WO2017179160A1 - 無人航空機用防振構造 - Google Patents
無人航空機用防振構造 Download PDFInfo
- Publication number
- WO2017179160A1 WO2017179160A1 PCT/JP2016/061948 JP2016061948W WO2017179160A1 WO 2017179160 A1 WO2017179160 A1 WO 2017179160A1 JP 2016061948 W JP2016061948 W JP 2016061948W WO 2017179160 A1 WO2017179160 A1 WO 2017179160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- viscous fluid
- unmanned aircraft
- damper
- rubber
- Prior art date
Links
- 238000013016 damping Methods 0.000 title abstract description 29
- 239000012530 fluid Substances 0.000 claims abstract description 104
- 229920001971 elastomer Polymers 0.000 claims description 73
- 239000005060 rubber Substances 0.000 claims description 72
- 238000002955 isolation Methods 0.000 claims description 43
- 230000005484 gravity Effects 0.000 claims description 21
- 230000001681 protective effect Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 description 30
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 229920002725 thermoplastic elastomer Polymers 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000002238 attenuated effect Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000036544 posture Effects 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
- B64D47/08—Arrangements of cameras
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/023—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/08—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
Definitions
- the present invention relates to a vibration-proof structure for unmanned aerial vehicles.
- unmanned aerial vehicles have been widely used because it has become widely practiced to mount a photographing device on an unmanned aerial vehicle to photograph a landscape or the like.
- Such unmanned aerial vehicles are often smaller and lighter than manned aircraft, and electronic devices such as imaging devices are often lighter and smaller than those installed on manned aircraft.
- Such light and small electronic devices tend to have low durability, and are susceptible to vibration during operation. Therefore, vibration countermeasures are a major issue when mounted on unmanned aerial vehicles.
- vibrations generated by motors and propellers in unmanned aerial vehicles generally have many high-frequency components with small amplitudes and weak vibrations, but they are different from high-frequency components during acceleration, deceleration, turning, and takeoff and landing of unmanned aircrafts.
- the vibration to be damped is complicated.
- the direction in which vibration is applied is also complicated, and further, since the unmanned aircraft takes various flight postures, the direction of gravity with respect to the horizontal direction of the aircraft is not constant, and the countermeasures for vibration in the unmanned aircraft are becoming more and more complicated.
- the anti-vibration structure for such an unmanned aerial vehicle requires a different device from the anti-vibration structure for in-vehicle devices used in conventional passenger cars.
- the flying body is provided with an upper end and a lower end of a shaft that is vertically supported by a damper spring as a vibration isolating member, a gimbal mechanism, and a balance auxiliary member
- a damper spring as a vibration isolating member
- a gimbal mechanism as a vibration isolating member
- a balance auxiliary member as a balance auxiliary member
- the damper spring returns the shaft to a vertical state when the shaft swings and vibrates while suppressing the vibration of the shaft mainly by the vibration isolating member and the gimbal mechanism. To attenuate the vibration.
- the imaging device is fixed on the first bracket, the first bracket and the second bracket are rotatably arranged with each other, and the second bracket and the third bracket are rotated with each other.
- the imaging device is fixed on the first bracket, the first bracket and the second bracket are rotatably arranged with each other, and the second bracket and the third bracket are rotated with each other.
- one motor drives the first bracket to rotate relative to the second bracket and the other motor drives the second bracket to rotate relative to the third bracket.
- driving of each motor is controlled by a microprocessor according to an angular velocity detected by a gyro and an acceleration detected by an accelerometer.
- Patent Document 3 describes a vibration isolation structure for an unmanned aerial vehicle in which an imaging device is fixed to a panel provided on the unmanned aerial vehicle body via an intermediate elastic spacer made of an elastomer material.
- vibration is attenuated by the intermediate elastic spacer.
- the vibration-proof structure described in Patent Document 2 includes complicated mechanisms such as a motor, a gimbal, an accelerometer, and a microprocessor, the manufacturing cost increases and the vibration-proof structure also increases in size.
- the intermediate elastic spacer bears the anti-vibration effect, but the specific configuration of the intermediate elastic spacer is not shown, and the complicated characteristic peculiar to the unmanned aircraft is not shown. It is hard to say that all vibrations can be suppressed.
- the present invention has been made in view of the above-described problems, and has a simple, lightweight, and compact configuration, can be manufactured at low cost, and is capable of preventing vibration even when complicated vibrations peculiar to unmanned aerial vehicles occur.
- An object of the present invention is to provide a vibration isolation structure for an unmanned aerial vehicle that can effectively perform vibration isolation of an object.
- the present invention provides a vibration isolation structure for an unmanned aerial vehicle that dampens a vibration isolation object mounted on an unmanned aircraft, the first support shaft for supporting the vibration isolation object, and the support It has two or more viscous fluid-filled dampers, each of which has an elastic body provided around the shaft and a viscous fluid sealed in the elastic body.
- the vibration-proof object is fixed to the unmanned aerial vehicle by being sandwiched from a horizontal direction by a viscous fluid-filled damper fixed to the unmanned aerial vehicle.
- Viscous fluid-filled dampers cannot support heavy loads, but have a high vibration damping capability.
- the vibration damping capability may be impaired when the flexible membrane portion is stretched due to the stress in the pulling direction. Conversely, if an excessive load in the pressing direction is applied, the stirring tube portion collides with the lid. There is a possibility that the predetermined vibration damping ability cannot be exhibited.
- Unmanned aerial vehicles change the attitude of the aircraft in various ways during flight, but if the object to be anti-vibrated tilts along with the change in the attitude of the aircraft, the center of gravity of the object to be anti-vibrated and the viscous fluid-filled damper However, the center of gravity of the support point that supports the vibration-proof object is separated, the load balance is lost, and the load may concentrate on some viscous fluid-filled dampers.
- the load balance is disrupted by adopting a mode in which a vibration-proof object is sandwiched from the horizontal direction using a viscous fluid-filled damper in the horizontal state closest to the basic attitude of the unmanned aircraft. Can be suppressed, and a decrease in vibration damping ability caused by a change in load balance can be suppressed, and vibration can be effectively prevented.
- the vibration-proof object can be further supported by a spring member.
- the force component in the tensile direction applied to the viscous fluid-filled damper can be attenuated.
- the viscous fluid-filled damper can have a lower support force, and a viscous fluid-filled damper made of a flexible material that is difficult to transmit vibration can be used.
- the present invention is also a vibration-proof structure for an unmanned aerial vehicle that dampens a vibration-proof object mounted on an unmanned aircraft, and includes a second support shaft that supports the vibration-proof object, (2) Two or more rubber dampers are provided with anti-vibration rubber provided around the support shaft, and the anti-vibration target is fixed to the unmanned aircraft when the unmanned aircraft is level. It is fixed to an unmanned aerial vehicle by being sandwiched from a horizontal direction by a rubber damper.
- the rubber damper is inferior to vibration-damping performance compared to a viscous fluid-filled damper, but it has excellent durability and support, and can dampen vibrations in all directions regardless of the attitude and acceleration / deceleration of the unmanned aircraft. is there. Therefore, it is possible to support the vibration-proof object with only the rubber damper and to prevent the vibration.
- the load balance is prevented from being lost by adopting a mode in which a vibration damping object is sandwiched from the horizontal direction in the horizontal state closest to the basic attitude of the unmanned aircraft. And the fall of the vibration damping capability caused by the change of the load balance can be suppressed, and vibration can be effectively prevented.
- vibrations in any direction can be effectively damped regardless of the attitude of the aircraft. Further, such a configuration is simple, light and small, and can be manufactured at low cost.
- the present invention also provides a vibration isolating structure for an unmanned aerial vehicle that vibrates a vibration isolating object mounted on an unmanned aerial vehicle, including a support plate on which the vibration isolating object is placed, A viscous fluid-filled damper having a support shaft for supporting a vibration target, an elastic body provided around the support shaft, and a viscous fluid sealed in the elastic body, and supports the vibration-proof target And a rubber damper having a vibration-proof rubber provided around the second support shaft. When the unmanned aircraft is in a horizontal state, the rubber damper is a vibration-proof object.
- the viscous fluid-filled damper is attached to the support plate at a position close to the center of gravity and fixed to the unmanned aircraft, and the viscous fluid-filled damper is attached to the support plate at a position away from the center of gravity of the object to be vibration-proofed and fixed to the unmanned aircraft to prevent it.
- a highly durable rubber damper reduces vibration with a small stroke while supporting the weight of the object to be vibration-insulated, and reduces vibration with a large stroke with little load applied to the highly fluid-damped viscous fluid-filled damper.
- vibration in any direction can be effectively damped.
- such a configuration is simple, light and small, and can be manufactured at low cost.
- the load applied to the viscous fluid-filled damper can be reduced by the spring member, and deformation of the viscous fluid-filled damper in a stationary state can be suppressed. Therefore, it is possible to suppress the phenomenon of the anti-vibration attenuation characteristic and perform good anti-vibration.
- the present invention is also a vibration isolation structure for an unmanned aerial vehicle that vibrates a vibration isolation object mounted on an unmanned aerial vehicle, and includes a first support shaft that supports the vibration isolation object, and a support A viscous fluid-sealed damper having an elastic body provided around the shaft; a viscous fluid sealed in the elastic body; a second support shaft for supporting a vibration-proof object; and the second support.
- a rubber damper having a vibration isolating rubber provided around the shaft and at least one of the rubber dampers is provided as a vibration isolating member, and when the unmanned aircraft is in a horizontal state, the vibration isolating object is 3 or more by the vibration isolating member. It is supported from the direction of.
- a protective member may be provided around the viscous fluid-filled damper.
- the present invention has a simple, lightweight, and compact configuration, can be manufactured at low cost, and can effectively prevent vibrations of a vibration-proof object even when complicated vibrations peculiar to unmanned aerial vehicles occur.
- An anti-vibration structure for an unmanned aerial vehicle that can be performed can be provided. Thereby, it becomes possible to mount various anti-vibration objects without increasing the size of the unmanned aircraft.
- the anti-vibration structure for unmanned aerial vehicles is for isolating a vibration-proof object mounted on the unmanned aerial vehicle.
- an imaging device is described as an example of a vibration-proof object, but the present invention is not limited to this and can be applied to other electronic devices.
- the vibration isolation structure for unmanned aerial vehicles uses at least one of the viscous fluid-filled damper 2 and the rubber damper 3 as a vibration isolation member, and additionally uses a spring member 4 as necessary. Anti-vibration is performed.
- Viscous fluid-sealed damper 1 is a cross-sectional view showing the viscous fluid-sealed damper 2.
- the viscous fluid-filled damper 2 includes a substrate 21 fixed to a vibration-proof object, a support shaft 22 provided continuously on the substrate 21, a viscous fluid-filled damper main body 23 provided around the support shaft 22,
- the viscous fluid-filled damper main body 23 is configured to include a fixing member 24 for fixing the viscous fluid-filled damper main body 23 to the vibration generation source.
- the substrate 21 is a plate-like member made of resin, metal, or the like that is fixed to a vibration-proof object using a screw, snap fit, adhesive, or the like.
- the viscous fluid-filled damper main body 23 can also be directly fixed to the vibration-proof object without providing the viscous fluid-filled damper 2 with the substrate 21.
- the support shaft 22 is a rod-shaped member made of resin or metal, and has a diameter-enlarged portion 22a for retaining the tip at the tip.
- the vibration of the support shaft 22 caused by the vibration transmitted from the vibration-proof object to the support shaft 22 is attenuated by the viscous resistance of the viscous fluid in the viscous fluid-filled damper main body 23, thereby preventing vibration. Done.
- the viscous fluid-filled damper main body 23 includes a cylindrical peripheral wall portion 231 made of hard resin, a flexible membrane portion 232 made of a rubber-like elastic body fixed to one end thereof, and a stirring cylinder portion into which the support shaft 22 is inserted and held. 233 forms a container body, and the container body is fixed to a lid 234 made of a hard resin to form a sealed container 236. In addition, a viscous fluid 235 acting on vibration damping is enclosed in the sealed container 236.
- the rubber-like elastic body that becomes the flexible membrane part 232 and the stirring cylinder part 233 is formed of synthetic rubber or thermoplastic elastomer (TPE).
- TPE thermoplastic elastomer
- synthetic rubbers such as silicone rubber, urethane rubber, butyl rubber, chloroprene rubber, nitrile rubber, and ethylene propylene rubber
- thermoplastic elastomers such as styrene TPE, olefin TPE, urethane TPE, and polyester TPE can be used. .
- the peripheral wall portion 231 and the lid body 234 are formed of hard resin. Specifically, it can be formed of a thermoplastic resin such as polypropylene resin, acrylonitrile / butadiene / styrene resin or polyamide resin, or a thermosetting resin such as phenol resin or melamine resin.
- a thermoplastic resin such as polypropylene resin, acrylonitrile / butadiene / styrene resin or polyamide resin
- a thermosetting resin such as phenol resin or melamine resin.
- the container body is molded as an integral product by two-color molding of the peripheral wall portion 231, the flexible membrane portion 232, and the stirring tube portion 233.
- the lower end side of the peripheral wall portion 231 and the lid 234 are fixed by ultrasonic fusion so that the viscous fluid 235 is enclosed in the sealed container 236.
- silicone oil and those obtained by dispersing solid particles that do not react and dissolve in silicone oil can be used according to required properties such as heat resistance, reliability, vibration proofing properties and vibration damping properties.
- silicone oil dimethyl silicone oil, methylphenyl silicone oil or the like can be used.
- solid particles that do not react and dissolve include resin powders such as silicone resin powder, polyethylene powder, and polypropylene powder, inorganic powders such as polymethylsilsesquioxane powder, silica powder, and calcium carbonate powder, and surface treated products thereof. They can be used alone or in combination of several kinds.
- the fixing member 24 is a plate-like member made of resin, metal, or the like that is fixed to the unmanned aerial vehicle using a screw, snap fit, adhesive, or the like.
- the viscous fluid-filled damper main body 23 can also be directly fixed to the vibration generating source without providing the fixing member 24 in the viscous fluid-filled damper 2.
- the stirring cylinder portion 233 is formed of a rubber-like elastic body and is displaced by vibration transmitted through the support shaft 22.
- the viscous fluid 235 is stirred by the displacement, and the vibration is attenuated by the viscous resistance of the viscous fluid 235.
- the flexible film portion 232 is formed of a thin, soft rubber-like elastic body and can be elastically deformed, and vibration can be attenuated by the viscous resistance of the viscous fluid 235 due to the elastic deformation.
- the viscous fluid-filled damper composed of the above-mentioned members is a vibration-proof member having high vibration-proof properties, but the load supporting force is extremely weak, and exhibits a sufficient vibration-damping capability when deformed by the load. There is a characteristic that can not be.
- FIG. 2 is a cross-sectional view showing the rubber damper 3.
- the rubber damper 3 includes a substrate 31 that is fixed to a vibration-proof object, a support shaft 32 that is continuously provided on the substrate 31, a rubber damper main body 33 that is provided around the support shaft 32, and a rubber damper main body 33. Is configured to include a fixing member 34 for fixing to the vibration generating source.
- the substrate 31 is a plate-like member made of resin, metal, or the like that is fixed to a vibration-proof object using a screw, snap fit, adhesive, or the like.
- the support shaft 32 is a rod-shaped member made of resin or metal, and has a diameter-enlarged portion 32a for retaining the tip at the tip.
- the vibration is performed by the rubber damper main body 33 dampening the displacement of the support shaft 32 caused by the vibration transmitted from the vibration-proof object to the support shaft 32.
- the rubber damper main body 33 is made of vibration-proof rubber.
- the anti-vibration rubber is not particularly limited and is formed of a material generally used for anti-vibration rubber such as nitrile rubber, styrene / butadiene rubber, butyl rubber, silicone rubber, and thermoplastic elastomer. Further, the anti-vibration rubber may be a foam.
- the rubber damper main body 33 has a cylindrical shape, and is fixed to the fixing member 34 by the flange 343 of the fixing member 34 biting between the upper part 321 and the lower part 322.
- a through hole 36 for inserting the support shaft 32 is formed in the shaft core portion of the rubber damper main body 33.
- the fixing member 34 is a member made of resin, metal, or the like that is fixed to the unmanned aircraft using screws, snap fit, adhesive, or the like, and has a peripheral wall 342 that rises vertically from the periphery of the base plate 341, and a peripheral wall 342. It has the flange 343 which is an annular plate-shaped member formed inwardly from the tip part of the.
- the anti-vibration rubber which is the anti-vibration rubber main body 33 of the rubber damper 3 is characterized in that the vibration damping effect is smaller than that of the viscous fluid-filled damper 2, but the supporting force is large and the durability is high.
- the spring member 4 is a member that reinforces the lack of durability of the viscous fluid-filled damper 2 and also exhibits vibration proofing itself.
- the spring body 41 is formed of an arbitrary spring such as a coil spring, a disc spring, or a leaf spring.
- the spring body 41 has an elastic force that can be supported at a certain position when the imaging device 5 is suspended and supported. Further, it is preferable that vibration is not easily transmitted, and among the springs, a coil spring is preferable.
- the mounting plate 42 is a flat plate member made of resin, metal, or the like, which is fixed to a vibration-proof object using a screw, snap fit, adhesive, or the like.
- FIG. 3 is a plan view showing the vibration isolation structure 1 for the unmanned aerial vehicle according to the first embodiment of the present invention.
- FIG. 4 is a side view showing the vibration isolation structure for an unmanned aerial vehicle according to the first embodiment of the present invention.
- the X direction indicates the front-rear direction, which is the shooting direction of the imaging device 5
- the Y direction indicates the width direction of the imaging device 5
- the Z direction indicates the height direction of the imaging device 5.
- an imaging device 5 is used as a vibration-proof object.
- the left and right side surfaces are sandwiched between the four viscous fluid-filled dampers 2 in the frame-shaped part (frame-shaped part) of the unmanned aircraft 7, and the spring member 4 is provided on the upper surface side.
- the vibration source is the unmanned aircraft 7. More specifically, the motor (casing) of the unmanned aircraft 7 that is a motor as power for rotating the propeller or vibrates by an external force such as wind is assumed as the vibration source.
- Unmanned aerial vehicle 7 takes a posture that differs greatly from the horizontal state, such as when taking off and landing, turning, and flying in the back, and the direction of gravity applied to the vibration isolating object changes in various directions that are not assumed in the on-vehicle vibration isolating structure. To do.
- the attitude of the unmanned aerial vehicle 7 changes variously, the most common attitude is the state where the aircraft is oriented horizontally during horizontal flight. In such a posture, when the viscous fluid-filled damper 2 is pulled up and down by the imaging device 5 and extended, sufficient vibration damping performance cannot be exhibited. Further, when a load is applied in the direction in which the viscous fluid-filled damper 2 is pulled, the flexible membrane portion 232, which is a thin, soft rubber-like elastic body, extends, and the flexible membrane portion 232 is difficult to deform. The viscous fluid cannot be stirred.
- the viscous fluid-filled damper 2 is provided alone above the imaging device 5 and the imaging device 5 is suspended by the viscous fluid-filled damper 2, or the viscous fluid-filled damper 2 is alone below the imaging device 5. It is not preferable that the image pickup apparatus 5 is provided and supported by the viscous fluid-filled damper 2.
- the vibration isolating object is supported from above using the spring member 4 and the vibration isolating object is sandwiched using the viscous fluid-filled damper from the horizontal direction. It was.
- the component of the force in the pulling direction applied to the viscous fluid-filled damper can be attenuated, and when the force in the same direction is applied, the imaging device 5 is quickly moved to the initial position by the elastic restoring force of the spring member. Can be restored.
- vibration in the pulling direction is applied to the viscous fluid-filled damper on one side
- vibration in the pressing direction is applied to the other viscous fluid-filled damper at the opposite position. That is, the decrease in the vibration damping capability can be suppressed only to the viscous fluid-filled damper on one side, and the vibration in any direction can be effectively damped.
- Such a configuration is simple, light and small, and can be manufactured at low cost.
- FIG. 5 is a plan view showing a vibration isolating structure 10 for an unmanned aerial vehicle according to a second embodiment of the present invention.
- FIG. 6 is a side view showing a vibration isolating structure 10 for an unmanned aerial vehicle according to a second embodiment of the present invention.
- the vibration isolation structure 10 for the unmanned aircraft according to the second embodiment uses a rubber damper 3 in the same arrangement instead of the viscous fluid-filled damper 2.
- the spring member 4 is omitted.
- the rubber damper is inferior to vibration-damping performance compared to a viscous fluid-filled damper, but it has excellent durability and support, and can dampen vibrations in all directions regardless of the attitude and acceleration / deceleration of the unmanned aircraft. Therefore, the imaging device 5 can be supported even if the spring member 4 is omitted.
- the vibration in any direction can be effectively damped by holding the vibration-proof object using the rubber damper. Further, such a configuration is simple, light and small, and can be manufactured at low cost.
- FIG. 7 is a side view showing a vibration isolating structure 100 for an unmanned aerial vehicle according to a third embodiment of the present invention.
- the anti-vibration structure 100 for unmanned aerial vehicles is a vibration-proof structure in which the viscous fluid-filled damper 2, the rubber damper 3, and the spring member 4 are combined.
- the anti-vibration structure 100 for an unmanned aircraft corresponds to such a case, and supports the imaging device 5 on the front end side and supports this on the rear side.
- the support plate 8 on which the imaging device 5 is placed is disposed at the front end portion of the unmanned aerial vehicle 7 that is substantially U-shaped in a side view, and a rubber damper is disposed on the front end side below the support plate 8. 3, the spring member 4 is disposed on the rear end side, and the viscous fluid-filled damper 2 is disposed on the rear end side above the support plate 8.
- the rubber damper 3, the viscous fluid-filled damper 2, and the spring member 4 are each similarly arranged on the back side of the paper (not shown).
- the rubber damper 3 having excellent durability and supporting force is disposed near the center of gravity and slightly rearward of the center of gravity at a position where a large load is applied.
- the viscous fluid-filled damper 2 and the spring member 4 are arranged at a position where the load is small. Since the rubber damper 3 is arranged behind the center of gravity, a load is applied upward on the rear end side of the imaging device 5 with the rubber damper 3 as a fulcrum. Therefore, a load in the compression direction is applied to the viscous fluid-filled damper 2 disposed above the rear end side, and the spring member 4 reduces the load.
- the viscous fluid-filled damper 2 has a relatively larger vibration stroke in each direction than the rubber damper 3 near the center of gravity of the imaging device 5. This large stroke vibration is effectively damped by the viscous fluid-filled damper 2 having excellent vibration-proofing properties.
- the rubber damper 3 attenuates vibration with a small stroke applied from each direction, and the viscous fluid-filled damper 2 attenuates vibration with a large stroke.
- the vibration applied from the direction can be effectively damped. Further, such a configuration is simple, light and small, and can be manufactured at low cost.
- FIG. 8 is a side view showing an anti-vibration structure 200 for an unmanned aircraft according to the fourth embodiment of the present invention.
- the anti-vibration structure 200 for the unmanned aircraft according to the fourth embodiment is a vibration-proof structure in which the viscous fluid-filled damper 2 and the rubber damper 3 are combined.
- the imaging device 5 is placed on the support plate 8.
- the mounting position of the rubber damper 3 is slightly ahead of the center of gravity or the center of gravity, and is ahead of the mounting position of the third embodiment. Further, the mounting position of the viscous fluid-filled damper 2 is below the rear end side of the support plate 8 and the spring member 4 is omitted.
- the direction of the pressure applied to the viscous fluid-filled damper 2 is also reversed from the aspect of the third embodiment.
- the large load applied near the center of gravity of the imaging device 5 can be received by the rubber damper 3 having excellent durability. Further, since the rubber damper 3 is located at the position of the center of gravity or slightly closer to the front, almost no load is applied from the support plate 8 to the viscous fluid-filled damper 2, or a very small load is applied in the direction of compressing the rubber damper 3. Since the load is small, the spring member 4 is not required as in the third embodiment, and this can be omitted.
- the stroke of vibration applied to the viscous fluid-filled damper 2 is larger than that of the rubber damper 3.
- the rubber damper 3 excellent in durability at a position close to the center of gravity of the imaging device 5 attenuates small stroke vibration while supporting a large load, and has excellent vibration isolation at a position far from the center of gravity. Damped by the viscous fluid-filled damper 2.
- the rubber damper 3 attenuates vibration with a small stroke applied from each direction, and the viscous fluid-filled damper 2 attenuates vibration with a large stroke.
- the vibration applied from the direction can be effectively damped. Further, such a configuration is simple, light and small, and can be manufactured at low cost.
- FIG. 9 is a side view showing an anti-vibration structure 300 for an unmanned aerial vehicle according to a fifth embodiment of the present invention.
- the viscous fluid-filled damper 2 or the rubber damper 3 is attached to the left and right side surfaces ( ⁇ Y direction surface) and the back surface ( ⁇ X direction surface) of the imaging device 5. It has become.
- a spring member (not shown) can be used in combination.
- vibration isolation is performed from the three directions of L1 (left side), L2 (back side), and L3 (right side).
- the anti-vibration members can cancel each other out of the anisotropy of the vibration damping characteristics of the anti-vibration members, that is, the influence of the degree of vibration attenuation depending on the direction of vibration. Can be effectively damped.
- the anisotropy of the vibration damping characteristics of the vibration isolating member is manifested as the vibration isolating characteristics of the entire unmanned aircraft vibration isolating structure, but the mounting directions are in two or more different directions. If set, the anti-vibration members attached in different directions cancel each other out of the anisotropy of the vibration damping characteristics, so that a decrease in the anti-vibration characteristics in a specific direction can be suppressed. Further, such a configuration is simple, light and small, and can be manufactured at low cost.
- FIG. 10 is a side view showing a vibration isolation structure 400 for an unmanned aerial vehicle according to a sixth embodiment of the present invention.
- viscous fluid is sealed on the upper surface (the surface in the + Z direction) in addition to the left and right side surfaces (the surface in the ⁇ Y direction) and the back surface (the surface in the ⁇ X direction) of the imaging device 5.
- the damper 2 or the rubber damper 3 is attached.
- the left and right side surfaces and the rear surface are attached to the imaging device 5 from slightly below, and are arranged so as to go from the vertex of a so-called regular tetrahedron to the central imaging device.
- vibration isolation members attached in different directions have different vibration damping characteristics. Therefore, it is possible to suppress a decrease in the vibration isolation characteristics in a specific direction. Further, such a configuration is simple, light and small, and can be manufactured at low cost. Furthermore, since the anti-vibration member is arranged three-dimensionally at the target position so that it is at the apex position of the regular tetrahedron, the same anti-vibration performance can be obtained no matter how the attitude of the unmanned aircraft changes. It can be demonstrated.
- FIG. 11 is a side view showing a vibration-proof structure 500 for an unmanned aerial vehicle according to a seventh embodiment of the present invention.
- viscous fluid-filled dampers are provided on the left and right side surfaces ( ⁇ Y direction surface), the back surface ( ⁇ X direction surface), and the top and bottom surfaces ( ⁇ Z direction surface) of the imaging device 5. 2 or rubber damper 3 is attached.
- the anisotropy of the vibration damping characteristics of the vibration isolation member It is possible to effectively suppress the influence from the above and attenuate vibrations from various directions. Further, such a configuration is simple, light and small, and can be manufactured at low cost.
- the anti-vibration members are arranged at three-dimensionally symmetric positions, so that high anti-vibration performance can be exhibited no matter how the attitude of the unmanned aircraft changes. it can.
- the vibration isolation member is arranged in three directions in the fifth embodiment, in four directions in the sixth embodiment, and in five directions in the seventh embodiment, but the vibration isolation member may be arranged in more directions. It can also be increased to about 8 directions.
- FIG. 12 is a cross-sectional view showing a viscous fluid-filled damper 2 'according to a modification of the present invention.
- a protective member 238 may be provided around the buffer member 23 of the viscous fluid-filled damper 2 '.
- the method of attaching the spring member is not limited to the form of supporting the vibration-proof object from above as in the first embodiment.
- the following configuration can be given when other mounting forms are shown.
- a coil spring compression spring
- the anti-vibration object can be supported simply by contacting the coil spring against the outer wall of the anti-vibration object or the housing of the unmanned aircraft. Accordingly, since it is not necessary to separately provide a structure for attaching the coil spring to the object of vibration isolation, a simple, light weight and low cost vibration isolation structure can be obtained.
- a coil spring can be attached to the side surface of the vibration-proof object and hung from an obliquely upward outer side. If it is such a form, it can be set as a thin anti-vibration structure, and size reduction of an anti-vibration structure is attained.
- the support shaft extending from the vibration-proof object to the viscous fluid-filled damper or the vibration-proof rubber can be made slightly longer, and a coil spring can be attached to the support shaft. If it is this form, since it is not necessary to provide the structure for attaching a coil spring separately in a vibration-proof object, it can be set as a simple, lightweight, and low-cost vibration-proof structure.
- a coil spring with a slightly larger diameter than the peripheral wall of the viscous fluid-filled damper or the outer shape of the vibration-proof rubber prepare a coil spring with a slightly larger diameter than the peripheral wall of the viscous fluid-filled damper or the outer shape of the vibration-proof rubber, and place the viscous fluid-filled damper and the vibration-proof rubber inside this coil spring. Can do. If it is this form, since the vibration isolating member can be arrange
- Anti-vibration structure 2 for unmanned aerial vehicles 2 ′ Damper filled with viscous fluid 3 Rubber damper 4 Spring member 5 Imaging device 7 Unmanned aircraft 8 Support plate 21 Substrate 22 Support shaft 22a Diameter expansion Part 23 viscous fluid-filled damper main body 24 fixing member 31 substrate 32 support shaft 33 rubber damper main body 34 fixing member 36 through hole 41 spring main body 42 mounting plate 231 peripheral wall part 232 flexible film part 233 stirring cylinder part 234 lid 236 sealed container 321 Upper part 322 Lower part 342 Perimeter wall 343 Flange
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Vibration Prevention Devices (AREA)
Abstract
簡易で軽量、小型の構成を有し、低コストで製造可能であり、無人航空機に特有の複雑な振動が発生しても防振対象物の防振を効果的に行うことのできる無人航空機用防振構造を提供する。無人航空機に搭載される防振対象物を防振する無人航空機用防振構造1。防振対象物を支持する支持軸22と、支持軸22の周囲に設けられた弾性体23と、弾性体232に封入された粘性流体235とを有して構成される粘性流体封入ダンパー2を2つ以上備え、防振対象物5は、無人航空機7が水平な状態において防振対象物5を無人航空機7に固定された粘性流体封入ダンパー2により水平方向から挟持されることにより無人航空機に固定される。
Description
本発明は、無人航空機用防振構造に関するものである。
近年、無人航空機に関する技術が急速に発展している。特に無人航空機に撮影機器を搭載して風景等を撮影することが広く行われるようになったため、無人航空機はより広く用いられるようになっている。
こうした無人航空機は有人航空機と比較して小型、軽量である場合が多く、そのため搭載される撮像機器等の電子機器も有人航空機に搭載されるものと比較して軽量、小型である場合が多い。
こうした軽量、小型の電子機器は耐久性が弱い傾向があり、また作動時に振動による影響を受けやすいため、無人航空機に搭載する際には振動対策が大きな課題となる。
しかし、無人航空機においてモータやプロペラにより発生する振動は一般的に振幅が小さく弱い振動である高周波成分が多いが、無人航空機の加減速や旋回、離着陸時には高周波成分とは異なる、振幅が大きく強い振動が加わる等、減衰対象となる振動が複雑なものとなっている。このため振動が加わる方向も複雑であり、さらに無人航空機は様々な飛行姿勢をとることから、機体の水平方向に対する重力の方向も一定ではなく、無人航空機における振動対策を益々複雑なものとしている。
そのためこうした無人航空機における防振構造には、従来の乗用車等において使用されている車載機器用の防振構造とは異なる工夫が必要となる。
従来の無人航空機用の防振構造として、例えば特許文献1には、飛行体に、防振部材、ジンバル機構及びバランス補助部材としてのダンパバネを介して鉛直に支持されたシャフトの上端と下端にそれぞれ上カメラと下カメラが取付けられる防振構造が記載されている。
特許文献1に記載されている防振構造では、シャフトの振動を主に防振部材とジンバル機構とで抑制しつつ、シャフトが揺動、振動した場合にダンパバネがシャフトを鉛直状態に復帰させることで振動を減衰させる。
また特許文献2には、第1のブラケット上に撮像機器が固定され、第1のブラケットと第2のブラケットが互いに回転可能に配置されるとともに、第2のブラケットと第3のブラケットが互いに回転可能に配置され、1つのモータが第1のブラケットを第2のブラケットに対して回転するように駆動し、他のモータが第2のブラケットを第3のブラケットに対して回転するように駆動する防振構造が記載されている。
特許文献2に記載されている防振構造では、各モータの駆動はジャイロにより検知される角速度と加速度計により検知される加速度に応じてマイクロプロセッサにより制御される。
また特許文献3には、無人飛行機本体にエラストマー材料製の中間弾性スペーサを介して設けられたパネルに撮像機器が固定された無人航空機用の防振構造が記載されている。
特許文献3に記載されている防振構造では、中間弾性スペーサにより振動が減衰される。
上述した特許文献1に記載されている防振構造では、主に防振部材とジンバル機構により振動が抑制されるが、その抑制力は十分なものとはいえない。振動、揺動したシャフトをダンパバネが鉛直状態に復帰させることで振動を減衰させているが、ダンパバネは、振動の減衰が極めて遅いためである。
更に、特許文献1に記載されている防振構造は、複雑なジンバル機構を備えているため、製造コストが高くなるとともに、防振構造が大型化してしまう。
また、特許文献2に記載されている防振構造では、角速度と加速度の検知からマイクロプロセッサによるモータの駆動量の演算、そして演算結果に基づくモータの駆動に至るまでにはタイムラグが生じるため、高周波の減衰には限界がある。また、例えば3軸のジンバル機構であれば、角振動に対しては3軸方向の回転運動で対応できるが、直線方向の振動減衰には十分な効果を発揮することができない。
更に、特許文献2に記載されている防振構造は、モータ、ジンバル、加速度計、マイクロプロセッサ等、複雑な機構を備えているため製造コストが高くなるとともに、防振構造も大型化してしまう。
また、特許文献3に記載されている防振構造は、中間弾性スペーサが防振効果を担っているが、中間弾性スペーサの具体的な構成が示されておらず、無人航空機に特有の複雑な振動を全て抑制できるとは言い難い。
そこで本発明は上述した課題に鑑みてなされたものであり、簡易で軽量、小型の構成を有し、低コストで製造可能であり、無人航空機に特有の複雑な振動が発生しても防振対象物の防振を効果的に行うことのできる無人航空機用防振構造を提供することを目的とする。
本発明は、上記課題を解決するため、無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、防振対象物を支持する第1支持軸と、前記支持軸の周囲に設けられた弾性体と、弾性体内に封入された粘性流体とを有して構成される粘性流体封入ダンパーを2つ以上備え、防振対象物は、無人航空機が水平な状態において防振対象物を無人航空機に固定された粘性流体封入ダンパーにより水平方向から挟持されることにより無人航空機に固定されることを特徴とする。
粘性流体封入ダンパーは、重い荷重を支えることはできないが、振動減衰能力が高いという特性がある。特に、引っ張り方向の応力により、可撓膜部が伸びきった状態では振動減衰能力が損なわれるおそれがあり、逆に押圧方向の荷重が過剰にかかると、攪拌筒部が蓋体に衝突して所定の振動減衰能力を発揮できないおそれがある。
無人航空機は、飛行の際に機体の姿勢がさまざまに変化するが、機体の姿勢の変化に伴って防振対象物が傾くと、平面視において、防振対象物の重心と、粘性流体封入ダンパーが防振対象物を支持する支持点の重心とが離れてしまい、荷重バランスが崩れ、一部の粘性流体封入ダンパーに荷重が集中してしまうことがある。
そして一部の粘性流体封入ダンパーに荷重が集中すると、その粘性流体封入ダンパーが大きく変形してしまい、所定の振動減衰能力を発揮できなくなる。
こうした荷重バランスの変化に対応するため、無人航空機の基本姿勢に最も近い水平な状態において水平方向から粘性流体封入ダンパーを用いて防振対象物を挟持する態様とすることで、荷重バランスが崩れることを抑制し、荷重バランスの変化によって引き起こされる振動減衰能力の低下を抑制することができ、効果的に防振を行うことができる。
本発明においては、更に防振対象物をばね部材により支持する態様とすることができる。
ばね部材を用いて防振対象物を支持することにより、粘性流体封入ダンパーに加わる引っ張り方向への力の成分を減衰することができる。そうすることで、粘性流体封入ダンパーとしては、より支持力の低いものとすることができ、柔軟な材質でなる振動を伝達し難い粘性流体封入ダンパーを用いることができる。
本発明はまた、上記課題を解決するため、無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、防振対象物を支持する第2支持軸と、第2支持軸の周囲に設けられた防振ゴムとを有して構成されるゴムダンパーを2つ以上備え、防振対象物は、無人航空機が水平な状態において防振対象物を無人航空機に固定されたゴムダンパーにより水平方向から挟持されることにより無人航空機に固定されることを特徴とする。
ゴムダンパーは粘性流体封入ダンパーと比較して防振性には劣るものの、耐久性と支持力に優れ、無人航空機の姿勢や加減速に関わらず、あらゆる方向への振動を減衰することが可能である。そのためゴムダンパーのみで防振対象物を支持しこれを防振することができる。
一方、ゴムダンパーを用いた場合であっても、無人航空機の機体の姿勢の変化に伴って防振対象物が傾くと、平面視において、防振対象物の重心と、粘性流体封入ダンパーが防振対象物を支持する支持点の重心とが離れてしまい、荷重バランスが崩れ、一部のゴムダンパーに荷重が集中してしまい、その結果そのゴムダンパーが大きく変形してしまい、所定の振動減衰能力を発揮できなくなるおそれがある。
こうした荷重バランスの変化に対応するため、無人航空機の基本姿勢に最も近い水平な状態において水平方向からゴムダンパーを用いて防振対象物を挟持する態様とすることで、荷重バランスが崩れることを抑制し、荷重バランスの変化によって引き起こされる振動減衰能力の低下を抑制することができ、効果的に防振を行うことができる。
すなわち、対向して配置されたゴムダンパーを用いて防振対象物を挟持することにより、機体の姿勢によらず如何なる方向への振動も効果的に減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
本発明はまた、上記課題を解決するため、無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、防振対象物が載置される支持板と、防振対象物を支持する支持軸と、支持軸の周囲に設けられた弾性体と、弾性体内に封入された粘性流体とを有して構成される粘性流体封入ダンパーと、防振対象物を支持する第2支持軸と、第2支持軸の周囲に設けられた防振ゴムを有して構成されるゴムダンパーと、を備え、無人航空機が水平な状態において、ゴムダンパーは防振対象物の重心に近い位置において支持板に取付けられるとともに無人航空機に固定されるとともに、粘性流体封入ダンパーは防振対象物の重心から離れた位置において支持板に取付けられるとともに無人航空機に固定されることにより防振対象物が無人航空機に固定されることを特徴とする。
これにより、耐久性の高いゴムダンパーが防振対象物の重量を支えつつストロークの小さい振動を低減し、防振性の高い粘性流体封入ダンパーにほとんど加重をかけずにストロークの大きい振動を低減することで、如何なる方向への振動も効果的に減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
前記においては、粘性流体封入ダンパーに加わる荷重を支持するばね部材が設けられている態様とすることができる。
これにより、粘性流体封入ダンパーにかかる荷重をばね部材によって低減することができ、静止状態における粘性流体封入ダンパーの変形を抑えることができる。したがって、防振減衰特性の現象を抑制して、良好な防振を行うことができる。
本発明はまた、上記課題を解決するため、無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、防振対象物を支持する第1支持軸と、支持軸の周囲に設けられた弾性体と、弾性体内に封入された粘性流体とを有して構成される粘性流体封入ダンパーと、防振対象物を支持する第2支持軸と、前記第2支持軸の周囲に設けられた防振ゴムを有して構成されるゴムダンパーと、のうち少なくとも一方を防振部材として備え、無人航空機が水平な状態において防振対象物が防振部材により3以上の方向から支持されることを特徴とする。
これにより、振動の方向により振動減衰能力が異なることによる影響をそれぞれの防振部材同士が相殺し合うことができ、様々な方向からの振動を効果的に減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
本発明においては、前記粘性流体封入ダンパーの周囲に保護部材が設けられている態様とすることができる。
これにより、無人航空機が墜落した場合等に粘性流体封入ダンパーが木の枝等に接触し破損することを防止することができる。
上述した本発明によると、簡易で軽量、小型の構成を有し、低コストで製造可能であり、無人航空機に特有の複雑な振動が発生しても防振対象物の防振を効果的に行うことのできる無人航空機用防振構造を提供することができる。これにより、無人航空機を大型化することなく様々な防振対象物を載置することが可能となる。
以下、本発明の各実施形態に係る無人航空機用防振構造について図を参照しつつ説明する。
本発明の各実施形態に係る無人航空機用防振構造は、無人航空機に搭載される防振対象物を防振するものである。なお、本実施形態においては防振対象物として撮像機器を例に説明を行うが、本発明はこれに限らず、他の電子機器等に対しても適用することができる。
各実施形態に係る無人航空機用防振構造は、それぞれ防振部材として、粘性流体封入ダンパー2及びゴムダンパー3のうち少なくとも1種類を用いるとともに、必要に応じて補助的にばね部材4を用いて防振を行うものである。
まず、各実施形態において用いられる防振部材としての粘性流体封入ダンパー2及びゴムダンパー3と、ばね部材4について説明した後、それぞれの実施形態について詳述する。
粘性流体封入ダンパー
図1は、粘性流体封入ダンパー2を示す断面図である。粘性流体封入ダンパー2は、防振対象物に固定される基板21と、基板21に連続的に設けられた支持軸22と、支持軸22の周囲に設けられた粘性流体封入ダンパー本体23と、粘性流体封入ダンパー本体23を振動発生源に固定する固定部材24を備えて構成される。
図1は、粘性流体封入ダンパー2を示す断面図である。粘性流体封入ダンパー2は、防振対象物に固定される基板21と、基板21に連続的に設けられた支持軸22と、支持軸22の周囲に設けられた粘性流体封入ダンパー本体23と、粘性流体封入ダンパー本体23を振動発生源に固定する固定部材24を備えて構成される。
基板21は、防振対象物にねじやスナップフィット、接着剤等を用いて固定される、樹脂や金属等よりなる板状の部材である。なお、粘性流体封入ダンパー2に基板21を設けずに、粘性流体封入ダンパー本体23を直接防振対象物に固定することもできる。
支持軸22は、樹脂や金属よりなる棒状の部材であり、先端に抜け止め用の拡径部22aが形成されている。粘性流体封入ダンパー2では、防振対象物から支持軸22に振動が伝わることで生じる支持軸22の変位が粘性流体封入ダンパー本体23内の粘性流体の粘性抵抗により減衰されることで防振が行われる。
粘性流体封入ダンパー本体23は、硬質樹脂よりなる円筒状の周壁部231と、その一端に固着するゴム状弾性体からなる可撓膜部232と、支持軸22を差し込ませて保持する攪拌筒部233とで容器本体を形成し、この容器本体が硬質樹脂よりなる蓋体234と固着して密閉容器236を形成している。また、この密閉容器236の内部には振動減衰に作用する粘性流体235が封入されている。
可撓膜部232や攪拌筒部233となるゴム状弾性体は、合成ゴムや熱可塑性エラストマー(TPE)から形成される。例えば、シリコーンゴムやウレタンゴム、ブチルゴム、クロロプレンゴム、ニトリルゴム、エチレンプロピレンゴム等の合成ゴムや、スチレン系TPE、オレフィン系TPE、ウレタン系TPE、ポリエステル系TPE等の熱可塑性エラストマーを用いることができる。
周壁部231や蓋体234は、硬質樹脂にて形成される。具体的にはポリプロピレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、ポリアミド樹脂等の熱可塑性樹脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂で形成することができる。
本実施形態では、容器本体を、周壁部231、可撓膜部232、攪拌筒部233を二色成形により一体品として成形する。また、粘性流体235を容器本体に注入した後に、周壁部231の下端側と蓋体234とを超音波融着により固着して粘性流体235が密閉容器236の内部に封入される。
密閉容器236内に封入する粘性流体235は、液体及び液体に反応、溶解しない固体粒子を添加したものが用いられる。なかでも耐熱性、信頼性、防振特性や制振特性等の要求特性に応じてシリコーンオイル及びシリコーンオイルに反応、溶解しない固体粒子を分散させたものを使用できる。シリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等を使用できる。反応、溶解しない固体粒子としては、シリコーンレジン粉末、ポリエチレン粉末、ポリプロピレン粉末等の樹脂粉末や、ポリメチルシルセスキオキサン粉末、シリカ粉末、炭酸カルシウム粉末等の無機粉末、これらの表面処理品等を使用可能で、それらを単独又は数種類を組み合わせて使用することも可能である。
固定部材24は、無人航空機にねじやスナップフィット、接着剤等を用いて固定される、樹脂や金属等よりなる板状の部材である。なお、粘性流体封入ダンパー2に固定部材24を設けずに、粘性流体封入ダンパー本体23を直接振動発生源に固定することもできる。
攪拌筒部233はゴム状弾性体で形成されており、支持軸22を通じて伝わる振動によって変位する。そして、その変位により、粘性流体235が攪拌され、粘性流体235の粘性抵抗によって振動が減衰される。
可撓膜部232は薄膜状の柔らかいゴム状弾性体で形成され弾性変形することができ、その弾性変形による粘性流体235の粘性抵抗によって振動を減衰させることができる。
以上の部材で構成される粘性流体封入ダンパーは、高い防振性を有する防振部材であるが、荷重の支持力が極めて弱く、荷重により変形した状態においては、充分な振動減衰能力を発揮することができないという特性がある。
ゴムダンパー
図2は、ゴムダンパー3を示す断面図である。ゴムダンパー3は、防振対象物に固定される基板31と、基板31に連続的に設けられた支持軸32と、支持軸32の周囲に設けられたゴムダンパー本体33と、ゴムダンパー本体33を振動発生源に固定する固定部材34を備えて構成される。
図2は、ゴムダンパー3を示す断面図である。ゴムダンパー3は、防振対象物に固定される基板31と、基板31に連続的に設けられた支持軸32と、支持軸32の周囲に設けられたゴムダンパー本体33と、ゴムダンパー本体33を振動発生源に固定する固定部材34を備えて構成される。
基板31は、防振対象物にねじやスナップフィット、接着剤等を用いて固定される、樹脂や金属等よりなる板状の部材である。
支持軸32は、樹脂や金属よりなる棒状の部材であり、先端に抜け止め用の拡径部32aが形成されている。ゴムダンパー3では、防振対象物から支持軸32に振動が伝わることで生じる支持軸32の変位がゴムダンパー本体33により減衰されることで防振が行われる。
ゴムダンパー本体33は、防振ゴムよりなる。防振ゴムとしてはニトリルゴム、スチレン・ブタジエンゴム、ブチルゴム、シリコーンゴムや熱可塑性エラストマー等、一般的に防振ゴムに用いられる材質で形成されており特に限定されない。また、防振ゴムは発泡体であってもよい。
ゴムダンパー本体33は筒状の形状を有し、上側部分321と下側部分322の間に固定部材34のフランジ343が食い込むことで固定部材34に固定されている。
ゴムダンパー本体33の軸芯部分には支持軸32を挿通するための貫通孔36が形成されている。
固定部材34は、無人航空機にねじやスナップフィット、接着剤等を用いて固定される、樹脂や金属等よりなる部材であり、基底板341の周縁部近傍から垂直に立ち上がる周壁342と、周壁342の先端部分から内側に向けて形成されている円環状の板状部材であるフランジ343を有して構成されている。
ゴムダンパー3の防振ゴム本体33である防振ゴムは、振動減衰効果は粘性流体封入ダンパー2よりも小さい反面、支持力が大きく耐久性も高いという特徴がある。
ばね部材
ばね部材4は粘性流体封入ダンパー2の耐久性の不足を補強するとともに自身も防振性を発揮する部材であり、ばね本体41と、ばね本体41の両端に取付けられた平板状の取付板42とを備えて構成されている。
ばね部材4は粘性流体封入ダンパー2の耐久性の不足を補強するとともに自身も防振性を発揮する部材であり、ばね本体41と、ばね本体41の両端に取付けられた平板状の取付板42とを備えて構成されている。
ばね本体41はコイルばねや皿ばね、板ばね等、任意のばねにより形成されている。ばね本体41は、撮像装置5を吊り下げた場合及び支持する場合に一定の位置に支持可能な弾性力を有している。また、振動が伝わり難いものがよく、前記ばねの中でもコイルばねが好適である。
取付板42は、防振対象物にねじやスナップフィット、接着剤等を用いて固定される、樹脂や金属等よりなる平板状の部材である。
第1実施形態[図3、図4]
次に、第1実施形態に係る無人航空機用防振構造1について説明する。
次に、第1実施形態に係る無人航空機用防振構造1について説明する。
図3は、本発明の第1実施形態に係る無人航空機用防振構造1を示す平面図である。図4は、本発明の第1実施形態に係る無人航空機用防振構造を示す側面図である。なお、これらの図及び他の図中、X方向は撮像装置5の撮影方向である前後方向、Y方向は撮像装置5の幅方向、Z方向は撮像装置5の高さ方向を示す。
第1実施形態に係る無人航空機用防振構造1では、防振対象物として撮像機器5が用いられている。撮像機器5は、無人航空機7の枠状に形成された部位(枠状部位)内において、左右の側面が4つの粘性流体封入ダンパー2に挟持されるとともに、上面側においてばね部材4が設けられている。振動源は無人航空機7である。より具体的には、プロペラを回転させる動力としてのモーターであったり、風などの外力によって振動する無人航空機7の機体(筐体)が振動源として想定される。
無人航空機7は、離着陸時や旋回時、背面飛行時等、水平状態と大きく異なる姿勢となり、防振対象物に加わる重力の方向が車載用の防振構造では想定されていない様々な方向に変化する。
また、無人航空機7の姿勢は様々に変化するものの、最も多い姿勢は水平飛行時の、機体が水平方向に向く状態である。こうした姿勢時に、粘性流体封入ダンパー2が撮像装置5により上下に引っ張られ伸びた状態では十分な振動減衰性能を発揮することができない。また、粘性流体封入ダンパー2が引っ張られる方向に荷重が加わった場合には、薄膜状の柔らかいゴム状弾性体である可撓膜部232が伸びてしまい、可撓膜部232が変形し難くなり、粘性流体を攪拌できなくなってしまう。また、粘性流体封入ダンパー2に垂直方向の荷重が加わり、攪拌筒部233が、蓋体234に当接してしまう場合にも、攪拌筒部233の変位が蓋体234に伝わってしまうおそれが高く、振動減衰能力を発揮することができなくなってしまう。
従って、粘性流体封入ダンパー2を撮像装置5の上方に単独で設け、撮像装置5を粘性流体封入ダンパー2により吊り下げる態様とすることや、粘性流体封入ダンパー2を撮像装置5の下方に単独で設け、撮像装置5を粘性流体封入ダンパー2で支える態様とすることは好ましくない。
そこで、無人航空機の基本姿勢に最も近い水平な状態において、ばね部材4を用いて上方から防振対象物を支持するとともに、水平方向から粘性流体封入ダンパーを用いて防振対象物を挟持する態様とした。
これにより粘性流体封入ダンパーに加わる引っ張り方向への力の成分を減衰することができるとともに、同方向への力が加わった場合にはばね部材の弾性復元力により速やかに撮像装置5を当初の位置に復帰させることができる。
また、一方の側の粘性流体封入ダンパーに引っ張り方向への振動が加わった場合でも、対向する位置にある他方の粘性流体封入ダンパーには押圧方向への振動が加わることになる。すなわち、振動減衰能力の低下を一方の側の粘性流体封入ダンパーのみに抑えることができ、如何なる方向への振動も効果的に減衰することができる。
また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
第2実施形態[図5、図6]
図5は、本発明の第2実施形態に係る無人航空機用防振構造10を示す平面図である。図6は、本発明の第2実施形態に係る無人航空機用防振構造10を示す側面図である。
図5は、本発明の第2実施形態に係る無人航空機用防振構造10を示す平面図である。図6は、本発明の第2実施形態に係る無人航空機用防振構造10を示す側面図である。
第2実施形態に係る無人航空機用防振構造10は、第1実施形態に係る無人航空機用防振構造1と異なり、粘性流体封入ダンパー2の代わりにゴムダンパー3が同一の配置で用いられ、かつばね部材4が省略された構成となっている。
ゴムダンパーは粘性流体封入ダンパーと比較して防振性には劣るものの、耐久性と支持力に優れ、無人航空機の姿勢や加減速に関わらず、あらゆる方向への振動を減衰することが可能であるため、ばね部材4を省略しても撮像装置5を支持することができる。
こうした場合、一方側のゴムダンパーに振動減衰特性の弱い方向の振動が加わった場合でも、他方のゴムダンパーにより十分な振動減衰を行うことができる。
すなわち、ゴムダンパーを用いて防振対象物を挟持することにより、如何なる方向への振動も効果的に減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
第3実施形態[図7]
図7は、本発明の第3実施形態に係る無人航空機用防振構造100を示す側面図である。
図7は、本発明の第3実施形態に係る無人航空機用防振構造100を示す側面図である。
第3実施形態に係る無人航空機用防振構造100は、粘性流体封入ダンパー2、ゴムダンパー3及びばね部材4を組み合わせた防振構造である。
撮像機器5の取付け位置が、例えば無人航空機7の先端部分となる場合には、電子機器4の重心が偏った取付け状態とする必要が生じることがある。本実施形態に係る無人航空機用防振構造100は、こうした場合に対応するものであり、先端側で撮像機器5を支持するとともに、後方側でこれを支持している。
具体的には、撮像機器5が載置された支持板8を側面視が略コ字状となっている無人航空機7の先端部分に配置し、支持板8の下方の先端側にはゴムダンパー3を、後端側にはばね部材4を配置するとともに、支持板8の上方の後端側には粘性流体封入ダンパー2を配置する態様となっている。
なお、ゴムダンパー3、粘性流体封入ダンパー2及びばね部材4はそれぞれ紙面奥側にもそれぞれもう一つずつ、同様に配置されている(不図示)。
また、本実施形態に係る無人航空機用防振構造100では、重心に近く大きな荷重の加わる位置で、重心よりもやや後方寄りに耐久性及び支持力に優れたゴムダンパー3を配置し、相対的に加重の小さい位置に粘性流体封入ダンパー2とばね部材4を配置している。上記ゴムダンパー3は、重心よりも後方に配置したため、撮像装置5の後端側は、ゴムダンパー3を支点にして上方へ荷重が加わる。したがって、後端側の上方に配置した粘性流体封入ダンパー2には圧縮方向の荷重が加わり、その荷重をばね部材4が軽減している。
また、撮像機器5の重心に近いゴムダンパー3よりも、粘性流体封入ダンパー2の方が、相対的に各方向の振動のストロークが大きくなる。このストロークの大きな振動を、防振性に優れた粘性流体封入ダンパー2で効果的に減衰する。
本実施形態に係る無人航空機用防振構造100によると、各方向から加わるストロークの小さい振動をゴムダンパー3が減衰するとともに、ストロークの大きい振動を粘性流体封入ダンパー2が減衰することで、様々な方向から加わる振動を効果的に減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
第4実施形態[図8]
図8は、本発明の第4実施形態に係る無人航空機用防振構造200を示す側面図である。
図8は、本発明の第4実施形態に係る無人航空機用防振構造200を示す側面図である。
第4実施形態に係る無人航空機用防振構造200は、粘性流体封入ダンパー2とゴムダンパー3を組み合わせた防振構造である。
第3実施形態と同様に撮像機器5は支持板8上に載置されている。一方、第3実施形態と異なり、ゴムダンパー3の取付け位置は重心位置または重心よりもやや前方寄りであって、第3実施形態の取付け位置よりも前方となる。また、粘性流体封入ダンパー2の取付け位置は支持板8の後端側下方となっているとともに、ばね部材4は省略された構成となっている。
こうした態様では、粘性流体封入ダンパー2に加わる圧力の方向も第3実施形態の態様とは反転する。
撮像機器5の重心に近い位置において加わる大きな加重は耐久性に優れたゴムダンパー3により受けることができる。また、このゴムダンパー3が重心位置又はやや前方の近い位置にあるため、支持板8から粘性流体封入ダンパー2にはほとんど荷重が加わらないか、これを押し縮める方向に極めて小さい荷重が加わるが、荷重が小さいため第3実施形態のようにばね部材4を必要とせず、これを省略することができる。
上記構成においても、粘性流体封入ダンパー2に加わる振動のストロークはゴムダンパー3のものよりも大きい。
そこで、撮像機器5の重心に近い位置で耐久性に優れたゴムダンパー3で大きな加重を支えつつストロークの小さい振動を減衰し、重心から遠い位置では振動のストロークの大きな振動を防振性に優れた粘性流体封入ダンパー2で減衰する。
本実施形態に係る無人航空機用防振構造200によると、各方向から加わるストロークの小さい振動をゴムダンパー3が減衰するとともに、ストロークの大きい振動を粘性流体封入ダンパー2が減衰することで、様々な方向から加わる振動を効果的に減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
第5実施形態[図9]
図9は、本発明の第5実施形態に係る無人航空機用防振構造300を示す側面図である。本実施形態に係る無人航空機用防振構造300では、撮像機器5の左右側面(±Y方向の面)及び背面(-X方向の面)に、粘性流体封入ダンパー2又はゴムダンパー3を取付ける態様となっている。また、粘性流体封入ダンパー2を用いる場合には、ばね部材(図示せず)を併用することができる。
図9は、本発明の第5実施形態に係る無人航空機用防振構造300を示す側面図である。本実施形態に係る無人航空機用防振構造300では、撮像機器5の左右側面(±Y方向の面)及び背面(-X方向の面)に、粘性流体封入ダンパー2又はゴムダンパー3を取付ける態様となっている。また、粘性流体封入ダンパー2を用いる場合には、ばね部材(図示せず)を併用することができる。
この場合、L1(左側面)、L2(背面)、L3(右側面)の3方向から防振を行うことになる。これによると防振部材の振動減衰特性の異方性、すなわち振動の方向により振動が減衰される程度が異なることによる影響をそれぞれの防振部材同士が相殺し合うことができ、様々な方向からの振動を効果的に減衰することができる。
取付方向が単一の場合には、防振部材の振動減衰特性の異方性は、無人航空機用防振構造全体の防振特性として発現してしまうが、取付方向を2以上の異なる方向に設定すれば、異なる方向に取付けた防振部材同士が振動減衰特性の異方性を相殺し合うので、特定の方向の防振特性の低下を抑制することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。
第6実施形態[図10]
図10は、本発明の第6実施形態に係る無人航空機用防振構造400を示す側面図である。本実施形態に係る無人航空機用防振構造400では、撮像機器5の左右側面(±Y方向の面)及び背面(-X方向の面)に加え、上面(+Z方向の面)に粘性流体封入ダンパー2又はゴムダンパー3を取付ける態様となっている。また、左右側面と背面の取付け方向は、やや下方から撮像機器5に接続しており、いわゆる正四面体の頂点から中央の撮像機器へ向かうように配置している。
図10は、本発明の第6実施形態に係る無人航空機用防振構造400を示す側面図である。本実施形態に係る無人航空機用防振構造400では、撮像機器5の左右側面(±Y方向の面)及び背面(-X方向の面)に加え、上面(+Z方向の面)に粘性流体封入ダンパー2又はゴムダンパー3を取付ける態様となっている。また、左右側面と背面の取付け方向は、やや下方から撮像機器5に接続しており、いわゆる正四面体の頂点から中央の撮像機器へ向かうように配置している。
この場合、L4(上面)、L5(左側面)、L6(右側面)、L7(背面)の4方向から防振を行うため、異なる方向に取付けた防振部材同士が振動減衰特性の異方性を相殺し合うので、特定の方向の防振特性の低下を抑制することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。さらに、正四面体の頂点位置となるように、3次元的に対象の位置に防振部材を配置しているため、無人航空機の姿勢がどのように変化しても、ほぼ同じ防振性能を発揮することができる。
第7実施形態[図11]
図11は、本発明の第7実施形態に係る無人航空機用防振構造500を示す側面図である。本実施形態に係る無人航空機用防振構造500では、撮像機器5の左右側面(±Y方向の面)、背面(-X方向の面)上下面(±Z方向の面)に粘性流体封入ダンパー2又はゴムダンパー3を取付ける態様となっている。
図11は、本発明の第7実施形態に係る無人航空機用防振構造500を示す側面図である。本実施形態に係る無人航空機用防振構造500では、撮像機器5の左右側面(±Y方向の面)、背面(-X方向の面)上下面(±Z方向の面)に粘性流体封入ダンパー2又はゴムダンパー3を取付ける態様となっている。
この場合、L8(上面)、L9(左側面)、L10(右側面)、L11(背面)、L12(下面)の5方向から防振を行うため、防振部材の振動減衰特性の異方性による影響を効果的に抑制し、様々な方向からの振動を減衰することができる。また、こうした構成は簡易で軽量、小型であり、低コストで製造可能である。また、第6実施形態と同様に、3次元的に対称の位置に防振部材を配置しているため、無人航空機の姿勢がどのように変化しても、高い防振性能を発揮することができる。
なお、本発明は上述した実施形態に限らず、種々の変形が可能である。例えば、防振部材を、第5実施形態では3方向に、第6実施形態では4方向に、第7実施形態では5方向に配置したが、防振部材は更に多方向に配置してもよく、8方向程度まで増やすこともできる。
図12は、本発明の変形例に係る粘性流体封入ダンパー2’を示す断面図である。例えば、図12に示すように、粘性流体封入ダンパー2’の緩衝部材23の周囲に保護部材238を設けてもよい。
こうした保護部材23を設けることで、無人航空機が墜落した場合等に緩衝部材23が木の枝等に接触し破損することを防止することができる。
実施形態の変形例
ばね部材の取付け方法としては、第1実施形態のように上方から防振対象物を支持するような形態に限定されない。一例として、他の取付け形態を示すと、以下のような構成を挙げることができる。
ばね部材の取付け方法としては、第1実施形態のように上方から防振対象物を支持するような形態に限定されない。一例として、他の取付け形態を示すと、以下のような構成を挙げることができる。
例えば、コイルばね(圧縮ばね)を防振対象物の下面に取付けて、下方から支持する形態をとることができる。この場合には、防振対象物の外壁や無人航空機の筐体にコイルばねを当接するだけで、防振対象物を支持できる。したがって、別途コイルばねを取付けるための構成を防振対象物に設ける必要がないため、簡易で軽量、低コストな防振構造とすることができる。
別の例としては、コイルばねを防振対象物の側面に取付けて、外側斜め上方から吊り下げる形態とすることができる。こうした形態であれば薄型の防振構造とすることができ、防振構造の小型化が可能となる。
また、別の例としては、防振対象物から粘性流体封入ダンパーや防振ゴムへ延びる支持軸をやや長めにするとともに、その支持軸にコイルばねを取付けることもできる。この形態であれば、別途コイルばねを取付けるための構成を防振対象物に設ける必要がないため、簡易で軽量、低コストな防振構造とすることができる。
さらに別の形態としては、粘性流体封入ダンパーの周壁部または防振ゴムの外形よりもやや直径の大きなコイルばねを準備し、このコイルばねの内側に粘性流体封入ダンパーや防振ゴムを配置することができる。この形態であれば、コイルばねの内側に防振部材を配置しその容積を有効に活用できため、防振構造の構築に必要な容積を削減し小型の防振構造とすることができる。また、小型であるにもかからず、防振部材の高さよりもやや長く、且つ比較的直径が大きいコイルばねを用いることができるため、広いストロークの範囲で一定のばね特性を発揮することができる。したがって、小型、高特性の防振構造とすることができる。
1、10、100、200、300、400、500 無人航空機用防振構造
2、2’ 粘性流体封入ダンパー
3 ゴムダンパー
4 ばね部材
5 撮像機器
7 無人航空機
8 支持板
21 基板
22 支持軸
22a 拡径部
23 粘性流体封入ダンパー本体
24 固定部材
31 基板
32 支持軸
33 ゴムダンパー本体
34 固定部材
36 貫通孔
41 ばね本体
42 取付板
231 周壁部
232 可撓膜部
233 攪拌筒部
234 蓋体
236 密閉容器
321 上側部分
322 下側部分
342 周壁
343 フランジ
2、2’ 粘性流体封入ダンパー
3 ゴムダンパー
4 ばね部材
5 撮像機器
7 無人航空機
8 支持板
21 基板
22 支持軸
22a 拡径部
23 粘性流体封入ダンパー本体
24 固定部材
31 基板
32 支持軸
33 ゴムダンパー本体
34 固定部材
36 貫通孔
41 ばね本体
42 取付板
231 周壁部
232 可撓膜部
233 攪拌筒部
234 蓋体
236 密閉容器
321 上側部分
322 下側部分
342 周壁
343 フランジ
Claims (7)
- 無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、
防振対象物を支持する第1支持軸と、前記支持軸の周囲に設けられた弾性体と、前記弾性体内に封入された粘性流体とを有して構成される粘性流体封入ダンパーを2つ以上備え、
防振対象物は、無人航空機が水平な状態において防振対象物を無人航空機に固定された前記粘性流体封入ダンパーにより水平方向から挟持されることにより無人航空機に固定される無人航空機用防振構造。 - 防振対象物が、ばね部材により支持される請求項1記載の無人航空機用防振構造。
- 無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、
防振対象物を支持する第2支持軸と、前記第2支持軸の周囲に設けられた防振ゴムとを有して構成されるゴムダンパーを2つ以上備え、
防振対象物は、無人航空機が水平な状態において防振対象物を無人航空機に固定された前記ゴムダンパーにより水平方向から挟持されることにより無人航空機に固定される無人航空機用防振構造。 - 無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、
防振対象物が載置される支持板と、
防振対象物を支持する支持軸と、前記支持軸の周囲に設けられた弾性体と、前記弾性体内に封入された粘性流体とを有して構成される粘性流体封入ダンパーと、
防振対象物を支持する第2支持軸と、前記第2支持軸の周囲に設けられた防振ゴムを有して構成されるゴムダンパーと、
を備え、無人航空機が水平な状態において、
前記ゴムダンパーは前記防振対象物の重心に近い位置で前記支持板に取付けられるとともに無人航空機に固定され、
前記粘性流体封入ダンパーは前記防振対象物の重心から離れた位置で前記支持板に取付けられるとともに無人航空機に固定されることにより前記防振対象物が無人航空機に固定される無人航空機用防振構造。 - 前記粘性流体封入ダンパーに加わる荷重を支持するばね部材が設けられている請求項4記載の無人航空機用防振構造。
- 無人航空機に搭載される防振対象物を防振する無人航空機用防振構造であって、
防振対象物を支持する第1支持軸と、前記支持軸の周囲に設けられた弾性体と、前記弾性体内に封入された粘性流体とを有して構成される粘性流体封入ダンパーと、
防振対象物を支持する第2支持軸と、前記第2支持軸の周囲に設けられた防振ゴムを有して構成されるゴムダンパーと、
のうち少なくとも一方を防振部材として備え、無人航空機が水平な状態において防振対象物が前記防振部材により3方向以上から支持される無人航空機用防振構造。 - 前記粘性流体封入ダンパーの周囲に保護部材が設けられていることを特徴とする請求項1、2、4乃至6の何れか1項記載の無人航空機用防振構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/061948 WO2017179160A1 (ja) | 2016-04-13 | 2016-04-13 | 無人航空機用防振構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/061948 WO2017179160A1 (ja) | 2016-04-13 | 2016-04-13 | 無人航空機用防振構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179160A1 true WO2017179160A1 (ja) | 2017-10-19 |
Family
ID=60042115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061948 WO2017179160A1 (ja) | 2016-04-13 | 2016-04-13 | 無人航空機用防振構造 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017179160A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108397511A (zh) * | 2018-03-26 | 2018-08-14 | 全椒赛德利机械有限公司 | 一种发动机的减震设备 |
CN108528744A (zh) * | 2018-06-13 | 2018-09-14 | 安徽新祥信息技术有限公司 | 一种航拍摄像头减震机构 |
JP6445207B1 (ja) * | 2018-07-06 | 2018-12-26 | Terra Drone株式会社 | 情報収集装置及びこれを搭載した無人航空機 |
CN109562845A (zh) * | 2017-12-12 | 2019-04-02 | 深圳市大疆创新科技有限公司 | 一种无人机及其云台减震机构、云台组件 |
EP3744633A1 (en) | 2019-05-27 | 2020-12-02 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A vibration dampening structure for a rotary wing aircraft |
CN112178115A (zh) * | 2020-09-29 | 2021-01-05 | 扬州安宜散热器有限公司 | 一种叉车用具有缓冲功能的新型散热器 |
CN112678194A (zh) * | 2021-01-06 | 2021-04-20 | 李咏东 | 一种可用于室内有遮挡物的无人机测绘用记录仪固定装置 |
WO2021126354A1 (en) * | 2019-12-19 | 2021-06-24 | Raytheon Company | Internally damped crossbar assembly having elastomeric isolator |
US20210203826A1 (en) * | 2016-09-16 | 2021-07-01 | Gopro, Inc. | Vibration Damping Gimbal Sleeve for an Aerial Vehicle |
US11243082B2 (en) | 2019-12-19 | 2022-02-08 | Raytheon Company | Cardan joint for inertially stabilizing a payload |
US11524636B2 (en) | 2019-12-19 | 2022-12-13 | Raytheon Company | Internally damped crossbar assembly having a slip plate damper |
US11554725B2 (en) | 2019-12-19 | 2023-01-17 | Raytheon Company | Internally damped crossbar assembly having wire rope isolator |
US11603961B2 (en) | 2019-12-19 | 2023-03-14 | Raytheon Company | Internally damped crossbar assembly having a friction damped isolator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0260700U (ja) * | 1988-10-28 | 1990-05-07 | ||
JPH02286937A (ja) * | 1989-04-28 | 1990-11-27 | Japan Aviation Electron Ind Ltd | 等方性防振装架装置 |
JPH04271998A (ja) * | 1990-09-18 | 1992-09-28 | Agip Spa | ヘリコプタ搭載多セクション回動ビーム |
US5710945A (en) * | 1996-07-03 | 1998-01-20 | Mcmahon Helicopter Services, Inc. | Resilient camera mount usable on a helicopter |
JP2004145971A (ja) * | 2002-10-24 | 2004-05-20 | Matsushita Electric Ind Co Ltd | 電子装置および電子機器 |
JP2011209540A (ja) * | 2010-03-30 | 2011-10-20 | Mitsubishi Electric Corp | 撮像装置 |
-
2016
- 2016-04-13 WO PCT/JP2016/061948 patent/WO2017179160A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0260700U (ja) * | 1988-10-28 | 1990-05-07 | ||
JPH02286937A (ja) * | 1989-04-28 | 1990-11-27 | Japan Aviation Electron Ind Ltd | 等方性防振装架装置 |
JPH04271998A (ja) * | 1990-09-18 | 1992-09-28 | Agip Spa | ヘリコプタ搭載多セクション回動ビーム |
US5710945A (en) * | 1996-07-03 | 1998-01-20 | Mcmahon Helicopter Services, Inc. | Resilient camera mount usable on a helicopter |
JP2004145971A (ja) * | 2002-10-24 | 2004-05-20 | Matsushita Electric Ind Co Ltd | 電子装置および電子機器 |
JP2011209540A (ja) * | 2010-03-30 | 2011-10-20 | Mitsubishi Electric Corp | 撮像装置 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210203826A1 (en) * | 2016-09-16 | 2021-07-01 | Gopro, Inc. | Vibration Damping Gimbal Sleeve for an Aerial Vehicle |
US11930273B2 (en) * | 2016-09-16 | 2024-03-12 | Gopro, Inc. | Vibration damping gimbal sleeve for an aerial vehicle |
CN109562845A (zh) * | 2017-12-12 | 2019-04-02 | 深圳市大疆创新科技有限公司 | 一种无人机及其云台减震机构、云台组件 |
WO2019113775A1 (zh) * | 2017-12-12 | 2019-06-20 | 深圳市大疆创新科技有限公司 | 一种无人机及其云台减震机构、云台组件 |
CN109562845B (zh) * | 2017-12-12 | 2021-11-16 | 深圳市大疆创新科技有限公司 | 一种无人机及其云台减震机构、云台组件 |
CN108397511A (zh) * | 2018-03-26 | 2018-08-14 | 全椒赛德利机械有限公司 | 一种发动机的减震设备 |
CN108528744A (zh) * | 2018-06-13 | 2018-09-14 | 安徽新祥信息技术有限公司 | 一种航拍摄像头减震机构 |
JP6445207B1 (ja) * | 2018-07-06 | 2018-12-26 | Terra Drone株式会社 | 情報収集装置及びこれを搭載した無人航空機 |
JP2020010185A (ja) * | 2018-07-06 | 2020-01-16 | Terra Drone株式会社 | 情報収集装置及びこれを搭載した無人航空機 |
EP3744633A1 (en) | 2019-05-27 | 2020-12-02 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A vibration dampening structure for a rotary wing aircraft |
US11243082B2 (en) | 2019-12-19 | 2022-02-08 | Raytheon Company | Cardan joint for inertially stabilizing a payload |
WO2021126354A1 (en) * | 2019-12-19 | 2021-06-24 | Raytheon Company | Internally damped crossbar assembly having elastomeric isolator |
US11448287B2 (en) | 2019-12-19 | 2022-09-20 | Raytheon Company | Internally damped crossbar assembly having elastomeric isolator |
US11524636B2 (en) | 2019-12-19 | 2022-12-13 | Raytheon Company | Internally damped crossbar assembly having a slip plate damper |
US11554725B2 (en) | 2019-12-19 | 2023-01-17 | Raytheon Company | Internally damped crossbar assembly having wire rope isolator |
US11603961B2 (en) | 2019-12-19 | 2023-03-14 | Raytheon Company | Internally damped crossbar assembly having a friction damped isolator |
CN112178115A (zh) * | 2020-09-29 | 2021-01-05 | 扬州安宜散热器有限公司 | 一种叉车用具有缓冲功能的新型散热器 |
CN112678194A (zh) * | 2021-01-06 | 2021-04-20 | 李咏东 | 一种可用于室内有遮挡物的无人机测绘用记录仪固定装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017179160A1 (ja) | 無人航空機用防振構造 | |
US20200223558A1 (en) | Motion sensor assembly and unmanned aerial vehicle | |
US6578682B2 (en) | Compact vibration isolation system for an inertial sensor assembly | |
EP3407017B1 (en) | Inertia measurement unit for unmanned aircraft | |
US6923298B2 (en) | Shock, vibration and acoustic isolation system | |
US7404324B2 (en) | Gunhard shock isolation system | |
US20040150144A1 (en) | Elastomeric vibration and shock isolation for inertial sensor assemblies | |
EP2604974A1 (en) | Micro inertial measurement system | |
CN108779892B (zh) | 云台的减震器、云台组件、及可移动拍摄设备 | |
JPWO2019198393A1 (ja) | 無人航空機の防振装置 | |
US20100051778A1 (en) | Controlled Space with Anti-Shock Function for Automotive Electronics | |
US9587704B2 (en) | System and method for managing noise and vibration in a vehicle using electro-dynamic regenerative force and vehicle having same | |
US9201292B1 (en) | Camera motion damping | |
CN207466983U (zh) | 运动传感器组件及无人机 | |
WO2018090300A1 (en) | A damping assembly | |
CN112984044A (zh) | 位移抑制机构以及除振装置 | |
WO2018088028A1 (ja) | 防振具及び無人航空機 | |
JP2011209540A (ja) | 撮像装置 | |
EP3091249B1 (en) | Isolation systems for image data gathering devices | |
JPH08239100A (ja) | 無人ヘリコプタ用搭載機器の支持構造 | |
CN207917166U (zh) | 一种imu机构及无人机 | |
JP6389890B2 (ja) | 過度の力から保護するサスペンション構造体 | |
JP2002286451A (ja) | ジャイロコンパス用防振緩衝装置 | |
JP2701759B2 (ja) | 電子部品の緩衝装置 | |
CN108146645A (zh) | 一种imu机构及无人机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16898620 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16898620 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |