WO2017177883A1 - 生活垃圾低温处理方法 - Google Patents

生活垃圾低温处理方法 Download PDF

Info

Publication number
WO2017177883A1
WO2017177883A1 PCT/CN2017/080011 CN2017080011W WO2017177883A1 WO 2017177883 A1 WO2017177883 A1 WO 2017177883A1 CN 2017080011 W CN2017080011 W CN 2017080011W WO 2017177883 A1 WO2017177883 A1 WO 2017177883A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
temperature
heat
furnace
layer
Prior art date
Application number
PCT/CN2017/080011
Other languages
English (en)
French (fr)
Inventor
沈苏伟
Original Assignee
王冬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王冬 filed Critical 王冬
Publication of WO2017177883A1 publication Critical patent/WO2017177883A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass

Definitions

  • the invention relates to the technical field of low-temperature pyrolysis treatment of domestic garbage, and more particularly to a method for low-temperature pyrolysis of regenerative smokeless straight-line domestic garbage.
  • Garbage is solid waste generated in daily life and production of human beings. Garbage disposal is to quickly remove the garbage and carry out harmless treatment, and finally make reasonable use.
  • Landfill can cause serious geological water and soil pollution. Because human waste includes many toxic and harmful substances and germs, viruses and various heavy metal elements, it is very easy to endanger the normal survival of humans and living things.
  • the high-temperature composting method is difficult to completely kill the pathogens such as bacteria, viruses, parasite eggs and the like contained in the domestic garbage by ordinary heating or adding lime.
  • the wastes are applied to the farmland as fertilizers, and some germs can survive in the soil. For months, it has caused soil and water pollution, threatening the health of humans and livestock.
  • Waste incineration has not been accepted by the general public, and its ills are highlighted by its latent pollution, expensive, complicated operation and waste of resources.
  • the composition of hundreds of major pollutants emitted from the tail gas of incinerators is extremely complex.
  • dioxins are recognized as primary carcinogens, and even in trace amounts can accumulate in the body for a long time.
  • Dioxins in domestic waste incineration smoke are a common concern in countries around the world in recent years.
  • Dioxin is a highly toxic substance with a toxicity equivalent to 130 times that of the well-known highly toxic substance cyanide and 900 times that of arsenic.
  • a large number of animal experiments have shown that very low concentrations of diptermhin have a lethal effect on animals.
  • the biological half-life of dioxins is long, and even if it is infected once, it can exist in the body for a long time. If long-term exposure to dioxins can cause accumulation in the body, it may cause serious damage. Therefore, suppressing the production of dioxins is also a difficult problem in the conventional pyrolysis method.
  • the waste pyrolysis technology is generally favored by environmental experts in various countries, and it is considered to be a new way for garbage disposal to be harmless, reduced and resourced.
  • Pyrolysis technology has a long history in industrial production. The dry distillation of wood and coal, the cracking of heavy oil to produce various fuel oils are all derived from the pyrolysis principle. The pyrolysis principle has been applied to solid waste treatment abroad.
  • the typical foreign pyrolysis processes include moving bed, grate bed, rotary kiln, double-tower circulating fluid bed, external thermal fixed bed, etc.; domestic waste pyrolysis equipment It was restructured on the basis of coal-fired boilers in the past, mainly including fixed bed, fluidized bed, rotary kiln, ablation bed, molten bath and other major categories.
  • the composition of domestic waste is very complicated.
  • Some secondary pollutants must be produced during the pyrolysis process, including some exhaust gases such as SOx, NOx, CO, HCl, tar, and some trace or ultra-trace pollutants such as heavy metals (Pb, Cd, Hg, etc.), dioxins (PCDD/Fs), and polycyclic aromatic hydrocarbons (PAHs). If such pollutants are discharged without high-efficiency purification, they will cause serious pollution to the atmosphere and pose a serious threat to air quality.
  • Some secondary pollutants such as SOx, NOx, CO, HCl, tar, and some trace or ultra-trace pollutants such as heavy metals (Pb, Cd, Hg, etc.), dioxins (PCDD/Fs), and polycyclic aromatic hydrocarbons (PAHs).
  • the conventional treatment methods include adsorption, combustion or biological methods.
  • the catalytic combustion method has high purification efficiency, but the disadvantage is that the catalyst is easily damaged by the tar and carbon black solid materials in the waste pyrolysis flue gas, the equipment is large in volume, the one-time investment and the equipment operation energy consumption are large, and there are safety hazards.
  • the adsorption method and absorption method have an ideal purification effect, but the pollutants after adsorption/absorption still need to be disposed of, and the energy consumption for regeneration is large.
  • the application range of the condensation method is limited, and the treatment effect on the medium and high concentration volatile organic gases is good.
  • Biological law investment and operating costs are low, but the operation is complicated, the floor space is large, and there is the possibility of secondary pollution.
  • low temperature plasma technology is one of the effective ways to achieve simultaneous removal of composite pollutants.
  • Low-temperature plasma is obtained by high-voltage discharge, containing a large amount of high-energy electrons and high-energy electrons to generate active particles, which can oxidize harmful gas pollutants into other harmless substances or low-toxic substances such as CO 2 and H 2 O, and at the same time, the solid state in gas
  • the liquid particles are charged by the high-energy electrons generated by the pulse discharge, and are collected on the surface of the dust collecting plate by the electric field force.
  • the invention utilizes low temperature pyrolysis, uses heat storage material to store the heat generated in the waste pyrolysis process, and uses it to continue to process new garbage, so that it is not necessary to continuously add external energy to achieve the purpose of continuous garbage pyrolysis.
  • the pyrolysis temperature is controlled at a low temperature, and the pyrolysis temperature is controlled within a range of 150 to 280 ° C.
  • the pyrolysis process is in a reducing atmosphere lacking air, so that the amount of gas generated after the reaction is generated. Relatively few, this inhibits the conditions for the formation of dioxins and achieves the purpose of inhibiting the formation of dioxins.
  • the electric tar trap technology is combined with the corona plasma air purification technology to treat the secondary pollutants generated by pyrolysis, and the high and medium molecular organic liquids (tar, aromatic hydrocarbons, organic acids, etc.) and gases (CH) are collected and processed. 4, H 2, CO, CO 2, nO X, SO 2, HCl), garbage reaches pyrolysis smoking, no odor straight row.
  • Tar oil is an inevitable by-product of pyrolysis treatment of domestic waste. It is an important chemical raw material. It is a renewable resource after it is effectively collected and extracted.
  • the present invention achieves the above object by the following technical solutions.
  • the present invention provides a method of domestic waste treatment, comprising the steps of: 1) adding domestic waste to a pyrolysis vessel; 2) dehydrating the domestic waste in the pyrolysis vessel; Causing low temperature pyrolysis of the dehydrated domestic waste to produce semi-coke and sol-like gaseous pollutants; 4) making the sol Forming gaseous pollutants discharged from the upper portion of the pyrolysis vessel to the exhaust gas treatment vessel for exhaust gas treatment; 5) carbonizing the semi-coke produced in step 3); 6) discharging the waste residue from below the pyrolysis vessel;
  • the heat evolved in step 5) is absorbed by the wall and bottom of the pyrolysis vessel; wherein the energy required in steps 2) and 3) is provided by a first heat source or a second heat source; 7) repeating the above steps 1)-6), and wherein the energy required is provided by the second heat source.
  • the walls and bottom of the pyrolysis vessel comprise a heat storage material that is cordierite or dense high alumina or corundum mullite or a combination thereof.
  • the second heat source is thermal energy stored in the heat storage material.
  • the thermal energy is from an exotherm in the carbonization step.
  • an insulating layer is present on the walls and bottom of the pyrolysis vessel.
  • the first heat source is thermal energy or solar energy that is burned out of the wood in the pyrolysis vessel.
  • the dehydration is carried out at a temperature of from 80 to 100 °C.
  • the pyrolysis is carried out at a temperature of from 150 to 280 °C.
  • the carbonization is carried out at a temperature of from 450 to 500 °C.
  • the adjustment of the above temperature is performed automatically.
  • the above temperature adjustment is performed manually.
  • the exhaust gas treatment is performed using an electric tar catcher technology and a corona plasma air purification technique.
  • the exhaust gas treatment vessel comprises a honeycomb precipitation pole and a corona pole.
  • the number of honeycomb precipitation poles is 19-37
  • the honeycomb precipitate is extremely regular hexagonal
  • the inscribed circle diameter of the regular hexagon is 200-250 mm, preferably, the honeycomb
  • the number of precipitated poles was 19, and the inscribed circle of the regular hexagon was 210 mm in diameter.
  • the corona pole diameter is from 2.0 to 2.5 cm, preferably the corona pole diameter is 2.3 cm.
  • the invention utilizes low temperature pyrolysis, uses heat storage material to store heat generated in the waste pyrolysis process and combines the use of electric tar catcher technology with corona plasma air purification technology for subsequent treatment, thereby realizing low consumption and continuous garbage disposal.
  • the purpose is to inhibit the formation of dioxins, and realize the smokeless and odorless straight discharge of domestic garbage treatment.
  • the method of the invention can realize the in-situ treatment of the garbage source, and does not need to collect and transport and concentrate the treatment, thereby saving a lot of resources. It is suitable for the scattered source of garbage and the inconvenience of transportation is not conducive to the collection and transportation.
  • the method of the invention has less selectivity for garbage components, and is suitable for high moisture content of domestic garbage and non-sorting of garbage.
  • the method of the invention has simple operation and low running cost when treating garbage. Operators can operate with short-term training and do not need to add any auxiliary fuel when disposing of waste.
  • a pyrolysis furnace is taken as a pyrolysis vessel as an example, The following statements, but the method of the present invention is by no means limited to implementation with the pyrolysis furnace.
  • Figure 1 is a flow chart of the method of the present invention.
  • Figure 2 is an illustration of a pyrolysis container of the present invention.
  • Fig. 3 is a front elevational view showing one embodiment of the municipal solid waste pyrolysis system of the present invention.
  • Fig. 4 is a front view, a right side view, and a plan view showing an embodiment of the exhaust gas integrated processing apparatus of the present invention
  • Figure 5 is a cross-sectional view taken along line 1-1 of Figure 3 of an embodiment of the pyrolysis furnace of the present invention.
  • Figure 6 is a cross-sectional view taken along line 2-2 of Figure 3 of one embodiment of the pyrolysis furnace of the present invention.
  • Figure 7 is a cross-sectional view taken along line 3-3 of Figure 3 of one embodiment of the pyrolysis furnace of the present invention.
  • Figure 8 is a cross-sectional view taken along line 4-4 of Figure 3 of one embodiment of the pyrolysis furnace of the present invention.
  • Figure 9 is a cross-sectional view taken along line 5-5 of Figure 4 of an embodiment of the exhaust gas integrated treatment device of the present invention.
  • Figure 10 is a cross-sectional view taken along line 6-6 of Figure 4 of an embodiment of the exhaust gas integrated treatment device of the present invention.
  • Figure 11 is a cross-sectional view taken along line 7-7 of Figure 4 of an embodiment of the exhaust gas integrated treatment apparatus of the present invention.
  • Figure 12 is a cross-sectional view taken along line 8-8 of Figure 4 of an embodiment of the exhaust gas integrated treatment apparatus of the present invention.
  • Figure 13 is a front elevational view of another embodiment of the municipal solid waste pyrolysis system of the present invention.
  • Fig. 14 is a front view, a right side view, and a plan view showing another embodiment of the exhaust gas integrated processing apparatus of the present invention in Fig. 13;
  • Figure 15 is a cross-sectional view taken along line 1-1 of Figure 13 of another embodiment of the pyrolysis furnace of the present invention.
  • Figure 16 is a cross-sectional view taken along line 2-2 of Figure 13 of another embodiment of the pyrolysis furnace of the present invention.
  • Figure 17 is a cross-sectional view taken along line 3-3 of Figure 13 of another embodiment of the pyrolysis furnace of the present invention.
  • Figure 18 is a cross-sectional view taken along line 4-4 of Figure 13 of another embodiment of the pyrolysis furnace of the present invention.
  • Figure 19 is a cross-sectional view taken along line 5-5 of Figure 14 of another embodiment of the exhaust gas integrated treatment apparatus of the present invention.
  • Figure 20 is a cross-sectional view taken along line 6-6 of Figure 14 of another embodiment of the exhaust gas integrated treatment apparatus of the present invention.
  • Figure 21 is a cross-sectional view taken along line 7-7 of Figure 14 of another embodiment of the exhaust gas integrated treatment apparatus of the present invention.
  • Figure 22 is a cross-sectional view taken along line 8-8 of Figure 14 of another embodiment of the exhaust gas integrated treatment apparatus of the present invention.
  • an I-solar heat source system a II-pyrolysis furnace; a III-exhaust gas integrated treatment device; and an IV-automatic control system.
  • step 110 includes adding domestic waste to a pyrolysis vessel, which may be waste produced by any source of waste generation, without sorting, and may contain high levels of moisture.
  • the pyrolysis vessel has at least an upper garbage addition port 210, a gaseous pollutant discharge port 220, a lower waste residue outlet 230, a first heat source 240, and a second heat source 250.
  • the garbage adding port 210 is not particularly limited as long as it is suitable for adding garbage to the closed container.
  • the gaseous pollutant discharge port 220 is not particularly limited as long as it is suitable for the gaseous sol generated by pyrolysis and the gaseous pollutant discharge port 220 is hermetically connected to the treatment system for treating the discharged gaseous sol.
  • the waste slag outlet 230 below is not specifically limited as long as it is suitable for discharging solid slag.
  • the first heat source 240 provides the external energy required to initially activate the pyrolysis furnace.
  • the thermal energy of the first heat source 240 is solar energy, wherein the solar radiant heat is collected by a solar concentrating disk or a vacuum heat collecting tube.
  • the first heat source 240 is wood that is burned in a pyrolysis vessel.
  • the second heat source 250 is energy stored in the heat storage material constituting the walls and the bottom of the pyrolysis vessel, which is the heat energy released from the heat storage material stored in the walls and bottom of the pyrolysis vessel during pyrolysis of the domestic waste.
  • the heat storage material is cordierite or dense high aluminum or corundum mullite or a combination of the above materials.
  • a pyrolysis vessel is a pyrolysis furnace (shown in Figures 3 and 5), the structure of which will be described below.
  • the domestic waste is dewatered in a pyrolysis vessel, and the reaction is usually carried out at a temperature of from 80 to 100 °C.
  • the temperature gradually rises to above 100 ° C, and the free water is first volatilized, and then the dehydration reaction in the organic molecules occurs, such as the hydroxyl group breaks to form water.
  • the amount of water vapor is gradually reduced. After the moisture escapes, many voids are formed inside the garbage, which plays an important role in the heat and mass transfer.
  • the dehydrated domestic waste is pyrolyzed at low temperature to produce a semi-coke and sol-like gaseous contaminant, which is typically carried out at a temperature of from 150 to 280 °C.
  • the waste continues to absorb heat after the dehydration reaction.
  • the temperature exceeds 200 ° C, the side chains such as methyl and ethyl in the organic molecules in the waste begin to break. Do not remove carbon and hydrogen to form small molecules such as methane, hydrogen and other hydrocarbons.
  • the main chain of the organic material from which the side chain is removed is broken, and many small molecular substances are formed.
  • the pyrolysis of waste is not strictly in a certain order, and many reactions are carried out in a cross.
  • the small molecules produced by pyrolysis are recombined into macromolecular organics through condensation reaction, and the organic matter of these macromolecules can be transformed into small organic molecules by cleavage, so the pyrolysis of waste is a very complicated physics and chemistry. process.
  • the sol-like gaseous contaminants are discharged from the upper portion of the pyrolysis vessel to the exhaust gas treatment vessel for exhaust gas treatment.
  • the exhaust gas is treated by an electric tar catcher technology in combination with corona plasma air purification technology. The working principle and working process of this process are described in detail below in connection with a specific exhaust gas treatment system.
  • the semi-coke produced in step 130 is carbonized. This step is typically carried out at 450-500 ° C, wherein the semi-coke (garbage carbon) produced by pyrolysis causes a carbonization exotherm that produces high temperature flue gas and ash. The thermal energy released by carbonization is absorbed and stored by the energy storage material in the walls and bottom of the container.
  • the waste is discharged from below the pyrolysis vessel.
  • the ash generated after carbonization of the semi-coke and other solid wastes which are pyrolyzed are ashed and cooled, and then discharged through the waste slag outlet 230.
  • step 170 Repeating the above steps 110-160 one or more times in step 170 until all the garbage is disposed. After the first garbage disposal, the newly added garbage will be carried through the heat stored in the heat storage material, so there is no need to add a new one. With additional energy, you can save energy by continuously processing waste.
  • the PLC or the microprocessor can be used to control the temperature adjustment valve in the container wall and the outside of the sealed container by the temperature transmitter to realize the automatic temperature adjustment or by manually opening the container wall.
  • the temperature regulating valve in the middle exchanges energy with the outside of the closed container to achieve manual temperature adjustment.
  • a pyrolysis furnace is taken as a pyrolysis vessel as an example, and a specific embodiment of a municipal solid waste pyrolysis system for carrying out the method of the present invention is described.
  • specific embodiments of the present invention are by no means limited thereto.
  • the domestic waste cryogenic pyrolysis system includes an exhaust gas integrated treatment device, an automatic control system, and a pyrolysis furnace, and optionally a solar heat source system.
  • the pyrolysis furnace includes a water gas layer (air chamber), an evaporation layer, a pyrolysis layer, a carbonization layer, and an ash layer from top to bottom, wherein the water gas layer is also called a gas chamber, that is, domestic garbage heat.
  • the pyrolysis furnace includes a base, a furnace wall, and a furnace roof; wherein the lower portion of the furnace wall is disposed There is a bottom door, an upper feeding port is arranged on the top of the furnace, a temperature transmitting device and a temperature adjusting device are arranged on the furnace wall and the top of the furnace, and a diversion system and a water collecting system are arranged in the top of the furnace, and the furnace is arranged in the furnace An insulating layer is provided in the wall, the base and the roof.
  • a heat storage system is further disposed within the furnace body, the heat storage material being cordierite, dense high alumina, corundum mullite or quartz or a combination thereof.
  • the heat storage system comprises a layer of heat storage material disposed between the insulation layer and the inner wall of the furnace, and between the insulation layer and the furnace floor; the heat storage table body is disposed on the furnace floor; the heat transfer tube, Its setting on the base And/or a heat storage table; and a heat transfer hole disposed on the inner wall of the furnace, the furnace floor, the heat storage table body and the heat transfer tube, wherein the heat storage table body and A heat storage material is disposed in the heat transfer tube.
  • the heat transfer aperture has a diameter that is less than the diameter of the heat storage material.
  • the height of the heat storage material layer in the furnace wall does not exceed the pyrolysis layer, and the height of the heat transfer hole on the inner wall of the furnace is lower than the storage in the furnace wall.
  • the height of the layer of thermal material, and the height of the heat transfer tubes does not exceed the carbonized layer.
  • the flow guiding system includes a flow guide disposed in the roof and a diversion umbrella hoisted at the lower end of the draft.
  • the water collecting system includes a water collecting ring connected to the lower end of the draft umbrella, a water guiding pipe connected to the side of the water collecting ring, a water storage tank connected to the water guiding pipe, and a discharge valve connected to the water storage tank, wherein the discharge valve Set on the furnace wall.
  • the temperature transfer device includes a moisture layer temperature transmitter disposed on the top of the furnace; and a vapor layer temperature transmitter, a pyrolysis layer temperature transmitter, and a carbonization layer temperature disposed on the furnace wall The transmitter is located in the vapor layer, the pyrolysis layer and the carbonization layer, respectively.
  • the temperature regulating device includes a water gas layer temperature regulating valve disposed on the top of the furnace, and a steam layer temperature regulating valve, a pyrolysis layer temperature regulating valve, and a carbonized layer temperature regulating valve disposed on the furnace wall, Located in the steam layer, pyrolysis layer and carbonization layer.
  • the pyrolysis furnace further includes an ultrasonic level sensor disposed on the roof.
  • the pyrolysis furnace further includes a heat transfer tube insert and a connecting rod disposed in the bottom plate for controlling the gas exchange between the hollow heat transfer tubes and the environment.
  • the material of the insulating layer is a lightweight insulating brick and has a thickness of not less than 65 mm.
  • the pyrolysis furnace further includes a heat transfer coil disposed within the layer of heat accumulating material in the furnace wall around the contour of the furnace body, and the heat transfer coil is filled with heat transfer oil.
  • the exhaust gas comprehensive treatment device includes a gas distribution chamber, an exhaust gas treatment chamber, a high pressure chamber, and a discharge air chamber; wherein the exhaust gas treatment chamber includes a honeycomb precipitation pole and a corona pole; wherein the air distribution chamber is disposed in the exhaust gas comprehensive treatment device
  • the bottom portion is for receiving the exhaust gas to be treated; the honeycomb precipitation pole is disposed above the air distribution chamber; the corona pole is located at a center position of each of the honeycomb precipitation poles; the discharge air chamber is disposed above the honeycomb sedimentation pole; and the high pressure chamber is disposed at the honeycomb precipitation pole side.
  • the number of honeycomb precipitates is 19-37
  • the honeycomb precipitate is extremely regular hexagonal
  • the inscribed circle of the regular hexagon has a diameter of 200-250 mm.
  • the bottom end of the air chamber is connected with an air outlet cylinder, and the upper end of the air outlet cylinder is connected with a flow guiding liquid umbrella, and the outer wall of the air discharging cylinder and the inner wall of the air discharging chamber constitute a condensate storage tank.
  • the bottom end of the air chamber is connected with a condensate discharge valve, and the side wall of the air chamber is provided with a manhole for the person to enter the air chamber.
  • a high-voltage insulating porcelain bottle is placed in the high-voltage box, and the high-voltage insulating porcelain bottle is connected with a conductive support, and the conductive support is placed above the honeycomb sedimentation pole through the high-voltage room power transmission port.
  • a corona pole holder is connected above the conductive support, and a corona pole positioning rod is connected to the lower end of the corona pole holder.
  • a pendant balance frame is connected below the corona pole, and a plurality of pendants are arranged under the pendant balance frame for balancing the corona pole.
  • the high voltage box body is externally equipped with a high voltage thyristor pulsed DC power source, the DC high voltage line at one end of the DC power source is connected to the conductive support, and the other end of the control line is connected to the automatic control system.
  • the corona pole diameter is from 2.0 to 2.5 cm.
  • the material of the corona electrode is tungsten or stainless steel (304).
  • the upper end of the exhaust gas chamber is connected to the gas discharge port
  • the side wall of the gas discharge port is connected to the sampling port for sampling analysis
  • the upper end of the side wall of the gas discharge port is connected with a gas drainage ring for draining the discharged gas.
  • the lower portion of the high pressure housing is provided with an anti-dew fan.
  • the rubber backing ring is secured to the electrically conductive support.
  • the corona pole is provided with a hook
  • the corona pole is provided with a corona pole loop
  • the corona pole is connected to the hook and the pendant balance by a corona pole loop.
  • the low temperature pyrolysis system of domestic garbage is composed of I-solar heat source system; II-low temperature pyrolysis furnace; III-smoke, exhaust gas comprehensive treatment device; IV-automatic control system.
  • the solar heat source system users can choose according to the actual situation.
  • FIGS. 4 and 14 are front, right and top views of the exhaust gas integrated treatment device, and Figs. 9-12 and 19 and 22 are cross-sectional views of different cross sections of the exhaust gas integrated treatment device.
  • the lower end of the exhaust gas comprehensive treatment device is a gas distribution chamber 45, and the bottom end of the gas distribution chamber 45 is welded with the gas cylinder 51.
  • the waste gas after the garbage treatment enters the air distribution chamber 45 through the air outlet cylinder, and the upper end of the air outlet cylinder 51 is connected with the flow guiding liquid umbrella 50, and the liquid guiding liquid umbrella A part of the gas can be condensed and flowed along the flow guiding liquid umbrella.
  • the outer wall of the air outlet cylinder 51 and the inner wall of the air distribution chamber 45 form a condensate storage tank 28, and the condensate flows into the condensate storage tank for storage, and the bottom end of the air distribution chamber 45 is connected.
  • There is a condensate drain valve 29 for discharging the stored condensate out of the air chamber at the appropriate time.
  • the side wall of the air chamber 45 is provided with a manhole 49, which can be accessed by a person for inspection and maintenance of various components in the air chamber 45.
  • an exhaust gas treatment chamber that includes a honeycomb precipitation pole 36 and a corona pole 42.
  • the honeycomb precipitation electrode 36 is welded to the upper portion of the air chamber 45.
  • the number of honeycomb precipitation poles is 19, the shape of the honeycomb precipitation pole is a regular hexagon, and the area of the hexagonal inscribed circle is 0.0382 m 2 .
  • a discharge plenum 38 is welded to the upper end of the honeycomb precipitation pole 36, and a welding gas discharge port 41 is disposed at the upper end of the discharge plenum 38.
  • the treated gas is discharged from the gas discharge port.
  • the side wall of the gas discharge port 41 is welded with a sampling port 39 for sampling and detecting the composition of the exhaust gas.
  • a gas drainage ring 40 is welded to the upper end of the side wall of the gas discharge port 41 to guide the discharge of the gas.
  • the honeycomb precipitation electrode 36 and the discharge gas chamber 38 are symmetrically welded to the high pressure (insulating porcelain) tank 31, and the high pressure (insulated porcelain) tank 31 is equipped with a high pressure tank drain valve 30, and a high pressure (insulated porcelain) tank 31.
  • the high-voltage insulating porcelain bottle 32 is placed, and the high-voltage insulating porcelain bottle 32 is connected to the conductive support 33.
  • the conductive support 33 is placed above the honeycomb precipitation pole 36 through the high-voltage chamber power transmission port 34, and the rubber liquid-repellent ring 35 is fixed on the conductive support 33.
  • a corona pole holder 37 is welded on the conductive support 33, a corona pole positioning rod 43 is welded at the lower end of the corona pole holder 37, and a hook hook on the corona pole positioning rod 43 is connected to the corona pole (upper and lower).
  • 46 is connected to the corona pole 42, the corona pole loop (lower) 46 is attached to the pendant 47, and the lower side is balanced by the pendant balance frame 47, and the corona pole is located at the center of the honeycomb sedimentation pole.
  • a low pressure (insulated porcelain) tank 31 is provided with an anti-damp fan 56 at the lower portion.
  • a high-voltage thyristor pulsed DC power supply 51 is disposed outside the high-voltage (insulating porcelain) tank 31 at one end, and the DC high-voltage line 52 at one end of the DC power source 51 is connected to the conductive support 33, and the control line at the other end is connected to the automatic control system IV.
  • the composition of domestic waste is very complicated.
  • Some secondary pollutants must be produced during the pyrolysis process, including some exhaust gases such as SOx, NOx, CO, HCl, tar, and some trace or ultra-trace pollutants such as heavy metals (Pb, Cd, Hg, etc.), dioxins (PCDD/Fs), and polycyclic aromatic hydrocarbons (PAHs).
  • organic chlorine source such as PVC plastic, rubber, leather, etc. in the garbage;
  • Sulfur oxides are usually caused by combustion oxidation of sulfur compounds in waste, mostly SO 2 .
  • Sulfur oxides are generally used as a source of impurities such as paper in waste, kitchen waste in protein series, inorganic sulfur in the form of sulfate, and sulfur-containing rubber. It is generally believed that organic sulfur tends to be oxidized during pyrolysis, and various sulfates may be volatilized, decomposed, or even contained in ash at high temperatures depending on the specific reaction environment.
  • Nitrogen oxides mainly include NO, N 2 O, NO 2 and the like, wherein NO and NO 2 can cause pollution to the atmosphere.
  • Nitrogen oxide formed from organic nitrogen in solid waste food series of kitchen waste, nitrogen-containing urea, nitrogen-containing resin, etc.). It is usually produced at a temperature of 600 to 900 °C.
  • the tar component mainly includes three types of substances: one is an aliphatic compound such as a fatty acid; the other is an aromatic compound such as phenol, cresol, naphthalene, toluene, an alkyl derivative; and the third is a hydrocarbon oxygen-containing organic substance such as phenol. , aldehydes, ketones, esters, anhydrides, furans.
  • Heavy metals For heavy metals, density is often used as a decisive factor, and a metal element having a density (specific gravity) greater than 5 mg/m 3 is generally defined as a heavy metal. Heavy metals generally refer to elements that are significantly toxic, such as lead, chromium, mercury, cadmium, and metalloids.
  • batteries such as Hg-Zn batteries and alkaline batteries
  • electrical appliances such as fluorescent tubes
  • Dioxins are actually a general term for two series of chlorotricyclic aromatic compounds, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), collectively known as PCDD. /Fs.
  • PCDDs polychlorinated dibenzo-p-dioxins
  • PCDFs polychlorinated dibenzofurans
  • chlorine-containing polymer compounds such as polyvinyl chloride, chlorobenzene, pentachlorophenol, etc., precursors of dioxins at a suitable temperature (300 ° C ⁇ 500 ° C) and in FeCl 3
  • a metal catalyst such as CuCl 2
  • O 2 and HCl reacts with O 2 and HCl to form dioxins by rearrangement, radical condensation, dechlorination and the like.
  • the main conditional factors are:
  • the pollutants discharged from the pyrolysis furnace outlet are aerosol-like substances that are fused together by water vapor, tar, fly ash (heavy metal), and flue gas.
  • the technical solution for the treatment of secondary pollutants in domestic waste pyrolysis selects the comprehensive treatment scheme of “combining electric tar trap technology with corona plasma air purification technology”.
  • the various states of matter can be transformed into each other.
  • the external supply of energy converts the solid into a liquid, which can be converted to a gas if the outside is further supplied with energy. If the gas is supplied with sufficient energy, as long as the kinetic energy of the electrons in each particle exceeds the ionization energy of the atom, the electron will become free electrons from the bond of the atom, and the atom becomes a positively charged ion due to the loss of electrons. This process is called ionization. When enough atoms in the gas are ionized, the ionized gas is less than the original gas and is converted into a new state of matter-plasma. It is another kind of aggregate state of matter, called the fourth state of matter, or the plasma state.
  • the basic principle of electric tar catcher and the technology of corona plasma for purifying sonic pyrolysis dust are a new pyrolysis dust purification technology.
  • the aerosols in the pyrolysis waste which are fused with water vapor, tar, fly ash (heavy metal), exhaust gas, etc., are effectively captured; the second is carbon monoxide (CO) and sulfur dioxide (SO 2 ) in the exhaust gas. ), purification of nitrogen oxides (NOx), hydrocarbons, aromatic hydrocarbons, and the like. Therefore, the purpose of the smokeless and odor-free direct discharge (zero discharge) of the domestic garbage pyrolysis furnace is achieved.
  • the electric tar catcher and the corona plasma have the common point of using a highly inhomogeneous high-voltage direct current electric field to form a corona discharge, which generates a plasma containing a large amount of electrons and positive and negative ions under the action of an electric field gradient, and particulate pollutants in the air. Inelastic collision occurs, so that it adheres to these particles, making it become charged particles, which are moved by the electric field and collected by the dust collecting pole, so that the particulate pollutants in the air can be effectively removed.
  • Corona discharge can generate non-equilibrium low temperature plasma in a certain space, which can be used to purify harmful gases in the air. Its catalytic purification mechanism includes two aspects:
  • the instantaneous high energy generated by high-frequency discharge opens the chemical bond of some harmful gas molecules to break it into single atoms or harmless molecules.
  • the plasma contains a large number of high-energy electrons, ions, excited-state particles and strong oxidizing free radicals.
  • the average energy of these active particles is about 5-20 eV, which is higher than the bond energy of general gas molecules. Harmful gas molecules collide frequently, opening the chemical bonds of gas molecules to form monoatomic molecules or harmless molecules. At the same time, a large amount of free radicals such as ⁇ OH, ⁇ HO 2 , ⁇ O, and extremely oxidizing ozone react chemically with harmful gas molecules to form harmless products.
  • the harmful gases generated during the pyrolysis of domestic garbage mainly include CO, NOx, SO 2 and HCl.
  • This scheme uses the catalytic purification mechanism of plasma to purify the harmful gases generated during the pyrolysis of waste.
  • Ozone is formed by a three-body collision reaction.
  • the amount of flue gas (water vapor) discharged from the pyrolysis furnace is 800-1000 m 3 /h; the flue gas flow rate is 0.5-0.75 m/s; the flue gas residence time is 5-10 s; the flue gas inlet temperature is 60-80 ° C.
  • High-voltage power supply selection high-frequency power supply, pulse power supply, critical pulse (soft stable) power supply can be selected. A critical pulse (soft stable) power supply is preferred.
  • the electric tar catcher and the corona plasma purification exhaust device are compounded by two technologies, and the waste treatment applied to the low-temperature pyrolysis of domestic garbage is an innovation.
  • the electric tar catcher works by applying a high-voltage direct current between the metal wire and the metal pipe wall to maintain an electric field sufficient to ionize the gas, so that a corona zone is formed between the anode and the cathode.
  • positive ions are adsorbed on the negatively charged corona pole
  • negative ions are adsorbed on the positively charged precipitate pole
  • all the ionized positive and negative ions are filled with the entire space between the corona pole and the precipitation pole.
  • the principle of corona plasma purification of exhaust gas is to use high-voltage pulse corona discharge to ionize the gas, so that the exhaust gas particles are charged, and then move to the dust collecting plate under the action of electric field force, and the charged particles are in contact with the dust collecting plate. After losing the charge, it becomes neutral and deposits on the dust collecting plate to achieve the purpose of purifying the exhaust gas.
  • a large amount of high-energy electrons, ions, excited-state particles and strong oxidizing free radicals are generated when the gas is ionized.
  • the average energy of these active particles is higher than the bond energy of the gas molecules, and they frequently collide with harmful gas molecules to open.
  • the chemical bonds of gas molecules generate monoatomic molecules and harmless gas molecules, and a large number of free radicals such as ⁇ OH, ⁇ HO 2 , ⁇ O, and extremely oxidizing ozone react with harmful gas molecules to form harmless products.
  • corona discharge The commonality between the two technologies is that corona discharge.
  • the combination of the two technologies lies in the power source selected for corona discharge: "critical pulse soft power supply” or “pulse high voltage DC power supply”; select a suitable corona pole, first, the secondary electron emission coefficient ( ⁇ m) is required. Second, it requires reliable corrosion resistance and chemical and physical stability. Therefore, tungsten is most suitable as a corona pole ( ⁇ m 1.4) and stainless steel ( ⁇ m 1.24).
  • the exhaust gas passes through the air chamber and enters the space between the precipitation pole of the honeycomb and the corona pole. Under the action of the external electric field, the gas is ionized, so that the exhaust gas particles are charged, and then move to the honeycomb sediment pole under the action of the electric field force, and After the honeycomb precipitate contacts the pole, it loses its charge and becomes neutral and deposits on the honeycomb sediment pole to purify it.
  • the purpose of the exhaust gas As the amount of adsorption increases, the adsorbed material can fall freely without cleaning the honeycomb precipitate.
  • the beneficial effects of waste gas treatment are as follows: First, the aerosol materials in the pyrolysis waste are condensed with water vapor, tar, fly ash (heavy metal), exhaust gas, etc.; second, the carbon monoxide in the exhaust gas (CO) Purification of sulfur dioxide (SO 2 ), nitrogen oxides (NOx), hydrocarbons, aromatic hydrocarbons, and the like.
  • Figures 5-8 and 15-18 are cross-sectional views of different sections of the pyrolysis furnace.
  • the outer wall 3 of the furnace is welded on the base 1 of the pyrolysis furnace, and a ceramic fiber blanket insulation layer 4 is laid on the inner side of the outer wall 3 of the furnace and above the base 1.
  • the heat storage material B 23 is placed on the horizontally disposed heat insulating layer, the heat storage base 25 is placed on the heat storage material B 23, and the heat storage material B 23 is placed in the base 25 to store the heat storage base 25 and the base 1
  • the peripheral heat transfer tube 22 and the central heat transfer tube 24 are welded and fixed, and the heat storage material C 26 is applied to the peripheral heat transfer tube 22 and the central heat transfer tube 24, and the cap is welded.
  • the furnace inner wall 14 is welded on the heat storage table body 25, and the furnace bottom door 2, the carbonization layer temperature transmitter 20, the carbonization layer temperature regulating valve 19, and the heat transfer coil 5 are installed between the furnace outer wall 3 and the furnace inner wall 14. Selected), pyrolysis layer temperature regulating valve 17, pyrolysis layer temperature transmitter 18, evaporation layer temperature transmitter 16, water collecting system discharge valve 8-4.
  • a heat accumulating material A6 is laid between the heat insulating layer 4 and the inner wall 14 of the furnace, and the prefabricated top is welded to the outer wall 3 of the furnace and the inner wall 14 of the furnace, and the inner wall 14 of the furnace is provided with a heat transfer hole 15 for the inner wall of the furnace.
  • the top of the furnace is equipped with a feeding port 7, a flow guiding ring 9, an ultrasonic level sensor 11, a gas chamber (water and gas layer) temperature transmitter 12, and a gas chamber (water and gas layer) temperature regulating valve 13 at the flow guiding ring.
  • 9 is hoisted at the lower end of the diversion umbrella 10, the lower end of the diversion umbrella 10 is connected to the water collecting ring 8-1, the side of the water collecting ring 8-1 is connected to the water guiding pipe 8-2, and the connecting water pipe 8-2 is connected with the water storage tank 8-3.
  • the water storage tank 8-3 is connected to the discharge valve 8-4.
  • pyrolysis furnace In the pyrolysis furnace, it is divided into ash layering, carbonized layer (semi-coke), pyrolysis layer (organic matter), evaporation layer (moisture), and water-gas layer (air chamber) from bottom to top.
  • the ash generated after the carbonization of the carbonized layer is semi-coke is ashed and cooled in the ash layer.
  • Semi-coke (waste carbon) is carbonized and exothermic in the carbonized layer, producing high-temperature flue gas and ash.
  • Thermal energy released by carbonization When the storage material is absorbed and stored, when the domestic garbage is added to the furnace, the heat absorbed by the pyrolysis of the domestic waste is provided by the exotherm of the carbonization layer and the energy storage material, and the heat release amount of the carbonization layer is greater than the thermal desorption heat of the added garbage. The pyrolysis reaction can proceed. Therefore, it is necessary to ensure the carbonization temperature of the carbonized layer.
  • a temperature transmitter is installed in the carbonization layer, and the measured temperature is input into the microprocessor of the automatic control system by an analog quantity (0-24 mA) signal, and the temperature regulating valve of the carbonization layer is controlled by the analog output signal of the microprocessor. State, controlling the temperature of the carbonized layer.
  • the temperature of the carbonized layer is controlled at 450 ° C to 500 ° C.
  • the endotherm continues.
  • the side chains such as methyl and ethyl in the organic molecules in the waste begin to break, respectively removing carbon and hydrogen to form methane, hydrogen and other hydrocarbons. Small molecule gas.
  • the main chain of the organic material from which the side chain is removed is broken, and many small molecular substances are formed.
  • the pyrolysis of waste is not strictly in a certain order, and many reactions are carried out in a cross.
  • the small molecules produced by pyrolysis are recombined into macromolecular organics through condensation reaction, and the organic matter of these macromolecules can be transformed into small organic molecules by cleavage, so the pyrolysis of waste is a very complicated physics and chemistry. process.
  • a temperature transmitter is installed in the carbonization layer, and the measured temperature is input into the microprocessor of the automatic control system by an analog quantity (0-24 mA) signal, and the temperature adjustment of the pyrolysis layer is controlled by the analog output signal of the microprocessor.
  • the state of the valve controls the temperature of the pyrolysis layer.
  • the temperature of the pyrolysis layer is controlled at 150 to 280 °C.
  • the temperature of the evaporation layer gradually rises after the heat is absorbed by the garbage, and reaches 100 ° C or higher.
  • the free water is volatilized, and then the dehydration reaction in the organic molecules occurs, such as the hydroxyl group breaks to form water.
  • the amount of water vapor is gradually reduced. After the moisture escapes, many voids are formed inside the garbage, which plays an important role in the heat and mass transfer.
  • the temperature of the evaporation layer is between 80 and 100 °C.
  • the carbonized layer radiates heat and the pyrolysis layer absorbs heat.
  • the moisture of the organic matter is evaporated in the evaporation layer.
  • the temperature of the water and gas layer is controlled at 60-80 ° C to ensure the exhaust gas treatment system. Best working conditions.
  • a temperature transmitter is installed in the water gas layer, and the measured temperature is input into the microprocessor of the automatic control system by an analog quantity (0-24 mA) signal, and the temperature of the water gas layer is controlled by the analog output signal of the microprocessor. Adjust the state of the valve to control the temperature of the water vapor layer.
  • the temperature of the water vapor layer is controlled at 60 ° C to 80 ° C.
  • the microprocessor of the automatic control system gives an audible and visual alarm prompt, which requires manual intervention. Possible reasons: After the garbage loses moisture, the voids increase, and the thermal stratum temperature is caused by the intrusion. At this time, it is necessary to add garbage to fill the void.
  • An ultrasonic level sensor may be installed in the water gas layer, and the measured level interface height is input into the microprocessor of the automatic control system by an analog quantity (0-24 mA) signal, and the critical height is set, and the sound and light alarm prompts, Add garbage to the furnace in time. You can also manually observe whether you need to add garbage from the loading port. In general, garbage is added when the height of the garbage in the furnace drops by 1/5 to 2/5.
  • the actual processing capacity decreases and the energy consumption increases.
  • the actual moisture content in the garbage is very high, and can reach more than 50%.
  • the moisture in the garbage not only reduces the calorific value of the gas, but also increases the calorie consumption of the garbage disposal.
  • the method of blending dry waste can be used for neutralization to reduce the moisture content of the waste.
  • the solar heating method (optional) can be adopted to increase the heat value of the evaporation layer and rapidly evaporate the moisture of the garbage, thereby ensuring the smooth progress of the treatment process.
  • the pyrolysis of domestic garbage begins with the evaporation of water from the waste.
  • the outlet of the pyrolysis furnace is discharged with water vapor.
  • a draft umbrella and a guide ring are installed at the exhaust port to block the fly ash particles in the smoke, but also prevent it.
  • the normal discharge of water vapor, part of the water vapor is blocked. Therefore, it is necessary to lay a water collecting system under the diversion umbrella, and the intercepted water vapor is collected and removed from the furnace body to prevent the moisture from returning to the furnace, thereby affecting the pyrolysis efficiency.
  • the shape of the pyrolysis furnace is not particularly limited, and for example, the cross section thereof may be a circle and a rectangle as illustrated herein, such as a double rectangle.
  • the solar concentrating disc or the vacuum collecting tube is used to collect the radiant heat of the sun, heat the heat transfer fluid (heat transfer oil) in the closed container, and the heat fluid pump (heat transfer oil pump) passes the heat transfer fluid to the furnace body.
  • the hot coil exchanges thermal energy with the heat storage material laid around the coil (storage temperature: 300 ° C ⁇ 350 ° C), the domestic garbage (organic matter) in the furnace absorbs heat, first volatilizes the free water, and then the organic matter molecules Dehydration reaction. As the garbage is continuously dried, the amount of water vapor is gradually reduced. After the water escapes, many voids are formed inside the garbage. At this time, the ignited paper dust can be used to ignite the dry waste of the bottom layer to complete the first start of the pyrolysis furnace. .
  • the automatic control system uses a microprocessor to solidify an arithmetic unit, a controller, an internal memory, a digital input module, a digital output module, an analog input module, and an analog output module included in a central processing unit (CPU) in an integrated circuit. On the board. Through the touch screen operation, the touch screen sets the configuration screen to visually see the health.
  • the operation modes are divided into: manual mode and automatic mode.
  • the domestic waste cryogenic pyrolysis system of the present invention may employ a manual or automatic mode of operation in which the various components of the present invention (e.g., temperature regulating devices) may also be manual or automated, respectively.
  • the various components of the present invention e.g., temperature regulating devices
  • Those skilled in the art will be able to select an appropriate mode of operation depending on the particular situation.
  • the various components described above can be joined to one another in any manner known to those skilled in the art, such as welding, splicing, inlaying, etc., or combinations thereof.
  • the various components of the present invention may be one or more, which may be symmetrically distributed or randomly distributed, as will be apparent to those skilled in the art.
  • the use of wood as the first is further calculated based on the volume of the pyrolysis furnace.
  • Energy The amount of wood required for the low-temperature pyrolysis method of the present invention and the use of corundum mullite as the heat storage material verify that pyrolysis can be continuously performed without external energy.
  • the lower part of the furnace is a cylinder with an inner diameter of 1800mm and a net height of 1300mm. It is used as a pyrolysis reaction chamber for domestic waste organic matter.
  • the effective volume is 3.0m 3 ;
  • the upper furnace top is a round table body, which is used as a post-reaction pyrolysis chamber;
  • the 600 mm diameter flue is connected to the electric tar catcher and the corona plasma purification exhaust device through a flange.
  • the furnace body is divided into a water gas layer (air chamber), an evaporation layer, a pyrolysis layer, a carbonization layer and an ash layer from top to bottom.
  • Ash layering thickness 150mm ⁇ 200mm, temperature 80 ° C ⁇ 100 ° C;
  • Pyrolysis layer thickness 350mm ⁇ 400mm, temperature 150 ° C ⁇ 280 ° C;
  • Evaporation layer thickness 250mm ⁇ 300mm, temperature 80 ° C ⁇ 100 ° C.
  • the pyrolysis of domestic waste requires external heat energy, and the heat energy at the start of the pyrolysis furnace is derived from the heat generated by wood chips and wood.
  • the calorific value of dry wood is about 12MJ/kg, and the heat generated:
  • the thickness of the pyrolysis layer is 400 mm, the volume is 0.9 m 3 , the bulk density is 315 kg, the evaporation layer thickness is 300 mm, the volume is 0.77 m 3 , and the bulk density is 270 kg.
  • the waste of the pyrolysis layer is heated from 20 ° C to 280 ° C, and the waste of the evaporation layer is heated from 20 ° C to 100 ° C.
  • the thermal efficiency ⁇ of wood burning is 50%, and the dry wood required to satisfy the pyrolysis domestic waste pyrolysis start (without heat storage material heating) is obtained by the following formula:
  • the heat generated by the complete combustion of 28 kg of dry wood (or wood chips) can start the waste pyrolysis furnace without considering the heat required to store the heat storage material.
  • the function of the heat accumulating material in the pyrolysis furnace is to store the heat released by the burning of the bottom wood (wood chips) or the heat released by the semi-coke carbonization at the bottom of the pyrolysis layer.
  • the heat storage material releases the stored heat to ensure that there is sufficient heat in the entire furnace to enable the waste pyrolysis to proceed normally.
  • the amount of garbage added is 125kg/time, and the heat required to absorb heat from 20°C to 100°C is:
  • the waste added by the evaporation layer absorbs heat, it loses 20% of water and the weight is 100kg, and the temperature is 100 °C; when the garbage falls into the pyrolysis layer, the heat required at 280 °C is:
  • the total heat absorbed by the garbage is:
  • the specific heat capacity of corundum mullite is 1.3kJ/kg ⁇ °C, and the density is 2700kg/m 3 . If the calcined mullite releases 30% of the heat to the added garbage at 300°C, that is, the temperature is reduced by 90°C, then the calorific value is :
  • the volume of the heat storage material corundum mullite corundum mullite:
  • the geometry of the heat storage material is a sphere, then the bulk density is 1/2 ⁇ , then the volume is multiplied.
  • V corundum mullite 0.48 m 3 .
  • the jacket width (R-r) is:
  • the jacket width is 50mm.
  • the insulation layer is made of lightweight insulation brick, the thermal conductivity is 0.06W/m ⁇ K (400°C), the bulk density is 0.8-1.0g/cm 3 , and the thickness of the insulation layer is 65mm.
  • Outer steel plate 2 ⁇ 0.008m+Insulation layer 2 ⁇ 0.065m+Inner steel plate 2 ⁇ 0.008m+ Thermal storage jacket 2 ⁇ 0.05m+Inner diameter 1.8m 2.062m, value 2.00m.
  • the product of pyrolysis of organic matter in domestic garbage - semi-coke which remains in the lower part of the pyrolysis layer at the bottom of the furnace body, has a thickness of about 200 mm, and the volume of semi-coke carbonization is 0.45 m 3 .
  • the residue of pyrolysis at the bottom of the furnace body is ash. Therefore, the volume of the semi-coke is 1/2 of the volume of the dry heat layer, that is, 0.225 m 3 , and the density of the semi-coke is 347.5 kg/m 3 , and the weight thereof is 78.19 kg.
  • the semi-coke material In the absence of oxygen, the semi-coke material is carbonized, and its efficiency is 60%.
  • the heat generated is:
  • the semi-coke material carbonizes under anoxic conditions to provide heat, and the heat storage material absorbs heat at a temperature lower than the semi-coke carbonization temperature, pyrolysis can be continuously performed without external energy.
  • the waste in the furnace is in a pyrolysis state, which is an endothermic reaction.
  • the furnace temperature is lowered, and at this time, the heat is released from the heat storage material, so that the pyrolysis reaction can proceed.
  • the amount of oxygen in the furnace (anoxic or micro-over-oxygen) can be appropriately accelerated to carbonize the bottom half of the furnace to provide heat, and the cycle is repeated.
  • the center of the bottom of the furnace is vertical, ⁇ 89 tube, the height is 250mm from the bottom of the furnace, the top is slightly higher than the initial position of the pyrolysis layer; the bottom is ⁇ 1500 round, the angle is 120°, the ⁇ 89 tube is 3, the height is 200mm from the bottom of the furnace.
  • the top end is placed at the pyrolysis starting position, and four oxygen venting tubes, that is, a peripheral heat transfer tube 22 and a central heat transfer tube 24 are disposed at the bottom of the furnace, and the pores of the tube wall are placed in the carbonized region.
  • thermocouple the horizontal direction of the furnace wall. Detecting the temperature of the semi-coke carbonization and pyrolysis state of the bottom of the furnace;
  • thermocouple the horizontal direction of the furnace wall. Detecting the pyrolysis temperature of the pyrolysis layer in the furnace, which is set at a distance of 400 mm from the bottom of the furnace body;
  • thermocouple the horizontal direction of the furnace wall. Detecting the pyrolysis temperature of the evaporation layer in the furnace, which is set at 800 mm from the bottom of the furnace body;
  • Air chamber temperature measurement thermometer, the horizontal direction of the furnace wall. The temperature and temperature of the flue gas in the furnace chamber were measured and set at 1300 mm from the bottom of the furnace body.
  • the temperature inside the furnace can be balanced by exchanging thermal energy with the outside through a regulating valve. Brake control is realized by PLC.
  • the alarm prompts that the heat can be exchanged with the outside through the regulating valve to balance the temperature of the air chamber and ensure the working condition of the exhaust gas treatment system.
  • Brake control is realized by PLC.
  • the exhaust gas treatment capacity is 1500m 3 /h, and the flow rate of the exhaust gas through the honeycomb sedimentation pole is 0.5m/s.
  • the honeycomb electric field cross-sectional area is 0.83m 2 , the diameter is 210mm, and the number of honeycomb precipitation poles is 21. For the convenience of arrangement, the value is 19.
  • the inventors requested the Tsinghua University Environmental Quality Testing Center to detect the air quality and persistent organic pollutants of the pyrolysis emissions of the present invention.
  • the air quality testing items include particulate matter, nitrogen oxides, sulfur dioxide, hydrogen chloride, mercury, cadmium, antimony-arsenic-lead-chromium-cobalt-copper-manganese-nickel, and each item is repeated three times.
  • the test is mainly based on the “fixed source exhaust gas monitoring technical specification HJ/T397-2007”.
  • the instruments used include 3012H soot (gas) sampler, AL104-IC electronic balance, DR5000 UV-visible spectrophotometer, XSERIES 2 inductively coupled plasma mass spectrometry. instrument.
  • Persistent organic pollutants testing programs include dioxins (PCCD/Fs) and repeated tests three times.
  • the test is based on HJ77.2-2008 "Isotopic Dilution High Resolution Gas Chromatography-High Resolution Mass Spectrometry for Determination of Environmental Air and Exhaust Dioxins".
  • the equipment used includes: TECORA ISOSTACK BASIC/G4 for sampling, HRGC-HRMS, Agilent 6890N/Japan Electronics JMS-800D for instrumental analysis.
  • the pretreatment method comprises the following steps: hydrochloric acid treatment (washing the filter cartridge with a certain concentration of hydrochloric acid and rinsing with pure water, then drying the filter cartridge; washing the liquid with liquid chromatography, extracting the extract with the lower extract), Extraction (filter cartridge and resin for more than 16h extraction), concentration and separation (combination of extracts, concentration, separation), purification (sulfuric acid treatment, multi-layer silica gel column purification and activated carbon silica gel column purification) and sample preparation (will be The sample components obtained after purification by activated carbon silica gel column were blown to high dryness with high-purity nitrogen gas and added to the internal standard of injection, and the volume was adjusted with decane to be determined).
  • the gas chromatographic conditions were as follows. Injection method: 1 ⁇ l without split injection (split valve opening time: 1.5 min); column: BPX-DXN (length 60 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m); inlet temperature: 300 °C; carrier gas pressure: 25.4 psi; temperature program: initial temperature 130 ° C, after 1 min, increase the temperature to 210 ° C at 15 ° C / min, stay 0 °, then increase the temperature to 310 ° C at 3 ° C / min, stay 0 min The temperature was raised to 320 ° C at a rate of 5 ° C / min and held for 10 min.
  • Mass spectrometry conditions were as follows, color interface temperature: 300 ° C; ion source temperature: 300 ° C; ionization current: 500 ⁇ A; electron bombardment ion source: 38 eV; acceleration voltage: 10 kV; mass standard material: PFK; mass spectrometry resolution: > 10000.
  • the measured values of the emissions of the low-temperature pyrolysis system of the domestic garbage of the present invention are shown in Table 1, wherein the average limit value in Table 1 is from Zhongyuan Shilian Environmental Protection Technology Co., Ltd. Q/ZYSL ⁇ 0002- The pollutant discharge limit specified in 2016 “Standards for Low Temperature Pyrolysis Pollution of Domestic Waste”. According to Table 1, the measured values of the present invention completely conform to the above criteria.
  • the country has not issued relevant domestic waste pyrolysis pollutant discharge standards, so the invention can be evaluated with reference to European and Chinese standards for domestic waste incineration.
  • Table 2 Zhongyuan Shilian Environmental Protection Technology Co., Ltd. Q/ZYSL ⁇ 0002-2016 "Standards for Low Temperature Pyrolysis Pollution of Domestic Waste” is far stricter than the existing European standard and national standard for domestic waste incineration, and the actual measurement of the present invention The value is more significantly smaller than the above limit. Therefore, the low-temperature pyrolysis system of the domestic garbage of the invention achieves the purpose of smokeless and odor-free discharge of the domestic garbage, thereby realizing the harmlessness, reduction and resource utilization of the garbage disposal.

Abstract

公开了一种生活垃圾低温热解处理的方法,该方法包括如下步骤,将生活垃圾加入热解容器,使生活垃圾在热解容器内脱水,使脱水的生活垃圾低温热解以产生半焦和溶胶状的气态污染物,使产生的半焦碳化,使废渣从热解容器下方排出,半焦碳化产生的热被热解容器的壁和底部吸收储存,脱水和热解的能量由第一热源(240)和第二热源(250)提供,重复上述步骤,其中所需的热源由第二热源提供。利用低温热解,采用蓄热材料储存在垃圾热解过程中产生的热量,并且将之用于继续处理新的垃圾,不需要持续添加外界能量实现连续垃圾热解。此外,利用电捕焦油器与电晕等离子体空气净化技术相结合处理热解产生的二次污染物,实现生活垃圾热解无烟、无异味直排。

Description

生活垃圾低温处理方法 技术领域
本发明涉及生活垃圾低温热解处理技术领域,更具体地,涉及一种蓄热式无烟直排生活垃圾低温热解的方法。
背景技术
垃圾是人类日常生活和生产中产生的固体废弃物。垃圾处理就是要把垃圾迅速清除,并进行无害化处理,最后加以合理的利用。
目前世界上常用的垃圾处理方法主要有填埋、高温堆肥和焚烧等,这三种主要垃圾处理方式的比例,因地理环境;垃圾成份、经济发展水平等因素不同而有所区别。
垃圾填埋会导致严重的地质性水土污染。因为人类的生活垃圾包括很多有毒有害物质和病菌、病毒以及各种重金属元素,极易危害人类和生物的正常生存繁衍。而高温堆肥采用普通加温或投加石灰等杀菌方法难于完全杀灭生活垃圾中内含的大量病菌、病毒、寄生虫卵等病原体,这些废物作为肥料施于农田,有些病菌能在土壤中生存数月之久,造成土壤和水源污染,威胁人类和牲畜的健康。
垃圾焚烧一直未能被广大民众接受,其弊病突出表现在其潜伏性污染更重、耗资昂贵、操作复杂和浪费资源等方面。焚烧炉尾气中排放的上百种主要污染物,组成极其复杂。尤其是二噁英,属于公认的一级致癌物,即使微量也能在体内长期蓄积。生活垃圾焚烧烟气中的二噁英是近几年来世界各国所普遍关心的问题。
二噁英是一类剧毒物质,其毒性相当于人们熟知的剧毒物质氰化物的130倍、砒霜的900倍。大量的动物实验表明,很低浓度的二嚼英就对动物表现出致死效应。并且二噁英的生物半衰期较长,即使一次染毒也可在体内长期存在,如果长期接触二噁英还可造成体内蓄积,可能造成严重损害。因此,抑制二噁英的产生也是传统热解方法中一个难以解决的问题。
垃圾热解技术被各国环保专家普遍看好,认为这是垃圾处理无害化、减量化和资源化的一条新路。热解技术应用于工业生产已有很长的历史,木材和煤的干馏、重油裂解生产各种燃料油等都源于热解原理。国外已经将热解原理应用到固体废物处理,国外典型的热解工艺有移动床、炉排床、回转窑、双塔循环式流动床、外热式固定床等;国内垃圾的热解设备都是在过去燃煤锅炉的基础上进行改制的,主要包括固定床、流化床、回转窑、烧蚀床、熔融浴等几大类。
迄今为止国内外已成功工业化应用的热解或气化技术还十分有限,尤其是在 垃圾处理上更是不尽人意。大部分热解气化研究局限在试验阶段,很多技术面临着技术环节和经济效益的等难题的阻碍。
生活垃圾成分非常复杂,在热解过程中必定会产生一些二次污染物,主要包括一些废气SOx、NOx、CO、HCl,焦油,以及一些痕量或超痕量的污染物如重金属(Pb、Cd、Hg等)、二噁英(PCDD/Fs)以及多环芳烃(PAHs)等。该类污染物如不经高效净化后排出,会对大气造成严重污染,对空气质量构成严重威胁。
针对上述复合气态污染物的治理,传统处理方法有吸附法、燃烧法或生物法等。催化燃烧法净化效率高,但缺点是催化剂易受垃圾热解烟气中焦油及炭黑类固态物质影响而失效,设备体积较大,一次性投资及设备运行能耗较大,且存在安全隐患。吸附法、吸收法净化效果理想,但吸附/吸收后的污染物仍需处置,再生能耗较大。冷凝法应用范围受限,仅对中、高浓度易挥发性有机气体处理效果较好。生物法投资和运行费用较低,但运行操作复杂、占地面积较大,存在二次污染的可能性。
相比传统技术,低温等离子体技术是实现复合污染物同时去除的有效途径之一。通过高压放电获得低温等离子体,含有大量的高能电子及高能电子激励产生活性粒子,可将有害气体污染物氧化成CO2、H2O等其它无害物或低毒物,同时,气体中固态及液态微粒通过脉冲放电产生的高能电子实现荷电,在电场力作用下收集到集尘板表面。
因此,存在低消耗地持续处理生活垃圾、抑制二噁英的产生并且安全、合理地处理的热解产生的二次污染物的方法的需要。
发明内容
本发明利用低温热解,采用蓄热材料储存在垃圾热解过程中产生的热量,并且将之用于继续处理新的垃圾,因此不需要持续添加外界能量而实现连续垃圾热解的目的。并且,采用低温下热解,将热解温度控制在150~280℃范围内,在保证热解效率的前提下,将热解过程处于一个缺少空气的还原氛围下,使反应后产生气体的量相对少,这抑制了二噁英生成的条件,实现了抑制二噁英生成的目的。此外,利用电捕焦油器技术与电晕等离子体空气净化技术相结合处理热解产生的二次污染物,收集处理高、中分子有机液体(焦油、芳香烃、有机酸等)和气体(CH4、H2、CO、CO2、NOX、SO2、HCl),达到生活垃圾热解无烟、无异味直排。焦油类物质是热解法处理生活垃圾不可避免的副产物,是一种重要的化工原料,有效捕集后进行提取,是一种再生的资源。
本发明通过以下技术方案实现了上述的目的。
在一个实施方式中,本发明提供了生活垃圾处理的方法,其特征在于包括下列步骤:1)将生活垃圾加入热解容器;2)使所述生活垃圾在所述热解容器内脱水;3)使脱水的所述生活垃圾低温热解以产生半焦和溶胶状的气态污染物;4)使溶胶 状的气态污染物从所述热解容器的上部排放至废气处理容器进行废气处理;5)使在步骤3)产生的半焦碳化;6)使废渣从所述热解容器下方排出;其中,在步骤5)中放出的热被所述热解容器的壁和底部吸收储存;其中所述步骤2)和3)中所需的能量由第一热源或第二热源提供;7)重复上述步骤1)-6),并且其中所需的能量由所述第二热源提供。
在一个实施方式中,所述热解容器的壁和底部包括蓄热材料,所述蓄热材料为堇青石或致密高铝或刚玉莫来石或其组合。
在另一个实施方式中,所述第二热源为所述蓄热材料中储存的热能。在进一步的实施方式中,所述热能来自所述碳化步骤中的放热。在又一个实施方式中,所述热解容器的壁和底部上存在保温层。
在另一个实施方式中,所述第一热源为木材在所述热解容器中燃烧放出的热能或者太阳能。
在另一个实施方式中,所述脱水在80-100℃的温度之下进行。
在另一个实施方式中,所述热解在150-280℃的温度之下进行。
在另一个实施方式中,所述碳化在450-500℃的温度之下进行。
在另一个实施方式中,上述温度的调节是自动进行的。
在另一个实施方式中,上述温度的调节是手动进行的。
在另一个实施方式中,所述废气处理利用电捕焦油器技术与电晕等离子体空气净化技术进行。
在另一个实施方式中,所述废气处理容器包括蜂窝沉淀极和电晕极。
在进一步的实施方式中,所述蜂窝沉淀极的数量为19-37个,所述蜂窝沉淀极为正六边形,所述正六边形的内切圆直径为200-250mm,优选地,所述蜂窝沉淀极的数量为19个,所述正六边形的内切圆直径为210mm。
在进一步的实施方式中,所述电晕极直径为2.0-2.5cm,优选地,所述电晕极直径为2.3cm。
本发明利用低温热解,采用蓄热材料储存在垃圾热解过程中产生的热量并且利用利用电捕焦油器技术与电晕等离子体空气净化技术相结合进行后继处理,实现低消耗持续垃圾处理的目的,抑制了二噁英的生成,并且实现生活垃圾处理的无烟、无异味直排。
而且,本发明方法可实现垃圾源头就地处理,无需收集转运和集中处理,可节约大量资源。适合垃圾产生源分散、交通不便不利于收运的特点。
此外,本发明方法对垃圾成分的选择性较小,适合生活垃圾含水率高、垃圾不分拣等特点。
另外,本发明方法处理垃圾时操作简便,运行成本较低。操作人员通过短期培训均能操作,且处理垃圾时不用添加任何辅助燃料。
在下面的附图说明和具体实施方式中,以热解炉作为热解容器为例,提供了 下述陈述,但本发明的方法绝不限于以该热解炉实施。
附图说明
图1是本发明的方法的流程图。
图2是本发明的热解容器的图示说明。
图3是本发明的生活垃圾低温热解系统的一个实施方式的主视图。
图4是图3本发明的废气综合处理装置的一个实施方式的主视图、右视图和俯视图。
图5是本发明的热解炉的一个实施方式的沿图3中1-1的剖面图。
图6是本发明的热解炉的一个实施方式的沿图3中2-2的剖面图。
图7是本发明的热解炉的一个实施方式的沿图3中3-3的剖面图。
图8是本发明的热解炉的一个实施方式的沿图3中4-4的剖面图。
图9是本发明的废气综合处理装置的一个实施方式的沿图4中5-5的剖面图。
图10是本发明的废气综合处理装置的一个实施方式的沿图4中6-6的剖面图。
图11是本发明的废气综合处理装置的一个实施方式的沿图4中7-7的剖面图。
图12是本发明的废气综合处理装置的一个实施方式的沿图4中8-8的剖面图。
图13是本发明的生活垃圾低温热解系统的另一个实施方式的主视图。
图14是图13中本发明的废气综合处理装置的另一个实施方式的主视图、右视图和俯视图。
图15是本发明的热解炉的另一个实施方式的沿图13中1-1的剖面图。
图16是本发明的热解炉的另一个实施方式的沿图13中2-2的剖面图。
图17是本发明的热解炉的另一个实施方式的沿图13中3-3的剖面图。
图18是本发明的热解炉的另一个实施方式的沿图13中4-4的剖面图。
图19是本发明的废气综合处理装置的另一个实施方式的沿图14中5-5的剖面图。
图20是本发明的废气综合处理装置的另一个实施方式的沿图14中6-6的剖面图。
图21是本发明的废气综合处理装置的另一个实施方式的沿图14中7-7的剖面图。
图22是本发明的废气综合处理装置的另一个实施方式的沿图14中8-8的剖面图。
在图3和13中,I-太阳能热源系统;II-热解炉;III-废气综合处理装置;IV-自动控制系统。
在图4-12和14-22中,1-底座;2-炉底门;3-炉外壁;4-保温层;5-传热盘管;6-蓄热材料A;7-上料口;8-集水系统(8-1集水环,8-2引水管,8-3储水槽,8-4排放阀);9-导流圈;10-导流伞;11-超声物位传感器;12-气室(水气层)温度变 送器;13-气室(水气层)温度调节阀;14-炉内壁;15-炉内壁传热孔;16-蒸发层温度变送器;17-热解层温度调节阀;18-热解层温度变送器;19-碳化层温度调节阀;20-碳化层温度变送器;21-传热管插板及连杆;22-周边传热管;23-蓄热材料B;24-中心传热管;25-蓄热台体;26-蓄热材料C;27-炉底板;28-冷凝液储槽;29-冷凝液排放阀;30-高压箱体排液阀;31-高压(绝缘瓷瓶)箱体;32-高压绝缘瓷瓶;33-导电承托;34-高压室输电口;35-橡胶阻液环;36-蜂窝沉淀极;37-电晕极固定架;38-排放气室;39-取样口;40-气体引流环;41-气体排放口;42-电晕极;43-电晕极定位杆;44-高压电进口;45-布气室;46-吊坠挂环;47-吊坠;48-吊坠平衡架;49-人孔;50-导流积液伞;51-出气筒;52-直流高压线;53-高压可控硅脉冲直流电源;54-电源支架;55-电晕极定位环;56-防露风机;57-手孔。
具体实施方式
下面结合附图进一步详细说明本发明。应当理解的是,本发明的各种实施方式仅是说明性的,并不构成对权利要求的限制。
图1是本发明的方法的流程图,在步骤110,包括将生活垃圾加入热解容器,该生活垃圾可以是任何垃圾产生源产生的垃圾,无需分选,并且可以含有高含量的水分。该热解容器至少具有上方的垃圾添加口210、气态污染物排出口220、下方的废渣出口230、第一热源240和第二热源250。垃圾添加口210没有具体限制,只要其适合于垃圾添加至该密闭容器中。气态污染物排出口220没有具体限制,只要其适合于热解产生的气态溶胶排出并且气态污染物排出口220与处理所排出的气态溶胶的处理系统密封相连。下方的废渣出口230没有具体限制只要其适合排出固态炉渣。第一热源240为初次启动热解炉提供所需要的外部能量。在一个实施方式中,第一热源240的热能为太阳能,其中利用太阳能聚光碟或真空集热管收集太阳的辐射热量。在另一个实施方式中,第一热源240为在热解容器中燃烧的木材。第二热源250为储存在构成热解容器的壁和底部的蓄热材料中的能量,该能量是在生活垃圾热解过程中放出储存在热解容器的壁和底部的蓄热材料中的热能。该蓄热材料为堇青石或致密高铝或刚玉莫来石或上述材料的组合。
热解容器的一个例子是热解炉(如图3和图5所示),其结构将在下文描述。
在步骤120,使生活垃圾在热解容器内脱水,该反应通常在80-100℃的温度下进行。在该步骤中,垃圾吸热后温度逐渐升高,达到100℃以上,首先挥发出游离态的水,然后发生有机物分子内的脱水反应,如羟基断裂生成水。随着垃圾不断被干燥,水蒸气的产生量逐渐减少。水分逸出以后,会在垃圾内部形成许多空隙,对后面的传热传质起了重要的作用。
在步骤130,使脱水的生活垃圾低温热解以产生半焦和溶胶状的气态污染物,该反应通常在150-280℃的温度下进行。在该步骤,垃圾经过脱水反应后,继续吸热,当温度超过200℃时,垃圾中有机物分子中的甲基、乙基等侧链开始断裂,分 别脱去碳和氢,生成甲烷、氢气以及其他碳氢化合物等小分子气体。随着温度的进一步升高,脱掉侧链的有机物的主链发生断裂,生成许多小分子物质。垃圾的热解不是严格按照一定的次序进行的,许多反应都是交叉进行的。热解所产生的小分子经过缩合反应又重新组合成大分子的有机物,而这些大分子的有机物还可以经过裂解再次变为小分子的有机物,所以垃圾的热解是一个非常复杂的物理、化学过程。
在步骤140,使溶胶状的气态污染物从热解容器的上部排放至废气处理容器进行废气处理。该废气利用电捕焦油器技术与电晕等离子体空气净化技术相结合进行处理。该处理的工作原理和工作过程在下文结合具体的废气处理系统详细描述。
在步骤150,使在步骤130产生的半焦碳化,该步骤通常在450-500℃下进行,其中热解产生的半焦(垃圾碳)导致碳化放热,产生高温烟气和灰渣。碳化释放的热能被上述容器壁和底部中的蓄能材料吸收储存。
在步骤160,使废渣从热解容器下方排出。将半焦碳化后产生的灰渣以及其他为热解的固体垃圾灰化并冷却,然后通过废渣出口230排出。
在步骤170重复上述步骤110-160一次或多次,直到处理掉所有垃圾,在第一次垃圾处理后,新添加的垃圾将通过在蓄热材料中储存的热量进行,因此不需要添加新的外加能源,可以在实现连续处理垃圾的同时节约消耗的能量。
在上面所述步骤中的温度调节,可采用PLC或微处理器通过温度变送器控制在容器壁中的温度调节阀与密闭容器外界交换能量来实现温度的自动调节或通过手动打开在容器壁中的温度调节阀与密闭容器外界交换能量来实现温度的手动调节。
下面以热解炉作为热解容器为例,描述了实施本发明方法的生活垃圾低温热解系统的具体实施例。但是,本发明的具体实施例绝不限于此。
所述生活垃圾低温热解系统包括废气综合处理装置、自动控制系统、和热解炉,以及任选地太阳能热源系统。
在一个实施方式中,热解炉自上而下包括水气层(气室)、蒸发层、热解层、碳化层和灰分层,其中水气层又称为气室,即生活垃圾热解产生的水蒸气、飞灰、焦油混合形成气溶胶的空间,二者在本文中是可以交换地使用的,并且所述热解炉包括底座、炉壁和炉顶;其中在炉壁下部设置有炉底门,在炉顶上设置有上料口,在炉壁和炉顶上设置有温度变送装置和温度调节装置,在炉顶内设置有导流系统和集水系统,并且在炉壁、底座和炉顶内设置有保温层。
在一个实施方式中,在炉体内还设置有蓄传热系统,所述蓄热材料为堇青石、致密高铝、刚玉莫来石或石英石或其组合。
在一个实施方式中,蓄传热系统包括蓄热材料层,其敷设在保温层与炉内壁、和保温层与炉底板之间;蓄热台体,其设置在炉底板上;传热管,其设置在底座 和/或蓄热台体中;和传热孔,其设置在所述炉内壁、所述炉底板、所述蓄热台体和所述传热管上,其中在所述蓄热台体和所述传热管内敷设蓄热材料。
在一个实施方式中,传热孔的直径小于蓄热材料的直径。
在一个实施方式中,所述炉壁内的所述蓄热材料层的高度不超过所述热解层,所述炉内壁上的传热孔的高度低于所述炉壁内的所述蓄热材料层的高度,,并且传热管的高度不超过碳化层。
在一个实施方式中,导流系统包括设置在炉顶中的导流圈和在导流圈下端吊装的导流伞。
在一个实施方式中,集水系统包括导流伞下端连接的集水环、集水环侧部连接的引水管、与引水管连接的储水槽、和与储水槽连接的排放阀,其中排放阀设置在炉壁上。
在一个实施方式中,温度变送装置包括设置在炉顶上的水气层温度变送器;和设置在炉壁上的蒸汽层温度变送器、热解层温度变送器和碳化层温度变送器,其分别位于蒸汽层、热解层和碳化层。
在一个实施方式中,温度调节装置包括设置在炉顶上的水气层温度调节阀,和设置在炉壁上的蒸汽层温度调节阀、热解层温度调节阀和碳化层温度调节阀,其分别位于蒸汽层、热解层和碳化层。
在一个实施方式中,热解炉还包括超声物位传感器,其设置在炉顶上。
在一个实施方式中,热解炉还包括传热管插板和连杆,其设置在底板中,用于控制中空的传热管与环境进行气体交换。
在一个实施方式中,保温层的材料为轻质保温砖,并且其厚度不小于65mm。
在其中包括太阳能热源系统的实施方式中,热解炉还包括传热盘管,其围绕炉体的轮廓设置在炉壁中的蓄热材料层内,并且传热盘管中填充有导热油。
在一个实施方式中,废气综合处理装置包括布气室、废气处理室、高压箱体和排放气室;其中废气处理室包括蜂窝沉淀极和电晕极;其中布气室布置在废气综合处理装置底部用于接收待处理的废气;蜂窝沉淀极布置在布气室上方;电晕极位于各个蜂窝沉淀极的中心位置;排放气室布置在蜂窝沉淀极上方;高压箱体布置在蜂窝沉淀极的侧面。
在一个实施方式中,蜂窝沉淀极的数量为19-37个,蜂窝沉淀极为正六边形,正六边形的内切圆直径为200-250mm。
在一个实施方式中,布气室底端连接有出气筒,出气筒上端连接导流积液伞,出气筒的外壁与布气室的内壁构成冷凝液储槽。
在一个实施方式中,布气室底端连接有冷凝液排放阀,布气室侧壁装有人孔,用于人进入布气室。
在一个实施方式中,高压箱体内安放高压绝缘瓷瓶,高压绝缘瓷瓶上连接导电承托,导电承托穿过高压室输电口置于蜂窝沉淀极上方。
在一个实施方式中,导电承托上方连接电晕极固定架,电晕极固定架下端连接电晕极定位杆。
在一个实施方式中,电晕极下方连接有吊坠平衡架,吊坠平衡架下方设置若干个吊坠,用于平衡电晕极。
在一个实施方式中,高压箱体外部装有高压可控硅脉冲直流电源,直流电源一端的直流高压线与导电承托连接,另一端的控制线与自动控制系统连接。
在一个实施方式中,电晕极与蜂窝沉淀极之间的电压梯度E=400V/mm,电晕极与蜂窝沉淀极之间的电位差为300-500kV。
在一个实施方式中,电晕极直径为2.0-2.5cm。
在一个实施方式中,电晕极的材料为钨或不锈钢(304)。
在一个实施方式中,排放气室上端连接气体排放口,气体排放口侧壁连接取样口用于取样分析,气体排放口侧壁上端连接气体引流环,用于引流排放的气体。
在一个实施方式中,高压箱体下部装有防露风机。
在一个实施方式中,橡胶阻液环固定在导电承托上。
在一个实施方式中,电晕极定位杆上设置有吊钩,电晕极上下设置有电晕极挂环,电晕极通过电晕极挂环连接至吊钩和吊坠平衡架。
接下来,参照附图,进一步详述所述系统。参照图3和图13,生活垃圾低温热解系统由Ⅰ—太阳能热源系统;Ⅱ—低温热解炉;Ⅲ—烟尘、废气综合处理装置;Ⅳ—自动控制系统组成。其中太阳能热源系统用户可以根据实际情况进行选择。
废气综合处理装置
图4和14示出了废气综合处理装置的主视图、右视图和俯视图,图9-12和19和22为废气综合处理装置的不同剖面的剖面图。
废气综合处理装置下端为布气室45,布气室45底端焊接出气筒51,垃圾处理后的废气经出气筒进入布气室45,出气筒51上端连接导流积液伞50,导流积液伞可使部分气体冷凝,并顺着导流积液伞接流下,出气筒51外壁与布气室45内壁构成冷凝液储槽28,冷凝液流入冷凝液储槽中储存,布气室45底端接有冷凝液排放阀29,用于适时将储存的冷凝液排出布气室。
布气室45侧壁装有人孔49,人可以进出该人孔,用于对布气室45内的各个组件进行检修和维护。
在布气室45上方是废气处理室,其包括蜂窝沉淀极36和电晕极42。
在布气室45上部焊接蜂窝沉淀极36,在一个实施方式中,蜂窝沉淀极的数量是19,蜂窝沉淀极的形状为正六边形,正六边形内切圆面积为0.0382m2
在蜂窝沉淀极36上端焊接排放气室38,排放气室38上端焊接气体排放口41, 从该气体排放口排出处理后的气体。气体排放口41侧壁焊接取样口39,用于取样检测排出气体的组成。可选地,气体排放口41侧壁上端焊接气体引流环40,引导气体的排出。
蜂窝沉淀极36与排放气室38两侧对称焊接高压(绝缘瓷瓶)箱体31,高压(绝缘瓷瓶)箱体31底部装有高压箱体排液阀30,高压(绝缘瓷瓶)箱体31内安放高压绝缘瓷瓶32,高压绝缘瓷瓶32上连接导电承托33,导电承托33穿过高压室输电口34置于蜂窝沉淀极36上方,橡胶阻液环35固定在导电承托33上。
导电承托33上方焊接电晕极固定架37,电晕极固定架37下端焊接电晕极定位杆43,电晕极定位杆43上的吊钩钩接电晕极挂环(上、下)46与电晕极42连接,电晕极挂环(下)46与吊坠47挂接,下方通过吊坠平衡架47平衡,电晕极位于蜂窝沉淀极中心位置。
可选地,高压(绝缘瓷瓶)箱体31下部装有防露风机56。在一端的高压(绝缘瓷瓶)箱体31外部装有高压可控硅脉冲直流电源51,直流电源51一端的直流高压线52与导电承托33连接,另一端的控制线与自动控制系统Ⅳ连接。
下面详细阐述废气综合处理装置的工作原理和工作过程。
生活垃圾成分非常复杂,在热解过程中必定会产生一些二次污染物,主要包括一些废气SOx、NOx、CO、HCl,焦油,以及一些痕量或超痕量的污染物如重金属(Pb、Cd、Hg等)、二噁英(PCDD/Fs)以及多环芳烃(PAHs)等。
(1)废气污染物
a氯化氢(HCl)
垃圾热解过程所排放的烟气中HCl的来源有两个:
①有机氯源,如垃圾中的PVC塑料、橡胶、皮革等;
②无机氯源,主要以NaCl形式存在。
b硫氧化物(SOx)
硫氧化物通常由垃圾中含硫化合物燃烧氧化所致,大部分为SO2。硫氧化物一般以垃圾中的纸类、蛋白质系列的厨余垃圾、以硫酸盐形式的无机硫及含硫橡胶等含硫元素作为发生源。一般认为有机硫在热解过程中倾向于被氧化,而各种硫酸盐则可能根据具体反应环境,在高温下挥发、分解甚至包含在灰分中。
c氮氧化物(NOx)
氮氧化物主要包括NO、N2O、NO2等,其中NO和NO2能够对大气造成污染。由固体废物中的有机氮(蛋白质系列的厨余垃圾、含氮尿素和含氮树脂等)形成的氮氧化物。通常在600~900℃温度下生成。
(2)焦油
焦油组分主要包括三类物质:一是脂肪族化合物,如脂肪酸等;二是芳香族化合物,如苯酚、甲酚、萘、甲苯、烷基衍生物;三是烃类含氧有机物,如酚、醛、酮、酯、酐、呋喃类。
(3)重金属
对于重金属通常把密度作为决定性因素,一般将密度(比重)大于5mg/m3的金属元素定义为重金属。重金属一般是指具有显著毒性的元素,如铅、铬、汞、镉及类金属砷。
a汞(Hg)
主要来自于电池(如Hg-Zn电池和碱性电池)、电器(如荧光灯管)、报纸、杂志、温度计等。
b铅(Pb)
来自于塑料、橡胶、颜料等。
c镉(Cd)
来源于电器、塑料、电池(镍镉电池)、半导体及颜料等。
d铬(Cr)
来自于塑料、报纸、纺织品、彩色胶卷、杂草等。
e铜(Cu)
主要来自于纺织品和塑料等。
(4)二噁英
二噁英实际上是两个系列的氯代三环芳香化合物的总称,包括多氯代二苯并-对-二噁英(PCDDs)和多氯代二苯并呋喃(PCDFs),统称为PCDD/Fs。
在垃圾焚烧工艺中,垃圾中的含氯高分子化合物如聚氯乙烯、氯代苯、五氯苯酚等二恶英的前体物,在适宜温度下(300℃~500℃)并在FeCl3、CuCl2等金属催化物的催化作用下与O2、HCl反应,通过重排、自由基缩合、脱氯等过程生成二恶英类。主要条件因素有:
①HCl,O2,前体物的存在;
②在300℃~500℃温度范围内停留的时间;
③氯化铜,氯化铁催化剂的存在。
热解炉出口排放的污染物是以水蒸气、焦油、飞灰(重金属)、烟气等融合在一起的气溶胶类物质。
因此,生活垃圾热解二次污染物处理的技术方案,选择“将电捕焦油器技术与电晕等离子体空气净化技术相结合”的综合处理方案。
在一定条件下,通过物质与外界不断交换能量,物质的各态之间可以互相转化。外界供给能量可使固体转化为液体,如果外界进一步供给能量,液体可转化为气体。如果再对气体供给足够的能量,只要使每个粒子中电子的动能超过原子的电离能时,电子将会脱离原子的束缚而成为自由电子,而原子则因失去电子而成为带正电的离子,这个过程称为电离。当气体中足够多的原子被电离后,这种电离的气体己不足原来的气体了,而转化成为新的物态一等离子体。是物质存在的又一种聚集态,称为物质第四态,或称为等离子态。
应用电捕焦油器的基本原理和电晕等离子体对生活垃圾热解烟尘进行净化的技术,是一项新的热解烟尘净化技术。一是将热解废弃物中的以水蒸气、焦油、飞灰(重金属)、废气等融合在一起的气溶胶类物质有效捕集;二是将废气中的一氧化碳(CO)、二氧化硫(SO2)、氮氧化物(NOx)、碳氢化合物、芳香烃等净化。从而达到生活垃圾热解炉的无烟、无异味直排(零排放)的目的。
电捕焦油器、电晕等离子体共同点是利用极不均匀高压直流电场,形成电晕放电,产生等离子体,其中包含的大量电子和正负离子在电场梯度的作用下,与空气中的颗粒污染物发生非弹性碰撞,从而附着在这些粒子上,使之成为荷电粒子,在电场的作用下向集尘极运动进而被集尘极所收集,从而可以有效地清除空气中的颗粒污染物。
其处理过程分三个阶段:
1)e+M(污染物分子)→M
2)M+SP(固体颗粒)→(SPM)
3)(SPM)→(沉积在集尘极上)
电晕放电可在一定空间产生非平衡态低温等离子体,可以用来净化空气中的有害气体。其催化净化机理包括两个方面:
1)在产生等离子体的过程中,高频放电产生的瞬时高能量,打开某些有害气体分子的化学键,使其分解成单原子或无害分子。
2)等离子体中包含了大量的高能电子、离子、激发态粒子和具有强氧化性的自由基,这些活性粒子的平均能量约为5~20eV,近高于一般气体分子的键能,它们和有害气体分子发生频繁的碰撞,打开气体分子的化学键生成单原子分子或无害分子。同时产生的大量·OH、·HO2、·O等自由基和氧化性极强的臭氧跟有害气体分子发生化学反应生成无害产物。
生活垃圾热解时产生的有害气体主要有CO、NOx、SO2、HCl,本方案就是利用等离子体的这种催化净化机理来净化垃圾热解时产生的有害气体。
电晕放电时,产生大量的自由电子和离子,在脉冲电场的作用下,自由电子可获得较高的能量,轰击空气中的O2,可将其分解成氧原子:
e+O2→2O+e
高速电子具有足够的动能(5~20eV)。紧接着通过三体碰撞反应形成臭氧。
O+O2+M→O3+M
与此同时,原子氧和电子也同样与臭氧反应形成氧分子,最终臭氧的浓度达到平衡。
O+O3→2O2
e+O3→O+O2+e
氮氧化物的降解反应式:
NOx+e→N2+O2
一氧化碳的净化反应式:
O3+CO→CO2+O2
·OH+CO→CO2+·H
二氧化硫的净化反应式:
O3+SO2→SO3+O2
O2+2SO2→2SO3
O3+3SO2→3SO3
热解炉排出的烟气量(含水蒸气)为800-1000m3/h;烟气流速为0.5-0.75m/s;烟气停留时间为5-10s;烟气进口温度为60~80℃。
高压电源选型:高频电源、脉冲电源、临界脉冲(软稳)电源均可选用。以临界脉冲(软稳)电源为首选。
电捕焦油器、电晕等离子体净化废气装置是由两项技术复合而成,应用在生活垃圾低温热解的废物处理是一项创新。
电捕焦油器工作原理是在金属导线与金属管壁间施加高压直流电,以维持足以使气体产生电离的电场,使阴阳极之间形成电晕区。按电场理论,正离子吸附于带负电的电晕极,负离子吸附于带正电的沉淀极,所有被电离的正负离子均充满电晕极与沉淀极之间的整个空间。当含焦油雾滴等杂质的废气通过该电场时,吸附了负离子和电子的杂质在电场库伦力的作用下,移动到沉淀极后释放出所带电荷,并吸附于沉淀极上,从而达到净化废气的目的,通常称为荷电现象。当吸附于沉淀极上的杂质量增加到大于其附着力时,会自动向下流趟,从电捕焦油器底部排出。
电晕等离子体净化废气的原理是利用高压脉冲电晕放电,使气体电离,从而使废气颗粒荷电,然后在电场力的作用下向集尘极板移动,带电荷的颗粒与集尘板接触后失去电荷,成为中性而沉积在集尘极板上,从而达到净化废气的目的。同时气体电离时会产生大量的高能电子、离子、激发态粒子和具有强氧化性的自由基,这些活性粒子的平均能量高于气体分子的键能,它们和有害气体分子发生频繁的碰撞,打开气体分子的化学键生成单原子分子和无害气体分子,同时还产生的大量·OH、·HO2、·O等自由基和氧化性极强的臭氧跟有害气体分子发生化学反应生成无害产物。
两项技术的共同点其原理都是电晕放电。两项技术的结合点在于电晕放电时所选用的电源:“临界脉冲软稳电源”或“脉冲高压直流电源”;选择适合的电晕极,一是需要二次电子发射系数(δm)大;二是需要可靠的耐蚀性和化学、物理稳定性。因此,钨最适合作电晕极(δm 1.4),不锈钢(δm 1.24)其次。
废气经布气室,进入蜂窝沉淀极与电晕极之间的空间,在外加电场作用下,气体被电离,从而使废气颗粒带电荷,然后在电场力的作用下向蜂窝沉淀极移动,与蜂窝沉淀极接触后失去电荷,成为中性而沉积在蜂窝沉淀极上,从而达到净化 废气的目的。随着吸附量的增加,吸附的物质可自由落下,无需清理蜂窝沉淀极。
同时,气体电离时会产生大量的高能电子、离子、激发态粒子和具有强氧化性的自由基,这些活性粒子的平均能量高于气体分子的键能,它们和有害气体分子发生频繁的碰撞,打开气体分子的化学键生成单原子分子和无害气体分子,同时还产生的大量·OH、·HO2、·O等自由基和氧化性极强的臭氧跟有害气体分子发生化学反应生成无害产物。
废气处理的有益效果:一是将热解废弃物中的以水蒸气、焦油、飞灰(重金属)、废气等融合在一起的气溶胶类物质有效捕集;二是将废气中的一氧化碳(CO)、二氧化硫(SO2)、氮氧化物(NOx)、碳氢化合物、芳香烃等净化。
两项技术在生活垃圾热解废气的处理应用,彻底改变了垃圾热解废气排放方式,无烟、无异味直排(零排放),符合中元世联环保科技有限公司Q/ZYSL·0002-2016《生活垃圾低温热解污染控制标准》。
热解炉
图5-8和15-18为热解炉的不同剖面的剖面图。
热解炉底座1上焊接炉外壁3,在炉外壁3内侧和底座1上面敷设陶瓷纤维毯保温层4。
在水平敷设的保温层上敷设蓄热材料B 23,在蓄热材料B 23上面安装蓄热台体25,台体25内敷设蓄热材料B 23,将蓄热台体25与底座1上的周边传热管22和中心传热管24焊接固定,向周边传热管22和中心传热管24内敷设蓄热材料C 26并焊上封帽。
在蓄热台体25上焊接炉内壁14,在炉外壁3和炉内壁14之间安装炉底门2、碳化层温度变送器20、碳化层温度调节阀19、传热盘管5(可选)、热解层温度调节阀17、热解层温度变送器18、蒸发层温度变送器16、集水系统排放阀8-4。
在保温层4和炉内壁14之间敷设蓄热材料A6,将预制的炉顶与炉外壁3和炉内壁14焊接,炉内壁14上开有炉内壁传热孔15。
炉顶上安装有上料口7、导流圈9、超声物位传感器11、气室(水气层)温度变送器12、气室(水气层)温度调节阀13,在导流圈9下端吊装导流伞10,导流伞10下端连接集水环8-1,集水环8-1侧部接引水管8-2,接引水管8-2与储水槽8-3连接,储水槽8-3接排放阀8-4。
在热解炉中自下而上分为灰分层、碳化层(半焦)、热解层(有机物)、蒸发层(水分)、水气层(气室)。
灰分层
碳化层半焦碳化后产生的灰渣在灰分层灰化和冷却。
碳化层
半焦(垃圾碳)在碳化层碳化放热,产生高温烟气和灰渣。碳化释放的热能 被蓄能材料吸收储存,当向炉内添加生活垃圾时,生活垃圾热解所吸收的热量由碳化层和储能材料放热提供,碳化层的放热量大于增添上垃圾的热解吸热量,热解反应才能进行下去。因此需要保证碳化层的碳化温度。在碳化层装有温度变送器,将测得的温度以模拟量(0-24mA)信号输入到自动控制系统微处理器中,通过微处理器的模拟量输出信号控制碳化层的温度调节阀的状态,控制碳化层的温度。碳化层的温度控制在450℃~500℃。
热解层
垃圾经过脱水反应后,继续吸热,当温度超过200℃时,垃圾中有机物分子中的甲基、乙基等侧链开始断裂,分别脱去碳和氢,生成甲烷、氢气以及其他碳氢化合物等小分子气体。随着温度的进一步升高,脱掉侧链的有机物的主链发生断裂,生成许多小分子物质。垃圾的热解不是严格按照一定的次序进行的,许多反应都是交叉进行的。热解所产生的小分子经过缩合反应又重新组合成大分子的有机物,而这些大分子的有机物还可以经过裂解再次变为小分子的有机物,所以垃圾的热解是一个非常复杂的物理、化学过程。在碳化层装有温度变送器,将测得的温度以模拟量(0-24mA)信号输入到自动控制系统微处理器中,通过微处理器的模拟量输出信号控制热解层的温度调节阀的状态,控制热解层的温度。热解层的温度控制在150~280℃。
蒸发层
在蒸发层内,垃圾吸热后温度逐渐升高,达到100℃以上,首先挥发出游离态的水,然后发生有机物分子内的脱水反应,如羟基断裂生成水。随着垃圾不断被干燥,水蒸气的产生量逐渐减少。水分逸出以后,会在垃圾内部形成许多空隙,对后面的传热传质起了重要的作用。蒸发层的温度在80~100℃。
水气层
碳化层放热、热解层吸热,有机物的水分在蒸发层被蒸发,水蒸气(废气)向上升到炉顶时,水气层时温度控制在60~80℃,以保证废气处理系统的最佳工作条件。在水气层装有温度变送器,将测得的温度以模拟量(0-24mA)信号输入到自动控制系统微处理器中,通过微处理器的模拟量输出信号控制水气层的温度调节阀的状态,控制水气层的温度。水气层的温度控制在60℃~80℃。
当水气层温度超过85℃时,自动控制系统微处理器发出声光报警提示,需要人工干预处理。可能的原因:垃圾失去水分后空洞加大,热阶层温度窜入所致,此时需要添加垃圾补缺空洞即可。
在水气层可以装有超声物位传感器,将测量的物位界面高度以模拟量(0-24mA)信号输入到自动控制系统微处理器中,设定临界高度,到时声光报警提示,及时向炉内添加垃圾。也可以从上料口人工观察是否需要添加垃圾。一般而言,当炉内垃圾高度下降1/5至2/5时添加垃圾。
生活垃圾热解过程中,一方面水分蒸发要吸收热量,阻碍了热量的传递,延 长了热解时间;另一方面水分的蒸发速度快于有机物的热解速度,当水分迅速析出后,垃圾中剩余的有机物密度下降,有利于缩短热解时间。
随着垃圾中水分的增加,实际的处理能力下降,能量消耗增加。实际垃圾中的含水率很高,可以达到50%以上,垃圾中的水分不仅降低了气体的热值,并且增加了垃圾处理的热量消耗。对于含水率高的垃圾,可以采用掺合干垃圾的方法进行中和,降低垃圾的含水率。另外可采用太阳能加热的方法(可选),提高蒸发层的热值,快速蒸发垃圾的水分,能保证处理工艺的顺利进行。
生活垃圾的热解是从蒸发垃圾中的水分开始,热解炉的出口有水蒸气排出,在排气口装有导流伞和导流圈,阻拦烟气中的飞灰颗粒物,但也阻止了水蒸气的正常排放,部分水蒸气被阻挡。因此需要在导流伞下敷设集水系统,将被拦截的水蒸气收集后排除炉体外,避免水分重新回到炉内,影响热解效率。
对热解炉的形状没有特别限制,例如其横截面可以为本文图解的圆形和矩形,比如双矩形。
太阳能热源系统
在一个实施方式中,利用太阳能聚光碟或真空集热管收集太阳的辐射热量,加热密闭容器内的导热流体(导热油),通过的热流体泵(导热油泵)将导热流体输送到炉体内的传热盘管,与敷设在盘管周围的蓄热材料交换热能并储存(温度300℃~350℃),炉内的生活垃圾(有机物)吸热,首先挥发出游离态的水,然后发生有机物分子内的脱水反应。随着垃圾不断被干燥,水蒸气的产生量逐渐减少,水分逸出以后,会在垃圾内部形成许多空隙,此时可以用点燃的纸屑引燃底层的干燥垃圾,完成热解炉的首次启动。
自动控制系统
自动控制系统采用微处理器,将中央处理器(CPU)所包含的运算器、控制器、内部存储器、开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块固化在集成电路板上。通过触摸屏操作,触摸屏设置组态画面,可直观看到运行状况。运行模式分为:手动模式、自动模式。
本发明的生活垃圾低温热解系统可以采用手动或自动操作模式,在上述不同操作模式下,本发明的各个部件(例如,温度调节装置)也可以各自地是手动的或自动的。本领域技术人员能够根据具体情况选择合适的操作模式。
上述的各个部件可以以本领域技术人员已知的任何方式彼此连接,例如焊接、拼接、嵌接等、或其组合。而且,本发明中的各个部件可以是一个或者多个,其可以对称分布或随机分布,这些对本领域技术人员都是显而易见的。
实施例
在一个具体的实施例中,根据热解炉的体积,进一步计算了利用木材作为第一 能源进行本发明所述低温热解方法所需的木材量、以及以刚玉莫来石为蓄热材料验证了在无外界能量的情况下热解能够连续进行。
炉体形状与体积
下部炉身为圆柱体,内径1800mm,净高为1300mm,做为生活垃圾有机物的热解反应室,有效容积为3.0m3;上部炉顶为圆台体,做为反应后热解气室;出口为直径600mm烟道通过法兰与电捕焦油器、电晕等离子体净化废气装置连接。
炉身内部结构分布
炉身自上而下分为水气层(气室)、蒸发层、热解层、碳化层和灰分层。
灰分层:厚度150mm~200mm,温度80℃~100℃;
热解层:厚度350mm~400mm,温度150℃~280℃;
蒸发层:厚度250mm~300mm,温度80℃~100℃。
热解炉启动时木材用量的计算
生活垃圾热解需要外部的热能,热解炉启动时的热能来源于木屑、木材燃烧时所产生的热量。
干木材的热值约为12MJ/kg,产生的热量:
Q木柴=m木柴·q木柴
如果热解层的厚度为400mm,体积为0.9m3,容重为315kg;蒸发层厚度为300mm,体积为0.77m3,容重为270kg。
热解层的垃圾由20℃加热到280℃,蒸发层的垃圾由20℃加热到100℃,垃圾需要吸收的热量:
Q=C·m热解·Δt热解+C·蒸发·Δt蒸发
木材燃烧的热效率η为50%,满足热解生活垃圾热解启动(不含蓄热材料加热)所需的干木材由下式求得:
Figure PCTCN2017080011-appb-000001
在不考虑蓄热材料储能所需热量的条件下,28kg的干木材(或木屑)完全燃烧所产生的热量能够启动垃圾热解炉。
在热解炉体内敷设蓄热材料的作用是储存炉底木材(木屑)燃烧释放的热量或热解层底部半焦碳化释放的热量。
当向炉内续添加垃圾时,蓄热材料将存储的热量释放出来,以保证整个炉内有足够的热量使垃圾热解能够正常进行。
垃圾的续加量125kg/次,从20℃吸热到100℃所需的热量为:
Q湿垃圾=C垃圾m湿垃圾Δt1
=1.62kJ/kg·℃×125kg×80℃=16.2MJ
在蒸发层添加的垃圾吸热后失去20%的水分后重量为100kg,温度为100℃;当垃圾落入热解层后280℃所需要的热量为:
Q干垃圾=C垃圾m干垃圾Δt2
=1.62kJ/kg·℃×100kg×180℃=29.16MJ
续加垃圾吸收的总热量为:
Q=Q湿垃圾+Q干垃圾=45.36MJ
刚玉莫来石比热容为1.3kJ/kg·℃,密度为2700kg/m3,如果刚玉莫来石在300℃时向所添加的垃圾释放热量为30%,即减少90℃,那么其放热量为:
Q刚玉莫来石=C刚玉莫来石·m刚玉莫来石·Δt
考虑到热解过程的热损失,Q刚玉莫来石·η=Q(η取60%)。
Figure PCTCN2017080011-appb-000002
蓄热材料刚玉莫来石的体积:
Figure PCTCN2017080011-appb-000003
如果采用蓄热材料的几何形状为球体,那么其堆积密度为1/2ρ,则体积倍量。
即:
V刚玉莫来石=0.48m3
蓄热材料底部装填层、侧壁夹套几何尺寸
蓄热材料底部装填层的尺寸:
r2·π·h=0.92×3.14×0.1=0.25(m3)
夹套体积:0.48m3-0.25m3=0.23m3
夹套宽度(R-r)为:
Figure PCTCN2017080011-appb-000004
夹套宽度取值50mm。
保温层厚度
保温层采用轻质保温砖,导热系数0.06W/m·K(400℃),体积密度0.8-1.0g/cm3,保温层厚度取值65mm。
炉体外径
外钢板2×0.008m+保温层2×0.065m+内钢板2×0.008m+蓄热夹套2×0.05m+内径1.8m=2.062m,取值2.00m。
蓄热材料所需的热量
初次启动有常温(20℃)升至300℃所需的热量:
Q刚玉莫来石=C刚玉莫来石·m·Δt=470.4(MJ)
如果使用木材(木屑)加热,考虑到热能损失,热效率η取值60%,则:
m木材·q木材·η=470.4MJ
Figure PCTCN2017080011-appb-000005
热解炉启动所需的总热量:45.36MJ+470.4MJ=515.76MJ
所需木屑的总量:
Figure PCTCN2017080011-appb-000006
热能来源
生活垃圾中的有机物热解的产物——半焦,存留在炉体底部热解层下部,厚度约200mm,半焦碳化的体积为0.45m3,在炉体最底层热解的残留物为灰分,因此取半焦的体积量为干热层体积的1/2,即0.225m3,半焦的密度取值347.5kg/m3,其重量为78.19kg。
在有缺氧的情况下,半焦物质碳化,其效率取值60%,其产生的热量为:
Q半焦=m半焦·q·η=78.19kg×4500kJ/kg×60%=211.11MJ
蓄热材料由200℃升温至300℃所需的热量:
Q刚玉莫来石=C刚玉莫来石·m·Δt
=1.3kJ/kg·℃×646.15kJ×2×100℃=168.0MJ
Q半焦>Q刚玉莫来石
因为半焦物质在缺氧条件下碳化提供热量,蓄热材料温度低于半焦碳化温度时吸收热量,所以热解能够在没有外来能量的情况下连续进行。
在无氧状态下,炉内垃圾处于热解状态,是吸热反应,当续加垃圾时炉温降低,此时由蓄热材料释放热量,使得热解反应能够进行下去。
当续加垃圾过量或者炉内热能消耗过量,使炉内温度下降幅度过大时,可适当炉内氧气的量(缺氧或微过氧)让炉底半焦加速碳化提供热量,循环往复。
半焦碳化给氧方式
炉底部中心竖直方向,Φ89管1个,高度距炉底板250mm,顶端略高于热解层起始位置;沿底部Φ1500圆,120°夹角,Φ89管3个,高度距炉底板200mm,顶端置于热解起始位置,炉底部设置4个给氧通气管,即周边传热管22和中心传热管24,管壁气孔置于碳化区域内。
温度检测点
(1)炉底测温:热电偶,炉壁横向圆心方向。检测炉底半焦碳化、热解状态下的温度;
(2)炉壁测温:热电偶,炉壁横向圆心方向。检测炉内热解层热解温度,距离炉体底部400mm处设置;
(3)炉壁测温:热电偶,炉壁横向圆心方向。检测炉内蒸发层热解温度,距离炉体底部800mm处设置;
(4)气室测温:温度表,炉壁横向圆心方向。检测炉内气室烟气温度温度,距离炉体底部1300mm处设置。
炉内温度控制与调整
(1)炉壁横向圆心方向,120°夹角,Φ89管3个,高度距炉底板300mm,顶端置于热解层中偏下位置,炉壁设置3个通气孔即热解层温度调节阀17。
当炉内热解温度高于300℃时,可通过调节阀与外界交换热能,来平衡炉内温度。采用PLC实现制动控制。
(2)炉顶圆台体壁横向圆心方向,120°夹角,Φ89管3个,高度距炉门上方100mm设置3个通气孔即气室(水气层)温度调节阀13。。
当气室烟气温度高于85℃时,报警提示,可通过调节阀与外界交换热能,来平衡气室温度,保证废气处理系统工况。采用PLC实现制动控制。
废气综合处理装置
废气处理能力1500m3/h,废气通过蜂窝沉淀极的流速为0.5m/s,则蜂窝体 电场断面积为0.83m2,直径为210mm,蜂窝沉淀极的数量为21,为了方便布置,取值19。
电晕极直径2.3mm,电压梯度E=400V/mm,两极电位差为41.5kV。
废气处理效果
为了评价本发明的废气处理效果,本发明人要求清华大学环境质量检测中心对本发明的热解排放物的空气质量和持久性有机污染物进行了检测。
其中,空气质量的检测项目包括颗粒物、氮氧化物、二氧化硫、氯化氢、汞、镉、锑-砷-铅-铬-钴-铜-锰-镍总量,每个项目均重复三次。该检测主要依据“固定源废气监测技术规范HJ/T397-2007”,使用的仪器包括3012H烟尘(气)采样器、AL104-IC电子天平、DR5000紫外可见分光光度计、XSERIES 2电感耦合等离子体质谱仪。
持久性有机污染物的检测项目包括二噁英类(PCCD/Fs),重复检测三次。检测依据为HJ77.2-2008“环境空气和废气二噁英类的测定同位素稀释高分辨气相色谱-高分辨质谱法”。使用的仪器设备包括:TECORA ISOSTACK BASIC/G4用于采样,HRGC-HRMS、安捷伦6890N/日本电子JMS-800D用于仪器分析。前处理方法包括以下步骤:盐酸处理(用一定浓度的盐酸冲洗滤筒并用纯水冲洗,然后将滤筒风干;水洗液用二氯甲烷进行液液萃取,萃取液与下部提取液合并)、索氏提取(滤筒和树脂用甲苯进行16h以上提取)、浓缩分割(将提取液合并,浓缩,分隔)、净化(硫酸处理、多层硅胶柱净化和活性炭硅胶柱净化)和制样(将经活性炭硅胶柱净化后所得样品组分用高纯氮气吹至尽干并加入进样内标,用壬烷定容,待测定)。气相色谱条件如下,进样方式:不分流进样1μl(分流阀开启时间:1.5min);色谱柱:BPX-DXN(长60m,内径0.25mm,膜厚0.25μm);进样口温度:300℃;载气压力:25.4psi;升温程序:初始温度130℃,保持1min后以15℃/min的速度升温至210℃,停留0min后以3℃/min的速度升温至310℃,停留0min后再以5℃/min的速度升温至320℃并保持10min。质谱条件如下,色质接口温度:300℃;离子源温度:300℃;离子化电流:500μA;电子轰击离子源:38eV;加速电压:10kV;质量标准物质:PFK;质谱分辨率:>10000。
根据上述检测方法和检测条件,本发明生活垃圾低温热解系统的排放物的实测值见表1,其中表1中的平均限值来自于中元世联环保科技有限公司Q/ZYSL·0002-2016《生活垃圾低温热解污染控制标准》规定的污染物排放限值。根据表1可知,本发明的实测值完全符合上述标准。
表1生活垃圾低温热解炉排放烟气中污染物限值
Figure PCTCN2017080011-appb-000007
Figure PCTCN2017080011-appb-000008
目前,国家并未出台相关的生活垃圾热解污染物排放标准,因此可以参考生活垃圾焚烧的欧洲和中国标准,对本发明进行评价。根据表2可知,中元世联环保科技有限公司Q/ZYSL·0002-2016《生活垃圾低温热解污染控制标准》远严格于现有的生活垃圾焚烧的欧标和国标,而本发明的实测值更显著地小于上述限制。因此,本发明的生活垃圾低温热解系统达到了生活垃圾无烟、无异味直排的目的,从而实现了垃圾处理的无害化、减量化和资源化。
表2生活垃圾焚烧与生活垃圾热解污染物控制标准对照
Figure PCTCN2017080011-appb-000009
最后,需要理解的是本文以上描述的装置是本公开内容的实施方式,对于本公开内容非限制性实例许多变化和扩展也是预期的。因此,本公开内容包括本文公开的装置的所有新颖的和非明显的组合以及子组合,以及其任何和所有的等价形式。

Claims (15)

  1. 生活垃圾处理方法,其特征在于包括下列步骤:
    1)将生活垃圾加入热解容器;
    2)使所述生活垃圾在所述热解容器内脱水;
    3)使脱水的所述生活垃圾低温热解以产生半焦和溶胶状的气态污染物;
    4)使溶胶状的气态污染物从所述热解容器的上部排放至废气处理容器进行废气处理;
    5)使在步骤3)产生的半焦碳化;
    6)使废渣从所述热解容器下方排出;
    其中,在步骤5)中放出的热被所述热解容器的壁和底部吸收储存;
    其中所述步骤2)和3)中所需的能量由第一热源或第二热源提供;
    7)重复上述步骤1)-6),并且其中所需的能量由所述第二热源提供。
  2. 权利要求1所述的方法,其特征在于所述热解容器的壁和底部包括蓄热材料。
  3. 权利要求2所述的方法,其特征在于所述蓄热材料为堇青石或致密高铝或刚玉莫来石或石英石或其组合。
  4. 权利要求2所述的方法,其特征在于所述第二热源为所述蓄热材料中储存的热能。
  5. 权利要求4所述的方法,其特征在于所述热能来自所述碳化步骤中的放热。
  6. 权利要求1-5任一项所述的方法,其特征在于所述第一热源为木材在所述热解容器中燃烧放出的热能或者太阳能。
  7. 权利要求1-5任一项所述的方法,其特征在于所述脱水在80-100℃的温度之下进行。
  8. 权利要求1-5任一项所述的方法,其特征在于所述热解在150-280℃的温度之下进行。
  9. 权利要求1-5任一项所述的方法,其特征在于所述碳化在450-500℃的温度之下进行。
  10. 权利要求1-5任一项所述的方法,其特征在于所述废气处理利用电捕焦油器技术与电晕等离子体空气净化技术进行。
  11. 权利要求10所述的方法,其特征在于所述废气处理容器包括蜂窝沉淀极和电晕极。
  12. 权利要求11所述的方法,其特征在于所述蜂窝沉淀极的数量为19-37个,所述蜂窝沉淀极为正六边形,所述正六边形的内切圆直径为200-250mm。
  13. 权利要求12所述的方法,其特征在于所述蜂窝沉淀极的数量为19个,所述正六边形的内切圆直径为210mm。
  14. 权利要求11-13中任一项所述的方法,其特征在于所述电晕极直径为2.0-2.5cm。
  15. 权利要求14所述的方法,其特征在于所述电晕极直径为2.3cm。
PCT/CN2017/080011 2016-04-12 2017-04-11 生活垃圾低温处理方法 WO2017177883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610224887.1A CN107282589B (zh) 2016-04-12 2016-04-12 生活垃圾低温处理方法
CN201610224887.1 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017177883A1 true WO2017177883A1 (zh) 2017-10-19

Family

ID=60042353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080011 WO2017177883A1 (zh) 2016-04-12 2017-04-11 生活垃圾低温处理方法

Country Status (2)

Country Link
CN (1) CN107282589B (zh)
WO (1) WO2017177883A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110448953A (zh) * 2019-06-27 2019-11-15 广东工业大学 一种垃圾降解实验装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110898597A (zh) * 2019-12-17 2020-03-24 山东农洁环保有限公司 一种控氧低温碳化热解垃圾处理方法
CN114874816A (zh) * 2022-04-11 2022-08-09 北京卓控科技有限公司 一种用于处理热解废气的组合工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210492A (en) * 1977-03-14 1980-07-01 Shell Oil Company Process for the pyrolysis of coal in dilute- and dense-phase fluidized beds
CN101560408A (zh) * 2008-09-03 2009-10-21 周开根 垃圾、有机废弃物的气化系统及设备
CN102839023A (zh) * 2012-07-30 2012-12-26 华中科技大学 一种城市固体废弃物的低温热解高温气化耦合处置方法
CN104498062A (zh) * 2014-09-01 2015-04-08 湖南启天环保科技有限公司 一种真空热解技术
CN104998541A (zh) * 2015-07-29 2015-10-28 中国恩菲工程技术有限公司 低温热解-催化降解处理焚烧飞灰中挥发性有机物的装置
CN205046046U (zh) * 2015-10-29 2016-02-24 河南省伟通环保科技有限公司 一种垃圾低温处理装置
CN105385465A (zh) * 2015-11-13 2016-03-09 华北电力大学 一种垃圾热解装置与方法
CN205550565U (zh) * 2016-04-12 2016-09-07 王冬 废气综合处理装置
CN205551064U (zh) * 2016-04-12 2016-09-07 王冬 生活垃圾低温热解系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214972C (zh) * 2003-10-16 2005-08-17 中国科学院广州能源研究所 一种生物质下吸式气化炉催化制氢的方法及其装置
CN101468789B (zh) * 2008-08-03 2011-05-04 周开根 不用常规燃料助燃的生活垃圾转化系统及设备
CN103008331B (zh) * 2012-12-18 2015-10-28 北京神雾环境能源科技集团股份有限公司 一种生活垃圾及生化污泥的资源化处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210492A (en) * 1977-03-14 1980-07-01 Shell Oil Company Process for the pyrolysis of coal in dilute- and dense-phase fluidized beds
CN101560408A (zh) * 2008-09-03 2009-10-21 周开根 垃圾、有机废弃物的气化系统及设备
CN102839023A (zh) * 2012-07-30 2012-12-26 华中科技大学 一种城市固体废弃物的低温热解高温气化耦合处置方法
CN104498062A (zh) * 2014-09-01 2015-04-08 湖南启天环保科技有限公司 一种真空热解技术
CN104998541A (zh) * 2015-07-29 2015-10-28 中国恩菲工程技术有限公司 低温热解-催化降解处理焚烧飞灰中挥发性有机物的装置
CN205046046U (zh) * 2015-10-29 2016-02-24 河南省伟通环保科技有限公司 一种垃圾低温处理装置
CN105385465A (zh) * 2015-11-13 2016-03-09 华北电力大学 一种垃圾热解装置与方法
CN205550565U (zh) * 2016-04-12 2016-09-07 王冬 废气综合处理装置
CN205551064U (zh) * 2016-04-12 2016-09-07 王冬 生活垃圾低温热解系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110448953A (zh) * 2019-06-27 2019-11-15 广东工业大学 一种垃圾降解实验装置

Also Published As

Publication number Publication date
CN107282589A (zh) 2017-10-24
CN107282589B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2017177881A1 (zh) 废气综合处理装置
WO2017177884A1 (zh) 生活垃圾低温热解系统
CN205551064U (zh) 生活垃圾低温热解系统
RU2741936C1 (ru) Способ и устройство для совместного сжигания отходов и полусухого сточного ила
CN101837365B (zh) 活性炭再生危险废物焚烧一体化方法和系统
CN207334738U (zh) 生活垃圾低温热解系统
Wu et al. Effect of waste incineration and gasification processes on heavy metal distribution
CN206398724U (zh) 一种垃圾热解碳化炉及烟气净化一体化装置
WO2017177883A1 (zh) 生活垃圾低温处理方法
CN1769397A (zh) 利用热解气化处理技术抑制垃圾尾气有害物的装置与方法
CN102433139B (zh) 一种垃圾裂解净化设备及垃圾裂解净化处理工艺
WO2019075956A1 (zh) 一种垃圾处理用燃烧炉及垃圾处理系统
EA031377B1 (ru) Печь
CN115468168A (zh) 一种焦油分离脱除装置及方法
CN204276505U (zh) 一种有机废物处理磁化降解炉
CN110448992A (zh) 一种垃圾焚烧过程中烟气二噁英减排系统和方法
CN201669263U (zh) 一种活性炭再生危险废物焚烧一体化装置
CN201289090Y (zh) 一种飞灰可燃物再利用和去除二恶英污染的装置
CN107812771A (zh) 废弃物处理再利用系统
CN107676790A (zh) 一种热解炉设能量球、尾气塔设磁场和静电器热解生活垃圾装置
CN217131298U (zh) 垃圾磁化低温热解炉
CN102734807B (zh) 一种处理报废动力电池残渣的欠氧焚烧装置
CN214223104U (zh) 一种医疗废物处理的磁化分解装置
CN215799115U (zh) 污泥干化设备
CN219300754U (zh) 炉排炉固废处理系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781859

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17781859

Country of ref document: EP

Kind code of ref document: A1