部材2の光取出面21に重ねて低反射部26を形成することにより、光取出面21の正反射率は1.6%以下としてもよい。   Note that the regular reflectance of the light extraction surface 21 is, for example, 1.6% or less. For example, when the regular reflectance of the light extraction surface 21 is 1.6% or less, in the example illustrated in FIG. 4, the ratio of the light beam IL14 reflected in the base 20 out of the light beams IL12 toward the light extraction surface 21 is 1. .. 6% (= light amount of IL14 / light amount of IL12 * 100) or less. Further, for example, the regular reflectance of the light extraction surface 21 may be 1.6% or less by forming the low reflection portion 26 so as to overlap the light extraction surface 21 of the optical member 2.

なお、上述した低反射部26の形成は一例であり、光取出面21の正反射率が所望の値を満たせば、光学部材2はどのような構成であってもよい。例えば、光取出面21の正反射率が所望の値を満たせば、光学部材2は低反射部26を有さなくてもよい。   In addition, formation of the low reflection part 26 mentioned above is an example, and the optical member 2 may be any configuration as long as the regular reflectance of the light extraction surface 21 satisfies a desired value. For example, if the regular reflectance of the light extraction surface 21 satisfies a desired value, the optical member 2 may not have the low reflection portion 26.

図4に示すように、光学部材2における基部20の裏面側には、裏面側への光の放射を抑制する輝度抑制部27が設けられる。例えば、光学部材2には、裏面を覆うように裏面側への光の放射を抑制する輝度抑制部27が形成される。例えば、輝度抑制部27は、ルーバフィルムや光源の光の波長を反射するフィルム(誘電体多層膜)もしくは吸収するフィルム(誘電体多層膜)や染料系色素を含有する透明フィルム等であってもよい。例えば、斜め方向に出射する光を遮光するには、ルーバフィルムが用いられることが好適である。なお、輝度抑制部27は、所望の機能を有すればどのような構成であってもよい。   As shown in FIG. 4, a luminance suppression unit 27 that suppresses light emission to the back surface side is provided on the back surface side of the base 20 in the optical member 2. For example, the optical member 2 is formed with a luminance suppressing portion 27 that suppresses light emission to the back surface side so as to cover the back surface. For example, the luminance suppression unit 27 may be a louver film, a film that reflects the wavelength of light from a light source (dielectric multilayer film), a film that absorbs light (dielectric multilayer film), a transparent film containing a dye-based pigment, or the like. Good. For example, a louver film is preferably used to shield light emitted in an oblique direction. The luminance suppressing unit 27 may have any configuration as long as it has a desired function.

光取出面21の輝度の裏面の輝度に対する比率である輝度比LR1は例えば20以上である。例えば、輝度比LR1は以下の数式(2)により算出される。   A luminance ratio LR1 that is a ratio of the luminance of the light extraction surface 21 to the luminance of the back surface is, for example, 20 or more. For example, the luminance ratio LR1 is calculated by the following mathematical formula (2).

輝度比LR1=光取出面21の輝度/裏面の輝度 ・・・ (2)   Luminance ratio LR1 = luminance of light extraction surface 21 / luminance of back surface (2)

例えば、基部20の裏面側に輝度抑制部27が配置されることにより、輝度比LR1が20以上としてもよい。例えば、光取出面21の輝度とは、光取出面21の垂直方向の輝度であり、光取出面21の裏面(プリズム部22が形成される面)の基部20の厚み方向の輝度であってもよい。例えば、輝度比LR1は、光取出面21側の正面輝度の裏面側の正面輝度に対する比率であってもよい。   For example, the luminance ratio LR1 may be 20 or more by arranging the luminance suppressing unit 27 on the back side of the base 20. For example, the luminance of the light extraction surface 21 is the luminance in the vertical direction of the light extraction surface 21 and the luminance in the thickness direction of the base 20 of the back surface of the light extraction surface 21 (surface on which the prism portion 22 is formed). Also good. For example, the luminance ratio LR1 may be a ratio of the front luminance on the light extraction surface 21 side to the front luminance on the back surface side.

なお、上述した輝度抑制部27の配置は一例であり、輝度比LR1が所望の値を満たせば、光学部材2はどのような構成であってもよい。例えば、輝度比LR1が所望の値を満たせば、光学部材2は輝度抑制部27を有さなくてもよい。   The arrangement of the luminance suppressing unit 27 described above is an example, and the optical member 2 may have any configuration as long as the luminance ratio LR1 satisfies a desired value. For example, if the luminance ratio LR1 satisfies a desired value, the optical member 2 may not have the luminance suppression unit 27.

ここで、図4に示す光線IL11〜IL15を用いて光学部材2における配光について説明する。なお、図4に示す光線IL11〜IL15は、光学部材2における配光を仮想的に示す。例えば、基部20内から第2領域222に向かう光線IL11のうち、一部の光線IL12はプリズム機能を有する第2領域222により光取出面21の方向へ反射される。   Here, the light distribution in the optical member 2 will be described using the light beams IL11 to IL15 shown in FIG. Light rays IL11 to IL15 shown in FIG. 4 virtually indicate the light distribution in the optical member 2. For example, among the light beams IL11 that travel from the base 20 toward the second region 222, some of the light beams IL12 are reflected in the direction of the light extraction surface 21 by the second region 222 having a prism function.

そして、基部20内から光取出面21へ向かう光線IL12のうち、一部の光線IL13は光取出面21外へ放射される。例えば、低反射部26により反射が抑制されること等により光取出面21の正反射率が所望の値を満たすため、光線IL12のうち、大部分の光線IL13は光取出面21外へ放射される。このように、面状照明装置1は、光取出面21の正反射率が所望の値を満たすことにより、光取出面21側から基部20内へ反射される光量の増大を抑制することができ、光取出し効率を向上させることができる。   A part of the light beam IL <b> 13 from the base 20 toward the light extraction surface 21 is emitted outside the light extraction surface 21. For example, since the regular reflectance of the light extraction surface 21 satisfies a desired value due to the reflection being suppressed by the low reflection portion 26, most of the light rays IL13 are radiated out of the light extraction surface 21. The Thus, the planar illumination device 1 can suppress an increase in the amount of light reflected from the light extraction surface 21 side into the base 20 when the regular reflectance of the light extraction surface 21 satisfies a desired value. The light extraction efficiency can be improved.

また、基部20内から光取出面21へ向かう光線IL12のうち、一部の光線IL14は光取出面21により反射される。例えば、低反射部26により反射が抑制されるため、光線IL12のうち、僅かな光線IL14は光取出面21により反射される。このように、光学部材2は、発光面(光取出面21)での反射が抑制され、裏面から漏れる光を軽減することが可能となる。   In addition, a part of the light beam IL <b> 14 from the base 20 toward the light extraction surface 21 is reflected by the light extraction surface 21. For example, since reflection is suppressed by the low reflection portion 26, a small amount of light IL 14 out of the light IL 12 is reflected by the light extraction surface 21. As described above, the optical member 2 is able to reduce the light leaking from the back surface by suppressing reflection on the light emitting surface (light extraction surface 21).

また、例えば、基部20内から第2領域222に向かう光線IL11のうち、一部の光線IL15は第2領域222を通過して基部20外へ放射される。すなわち、光線IL15は仮想的に平面とした場合の裏面から斜め方向に漏れる光となる。このような、裏面から漏れる光は、裏面側にいる人、例えば面状照明装置1がハイマウントライトとして用いられた自動車中や車外の人に視認される場合がある。しかし、面状照明装置1においては、輝度抑制部27等により輝度比LR1が所望の値を満たすため、裏面側へ漏れる光が抑制され、裏面側にいる人に与える影響を抑制することができる。   In addition, for example, among the light beams IL <b> 11 that travel from the base 20 toward the second region 222, some of the light beams IL <b> 15 pass through the second region 222 and are emitted outside the base 20. That is, the light beam IL15 becomes light that leaks in an oblique direction from the back surface when it is virtually planar. Such light leaking from the back surface may be visually recognized by a person on the back surface side, for example, a person inside or outside the vehicle in which the planar lighting device 1 is used as a high-mount light. However, in the planar lighting device 1, since the luminance ratio LR1 satisfies a desired value by the luminance suppression unit 27 and the like, light leaking to the back side is suppressed, and the influence on the person on the back side can be suppressed. .

図1に示すように、光源部3は、保持部材30と、例えばLED(Light Emitting Diode)等である光源31とを有する。光源部3は、光学部材2の基部20の一対の側面24、25に沿って配置される。光源部3は、光学部材2の両端部に一対設けられる。なお、光源部3は、光学部材2の両端部のうち、一方のみに設けられてもよい。   As shown in FIG. 1, the light source unit 3 includes a holding member 30 and a light source 31 that is, for example, an LED (Light Emitting Diode). The light source unit 3 is disposed along a pair of side surfaces 24 and 25 of the base 20 of the optical member 2. A pair of light sources 3 is provided at both ends of the optical member 2. In addition, the light source part 3 may be provided in only one of the both end parts of the optical member 2.

例えば、一対の保持部材30は、両側から光学部材2を保持する。図1では、光源部3は、基部20の長手方向における光学部材2の両端部に一対設けられ、光学部材2を保持する。また、各保持部材30は、光学部材2の両端部において光源31を各々保持する。なお、図1では、光源31が正面視において露出した状態を図示するが、光源31は、光学部材2に対して所定の位置に配置されれば、例えば、保持部材30により覆われてもよい。また、光学部材2は、側面24、25付近を保持部材30に覆われることにより、保持部材30に保持されてもよい。   For example, the pair of holding members 30 holds the optical member 2 from both sides. In FIG. 1, a pair of light sources 3 is provided at both ends of the optical member 2 in the longitudinal direction of the base 20 and holds the optical member 2. Each holding member 30 holds the light source 31 at both ends of the optical member 2. Although FIG. 1 illustrates a state in which the light source 31 is exposed in a front view, the light source 31 may be covered with, for example, the holding member 30 as long as the light source 31 is disposed at a predetermined position with respect to the optical member 2. . The optical member 2 may be held by the holding member 30 by covering the vicinity of the side surfaces 24 and 25 with the holding member 30.

各光源部3は、基部20の側面24,25に近接して設けられてもよいし、基部20の側面24,25から離間して設けられてもよい。また、各光源部3には、複数(図1では各4個)の光源31が設けられる。複数の光源31は、基部20の側面24、25に沿って配置される。複数の光源31は、離散的に配置され、例えば等間隔をあけて並べて配置される。これにより、複数の光源31をそれぞれ点状光源として用いることができる。   Each light source unit 3 may be provided close to the side surfaces 24 and 25 of the base 20, or may be provided apart from the side surfaces 24 and 25 of the base 20. Each light source unit 3 is provided with a plurality (four in FIG. 1) of light sources 31. The plurality of light sources 31 are arranged along the side surfaces 24 and 25 of the base 20. The plurality of light sources 31 are discretely arranged, for example, arranged at equal intervals. Thereby, the some light source 31 can be used as a point light source, respectively.

複数の光源31から放射される光は、図1に示すように、基部20の側面24、25において明部と暗部を有する不均一な輝度分布となる(図1では、左側の側面24における輝度分布のみを示す)。これにより、基部20の光取出面21から明部と暗部を有する不均一な輝度分布の光を放射することができる。また、図1では、基部20の側面24における輝度分布を示す波形において、山側(図中、右側)が輝度の明部であり、谷側(図中、左側)が輝度の暗部である。例えば、複数の光源31から放射される光の輝度分布は、各光源31の中心に近いほど輝度が高く、光源31と光源31とが離れるほど輝度が低い。   As shown in FIG. 1, the light emitted from the plurality of light sources 31 has a non-uniform luminance distribution having bright and dark portions on the side surfaces 24 and 25 of the base portion 20 (in FIG. 1, the luminance on the left side surface 24). Only the distribution is shown). Thereby, the light of the non-uniform brightness distribution which has a bright part and a dark part can be radiated | emitted from the light extraction surface 21 of the base 20. FIG. Further, in FIG. 1, in the waveform indicating the luminance distribution on the side surface 24 of the base portion 20, the peak side (right side in the figure) is a bright part of luminance, and the valley side (left side in the figure) is a dark part of luminance. For example, the luminance distribution of light emitted from the plurality of light sources 31 increases as the distance from the center of each light source 31 increases, and decreases as the light source 31 and the light source 31 move away from each other.

ここでいう、輝度が不均一とは、例えば、基部20の入光端面(側面24、25)に焦点を合わせた状態で測定した場合に輝度の明部と暗部の輝度比(暗部輝度/明部輝度)が、例えば、少なくとも80%以下、好ましくは50%以下である。これにより、面状照明装置1は、光学部材2の側面24,25に対して明部と暗部を有する不均一な輝度分布の光が入光されるため、基部20の光取出面21から明部と暗部を有する不均一な輝度分布の光を放射することができる。なお、図1及び図2に示す例では、光学部材2の側面24,25に対して明部と暗部が交互に並んだ輝度分布の光が入光され、光取出面21から放射される光は、基部20の長手方向に沿って明部と暗部が交互に並んだ輝度分布となる。   Here, the non-uniform brightness means, for example, a brightness ratio between a bright part and a dark part (dark part brightness / brightness) when measured in a state where the light incident end face (side surfaces 24, 25) of the base 20 is focused. Part luminance) is, for example, at least 80% or less, preferably 50% or less. As a result, in the planar illumination device 1, light with a nonuniform luminance distribution having a bright portion and a dark portion is incident on the side surfaces 24 and 25 of the optical member 2, so that the bright light is emitted from the light extraction surface 21 of the base portion 20. It is possible to emit light having a non-uniform luminance distribution having a part and a dark part. In the example illustrated in FIGS. 1 and 2, light having a luminance distribution in which bright portions and dark portions are alternately arranged on the side surfaces 24 and 25 of the optical member 2 is incident and emitted from the light extraction surface 21. Is a luminance distribution in which bright portions and dark portions are alternately arranged along the longitudinal direction of the base portion 20.

なお、複数の光源31の厚みは、基部20の厚みと同程度であってもよい。また、基部20の幅W10は、複数の光源31の並び方向における全体の幅W11よりも広くてもよいし、複数の光源31の並び方向における全体の幅W11と同等、又は複数の光源31の並び方向における全体の幅W11よりも狭くてもよい。   The thickness of the plurality of light sources 31 may be approximately the same as the thickness of the base portion 20. In addition, the width W10 of the base 20 may be wider than the overall width W11 in the arrangement direction of the plurality of light sources 31, or is equal to the entire width W11 in the arrangement direction of the plurality of light sources 31, or of the plurality of light sources 31. It may be narrower than the overall width W11 in the arrangement direction.

また、例えば、発光エリア(光取出面21)の正面輝度、すなわち光取出面21の垂直方向の輝度において、輝度分布は導光板(基部20)の入光端面(側面24、25)に焦点を合わせた状態で、導光板の幅方向(短手方向)に少なくとも1mmピッチ、好ましくは0.5mmピッチで輝度分布(厚さ方向には平均化)を算出する。   Further, for example, in the front luminance of the light emitting area (light extraction surface 21), that is, the luminance in the vertical direction of the light extraction surface 21, the luminance distribution is focused on the light incident end surfaces (side surfaces 24 and 25) of the light guide plate (base portion 20). In the combined state, the luminance distribution (averaged in the thickness direction) is calculated at a pitch of at least 1 mm, preferably 0.5 mm, in the width direction (short direction) of the light guide plate.

ここで、図5を用いて面状照明装置1の点灯状態における照明態様について説明する。図5は、実施形態に係る面状照明装置の照明態様を示す図である。なお、図5には、面状照明装置1を正面における斜め上方から見た場合を示す。また、図5には、面状照明装置1の点灯状態の実測結果を示す。また、図5に示す照明態様は一例であり、面状照明装置1の照明態様はこれに限定されない。   Here, the illumination aspect in the lighting state of the planar illumination device 1 will be described with reference to FIG. FIG. 5 is a diagram illustrating an illumination mode of the planar illumination device according to the embodiment. In addition, in FIG. 5, the case where the planar illuminating device 1 is seen from diagonally upward in the front is shown. FIG. 5 shows an actual measurement result of the lighting state of the planar lighting device 1. Moreover, the illumination aspect shown in FIG. 5 is an example, and the illumination aspect of the planar illumination device 1 is not limited to this.

面状照明装置1の非点灯状態では、例えば、光学部材2の基部20に亘って透明である。図5に示すように、面状照明装置1の点灯状態では、光取出面21、すなわちプリズム加工が施されたプリズム領域(プリズム部22)において発光し、光取出面21の外側(図5では、光取出面21の左右外側)のプリズム加工が施されていない非プリズム領域(非プリズム部23)は発光しない。図5に示すように、点灯状態における面状照明装置1の照明態様は、プリズム領域、すなわち光取出面21が発光するとともに、発光した光取出面21の両側縁からそれぞれ基部20の長手方向の中心に向かい延びる複数の光線が視認される。複数の光線は、光取出面21の各側縁に沿って並んで視認される。複数の光線は、基部20の側面24、25と直交する線に対して同様に傾斜して視認される。なお、基部20の側面24、25と直交する線は、図1の例では、基部20の長手方向の線に対応する。   In the non-lighting state of the planar illumination device 1, for example, it is transparent over the base 20 of the optical member 2. As shown in FIG. 5, in the lighting state of the planar illumination device 1, light is emitted from the light extraction surface 21, that is, the prism region (prism portion 22) subjected to the prism processing, and outside the light extraction surface 21 (in FIG. 5). The non-prism area (non-prism portion 23) on the left and right outer sides of the light extraction surface 21 that is not subjected to prism processing does not emit light. As shown in FIG. 5, the illumination mode of the planar lighting device 1 in the lighting state is that the prism region, that is, the light extraction surface 21 emits light, and the longitudinal direction of the base portion 20 from each side edge of the emitted light extraction surface 21. A plurality of light rays extending toward the center are visually recognized. A plurality of light rays are visually recognized side by side along each side edge of the light extraction surface 21. The plurality of light beams are viewed with a similar inclination with respect to a line orthogonal to the side surfaces 24 and 25 of the base 20. In addition, the line orthogonal to the side surfaces 24 and 25 of the base part 20 respond | corresponds to the line of the longitudinal direction of the base part 20 in the example of FIG.

基部20の側面24、25に沿って設けられた各光源部3と発光面(光取出面21)を見る人の視点との間で、光源部3と視点とをプリズム部22を介して結ぶ位置に光線を知覚させることができる。これにより、光取出面21を見る人の視点の位置に応じて明暗の境界は傾き、発光した光取出面21を見た人に対して、発光面の中に、傾斜した複数の光線を知覚させることができ、傾斜した複数の光線によって、発光面に手前から奥へ延びるような奥行き感を知覚させることができ、視覚効果を高めることができる。   The light source unit 3 and the viewpoint are connected via the prism unit 22 between each light source unit 3 provided along the side surfaces 24 and 25 of the base unit 20 and the viewpoint of the person viewing the light emitting surface (light extraction surface 21). Light can be perceived at the position. As a result, the light / dark boundary is inclined according to the position of the viewpoint of the person viewing the light extraction surface 21, and a plurality of inclined light rays are perceived in the light emission surface to the person who has viewed the emitted light extraction surface 21. A plurality of inclined light beams can perceive a feeling of depth that extends from the front to the back of the light-emitting surface, thereby enhancing the visual effect.

なお、複数の光線の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。また、図5に示す例では、光取出面21の両側縁から延びる光線が基部20の長手方向の中心付近で交わるが、光線の交点は発光面を見る人の視点の位置に応じて、基部20の長手方向に沿う向きに移動する。また、複数の光線は、光取出面21における他の部位と比較して輝度が高い部位であり、図5に示す例では光線が視認されるが、直線でなくてもよく、光線が曲線であってもよい。また、光線を様々な態様で視認させるために、光学部材2を加工してもよいし、光源部3から放射される光を調整してもよい。   Note that the inclination angles of the plurality of light rays vary depending on the position of the viewpoint of the person viewing the light emitting surface. In the example shown in FIG. 5, light rays extending from both side edges of the light extraction surface 21 intersect in the vicinity of the center in the longitudinal direction of the base 20, and the intersection of the light rays depends on the position of the viewpoint of the person viewing the light emitting surface. It moves in the direction along the longitudinal direction of 20. In addition, the plurality of light rays are portions having higher brightness than other portions on the light extraction surface 21, and the light rays are visually recognized in the example illustrated in FIG. There may be. Further, the optical member 2 may be processed or the light emitted from the light source unit 3 may be adjusted in order to make the light rays visible in various modes.

次に、図6を用いて光取出面21における輝度分布について説明する。図6は、実施形態に係る光取出面における輝度分布を示す図である。なお、図6には、面状照明装置1を正面における斜め上方から見た場合を示す。また、図6には、面状照明装置1の点灯状態のシミュレーション結果を示す。また、図6に示す輝度分布4は一例であり、輝度分布4の態様はこれに限定されない。   Next, the luminance distribution on the light extraction surface 21 will be described with reference to FIG. FIG. 6 is a diagram illustrating a luminance distribution on the light extraction surface according to the embodiment. In addition, in FIG. 6, the case where the planar illuminating device 1 is seen from diagonally upward in the front is shown. Moreover, in FIG. 6, the simulation result of the lighting state of the planar illuminating device 1 is shown. Moreover, the luminance distribution 4 shown in FIG. 6 is an example, and the aspect of the luminance distribution 4 is not limited to this.

図6に示すように、発光エリアである光取出面21の垂直方向の輝度分布4は、輝度の明部40と暗部41とを有する。このように、光取出面21における輝度分布4は、明部40と暗部41とを有するため、輝度が均一ではない。すなわち、光取出面21における輝度分布4は、輝度が不均一である。図6に示すように、光取出面21における輝度分布4では、一面の暗部41の中に、複数の明部40が光取出面21の両側縁からそれぞれ基部20の長手方向の中心に向かい延びる。光取出面21における輝度分布4では、明部40と暗部41とが基部20の側面24、25と直交する向きに交互に並ぶ。明部40と暗部41の境界は、基部20の側面24、25と直交する線に対してそれぞれ同様に傾斜する。なお、基部20の側面24、25と直交する線は、図1の例では、基部20の長手方向の線に対応する。   As shown in FIG. 6, the luminance distribution 4 in the vertical direction of the light extraction surface 21 that is a light emitting area has a bright portion 40 and a dark portion 41 of luminance. Thus, since the luminance distribution 4 on the light extraction surface 21 has the bright part 40 and the dark part 41, the luminance is not uniform. That is, the luminance distribution 4 on the light extraction surface 21 has nonuniform luminance. As shown in FIG. 6, in the luminance distribution 4 on the light extraction surface 21, a plurality of bright portions 40 extend from both side edges of the light extraction surface 21 toward the longitudinal center of the base 20 in the dark portion 41 on one surface. . In the luminance distribution 4 on the light extraction surface 21, the bright portions 40 and the dark portions 41 are alternately arranged in a direction orthogonal to the side surfaces 24 and 25 of the base portion 20. The boundary between the bright part 40 and the dark part 41 is similarly inclined with respect to a line orthogonal to the side surfaces 24 and 25 of the base part 20. In addition, the line orthogonal to the side surfaces 24 and 25 of the base part 20 respond | corresponds to the line of the longitudinal direction of the base part 20 in the example of FIG.

このように、明部40と暗部41の境界が傾くことで、光取出面21において手前から奥へ延びるような絵画的な奥行き感(遠近感)を醸し出すことができる。これにより、発光した発光面(光取出面21)を見た人に対して、傾斜した明部40と暗部41の境界を知覚させることができ、傾斜した明部40と暗部41の境界によって発光面に手前から奥へ延びるような奥行き感を知覚させることができる。これにより、例えば両眼視差を利用しない構成で視覚効果を高めることができる。   As described above, the boundary between the bright part 40 and the dark part 41 is inclined, so that a pictorial depth feeling (perspective) that extends from the front to the back on the light extraction surface 21 can be produced. Thereby, the person who has seen the light emitting surface (light extraction surface 21) can perceive the boundary between the inclined bright part 40 and the dark part 41, and the light is emitted by the boundary between the inclined bright part 40 and the dark part 41. The surface can be perceived as having a depth that extends from the front to the back. Thereby, for example, the visual effect can be enhanced with a configuration that does not use binocular parallax.

なお、輝度分布4における明部40と暗部41の境界の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。また、図6に示す例では、光取出面21の両側縁から延びる明部40と暗部41の境界が基部20の長手方向の中心付近で交わるが、かかる境界の交点は発光面を見る人の視点の位置に応じて、基部20の長手方向に沿う向きに移動する。   Note that the inclination angle of the boundary between the bright part 40 and the dark part 41 in the luminance distribution 4 varies depending on the position of the viewpoint of the person viewing the light emitting surface. Further, in the example shown in FIG. 6, the boundary between the bright part 40 and the dark part 41 extending from both side edges of the light extraction surface 21 intersects in the vicinity of the center in the longitudinal direction of the base part 20. It moves in a direction along the longitudinal direction of the base 20 according to the position of the viewpoint.

実施形態の変形例に係る面状照明装置を図面に基づいて説明する。なお、上記した実施形態と同様の構成については、実施形態と同様の符号を付し、説明を省略する場合がある。   A planar illumination device according to a modification of the embodiment will be described with reference to the drawings. In addition, about the structure similar to above-described embodiment, the code | symbol similar to embodiment is attached | subjected and description may be abbreviate | omitted.

(変形例1)
まず、図7、図8、図9及び図10を用いて変形例1に係る面状照明装置1Aについて説明する。図7は、変形例1に係る面状照明装置を示す正面図である。図8は、変形例1に係る面状照明装置を示す側面図である。図9は、変形例1に係る面状照明装置の他の例を示す正面図である。図10は、変形例1に係る光取出面における輝度分布を示す図である。なお、図10には、面状照明装置1Aを正面における斜め上方から見た場合を示す。また、図10には、面状照明装置1Aの点灯状態のシミュレーション結果を示す。また、図10に示す輝度分布4Aは一例であり、輝度分布4Aの態様はこれに限定されない。
(Modification 1)
First, a planar lighting device 1A according to the first modification will be described with reference to FIGS. 7, 8, 9 and 10. FIG. FIG. 7 is a front view showing the planar illumination device according to the first modification. FIG. 8 is a side view showing the planar illumination device according to the first modification. FIG. 9 is a front view illustrating another example of the planar lighting device according to the first modification. FIG. 10 is a diagram illustrating a luminance distribution on the light extraction surface according to the first modification. In addition, in FIG. 10, the case where 1 A of planar illumination apparatuses are seen from diagonally upward in the front is shown. Moreover, in FIG. 10, the simulation result of the lighting state of 1 A of planar illumination apparatuses is shown. Moreover, the luminance distribution 4A shown in FIG. 10 is an example, and the aspect of the luminance distribution 4A is not limited to this.

図7に示すように、面状照明装置1Aは、光学部材2Aと、光源部3Aとを備える。光学部材2Aは、平板状に形成された透明体である基部20Aを有する。光学部材2Aにおいても、図7に示す一面21A(以下、「光取出面21A」ともいう)が発光面となる。なお、光学部材2Aは、後述する吸収面50A又は散乱面51Aを備える点において上記した実施形態の光学部材2と相違する。その他の点については、上記した実施形態の光学部材2と同様である。   As shown in FIG. 7, the planar illumination device 1A includes an optical member 2A and a light source unit 3A. The optical member 2A has a base portion 20A that is a transparent body formed in a flat plate shape. Also in the optical member 2A, one surface 21A shown in FIG. 7 (hereinafter, also referred to as “light extraction surface 21A”) is a light emitting surface. The optical member 2A is different from the optical member 2 of the above-described embodiment in that it includes an absorption surface 50A or a scattering surface 51A described later. About another point, it is the same as that of the optical member 2 of above-described embodiment.

基部20Aの側面24A、25Bと直交する面には、基部20Aに入光された光を吸収する吸収面50A、又は基部20Aに入光された光を散乱させる散乱面51Aが形成される。すなわち、基部20Aの側面24A、25Aと直交する面は、吸収面50A又は散乱面51Aである。なお、吸収面50Aである場合、例えば、基部20Aの側面24A、25Aと直交する面に黒い塗装を施して吸収面50Aが形成されてもよいし、基部20Aの側面24A、25Aと直交する面に黒いフォルムを貼付して吸収面50Aとしてもよい。また、散乱面51Aである場合、例えば、基部20の側面24A、25Aと直交する面に微小な凹凸を形成して散乱面51Aとしてもよい。   An absorption surface 50A that absorbs light incident on the base 20A or a scattering surface 51A that scatters light incident on the base 20A is formed on a surface orthogonal to the side surfaces 24A and 25B of the base 20A. That is, the surface orthogonal to the side surfaces 24A and 25A of the base 20A is the absorption surface 50A or the scattering surface 51A. In the case of the absorption surface 50A, for example, the absorption surface 50A may be formed by applying black coating to the surfaces orthogonal to the side surfaces 24A and 25A of the base 20A, or surfaces orthogonal to the side surfaces 24A and 25A of the base 20A. A black form may be applied to the absorbent surface 50A. In the case of the scattering surface 51A, for example, minute unevenness may be formed on the surface orthogonal to the side surfaces 24A and 25A of the base portion 20 to form the scattering surface 51A.

また、例えば、基部20Aの側面24A、25Aと直交する面のいずれか一方を吸収面50A、他方を散乱面51Aとしてもよい。また、例えば、基部20Aの側面24A、25Aと直交する面のいずれか一方のみを吸収面50A又は散乱面51Aとしてもよい。なお、吸収面50Aや散乱面51Aは、所望の吸収率を有すればどのような構成であってもよい。   Further, for example, either one of the surfaces orthogonal to the side surfaces 24A and 25A of the base 20A may be the absorption surface 50A and the other may be the scattering surface 51A. Further, for example, only one of the surfaces orthogonal to the side surfaces 24A and 25A of the base 20A may be used as the absorption surface 50A or the scattering surface 51A. The absorbing surface 50A and the scattering surface 51A may have any configuration as long as they have a desired absorption rate.

図7に示すように、光源部3Aは、保持部材30Aと、光源31と、入光素子32とを有する。なお、変形例1における光源部3Aは、上記した実施形態の光源部3とは異なり、基部20Aの側面24A(及び側面25A)において均一な輝度分布となるように光を放射する。変形例1において、光源部3Aは、光学部材2Aの基部20Aの一対の側面24A、25Aに沿って配置される。光源部3Aは、光学部材2Aの両端部に一対設けられる。なお、光源部3Aは、光学部材2Aの両端部のうち、一方のみに設けられてもよい。   As shown in FIG. 7, the light source unit 3 </ b> A includes a holding member 30 </ b> A, a light source 31, and a light incident element 32. Unlike the light source unit 3 of the above-described embodiment, the light source unit 3A in Modification 1 emits light so as to have a uniform luminance distribution on the side surface 24A (and side surface 25A) of the base 20A. In the first modification, the light source unit 3A is disposed along the pair of side surfaces 24A and 25A of the base 20A of the optical member 2A. A pair of light sources 3A is provided at both ends of the optical member 2A. Note that the light source unit 3A may be provided on only one of both end portions of the optical member 2A.

例えば、一対の保持部材30Aは、両側から光学部材2Aを保持する。図7では、光源部3Aは、基部20Aの長手方向における光学部材2Aの両端部に一対設けられ、光学部材2Aを保持する。また、各保持部材30Aは、光学部材2Aの両端部において光源31を各々保持する。なお、図7では、光源31が正面視において露出した状態を図示するが、光源31は、光学部材2Aに対して所定の位置に配置されれば、例えば、保持部材30Aにより覆われてもよい。また、光学部材2Aは、側面24A、25A付近を保持部材30Aに覆われることにより、保持部材30Aに保持されてもよい。   For example, the pair of holding members 30A holds the optical member 2A from both sides. In FIG. 7, a pair of light source units 3A is provided at both ends of the optical member 2A in the longitudinal direction of the base 20A, and holds the optical member 2A. Each holding member 30A holds the light source 31 at both ends of the optical member 2A. 7 illustrates a state in which the light source 31 is exposed in a front view, but the light source 31 may be covered with, for example, the holding member 30A as long as the light source 31 is disposed at a predetermined position with respect to the optical member 2A. . The optical member 2A may be held by the holding member 30A by covering the vicinity of the side surfaces 24A and 25A with the holding member 30A.

各光源部3Aには、入光素子32の長手方向(図7では、上下方向)から入光素子32を挟む位置に光源31が各々設けられる。例えば、2つの光源31は、入光素子32の側端部から入光素子32内に光を入光するように配置される。なお、光源31は、所望の配光制御がなされていれば、1つだけ用いられてもよく、光源31は、入光素子32の側端部の一方から入光素子32内に光を入光するように配置されてもよい。   Each light source unit 3A is provided with a light source 31 at a position sandwiching the light incident element 32 from the longitudinal direction of the light incident element 32 (vertical direction in FIG. 7). For example, the two light sources 31 are arranged so that light enters the light incident element 32 from the side end portions of the light incident element 32. Note that only one light source 31 may be used as long as the desired light distribution control is performed. The light source 31 allows light to enter the light incident element 32 from one of the side end portions of the light incident element 32. You may arrange | position so that it may light.

例えば、入光素子32は、点状光源である光源31から放射される光を線状光源の光に変換する機能を有する。例えば、入光素子32は、光透過性を有する材料により形成される。また、入光素子32は、いわゆるライトバーであってもよい。入光素子32は、長手方向に交差する一面を光学部材2Aへ向けて設けられる。入光素子32は、基部20Aの側面24A、25Aに一面を対向させて設けられる。例えば、図7中の左側の光源部3Aにおいて、入光素子32は、基部20Aの側面24Aに沿って設けられる。また、図7中の左側の光源部3Aにおいて、入光素子32は、基部20Aの側面24Aに一面を対向させて設けられる。例えば、図7中の右側の光源部3Aにおいて、入光素子32は、基部20Aの側面25Aに沿って設けられる。また、図7中の右側の光源部3Aにおいて、入光素子32は、基部20Aの側面25Aに一面を対向させて設けられる。   For example, the light incident element 32 has a function of converting light emitted from the light source 31 that is a point light source into light of a linear light source. For example, the light incident element 32 is formed of a light transmissive material. The light incident element 32 may be a so-called light bar. The light incident element 32 is provided with one surface intersecting the longitudinal direction facing the optical member 2A. The light incident element 32 is provided so that one surface thereof faces the side surfaces 24A and 25A of the base portion 20A. For example, in the light source section 3A on the left side in FIG. 7, the light incident element 32 is provided along the side surface 24A of the base section 20A. Further, in the light source unit 3A on the left side in FIG. 7, the light incident element 32 is provided with one surface facing the side surface 24A of the base 20A. For example, in the light source unit 3A on the right side in FIG. 7, the light incident element 32 is provided along the side surface 25A of the base unit 20A. Further, in the light source unit 3A on the right side in FIG. 7, the light incident element 32 is provided with one surface facing the side surface 25A of the base 20A.

また、入光素子32における側面24A、25Aに対向する面の反対面321(以下、「反射面321」ともいう)には、所定の光学的制御を行う機構が設けられる。例えば、入光素子32の反射面321は、入光素子32の側端部から入光した光を光学部材2Aの方向へ配光制御する機能を有する。例えば、入光素子32における反射面321は、粗面化加工を施し微小な凹凸が形成され、光散乱機能を有する部分と、粗面化加工を施さない部分とを含んでもよい。また、例えば、入光素子32における反射面321には、プリズムが配置されてもよい。なお、入光素子32における反射面321は、入光素子32の側端部から入光した光を光学部材2Aの方向へ配光可能であれば、どのような構成であってもよい。なお、入光素子32の幅は、基部20Aの短手方向の幅以上であることが望ましい。これにより、面状照明装置1Aは、光学部材2Aの側面24A、25Aの短手方向の全体に亘って入光素子32からの光が照射されるため、より均一に基部20Aの光取出面21Aから光を放射することができる。   In addition, a mechanism that performs predetermined optical control is provided on a surface 321 (hereinafter, also referred to as “reflecting surface 321”) opposite to the surfaces facing the side surfaces 24A and 25A in the light incident element 32. For example, the reflection surface 321 of the light incident element 32 has a function of controlling the light distribution of light incident from the side end of the light incident element 32 in the direction of the optical member 2A. For example, the reflecting surface 321 of the light incident element 32 may include a portion having a roughening process to form minute irregularities and having a light scattering function and a portion not having a roughening process. Further, for example, a prism may be disposed on the reflection surface 321 of the light incident element 32. The reflection surface 321 of the light incident element 32 may have any configuration as long as light incident from the side end of the light incident element 32 can be distributed in the direction of the optical member 2A. The width of the light incident element 32 is desirably equal to or greater than the width of the base portion 20A in the short direction. Thereby, in the planar illumination device 1A, the light from the light incident element 32 is irradiated over the entire lateral direction of the side surfaces 24A and 25A of the optical member 2A, so that the light extraction surface 21A of the base portion 20A is more evenly distributed. Can emit light.

また、図9に示すように、入光素子32において基部20Aの側面24A、25Aと対向する面、すなわち入光素子32の反射面321の反対面322には、所定の配光部材が設けられてもよい。例えば、入光素子32において基部20Aの側面24A、25Aと対向する面には、配光部材としてレンチキュラレンズや拡散素子やプリズムやTIR−フレネルレンズが設けられてもよい。なお、入光素子32は、基部20Aの側面24A、25Aに連続してもよい。例えば、入光素子32は、基部20Aと一体形成されてもよい。   As shown in FIG. 9, a predetermined light distribution member is provided on the surface of the light incident element 32 that faces the side surfaces 24 </ b> A and 25 </ b> A of the base 20 </ b> A, that is, the opposite surface 322 of the reflective surface 321 of the light incident element 32. May be. For example, a lenticular lens, a diffusing element, a prism, or a TIR-Fresnel lens may be provided as a light distribution member on the surface of the light incident element 32 that faces the side surfaces 24A and 25A of the base 20A. The light incident element 32 may be continuous with the side surfaces 24A and 25A of the base portion 20A. For example, the light incident element 32 may be integrally formed with the base 20A.

また、入光素子32において輝度が均一となる領域の幅W12は、基部20Aの短手方向の幅W10以上であることが望ましい。ここでいう、輝度が均一とは、例えば、輝度の明部と暗部の輝度比(暗部輝度/明部輝度)が70%以上、好ましくは80%以上である。これにより、面状照明装置1Aは、光学部材2Aの側面24A、25Aの短手方向の全体に亘って入光素子32からの光が照射される。なお、入光素子32の厚みは、基部20Aの厚みと同程度であってもよい。なお、図7に示す例では、説明を簡単にするために、入光素子32において輝度が均一となる領域の幅W12が入光素子32の幅と同じである場合を図示するが、入光素子32において輝度が均一となる領域の幅W12は、入光素子32の幅よりも狭くてもよい。   In addition, it is desirable that the width W12 of the region where the luminance is uniform in the light incident element 32 is equal to or greater than the width W10 in the short direction of the base portion 20A. Here, “uniform brightness” means, for example, that the brightness ratio between the bright part and the dark part (dark part brightness / bright part brightness) is 70% or more, preferably 80% or more. Thereby, 1 A of planar illumination apparatuses are irradiated with the light from the light incident element 32 over the whole lateral direction of the side surfaces 24A and 25A of the optical member 2A. The light incident element 32 may have the same thickness as the base 20A. In the example shown in FIG. 7, for the sake of simplicity, the case where the width W12 of the region where the luminance is uniform in the light incident element 32 is the same as the width of the light incident element 32 is illustrated. The width W12 of the region where the luminance is uniform in the element 32 may be narrower than the width of the light incident element 32.

例えば、発光エリア(光取出面21A)の正面輝度、すなわち光取出面21Aの垂直方向の輝度において、輝度分布は導光板(基部20A)の入光端面(側面24A、25A)に焦点を合わせた状態で、導光板の幅方向(短手方向)に少なくとも1mmピッチ、好ましくは0.5mmピッチで輝度分布(厚さ方向には平均化)を算出する。また、例えば、入光素子32において輝度が均一となる領域の幅W12を基部20Aの短手方向の幅W10以上に設定することにより、上述した算出方法により得られた輝度の明部と暗部の輝度比(暗部輝度/明部輝度)が70%以上、好ましくは80%以上とすることが可能となる。   For example, in the front luminance of the light emitting area (light extraction surface 21A), that is, the luminance in the vertical direction of the light extraction surface 21A, the luminance distribution is focused on the light incident end surfaces (side surfaces 24A and 25A) of the light guide plate (base portion 20A). In the state, the luminance distribution (averaged in the thickness direction) is calculated at a pitch of at least 1 mm, preferably 0.5 mm, in the width direction (short direction) of the light guide plate. Further, for example, by setting the width W12 of the region where the luminance is uniform in the light incident element 32 to be equal to or larger than the width W10 in the short direction of the base portion 20A, the bright portion and the dark portion of the luminance obtained by the calculation method described above are used. The luminance ratio (dark portion luminance / bright portion luminance) can be 70% or more, preferably 80% or more.

また、基部20Aの側面24A、25Bと直交する面は、吸収面50A又は散乱面51Aである。これにより、面状照明装置1Aは、基部20Aの光取出面21Aから明部と暗部とを有する不均一な輝度分布の光を放射することができる。なお、図7及び図8に示す例では、光学部材2Aの側面24A、25Aに対して、点状光源のみの場合に比べてより均一な輝度分布の光が入光され、光が吸収面50Aによって吸収されるか、又は光が散乱面51Aによって散乱する。これにより、光取出面21Aから放射される光を、基部20Aの長手方向に沿って輝度の明部と暗部が並んだ輝度分布とすることができる。   Moreover, the surface orthogonal to the side surfaces 24A and 25B of the base portion 20A is the absorption surface 50A or the scattering surface 51A. Thereby, 1 A of planar illumination apparatuses can radiate | emit the light of the uneven brightness distribution which has a bright part and a dark part from 21 A of light extraction surfaces of 20 A of bases. In the example shown in FIGS. 7 and 8, light having a more uniform luminance distribution is incident on the side surfaces 24A and 25A of the optical member 2A than in the case of only the point light source, and the light is absorbed by the absorbing surface 50A. Or the light is scattered by the scattering surface 51A. Thereby, the light radiated | emitted from 21 A of light extraction surfaces can be made into the luminance distribution in which the bright part and dark part of a brightness | luminance were located in a line along the longitudinal direction of 20 A of bases.

基部20Aの側面24A、25Bと直交する面が吸収面50Aである場合、吸収面50Aにおける光の吸収率は、少なくとも0.05以上であり、好ましくは0.1以上であり、さらに好ましくは0.3以上である。これにより、面状照明装置1Aは、光学部材2Aの側面24A、25Aに対してより均一な輝度分布の光が入光されても、基部20Aの光取出面21Aから明部と暗部を有する不均一な所望の輝度分布の光を放射することができる。   When the surface orthogonal to the side surfaces 24A and 25B of the base 20A is the absorption surface 50A, the light absorption rate at the absorption surface 50A is at least 0.05, preferably 0.1 or more, and more preferably 0. .3 or more. As a result, the planar illumination device 1A has a light portion and a dark portion from the light extraction surface 21A of the base portion 20A even when light with a more uniform luminance distribution is incident on the side surfaces 24A and 25A of the optical member 2A. It is possible to emit light having a uniform desired luminance distribution.

図10に示すように、基部20Aにおける発光エリアである光取出面21Aの垂直方向の輝度分布4Aは、輝度の明部40Aと暗部41Aとを有する。基部20Aの側面24A、25Aにおいて光を吸収又は散乱することにより、光の反射成分が減少して暗部41Aが発生する。このように、光取出面21Aにおける輝度分布4Aは、例えば光取出面21Aを斜め方向から見た場合などに暗部が視認され、輝度が不均一に見える。図10に示すように、光取出面21Aにおける輝度分布4Aでは、吸収面50A又は散乱面51A(図7及び図9参照)の近くに暗部41Aを有する。暗部41Aは、光源部3Aから基部20Aの長手方向に遠いほど側面24A、25Aの短手方向の中心に向かい延びる。すなわち、光取出面21Aにおける輝度分布4Aでは、輝度の明部40Aと暗部41Aとが基部20Aの側面24A、25Aと直交する向きに並ぶ。明部40Aと暗部41Aの境界は、基部20Aの側面24A、25Aと直交する線に対して傾斜する。なお、基部20Aの側面24A、25Aと直交する線は、図7及び図9の例では、基部20Aの長手方向の線に対応する。   As shown in FIG. 10, the luminance distribution 4A in the vertical direction of the light extraction surface 21A, which is a light emitting area in the base 20A, has a bright portion 40A and a dark portion 41A. By absorbing or scattering light on the side surfaces 24A and 25A of the base portion 20A, the light reflection component is reduced and the dark portion 41A is generated. As described above, in the luminance distribution 4A on the light extraction surface 21A, for example, when the light extraction surface 21A is viewed from an oblique direction, a dark part is visually recognized, and the luminance looks uneven. As shown in FIG. 10, the luminance distribution 4A on the light extraction surface 21A has a dark part 41A near the absorption surface 50A or the scattering surface 51A (see FIGS. 7 and 9). The dark part 41A extends toward the center of the lateral direction of the side surfaces 24A and 25A as the distance from the light source part 3A in the longitudinal direction of the base part 20A increases. That is, in the luminance distribution 4A on the light extraction surface 21A, the bright portion 40A and the dark portion 41A of the luminance are arranged in a direction orthogonal to the side surfaces 24A and 25A of the base portion 20A. The boundary between the bright portion 40A and the dark portion 41A is inclined with respect to a line orthogonal to the side surfaces 24A and 25A of the base portion 20A. Note that the lines orthogonal to the side surfaces 24A and 25A of the base 20A correspond to the longitudinal lines of the base 20A in the examples of FIGS.

このように、明部40Aと暗部41Aの境界が傾くことで、光取出面21Aにおいて手前から奥へ延びるような絵画的な奥行き感(遠近感)を醸し出すことができる。これにより、発光した発光面(光取出面21A)を見た人に対して、傾斜した明部40Aと暗部41Aの境界を知覚させることができ、傾斜した明部40Aと暗部41Aの境界によって発光面に手前から奥へ延びるような奥行き感を知覚させることができる。これにより、例えば両眼視差を利用しない構成で視覚効果を高めることができる。   As described above, the boundary between the bright part 40A and the dark part 41A is inclined, so that it is possible to bring out a pictorial depth feeling (perspective) that extends from the front to the back on the light extraction surface 21A. Thereby, the person who has seen the emitted light emitting surface (light extraction surface 21A) can perceive the boundary between the inclined bright part 40A and the dark part 41A, and light is emitted by the boundary between the inclined bright part 40A and the dark part 41A. The surface can be perceived as having a depth that extends from the front to the back. Thereby, for example, the visual effect can be enhanced with a configuration that does not use binocular parallax.

なお、輝度分布4Aにおける明部40Aと暗部41Aの境界の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。図10に示す例では、光取出面21Aの両側縁から延びる明部40Aと暗部41Aの境界が基部20Aの長手方向の中心付近で交わるが、かかる境界の交点は発光面を見る人の視点の位置に応じて、基部20Aの長手方向に沿う向きに移動する。   Note that the inclination angle of the boundary between the bright part 40A and the dark part 41A in the luminance distribution 4A varies depending on the position of the viewpoint of the person viewing the light emitting surface. In the example shown in FIG. 10, the boundary between the bright portion 40A and the dark portion 41A extending from both side edges of the light extraction surface 21A intersects in the vicinity of the center in the longitudinal direction of the base portion 20A. It moves in a direction along the longitudinal direction of the base 20A according to the position.

(変形例2)
次に、図11及び図12を用いて変形例2に係る面状照明装置1Bについて説明する。図11は、変形例2に係る面状照明装置を示す正面図である。図12は、変形例2に係る光取出面における輝度分布を示す図である。なお、図12には、面状照明装置1Bを正面における斜め上方から見た場合を示す。また、図12には、面状照明装置1Bの点灯状態のシミュレーション結果を示す。また、図12に示す輝度分布4Bは一例であり、輝度分布4Bの態様はこれに限定されない。面状照明装置1Bは、保持部材30Bが吸収面50B又は散乱面51Bを備える点で面状照明装置1Aと相違する。その他の点については、変形例1の面状照明装置1Aと同様であるので、面状照明装置1Aの「**A」を「**B」と読み替えるものとする。
(Modification 2)
Next, a planar lighting device 1B according to Modification 2 will be described with reference to FIGS. FIG. 11 is a front view showing a planar illumination device according to the second modification. FIG. 12 is a diagram illustrating a luminance distribution on the light extraction surface according to the second modification. In addition, in FIG. 12, the case where the planar illuminating device 1B is seen from diagonally upward in the front is shown. Moreover, in FIG. 12, the simulation result of the lighting state of the planar illuminating device 1B is shown. Moreover, the luminance distribution 4B shown in FIG. 12 is an example, and the aspect of the luminance distribution 4B is not limited to this. The planar illumination device 1B is different from the planar illumination device 1A in that the holding member 30B includes the absorption surface 50B or the scattering surface 51B. Since the other points are the same as those of the planar lighting device 1A of the first modification, “** A” of the planar lighting device 1A is read as “** B”.

図11に示すように、面状照明装置1Bは、光学部材2Bと、光源部3Bとを備える。光学部材2Bは、平板状に形成された透明体である基部20Bを有する。光学部材2Bにおいても、図11に示す一面21B(以下、「光取出面21B」ともいう)が発光面となる。なお、光学部材2Bは、上記した実施形態の光学部材2と同様である。   As shown in FIG. 11, the planar illumination device 1B includes an optical member 2B and a light source unit 3B. The optical member 2B has a base 20B that is a transparent body formed in a flat plate shape. Also in the optical member 2B, one surface 21B shown in FIG. 11 (hereinafter, also referred to as “light extraction surface 21B”) is a light emitting surface. The optical member 2B is the same as the optical member 2 of the above-described embodiment.

図11に示すように、光源部3Bは、保持部材30Bと、光源31と、入光素子32とを有する。なお、変形例2においても、光源部3Bは、上記した実施形態の光源部3とは異なり、基部20Bの側面24B(及び側面25B)において均一な輝度分布となるように光を放射する。また、変形例2においても、光源部3Bは、光学部材2Bの基部20Bの一対の側面24B、25Bに沿って配置される。光源部3Bは、光学部材2Bの両端部に一対設けられる。なお、光源部3Bは、光学部材2Bの両端部のうち、一方のみに設けられてもよい。   As illustrated in FIG. 11, the light source unit 3 </ b> B includes a holding member 30 </ b> B, a light source 31, and a light incident element 32. Also in the second modification, unlike the light source unit 3 of the above-described embodiment, the light source unit 3B emits light so as to have a uniform luminance distribution on the side surface 24B (and the side surface 25B) of the base 20B. Moreover, also in the modification 2, the light source part 3B is arrange | positioned along a pair of side surfaces 24B and 25B of the base 20B of the optical member 2B. A pair of light sources 3B is provided at both ends of the optical member 2B. In addition, the light source part 3B may be provided only in one among the both ends of the optical member 2B.

光源部3Bは、保持部材30Bが後述する吸収面50B又は散乱面51Bを備える点において上記した変形例1の光学部材2Aと相違する。保持部材30Bは、基部20Bの側面24B、25Bの端部に、光源部3Bの入光素子32と基部20Bの側面24B、25Bとの間において、入光素子32から放射される光を吸収する吸収面50B、又は入光素子32から放射される光を散乱させる散乱面51Bを備える。これにより、面状照明装置1Bは、基部20Bの光取出面21Bから明部と暗部とを有する不均一な輝度分布の光を放射することができる。なお、図11に示す例では、光学部材2Bの側面24B、25Bに対して均一な輝度分布の光が入光され、光が吸収面50Bによって吸収されるか又は光が散乱面51Bによって散乱する。これにより、光取出面21Bから放射される光を、基部20Bの長手方向に沿って輝度の明部と暗部が並んだ輝度分布とすることができる。   The light source unit 3B is different from the optical member 2A of Modification 1 described above in that the holding member 30B includes an absorption surface 50B or a scattering surface 51B described later. The holding member 30B absorbs light radiated from the light incident element 32 between the light incident element 32 of the light source unit 3B and the side surfaces 24B and 25B of the base part 20B at the ends of the side surfaces 24B and 25B of the base part 20B. The absorption surface 50B or the scattering surface 51B that scatters the light emitted from the light incident element 32 is provided. Thereby, the planar illumination device 1B can emit light having a non-uniform luminance distribution having a bright part and a dark part from the light extraction surface 21B of the base part 20B. In the example shown in FIG. 11, light having a uniform luminance distribution is incident on the side surfaces 24B and 25B of the optical member 2B, and the light is absorbed by the absorption surface 50B, or the light is scattered by the scattering surface 51B. . Thereby, the light radiated | emitted from the light extraction surface 21B can be made into the luminance distribution in which the bright part and dark part of a brightness | luminance were located in a line along the longitudinal direction of the base 20B.

なお、吸収面50Bを備える場合、例えば、黒い塗装が施された面や黒いフィルムが貼付された面を用いて吸収面50Bを形成してもよい。また、散乱面51Bを備える場合、例えば、微小な凹凸が形成された面を用いて散乱面51Bとしてもよい。また、例えば、保持部材30Bは、両端部に吸収面50B又は散乱面51Bを備えてもよいし、いずれか一方の端部のみに吸収面50B又は散乱面51Bを備えてもよい。なお、吸収面50Bや散乱面51Bは、所望の吸収率を有すればどのような構成であってもよい。   In addition, when providing the absorption surface 50B, you may form the absorption surface 50B using the surface to which the black coating was given, or the surface to which the black film was stuck, for example. When the scattering surface 51B is provided, for example, the scattering surface 51B may be formed using a surface on which minute irregularities are formed. Further, for example, the holding member 30B may include the absorption surface 50B or the scattering surface 51B at both ends, or may include the absorption surface 50B or the scattering surface 51B only at one of the ends. The absorption surface 50B and the scattering surface 51B may have any configuration as long as they have a desired absorption rate.

また、吸収面50Bを備える場合、吸収面50Bにおける光の全反射率は、少なくとも90%以下であり、好ましくは80%以下であり、さらに好ましくは50%以下である。これにより、面状照明装置1Bは、光学部材2Bの側面24B、25Bに対して均一な輝度分布の光が放射されても、基部20Bの光取出面21Bから明部と暗部を有する不均一な所望の輝度分布の光を放射することができる。また、散乱面51Bを備える場合、散乱面51Bにおける光の散乱の広がりをガウス分布で表した場合に、ガウス分布の半値全幅は、少なくとも5度(°)以上であり、好ましくは15度以上、さらに好ましくは30度以上である。これにより、面状照明装置1Bは、光学部材2Bの側面24B、25Bに対して均一な輝度分布の光が放射されても、基部20Bの光取出面21Bから明部と暗部を有する不均一な所望の輝度分布の光を放射することができる。   When the absorption surface 50B is provided, the total light reflectance at the absorption surface 50B is at least 90% or less, preferably 80% or less, and more preferably 50% or less. Thereby, even if the light of uniform luminance distribution is radiated | emitted with respect to the side surfaces 24B and 25B of the optical member 2B, the planar illuminating device 1B is non-uniform | heterogenous which has a bright part and a dark part from the light extraction surface 21B of the base 20B. Light having a desired luminance distribution can be emitted. When the scattering surface 51B is provided, when the spread of light scattering on the scattering surface 51B is represented by a Gaussian distribution, the full width at half maximum of the Gaussian distribution is at least 5 degrees (°), preferably 15 degrees or more. More preferably, it is 30 degrees or more. Thereby, even if the light of uniform luminance distribution is radiated | emitted with respect to the side surfaces 24B and 25B of the optical member 2B, the planar illuminating device 1B is non-uniform | heterogenous which has a bright part and a dark part from the light extraction surface 21B of the base 20B. Light having a desired luminance distribution can be emitted.

各光源部3Bには、入光素子32の長手方向(図11では、上下方向)から入光素子32を挟む位置に光源31が各々設けられる。例えば、2つの光源31は、入光素子32の側端部から入光素子32内に光を入光するように配置される。なお、光源31は、所望の配光制御がなされていれば、1つだけ用いられてもよく、光源31は、入光素子32の側端部の一方から入光素子32内に光を入光するように配置されてもよい。例えば、入光素子32は、点状光源である光源31から放射される光を線状光源の光に変換する機能を有する。例えば、入光素子32は、光透過性を有する材料により形成される。また、入光素子32は、いわゆるライトバーであってもよい。   Each light source unit 3B is provided with a light source 31 at a position sandwiching the light incident element 32 from the longitudinal direction of the light incident element 32 (vertical direction in FIG. 11). For example, the two light sources 31 are arranged so that light enters the light incident element 32 from the side end portions of the light incident element 32. Note that only one light source 31 may be used as long as the desired light distribution control is performed. The light source 31 allows light to enter the light incident element 32 from one of the side end portions of the light incident element 32. You may arrange | position so that it may light. For example, the light incident element 32 has a function of converting light emitted from the light source 31 that is a point light source into light of a linear light source. For example, the light incident element 32 is formed of a light transmissive material. The light incident element 32 may be a so-called light bar.

また、光源部3Bと基部20Bの側面24B、25Bとの間の距離は、少なくとも0.1mm以上20mm以下であり、好ましくは0.5mm以上15mm以下であり、さらに好ましくは1mm以上10mm以下である。これにより、面状照明装置1Bは、光学部材2Bの側面24B、25Bに対して均一な輝度分布の光が放射されても、基部20Bの光取出面21Bから明部と暗部を有する不均一な所望の輝度分布の光を放射することができる。   Further, the distance between the light source part 3B and the side surfaces 24B and 25B of the base part 20B is at least 0.1 mm to 20 mm, preferably 0.5 mm to 15 mm, and more preferably 1 mm to 10 mm. . Thereby, even if the light of uniform luminance distribution is radiated | emitted with respect to the side surfaces 24B and 25B of the optical member 2B, the planar illuminating device 1B is non-uniform | heterogenous which has a bright part and a dark part from the light extraction surface 21B of the base 20B. Light having a desired luminance distribution can be emitted.

図12に示すように、基部20Bにおける発光エリアである光取出面21Bの垂直方向の輝度分布4Bは、輝度の明部40Bと暗部41Bとを有する。基部20Bの側面24B、25Bに入光する光を吸収又は散乱することにより、光の反射成分が減少して暗部41Bが発生する。このように、光取出面21Bにおける輝度分布4Bは、例えば光取出面21Bを斜め方向から見た場合などに暗部41Bが視認され、輝度が不均一に見える。図12に示すように、光取出面21Bにおける輝度分布4Bでは、一面の明部40Bの中に線状の暗部41Bを有する。暗部41Bは、光源部3Bから基部20Bの長手方向に遠いほど側面24B、25Bの短手方向の中心に向かい延びる。光取出面21Bにおける輝度分布4Bでは、明部40Bと暗部41Bとが基部20Bの側面24B、25Bと直交する向きに並ぶ。明部40Bと暗部41Bの境界は、基部20Bの側面24B、25Bと直交する線に対して傾斜する。なお、基部20Bの側面24B、25Bと直交する線は、図11の例では、基部20Bの長手方向の線に対応する。   As shown in FIG. 12, the luminance distribution 4B in the vertical direction of the light extraction surface 21B, which is a light emitting area in the base 20B, has a bright portion 40B and a dark portion 41B. By absorbing or scattering the light incident on the side surfaces 24B and 25B of the base portion 20B, the light reflection component is reduced and the dark portion 41B is generated. As described above, in the luminance distribution 4B on the light extraction surface 21B, for example, when the light extraction surface 21B is viewed from an oblique direction, the dark portion 41B is visually recognized, and the luminance looks uneven. As shown in FIG. 12, the luminance distribution 4B on the light extraction surface 21B has a linear dark portion 41B in the bright portion 40B on one surface. The dark part 41B extends toward the center of the lateral direction of the side surfaces 24B and 25B as the distance from the light source part 3B in the longitudinal direction of the base part 20B increases. In the luminance distribution 4B on the light extraction surface 21B, the bright portion 40B and the dark portion 41B are arranged in a direction orthogonal to the side surfaces 24B and 25B of the base 20B. The boundary between the bright portion 40B and the dark portion 41B is inclined with respect to a line orthogonal to the side surfaces 24B and 25B of the base portion 20B. In addition, the line orthogonal to the side surfaces 24B and 25B of the base 20B corresponds to the longitudinal line of the base 20B in the example of FIG.

このように、明部40Bと暗部41Bの境界が傾くことで、光取出面21Bにおいて手前から奥へ延びるような絵画的な奥行き感(遠近感)を醸し出すことができる。これにより、発光した発光面(光取出面21B)を見た人に対して、傾斜した明部40Bと暗部41Bの境界を知覚させることができ、傾斜した明部40Bと暗部41Bの境界によって発光面に手前から奥へ延びるような奥行き感を知覚させることができる。これにより、例えば両眼視差を利用しない構成で視覚効果を高めることができる。   As described above, the boundary between the bright part 40B and the dark part 41B is inclined, so that a pictorial depth feeling (perspective) that extends from the front to the back can be created on the light extraction surface 21B. Thereby, the person who has seen the emitted light emitting surface (light extraction surface 21B) can perceive the boundary between the inclined bright part 40B and the dark part 41B, and light is emitted by the boundary between the inclined bright part 40B and the dark part 41B. The surface can be perceived as having a depth that extends from the front to the back. Thereby, for example, the visual effect can be enhanced with a configuration that does not use binocular parallax.

なお、輝度分布4Bにおける明部40Bと暗部41Bの境界の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。図12に示す例においても、光取出面21Bの両側縁から延びる明部40Bと暗部41Bの境界が基部20Bの長手方向の中心付近で交わるが、かかる境界の交点は発光面を見る人の視点の位置に応じて、基部20Bの長手方向に沿う向きに移動する。   Note that the inclination angle of the boundary between the bright part 40B and the dark part 41B in the luminance distribution 4B varies depending on the position of the viewpoint of the person viewing the light emitting surface. Also in the example shown in FIG. 12, the boundary between the bright portion 40B and the dark portion 41B extending from both side edges of the light extraction surface 21B intersects in the vicinity of the center in the longitudinal direction of the base portion 20B. Depending on the position, the base 20B moves in the direction along the longitudinal direction.

(変形例3−1)
次に、図13及び図14を用いて変形例3−1に係る面状照明装置1Cについて説明する。図13は、変形例3−1に係る面状照明装置を示す正面図である。図14は、変形例3−1に係る光取出面における輝度分布を示す図である。なお、図14には、面状照明装置1Cを正面における斜め上方から見た場合を示す。また、図14には、面状照明装置1Cの点灯状態のシミュレーション結果を示す。また、図14に示す輝度分布4Cは一例であり、輝度分布4Cの態様はこれに限定されない。
(Modification 3-1)
Next, a planar lighting device 1C according to Modification 3-1 will be described with reference to FIGS. FIG. 13 is a front view showing a planar illumination device according to Modification 3-1. FIG. 14 is a diagram illustrating a luminance distribution on the light extraction surface according to Modification 3-1. In addition, in FIG. 14, the case where the planar illuminating device 1C is seen from diagonally upward in the front is shown. Moreover, in FIG. 14, the simulation result of the lighting state of 1 C of planar illumination apparatuses is shown. Moreover, the luminance distribution 4C shown in FIG. 14 is an example, and the aspect of the luminance distribution 4C is not limited to this.

図13に示すように、面状照明装置1Cは、光学部材2Cと、光源部3Cとを備える。光学部材2Cは、平板状に形成された透明体である基部20Cを有する。光学部材2Cにおいても、図13に示す一面21C(以下、「光取出面21C」ともいう)が発光面となる。なお、光学部材2Cは、上記した実施形態の光学部材2と同様である。   As illustrated in FIG. 13, the planar illumination device 1 </ b> C includes an optical member 2 </ b> C and a light source unit 3 </ b> C. The optical member 2C has a base portion 20C that is a transparent body formed in a flat plate shape. Also in the optical member 2 </ b> C, one surface 21 </ b> C (hereinafter also referred to as “light extraction surface 21 </ b> C”) illustrated in FIG. 13 is a light emitting surface. The optical member 2C is the same as the optical member 2 of the above-described embodiment.

図13に示すように、光源部3Cは、保持部材30Cと、光源31と、入光素子32とを有する。変形例3−1においても、光源部3Cは、光学部材2Cの基部20Cの一対の側面24C、25Cに沿って配置される。光源部3Cは、光学部材2Cの両端部に一対設けられる。なお、光源部3Cは、光学部材2Cの両端部のうち、一方のみに設けられてもよい。   As illustrated in FIG. 13, the light source unit 3 </ b> C includes a holding member 30 </ b> C, a light source 31, and a light incident element 32. Also in the modified example 3-1, the light source unit 3C is disposed along the pair of side surfaces 24C and 25C of the base 20C of the optical member 2C. A pair of light sources 3C is provided at both ends of the optical member 2C. The light source unit 3C may be provided on only one of both end portions of the optical member 2C.

光源部3Cは、光源31の配置において上記した変形例1及び変形例2の光源部3A、3Bと異なり、各光源部3Cにそれぞれ1つの光源31が配置される。変形例3−1では、保持部材30Cの幅方向(すなわち、基部20Cの側面24C、25Cと直交する向き)における一方側に光源31が配置される。光源部3Cの入光素子32からは基部20Cにおける側面24C、25Cと直交する向きの一方半部に向けて光が放射される。例えば変形例1や変形例2のように入光素子32の両端部の光源31からの光を均一に放射させる配光性を有する入光素子32の一方のみに光源31が配置されることで、面状照明装置1Cは、基部20Cの光取出面21Cから明部と暗部とを有する不均一な輝度分布の光を放射することができる。なお、図13に示すにおいても、光取出面21Cから放射される光を、基部20Cの長手方向に沿って輝度の明部と暗部が並んだ輝度分布とすることができる。   The light source unit 3C is different from the light source units 3A and 3B of Modification 1 and Modification 2 described above in the arrangement of the light source 31, and one light source 31 is disposed in each light source unit 3C. In the modified example 3-1, the light source 31 is disposed on one side in the width direction of the holding member 30C (that is, the direction orthogonal to the side surfaces 24C and 25C of the base portion 20C). Light is emitted from the light incident element 32 of the light source unit 3C toward one half of the base 20C in the direction orthogonal to the side surfaces 24C and 25C. For example, the light source 31 is disposed only in one of the light incident elements 32 having a light distribution property that uniformly radiates light from the light sources 31 at both ends of the light incident element 32 as in the first and second modifications. The planar illumination device 1C can emit light having a non-uniform luminance distribution having a bright part and a dark part from the light extraction surface 21C of the base part 20C. In addition, also in FIG. 13, the light emitted from the light extraction surface 21C can be a luminance distribution in which bright portions and dark portions of luminance are aligned along the longitudinal direction of the base portion 20C.

図14に示すように、基部20Cにおける発光エリアである光取出面21Cの垂直方向の輝度分布4Cは、輝度の明部40Cと暗部41Cとを有する。光取出面21Cにおける輝度分布4Cは、輝度が不均一に見える。図14に示すように、光取出面21Cにおける輝度分布4Cでは、保持部材30Cの光源31が配置される一方側に暗部41Cを有する。暗部41Cは、光源部3Cから基部20Cの長手方向に遠いほど側面24C、25Cの短手方向の中心に向かい延びる。光取出面21Cにおける輝度分布4Cでは、明部40Cと暗部41Cとが基部20Cの側面24C、25Cと直交する向きに並ぶ。明部40Cと暗部41Cの境界は、基部20Cの側面24C、25Cと直交する線に対して傾斜する。なお、基部20Cの側面24C、25Cと直交する線は、図13の例では、基部20Cの長手方向の線に対応する。   As shown in FIG. 14, the luminance distribution 4C in the vertical direction of the light extraction surface 21C, which is a light emitting area in the base 20C, has a bright portion 40C and a dark portion 41C. The luminance distribution 4C on the light extraction surface 21C looks uneven in luminance. As shown in FIG. 14, the luminance distribution 4C on the light extraction surface 21C has a dark part 41C on one side of the holding member 30C where the light source 31 is disposed. The dark part 41C extends toward the center of the lateral direction of the side surfaces 24C and 25C as the distance from the light source part 3C in the longitudinal direction of the base part 20C increases. In the luminance distribution 4C on the light extraction surface 21C, the bright portion 40C and the dark portion 41C are arranged in a direction orthogonal to the side surfaces 24C and 25C of the base portion 20C. The boundary between the bright portion 40C and the dark portion 41C is inclined with respect to a line orthogonal to the side surfaces 24C and 25C of the base portion 20C. In addition, the line orthogonal to the side surfaces 24C and 25C of the base portion 20C corresponds to the longitudinal line of the base portion 20C in the example of FIG.

このように、明部40Cと暗部41Cの境界が傾くことで、光取出面21Cにおいて手前から奥へ延びるような絵画的な奥行き感(遠近感)を醸し出すことができる。これにより、発光した発光面(光取出面21C)を見た人に対して、傾斜した明部40Cと暗部41Cの境界を知覚させることができ、傾斜した明部40Cと暗部41Cの境界によって発光面に手前から奥へ延びるような奥行き感を知覚させることができる。これにより、例えば両眼視差を利用しない構成で視覚効果を高めることができる。   As described above, the boundary between the bright part 40C and the dark part 41C is inclined, so that it is possible to create a pictorial depth (perspective) that extends from the front to the back on the light extraction surface 21C. Thereby, the person who has seen the emitted light emitting surface (light extraction surface 21C) can perceive the boundary between the inclined bright part 40C and the dark part 41C, and light is emitted by the boundary between the inclined bright part 40C and the dark part 41C. The surface can be perceived as having a depth that extends from the front to the back. Thereby, for example, the visual effect can be enhanced with a configuration that does not use binocular parallax.

なお、輝度分布4Cにおける明部40Cと暗部41Cの境界の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。図14に示す例においても、光取出面21Cの両側縁から延びる明部40Cと暗部41Cの境界が基部20Cの長手方向の中心付近で交わるが、かかる境界の交点は発光面を見る人の視点の位置に応じて、基部20Cの長手方向に沿う向きに移動する。   In addition, the inclination angle of the boundary between the bright part 40C and the dark part 41C in the luminance distribution 4C varies depending on the position of the viewpoint of the person viewing the light emitting surface. Also in the example shown in FIG. 14, the boundary between the bright portion 40C and the dark portion 41C extending from both side edges of the light extraction surface 21C intersects in the vicinity of the center in the longitudinal direction of the base portion 20C. Depending on the position of the base, the base 20C moves in a direction along the longitudinal direction.

(変形例3−2)
次に、図15及び図16を用いて変形例3−2に係る面状照明装置1Dについて説明する。図15は、変形例3−2に係る面状照明装置を示す正面図である。図16は、変形例3−2に係る光取出面における輝度分布を示す図である。なお、図16には、面状照明装置1Dを正面における斜め上方から見た場合を示す。また、図16には、面状照明装置1Dの点灯状態のシミュレーション結果を示す。また、図16に示す輝度分布4Dは一例であり、輝度分布4Dの態様はこれに限定されない。
(Modification 3-2)
Next, a planar lighting device 1D according to Modification 3-2 will be described with reference to FIGS. 15 and 16. FIG. 15 is a front view illustrating a planar illumination device according to Modification 3-2. FIG. 16 is a diagram illustrating a luminance distribution on the light extraction surface according to Modification 3-2. In addition, in FIG. 16, the case where planar illumination device 1D is seen from diagonally upward in the front is shown. Moreover, in FIG. 16, the simulation result of the lighting state of the planar illuminating device 1D is shown. Moreover, the luminance distribution 4D shown in FIG. 16 is an example, and the aspect of the luminance distribution 4D is not limited to this.

図15に示すように、面状照明装置1Dは、光学部材2Dと、光源部3Dとを備える。光学部材2Dは、平板状に形成された透明体である基部20Dを有する。光学部材2Dにおいても、図15に示す一面21D(以下、「光取出面21D」ともいう)が発光面となる。なお、光学部材2Dは、上記した実施形態の光学部材2と同様である。   As shown in FIG. 15, the planar illumination device 1D includes an optical member 2D and a light source unit 3D. The optical member 2D has a base 20D that is a transparent body formed in a flat plate shape. Also in the optical member 2D, one surface 21D (hereinafter, also referred to as “light extraction surface 21D”) shown in FIG. 15 is a light emitting surface. The optical member 2D is the same as the optical member 2 of the above-described embodiment.

図15に示すように、光源部3Dは、保持部材30Dと、光源31と、入光素子32とを有する。変形例3−2においても、光源部3Dは、光学部材2Dの基部20Dの一対の側面24D、25Dに沿って配置される。光源部3Dは、光学部材2Dの両端部に一対設けられる。   As illustrated in FIG. 15, the light source unit 3 </ b> D includes a holding member 30 </ b> D, a light source 31, and a light incident element 32. Also in Modification 3-2, the light source unit 3D is disposed along the pair of side surfaces 24D and 25D of the base 20D of the optical member 2D. A pair of light sources 3D is provided at both ends of the optical member 2D.

光源部3Dは、光源31の配置において上記した変形例3−1の光源部3Cと相違する。変形例3−2では、保持部材30Dの幅方向(すなわち、基部20Dの側面24D、25Dと直交する向き)における他方側に光源31が配置される。光源部3Dの入光素子32からは基部20Dにおける側面24D、25Dと直交する向きの他方半部に向けて光が放射される。例えば変形例1や変形例2のように入光素子32の両端部の光源31からの光を均一に放射させる配光性を有する入光素子32の一方のみに光源31が配置されることで、面状照明装置1Dは、基部20Dの光取出面21Dから明部と暗部とを有する不均一な輝度分布の光を放射することができる。なお、図15に示す例においても、光取出面21Dから放射される光を、基部20Dの側面24D、25Dに沿って輝度の明部と暗部が並んだ輝度分布とすることができる。   The light source unit 3D is different from the light source unit 3C of Modification 3-1 described above in the arrangement of the light source 31. In Modification 3-2, the light source 31 is disposed on the other side in the width direction of the holding member 30D (that is, the direction orthogonal to the side surfaces 24D and 25D of the base 20D). Light is emitted from the light incident element 32 of the light source unit 3D toward the other half of the base 20D in the direction orthogonal to the side surfaces 24D and 25D. For example, the light source 31 is disposed only in one of the light incident elements 32 having a light distribution property that uniformly radiates light from the light sources 31 at both ends of the light incident element 32 as in the first and second modifications. The planar illumination device 1D can emit light having a nonuniform luminance distribution having a bright part and a dark part from the light extraction surface 21D of the base part 20D. Also in the example shown in FIG. 15, the light emitted from the light extraction surface 21 </ b> D can have a luminance distribution in which bright portions and dark portions of luminance are aligned along the side surfaces 24 </ b> D and 25 </ b> D of the base portion 20 </ b> D.

図16に示すように、基部20Dにおける発光エリアである光取出面21Dの垂直方向の輝度分布4Dは、輝度の明部40Dと暗部41Dとを有する。このように、光取出面21Dにおける輝度分布4Dは、明部40Dと暗部41Dとを有するため、輝度が均一ではない。すなわち、光取出面21Dにおける輝度分布4Dは、輝度が不均一である。図16に示すように、光取出面21Dにおける輝度分布4Dでは、保持部材30Dの光源31が配置される他方側に暗部41Dを有する。暗部41Dは、光源部3Dから基部20Dの長手方向に遠いほど側面24D、25Dの短手方向の中心に向かい延びる。光取出面21Dにおける輝度分布4Dでは、明部40Dと暗部41Dとが基部20Dの側面24D、25Dと直交する向きに並ぶ。明部40Dと暗部41Dの境界は、基部20Dの側面24D、25Dと直交する線に対して傾斜する。なお、基部20Dの側面24D、25Dと直交する線は、図15の例では、基部20Dの長手方向の線に対応する。   As shown in FIG. 16, the luminance distribution 4D in the vertical direction of the light extraction surface 21D, which is a light emitting area in the base portion 20D, has a luminance bright portion 40D and a dark portion 41D. Thus, the luminance distribution 4D on the light extraction surface 21D has the bright portion 40D and the dark portion 41D, and thus the luminance is not uniform. That is, the luminance distribution 4D on the light extraction surface 21D has nonuniform luminance. As shown in FIG. 16, in the luminance distribution 4D on the light extraction surface 21D, the holding member 30D has a dark part 41D on the other side where the light source 31 is disposed. The dark part 41D extends toward the center of the lateral direction of the side surfaces 24D and 25D as the distance from the light source part 3D in the longitudinal direction of the base part 20D increases. In the luminance distribution 4D on the light extraction surface 21D, the bright portion 40D and the dark portion 41D are arranged in a direction orthogonal to the side surfaces 24D and 25D of the base portion 20D. The boundary between the bright part 40D and the dark part 41D is inclined with respect to a line orthogonal to the side surfaces 24D and 25D of the base part 20D. Note that the lines orthogonal to the side surfaces 24D and 25D of the base 20D correspond to the longitudinal lines of the base 20D in the example of FIG.

このように、明部40Dと暗部41Dの境界が傾くことで、光取出面21Dにおいて手前から奥へ延びるような絵画的な奥行き感(遠近感)を醸し出すことができる。これにより、発光した発光面(光取出面21D)を見た人に対して、傾斜した明部40Dと暗部41Dの境界を知覚させることができ、傾斜した明部40Dと暗部41Dの境界によって発光面に手前から奥へ延びるような奥行き感を知覚させることができる。これにより、例えば両眼視差を利用しない構成で視覚効果を高めることができる。   As described above, the boundary between the bright part 40D and the dark part 41D is inclined, so that a pictorial depth feeling (perspective) that extends from the front to the back can be created on the light extraction surface 21D. Thereby, the person who has seen the emitted light emitting surface (light extraction surface 21D) can perceive the boundary between the inclined bright part 40D and the dark part 41D, and light is emitted by the boundary between the inclined bright part 40D and the dark part 41D. The surface can be perceived as having a depth that extends from the front to the back. Thereby, for example, the visual effect can be enhanced with a configuration that does not use binocular parallax.

なお、輝度分布4Dにおける明部40Dと暗部41Dの境界の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。図16に示す例においても、光取出面21Dの両側縁から延びる明部40Dと暗部41Dの境界が基部20Dの長手方向の中心付近で交わるが、かかる境界の交点は発光面を見る人の視点の位置に応じて、基部20Dの長手方向に沿う向きに移動する。   Note that the inclination angle of the boundary between the bright part 40D and the dark part 41D in the luminance distribution 4D varies depending on the position of the viewpoint of the person viewing the light emitting surface. Also in the example shown in FIG. 16, the boundary between the bright portion 40D and the dark portion 41D extending from both side edges of the light extraction surface 21D intersects in the vicinity of the center in the longitudinal direction of the base portion 20D. Depending on the position, the base 20D moves in a direction along the longitudinal direction.

(変形例3−3)
次に、図17及び図18を用いて変形例3−3に係る面状照明装置1Eについて説明する。図17は、変形例3−3に係る面状照明装置を示す正面図である。図18は、変形例3−3に係る光取出面における輝度分布を示す図である。なお、図18には、面状照明装置1Eを正面における斜め上方から見た場合を示す。また、図18には、面状照明装置1Eの点灯状態のシミュレーション結果を示す。また、図18に示す輝度分布4Eは一例であり、輝度分布4Eの態様はこれに限定されない。
(Modification 3-3)
Next, a planar lighting device 1E according to Modification 3-3 will be described with reference to FIGS. FIG. 17 is a front view showing a planar illumination device according to Modification 3-3. FIG. 18 is a diagram illustrating a luminance distribution on the light extraction surface according to Modification 3-3. In addition, in FIG. 18, the case where the planar illuminating device 1E is seen from diagonally upward in the front is shown. Moreover, in FIG. 18, the simulation result of the lighting state of the planar illuminating device 1E is shown. Moreover, the luminance distribution 4E shown in FIG. 18 is an example, and the aspect of the luminance distribution 4E is not limited to this.

図17に示すように、面状照明装置1Eは、光学部材2Eと、光源部3Eとを備える。光学部材2Eは、平板状に形成された透明体である基部20Eを有する。光学部材2Eにおいても、図17に示す一面21E(以下、「光取出面21E」ともいう)が発光面となる。なお、光学部材2Eは、上記した実施形態の光学部材2と同様である。   As shown in FIG. 17, the planar illumination device 1E includes an optical member 2E and a light source unit 3E. The optical member 2E has a base portion 20E that is a transparent body formed in a flat plate shape. Also in the optical member 2E, one surface 21E shown in FIG. 17 (hereinafter also referred to as “light extraction surface 21E”) serves as a light emitting surface. The optical member 2E is the same as the optical member 2 of the above-described embodiment.

図17に示すように、光源部3Eは、保持部材30Eと、光源31と、入光素子32とを有する。変形例3−3においても、光源部3Eは、光学部材2Eの基部20Eの一対の側面24E、25Eに沿って配置される。光源部3Eは、光学部材2Eの両端部に一対設けられる。   As illustrated in FIG. 17, the light source unit 3 </ b> E includes a holding member 30 </ b> E, a light source 31, and a light incident element 32. Also in Modified Example 3-3, the light source unit 3E is disposed along the pair of side surfaces 24E and 25E of the base 20E of the optical member 2E. A pair of light sources 3E is provided at both ends of the optical member 2E.

光源部3Eは、光源31の配置において上記した変形例3−1及び変形例3−2の光源部3C、3Dと異なる。変形例3−3では、一方の保持部材301Eの幅方向(すなわち、基部20Eの側面24E、25Eと直交する向き)における一方側に光源31が配置される。また、変形例3−3では、他方の保持部材302Eの幅方向(すなわち、基部20Eの側面24E、25Eと直交する向き)における他方側に光源31が配置される。   The light source unit 3E is different from the light source units 3C and 3D of the modified example 3-1 and modified example 3-2 described above in the arrangement of the light source 31. In Modification 3-3, the light source 31 is arranged on one side in the width direction of one holding member 301E (that is, the direction orthogonal to the side surfaces 24E and 25E of the base 20E). In Modification 3-3, the light source 31 is disposed on the other side in the width direction of the other holding member 302E (that is, the direction orthogonal to the side surfaces 24E and 25E of the base portion 20E).

一方の保持部材301Eに保持された光源部3Eの入光素子32からは、基部20Eにおける側面24E、25Eと直交する向きの一方半部に向けて光が放射される。他方の保持部材302Eに保持された光源部3Eの入光素子32からは、基部20Eにおける側面24E、25Eと直交する向きの他方半部に向けて光が放射される。例えば変形例1や変形例2のように入光素子32の両端部の光源31からの光を均一に放射させる配光性を有する入光素子32の一方のみに光源31が配置されることで、面状照明装置1Eは、基部20Eの光取出面21Eから明部と暗部とを有する不均一な輝度分布の光を放射することができる。なお、図17に示す例においても、光取出面21Eから放射される光を、基部20Eの側面24E、25Eに沿って輝度の明部と暗部が並んだ輝度分布とすることができる。   Light is emitted from the light incident element 32 of the light source unit 3E held by one holding member 301E toward one half of the base 20E in the direction orthogonal to the side surfaces 24E and 25E. Light is emitted from the light incident element 32 of the light source 3E held by the other holding member 302E toward the other half of the base 20E in a direction orthogonal to the side surfaces 24E and 25E. For example, the light source 31 is disposed only in one of the light incident elements 32 having a light distribution property that uniformly radiates light from the light sources 31 at both ends of the light incident element 32 as in the first and second modifications. The planar illumination device 1E can emit light having a nonuniform luminance distribution having a bright part and a dark part from the light extraction surface 21E of the base part 20E. In the example shown in FIG. 17 as well, the light emitted from the light extraction surface 21E can be a luminance distribution in which bright and dark portions of luminance are arranged along the side surfaces 24E and 25E of the base 20E.

図18に示すように、基部20Eにおける発光エリアである光取出面21Eの垂直方向の輝度分布4Eは、輝度の明部40Eと暗部41Eとを有する。このように、光取出面21Eにおける輝度分布4Eは、輝度が不均一に見える。図18に示すように、光取出面21Eにおける輝度分布4Eでは、基部20Eの長手方向の中心を境界として、一方の保持部材301Eの光源31が配置される側(一方側)に暗部41Eを有し、他方の保持部材302Eの光源31が配置される側(他方側)に暗部41Eを有する。   As shown in FIG. 18, the luminance distribution 4E in the vertical direction of the light extraction surface 21E, which is a light emitting area in the base 20E, has a bright portion 40E and a dark portion 41E. Thus, the luminance distribution 4E on the light extraction surface 21E looks uneven in luminance. As shown in FIG. 18, in the luminance distribution 4E on the light extraction surface 21E, the dark portion 41E is provided on the side (one side) where the light source 31 of one holding member 301E is disposed with the center in the longitudinal direction of the base portion 20E as a boundary. The other holding member 302E has a dark portion 41E on the side where the light source 31 is disposed (the other side).

一方側の暗部41Eは、光源部3Eから基部20Eの長手方向に遠いほど側面24E、25Eの短手方向の中心に向かい延びる。一方、他方側の暗部41Eは、光源部3Eから基部20Eの長手方向に遠いほど側面24E、25Eの短手方向の一方端部に向かい延びる。光取出面21Eにおける輝度分布4Eでは、明部40Eと暗部41Eとが基部20Eの側面24E、25Eと直交する向きに並ぶ。明部40Eと暗部41Eの境界は、基部20Eの側面24E、25Eと直交する線に対して傾斜する。なお、基部20Eの側面24E、25Eと直交する線は、図17の例では、基部20Eの長手方向の線に対応する。   The dark part 41E on one side extends toward the center in the short side direction of the side surfaces 24E and 25E as the distance from the light source part 3E in the longitudinal direction of the base part 20E increases. On the other hand, the dark side 41E on the other side extends toward one end of the side surfaces 24E and 25E in the short direction as the distance from the light source 3E in the longitudinal direction of the base 20E increases. In the luminance distribution 4E on the light extraction surface 21E, the bright portion 40E and the dark portion 41E are arranged in a direction orthogonal to the side surfaces 24E and 25E of the base portion 20E. The boundary between the bright part 40E and the dark part 41E is inclined with respect to a line orthogonal to the side surfaces 24E and 25E of the base part 20E. In addition, the line orthogonal to the side surfaces 24E and 25E of the base 20E corresponds to the longitudinal line of the base 20E in the example of FIG.

このように、明部40Eと暗部41Eの境界が傾くことで、光取出面21Eにおいて手前から奥へ延びるような絵画的な奥行き感(遠近感)を醸し出すことができる。これにより、発光した発光面(光取出面21E)を見た人に対して、傾斜した明部40Eと暗部41Eの境界を知覚させることができ、傾斜した明部40Eと暗部41Eの境界によって発光面に手前から奥へ延びるような奥行き感を知覚させることができる。これにより、例えば両眼視差を利用しない構成で視覚効果を高めることができる。   As described above, the boundary between the bright part 40E and the dark part 41E is inclined, so that a pictorial depth feeling (perspective) that extends from the front to the back can be brought about on the light extraction surface 21E. Thereby, the person who has seen the emitted light emitting surface (light extraction surface 21E) can perceive the boundary between the inclined bright part 40E and the dark part 41E, and light is emitted by the boundary between the inclined bright part 40E and the dark part 41E. The surface can be perceived as having a depth that extends from the front to the back. Thereby, for example, the visual effect can be enhanced with a configuration that does not use binocular parallax.

なお、輝度分布4Eにおける明部40Eと暗部41Eの境界の傾斜角度は、発光面を見る人の視点の位置に応じて様々に変化する。図18に示す例においても、光取出面21Eの両側縁から延びる明部40Eと暗部41Eの境界が基部20Eの長手方向の中心付近で交わるが、かかる境界の交点は発光面を見る人の視点の位置に応じて、基部20Eの長手方向に沿う向きに移動する。   Note that the inclination angle of the boundary between the bright part 40E and the dark part 41E in the luminance distribution 4E varies depending on the position of the viewpoint of the person viewing the light emitting surface. Also in the example shown in FIG. 18, the boundary between the bright portion 40E and the dark portion 41E extending from both side edges of the light extraction surface 21E intersects in the vicinity of the center in the longitudinal direction of the base portion 20E. Depending on the position, the base 20E moves in a direction along the longitudinal direction.

なお、上記した実施形態及び実施形態の変形例では、光源部が光学部材の基部の一対の側面にそれぞれ配置される構成について説明したが、例えば、光源部が一対の側面のうちいずれか一方のみに配置されてもよい。このように構成しても、光取出面から放射される光は、輝度の明部と暗部とを有し、かつ、基部の長手方向に傾斜する輝度分布となる。   In the above-described embodiment and the modification of the embodiment, the configuration in which the light source unit is disposed on each of the pair of side surfaces of the base portion of the optical member has been described. For example, the light source unit is only one of the pair of side surfaces. May be arranged. Even if comprised in this way, the light radiated | emitted from a light extraction surface will have a luminance distribution which has a bright part and a dark part of a brightness | luminance, and inclines in the longitudinal direction of a base.

また、上記した実施形態及び実施形態の変形例では、光源部の構成、吸収面又は散乱面を用いる構成によって光取出面から放射される光を明部と暗部とを有する輝度分布としたが、例えば、ピッチや角度が適宜規定されたプリズム部によって光取出面から放射される光について明部と暗部とを有する輝度分布をとしてもよい。   Further, in the above-described embodiment and the modification of the embodiment, the light emitted from the light extraction surface by the configuration of the light source unit, the absorption surface or the scattering surface is a luminance distribution having a bright part and a dark part. For example, the luminance distribution having a bright part and a dark part may be used for the light emitted from the light extraction surface by the prism part in which the pitch and angle are appropriately defined.

また、上記した実施形態の変形例では、光源部ごとに1つの入光素子を備える構成としたが、例えば、入光素子が複数積層されてもよい。また、入光素子が楔状に形成されて光源を片辺に配置してもよいし、楔状の入光素子を対向して配置してもよい。楔状の入光素子を片辺に配置する場合、例えば、入光素子を、基部の短手方向に沿って一方向に向かうにつれて厚みが薄くなるように形成する。また、楔状の入光素子を対向して配置する場合、例えば、2つの入光素子を、基部の短手方向に沿って一方向又は他方向に向かうにつれて厚みが薄くなるように形成し、互いの傾斜面を対向させて配置する。その他、入光素子は、放射される光の輝度が不均一になるように部分的に角度調整されたプリズムが形成されてもよいし、プリズムを部分的に形成しなくてもよい。また、入光素子と基部の側面との間に透過率が制御された部材を配置してもよい。   Moreover, although it was set as the structure provided with one light incident element for every light source part in the modification of above-described embodiment, multiple light incident elements may be laminated | stacked, for example. The light incident element may be formed in a wedge shape, and the light source may be disposed on one side, or the wedge-shaped light incident elements may be disposed to face each other. When the wedge-shaped light incident element is arranged on one side, for example, the light incident element is formed so that the thickness decreases as it goes in one direction along the short direction of the base. In addition, when the wedge-shaped light incident elements are arranged to face each other, for example, the two light incident elements are formed so that the thickness decreases in one direction or the other direction along the short direction of the base, and Are arranged with their inclined surfaces facing each other. In addition, the light incident element may be formed with a prism that is partially angle-adjusted so that the luminance of emitted light is non-uniform, or may not be partially formed. Moreover, you may arrange | position the member by which the transmittance | permeability was controlled between the light-receiving element and the side surface of the base.

なお、上述した面状照明装置は、自動車のハイマウントに用いられてもよい。例えば、面状照明装置は、自動車のリアウインドに取り付けられてもよい。また、光学部材は、自動車用に限定されず、種々の用途の面状照明装置に用いられてもよい。   Note that the above-described planar illumination device may be used for a high mount of an automobile. For example, the planar lighting device may be attached to the rear window of an automobile. Moreover, an optical member is not limited to the object for motor vehicles, You may be used for the planar illuminating device of various uses.

また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。   Further, the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.

1 面状照明装置
2 光学部材
20 基部
24 側面
25 側面
3 光源部
4 輝度分布
40 明部
41 暗部
DESCRIPTION OF SYMBOLS 1 Planar illuminating device 2 Optical member 20 Base 24 Side surface 25 Side surface 3 Light source part 4 Luminance distribution 40 Bright part 41 Dark part

Claims (15)

平板状に形成された基部を有する光学部材と、
前記光学部材の前記基部の側面に沿って配置される光源部と
を備え、
前記光源部から入光された光の前記基部における輝度分布において、明部と暗部の境界が前記側面と直交する線に対して傾斜する、面状照明装置。
An optical member having a base formed in a flat plate shape;
A light source portion disposed along a side surface of the base portion of the optical member,
A planar illumination device in which a boundary between a bright part and a dark part is inclined with respect to a line orthogonal to the side surface in a luminance distribution in the base part of light incident from the light source part.
前記光学部材の前記基部は、透明体であるとともに、前記基部の厚み方向の一方側に形成され所定の方向に並ぶプリズム部であって、前記所定の方向に沿う断面において前記基部の厚み方向が直交する面に対する傾斜角度が0度以上8度以内である第1領域に、プリズム形状を有する第2領域が連続し、前記所定の方向の長さにおける前記第1領域の割合が60%以上100%未満であるプリズム部を備える、請求項1に記載の面状照明装置。   The base portion of the optical member is a transparent body, and is a prism portion formed on one side in the thickness direction of the base portion and arranged in a predetermined direction, and the thickness direction of the base portion in a cross section along the predetermined direction is A second region having a prism shape is continuous with a first region having an inclination angle with respect to the orthogonal plane of 0 degrees or more and within 8 degrees, and the ratio of the first region in the length in the predetermined direction is 60% or more and 100. The planar illumination device according to claim 1, comprising a prism portion that is less than%. 前記光源部は、前記基部の前記側面において不均一な輝度分布となるように光を放射する、請求項1または2に記載の面状照明装置。   The planar illumination device according to claim 1, wherein the light source unit emits light so as to have a nonuniform luminance distribution on the side surface of the base. 前記側面に焦点を合わせた状態で、前記光源部から放射される光の輝度分布における明部と暗部の輝度比が少なくとも80%以下である、請求項2に記載の面状照明装置。   3. The planar illumination device according to claim 2, wherein a luminance ratio between a bright part and a dark part in a luminance distribution of light emitted from the light source unit is at least 80% or less in a state where the side surface is focused. 前記側面に焦点を合わせた状態で、前記光源部から放射される光の輝度分布における明部と暗部の輝度比が50%以下である、請求項4に記載の面状照明装置。   The planar illumination device according to claim 4, wherein a luminance ratio of a bright part and a dark part in a luminance distribution of light emitted from the light source unit is 50% or less in a state where the side surface is focused. 前記光源部は、前記基部の前記側面に沿って配置される複数の光源を有する、請求項2〜5のいずれか1つに記載の面状照明装置。   The planar illumination device according to claim 2, wherein the light source unit includes a plurality of light sources arranged along the side surface of the base. 前記光源部は、前記基部の前記側面において均一な輝度分布となるように光を放射し、
前記基部の前記側面と直交する面は、光の吸収面又は散乱面である、請求項1または2に記載の面状照明装置。
The light source unit emits light so as to have a uniform luminance distribution on the side surface of the base,
The surface illumination device according to claim 1, wherein a surface orthogonal to the side surface of the base portion is a light absorption surface or a scattering surface.
前記吸収面又は前記散乱面における光の吸収度が少なくとも0.05以上である、請求項7に記載の面状照明装置。   The planar illumination device according to claim 7, wherein the light absorption at the absorption surface or the scattering surface is at least 0.05 or more. 前記吸収面又は前記散乱面における光の吸収度が0.3以上である、請求項8に記載の面状照明装置。   The planar illumination device according to claim 8, wherein an absorbance of light on the absorption surface or the scattering surface is 0.3 or more. 前記光源部は、前記基部の前記側面において均一な輝度分布となるように光を放射し、
前記光源部と前記基部との間における前記基部の前記側面と直交する向きの端部に光の吸収面又は光の散乱面を備える、請求項2に記載の面状照明装置。
The light source unit emits light so as to have a uniform luminance distribution on the side surface of the base,
The planar illumination device according to claim 2, further comprising a light absorbing surface or a light scattering surface at an end portion of the base portion between the light source portion and the base portion and oriented in a direction orthogonal to the side surface.
前記光源部と前記基部との間の距離が少なくとも0.1mm以上20mm以下であり、前記吸収面を備える場合、前記吸収面における光の全反射率が少なくとも90%以下であり、前記散乱面を備える場合、前記散乱面における光の散乱の広がりをガウス分布で表した場合に前記ガウス分布の半値全幅が少なくとも5度以上である、請求項10に記載の面状照明装置。   When the distance between the light source part and the base part is at least 0.1 mm or more and 20 mm or less and includes the absorption surface, the total reflectance of light at the absorption surface is at least 90% or less, and the scattering surface is 11. The planar illumination device according to claim 10, wherein the full width at half maximum of the Gaussian distribution is at least 5 degrees or more when the spread of light scattering on the scattering surface is expressed by a Gaussian distribution. 前記光源部と前記基部との間の距離が1mm以上10mm以下である、請求項11に記載の面状照明装置。   The planar illumination device according to claim 11, wherein a distance between the light source unit and the base unit is 1 mm or more and 10 mm or less. 前記吸収面における全反射率が50%以下である、請求項11または12に記載の面状照明装置。   The planar illuminating device of Claim 11 or 12 whose total reflectance in the said absorption surface is 50% or less. 前記散乱面における光の散乱の広がりをガウス分布で表した場合に前記ガウス分布における半値全幅が30度以上である、請求項11〜13のいずれか1つに記載の面状照明装置。   The planar illumination device according to any one of claims 11 to 13, wherein a full width at half maximum in the Gaussian distribution is 30 degrees or more when a spread of light scattering on the scattering surface is expressed by a Gaussian distribution. 前記光源部は、前記基部における前記側面と直交する向きの一方半部又は他方半部に向けて光を放射する、請求項1または2に記載の面状照明装置。   The planar illumination device according to claim 1, wherein the light source unit emits light toward one half or the other half of the base portion in a direction orthogonal to the side surface.
JP2016094880A 2016-05-10 2016-05-10 Planar illumination device Pending JP2017204367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016094880A JP2017204367A (en) 2016-05-10 2016-05-10 Planar illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094880A JP2017204367A (en) 2016-05-10 2016-05-10 Planar illumination device

Publications (1)

Publication Number Publication Date
JP2017204367A true JP2017204367A (en) 2017-11-16

Family

ID=60322306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094880A Pending JP2017204367A (en) 2016-05-10 2016-05-10 Planar illumination device

Country Status (1)

Country Link
JP (1) JP2017204367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077470A (en) * 2018-11-05 2020-05-21 株式会社小糸製作所 Vehicular lighting fixture
CN113841001A (en) * 2019-05-27 2021-12-24 三菱电机株式会社 Lighting device
CN113841001B (en) * 2019-05-27 2024-04-12 三菱电机株式会社 Lighting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178676U (en) * 1983-05-14 1984-11-29 アルプス電子工業株式会社 An electric light display that shows a three-dimensional effect
WO2000032981A1 (en) * 1998-11-27 2000-06-08 Sharp Kabushiki Kaisha Illuminator, illuminating device, front light, and liquid crystal display
JP2003115209A (en) * 2001-10-04 2003-04-18 Sanyo Electric Co Ltd Linear lighting system and planar lighting system using linear light guide body
JP2005044744A (en) * 2003-07-25 2005-02-17 Clariant Internatl Ltd Surface light source device
JP2010231984A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Display device
JP2012195115A (en) * 2011-03-15 2012-10-11 Omron Corp Surface light source device
JP2013097911A (en) * 2011-10-28 2013-05-20 Stanley Electric Co Ltd Vehicular lamp fitting using light guide plate
JP2013196877A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Illumination device and electronic apparatus
JP2013205529A (en) * 2012-03-28 2013-10-07 Fujikura Ltd Display device and manufacturing method of the same
JP2014167939A (en) * 2014-05-19 2014-09-11 Lenovo Singapore Pte Ltd Illumination structure and portable computer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178676U (en) * 1983-05-14 1984-11-29 アルプス電子工業株式会社 An electric light display that shows a three-dimensional effect
WO2000032981A1 (en) * 1998-11-27 2000-06-08 Sharp Kabushiki Kaisha Illuminator, illuminating device, front light, and liquid crystal display
JP2003115209A (en) * 2001-10-04 2003-04-18 Sanyo Electric Co Ltd Linear lighting system and planar lighting system using linear light guide body
JP2005044744A (en) * 2003-07-25 2005-02-17 Clariant Internatl Ltd Surface light source device
JP2010231984A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Display device
JP2012195115A (en) * 2011-03-15 2012-10-11 Omron Corp Surface light source device
JP2013097911A (en) * 2011-10-28 2013-05-20 Stanley Electric Co Ltd Vehicular lamp fitting using light guide plate
JP2013196877A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Illumination device and electronic apparatus
JP2013205529A (en) * 2012-03-28 2013-10-07 Fujikura Ltd Display device and manufacturing method of the same
JP2014167939A (en) * 2014-05-19 2014-09-11 Lenovo Singapore Pte Ltd Illumination structure and portable computer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077470A (en) * 2018-11-05 2020-05-21 株式会社小糸製作所 Vehicular lighting fixture
JP7193984B2 (en) 2018-11-05 2022-12-21 株式会社小糸製作所 vehicle lamp
CN113841001A (en) * 2019-05-27 2021-12-24 三菱电机株式会社 Lighting device
CN113841001B (en) * 2019-05-27 2024-04-12 三菱电机株式会社 Lighting device

Similar Documents

Publication Publication Date Title
US20150219908A1 (en) Stereoscopic lighting device and vehicle lighting device using the same
US10317607B2 (en) Optical member having three-dimensional effect forming portion and multiple effect forming portion and lighting device using the same
JP6560514B2 (en) Vehicle lighting
JP5707661B2 (en) VEHICLE LIGHT UNIT AND LIGHT GUIDE USED FOR VEHICLE LIGHT
JP5353353B2 (en) Vehicle signal lights
US10775026B2 (en) Moon appearance generating system
JP2014063736A (en) Light device with three-dimentional effect for motor vehicle
WO2018168079A1 (en) Light guide, display device, and game machine
JP6350177B2 (en) Light emitting device
US20140293649A1 (en) Illumination device and automotive lamp
JP5190699B2 (en) Lens body and vehicle lamp
JP2017204367A (en) Planar illumination device
JP5708991B2 (en) Vehicle lamp and light guide lens used in vehicle lamp
JP6183650B2 (en) Vehicle headlamp
CN212319613U (en) Light guide end structure for preventing light guide end bright spots
JP2020027731A (en) Vehicular lighting
JP5448111B2 (en) Lamp unit and vehicle lamp
JP6164520B2 (en) Surface light emitting device and display device
WO2017179418A1 (en) Optical member, planar lighting device, and machining method
JP2017195176A (en) Optical member, planar lighting device, and processing method
JP6440013B2 (en) Lighting system and reflective sheet
JP2017195177A (en) Planar luminaire
CN217763280U (en) Optical element, vehicle lamp and motor vehicle
JP6154695B2 (en) Light emitting device
JP2024010731A (en) Light guide body, and vehicular lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305