WO2017177757A1 - 虚拟多输入多输出通信方法、装置及系统 - Google Patents

虚拟多输入多输出通信方法、装置及系统 Download PDF

Info

Publication number
WO2017177757A1
WO2017177757A1 PCT/CN2017/073549 CN2017073549W WO2017177757A1 WO 2017177757 A1 WO2017177757 A1 WO 2017177757A1 CN 2017073549 W CN2017073549 W CN 2017073549W WO 2017177757 A1 WO2017177757 A1 WO 2017177757A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
user terminals
input multiple
predetermined number
vertical
Prior art date
Application number
PCT/CN2017/073549
Other languages
English (en)
French (fr)
Inventor
吴昊
李静
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017177757A1 publication Critical patent/WO2017177757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Definitions

  • the present disclosure relates to the field of communication technologies, for example, to a virtual multiple input multiple output communication method, apparatus, and system.
  • MIMO Multiple-Input Multiple-Output
  • MIMO Multiple-Input Multiple-Output
  • MIMO can make full use of space resources and achieve multiple transmission and reception through multiple antennas. It can double the system channel capacity without increasing spectrum resources and antenna transmission power. It is the core technology of next-generation communication.
  • MIMO technology has significant advantages in system capacity and spectrum utilization, it is unrealistic to configure MIMO communication with a base station by configuring multiple antennas for mobile terminals whose size, power consumption, and the like are limited. First, the size of the mobile terminal is too small. If multiple antennas are set, the antenna spacing will be too small to meet the requirement that the antenna array spacing be greater than the channel coherence distance. On the other hand, setting a plurality of antennas inevitably brings about problems of high power consumption and high cost of the user terminal.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • a plurality of users are combined to form a virtual MIMO channel in the same resource block, and simultaneously transmit data to a base station having multiple antennas, thereby achieving the performance of the MIMO technology.
  • the key to virtual MIMO technology is to choose the strategy of pairing users, and its advantages and disadvantages directly affect system performance.
  • Some matching algorithms in the related art are to preset an unsuitable pairing table for each user terminal in the base station, and each of the unsuitable pairing tables records identification information of other user terminals that are not suitable for pairing with the user terminal, when needed When pairing, the base station pairs two unpaired user terminals that do not belong to each other and are not suitable for the pairing table.
  • This pairing method does not consider the real-time situation of each user terminal, and the pairing is always based on the unsuitable pairing table set in advance. In the actual situation, the situation of the user terminal may change at any time, the last moment User terminals that cannot be paired by factors such as position, angle, etc., may be suitable for pairing at the moment.
  • the matching strategy according to the curing may result in poor communication between the base station and the paired user terminals due to poor selection of the paired users.
  • the present disclosure provides a virtual multiple input multiple output communication method, including:
  • the selected number of subscribed user terminals are virtualized into a multiple input multiple output user terminal, and the base station communicates with the multiple input multiple output user terminal based on a multiple input multiple output technique.
  • an absolute value of a difference of horizontal arrival angles of any two of the selected predetermined number of user terminals is greater than or equal to a first threshold, and an absolute value of a difference of vertical arrival angles is less than or equal to Second threshold.
  • selecting a predetermined number of user terminals from the plurality of user terminals according to channel estimation of each user terminal comprises: calculating a horizontal arrival angle and a vertical arrival angle of each user terminal according to channel estimation of each user terminal; Calculating the difference between the horizontal arrival angle of each user terminal and other user terminals and the vertical angle of arrival; according to the difference between the horizontal arrival angle of each user terminal and other user terminals
  • the difference of the vertical arrival angles filters out the first group of user terminals; and selects a predetermined number of user terminals from the selected first group of user terminal pairs.
  • the method before the selecting, by the channel estimation of each user terminal, the predetermined number of user terminals from the plurality of user terminals, the method further includes: determining, according to a first parameter that the base station currently demodulates the received information, the predetermined number,
  • the first parameter includes a signal to noise ratio and a cyclic redundancy check code.
  • the method further includes The weight of each vertical antenna element is calculated for communication between the base station and the multiple input multiple output user terminal.
  • the calculating the weight of each vertical antenna element comprises: calculating a mean value of the selected vertical number of arrival angles of the user terminals; and calculating the weight of each vertical antenna element according to the following formula: :
  • W M is the weight of the Mth vertical antenna element; ⁇ is the wavelength; ⁇ is the spacing between the antenna elements.
  • the present disclosure also provides a virtual multiple input multiple output communication device, including:
  • a channel estimation module configured to obtain a current channel estimate of a plurality of user terminals that communicate with the base station
  • a user selection module configured to select a predetermined number of user terminals from the plurality of user terminals according to a channel estimate of each user terminal, the predetermined number being greater than or equal to two;
  • the virtual communication module is configured to virtualize the selected number of subscribed user terminals into a multiple input multiple output user terminal, and cause the base station to communicate with the multiple input multiple output user terminal based on multiple input multiple output technology.
  • the absolute value of the difference of the horizontal arrival angles of any two of the selected predetermined number of user terminals is greater than or equal to the first threshold, and the absolute value of the difference of the vertical arrival angles is less than or equal to the second Threshold.
  • the user selection module includes: an angle calculation module, configured to calculate a horizontal arrival angle and a vertical arrival angle of each user terminal according to a channel estimation of each user terminal; and a difference calculation module configured to calculate each user The difference between the difference between the horizontal arrival angle of the terminal and the other user terminals and the vertical angle of arrival; the condition screening module is set to filter according to the difference between the horizontal arrival angle of each user terminal and the other user terminals and the vertical angle of arrival And a user selection module, configured to select a predetermined number of user terminals from the selected first group of user terminal pairs.
  • the virtual multiple input multiple output communication device further includes: a quantity obtaining module, configured to: according to the base station, select a predetermined number of user terminals from the plurality of user terminals according to channel estimation of each user terminal, according to the base station
  • the first parameter of the current demodulation received information determines the predetermined number, the first parameter comprising a signal to noise ratio and a cyclic redundancy check code.
  • the virtual multiple input multiple output communication device further includes: a weight calculation module configured to: virtualize the selected predetermined number of user terminals into one multiple input multiple output user terminal and base the base station on multiple input multiple output technology Before the multi-input multi-output user terminal performs communication, calculating a weight of each vertical antenna element for communication between the base station and the multiple-input multi-output user terminal.
  • a weight calculation module configured to: virtualize the selected predetermined number of user terminals into one multiple input multiple output user terminal and base the base station on multiple input multiple output technology Before the multi-input multi-output user terminal performs communication, calculating a weight of each vertical antenna element for communication between the base station and the multiple-input multi-output user terminal.
  • the weight calculation module includes: a mean calculation submodule configured to calculate an average value of the selected vertical number of arrival angles of the user terminals; and a weight calculation submodule configured to be calculated according to the following formula The weight of each vertical antenna element:
  • W M is the weight of the Mth vertical antenna element; ⁇ is the wavelength; ⁇ is the spacing between the antenna elements.
  • the present disclosure also provides a virtual multiple input multiple output communication system including a plurality of user terminals and base stations including virtual multiple input multiple output communication devices as described above.
  • the present disclosure also provides a non-transitory storage medium storing computer executable instructions arranged to perform the virtual multiple input multiple output communication method described above.
  • the present disclosure also provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, The computer is caused to perform the virtual multiple input multiple output communication method described above.
  • the present disclosure also provides an electronic device comprising at least one processor and a memory communicatively coupled to the at least one processor, the memory for storing instructions executable by the at least one processor, the instructions being The at least one processor, when executed, causes the at least one processor to perform the virtual multiple input multiple output communication method described above.
  • the virtual multiple input multiple output communication method provided by the present disclosure considers the current situation of each user terminal based on real-time channel estimation, and can improve the communication effect between the base station and the virtual multi-input and multi-output user terminal.
  • FIG. 1 is a flowchart of a virtual multiple input multiple output communication method according to Embodiment 1 of the present disclosure
  • FIG. 2 is a flowchart of selecting a predetermined number of user terminals according to Embodiment 1 of the present disclosure
  • FIG. 3 is a flowchart of calculating weights of antenna elements of each antenna according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic structural diagram of a virtual multiple input multiple output communication apparatus according to Embodiment 2 of the present disclosure
  • FIG. 5 is a schematic structural diagram of a virtual multiple input multiple output communication apparatus according to Embodiment 2 of the present disclosure
  • FIG. 6 is a schematic structural diagram of a user selection module in FIG. 4 or FIG. 5;
  • FIG. 7 is a schematic structural diagram of a virtual multiple input multiple output communication apparatus according to Embodiment 2 of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a weight calculation module of FIG. 7;
  • FIG. 9 is a structural block diagram of an electronic device according to an embodiment of the present disclosure.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a virtual multiple input multiple output communication method.
  • the method includes:
  • the so-called channel estimation is a process of estimating the model parameters of a certain channel model from the received data. Acquiring channel estimates is typically done by pilots.
  • the predetermined number is greater than or equal to two.
  • the base station currently demodulates one frame of the received signal, and then obtains the SNR of the frame signal (Signal-Noise). Ratio, signal to noise ratio, and CRC (Cyclic Redundancy Code), the base station determines the schedule based on SNR and CRC. What is the number, the first parameter then includes SNR and CRC.
  • the first parameter may also include other parameters that affect the quality of the signal.
  • FIG. 2 is to select a predetermined number from a plurality of user terminals that communicate with the base station.
  • the base station can obtain the channel estimation of each user terminal by using the pilot, and then use batlett (Bartlett algorithm), capon (minimum variance undistorted response beamforming algorithm), MUSIC (Multiple signal classification) according to the channel estimation of each user terminal.
  • batlett Bartlett algorithm
  • capon minimum variance undistorted response beamforming algorithm
  • MUSIC Multiple signal classification
  • Algorithms such as multi-signal classification algorithm or ESPRIT (Estimating Signal Parameters via Rotational Invariance Techniques) can calculate the horizontal arrival angle and vertical arrival angle of each user terminal.
  • S202 Calculate an absolute value of a difference between an absolute value of a difference in a horizontal arrival angle of two user terminals in each user terminal pair and a vertical arrival angle.
  • two user terminals form a pair of user terminals
  • n user terminals that communicate with the base station can be composed of (n-1)! User terminal pairs.
  • the absolute value and the vertical difference of the horizontal arrival angles of the two user terminals in each user terminal pair can be obtained.
  • the absolute value of the difference in the angle of arrival is the absolute value of the difference in the angle of arrival.
  • a plurality of user terminals that communicate with the base station include: user terminal A, user terminal B, The terminal C and the user terminal D calculate the absolute value of the difference between the absolute value of the difference between the horizontal angle of arrival of the user terminal A and the user terminal B and the vertical angle of arrival, and the difference between the horizontal arrival angles of the user terminal A and the user terminal C.
  • the absolute value of the difference between the absolute value of the value and the vertical angle of arrival, the absolute value of the difference between the absolute value of the difference between the horizontal arrival angle of the user terminal A and the user terminal D and the vertical angle of arrival, the user terminal B and the user terminal C The absolute value of the difference between the absolute value of the horizontal angle of arrival and the vertical angle of arrival, the absolute value of the difference between the absolute value of the horizontal arrival angle of the user terminal B and the user terminal D and the vertical angle of arrival, the user The absolute value of the difference between the absolute value of the difference between the horizontal arrival angles of the terminal C and the user terminal D and the vertical angle of arrival.
  • the user terminal pair that meets the preset condition (the first group of user terminals) ).
  • the vertical arrival angle of the user terminal n is v n
  • the horizontal direction reaches the angular position h n
  • the vertical arrival angle of the corresponding user terminal m is v m
  • the horizontal arrival angle is h m .
  • the preset condition is:
  • x is the first threshold and y is the second threshold.
  • x is set to 10 and y is set to 3.
  • a user terminal that meets a preset condition is selected from a plurality of user terminals that communicate with the base station, and any two of the user terminals that are selected according to the preset condition are selected.
  • the absolute value of the difference of the horizontal arrival angle is greater than or equal to the first threshold, and the absolute value of the difference of the vertical arrival angle is less than or equal to the second threshold.
  • S103 Virtualize the selected predetermined number of user terminals into one multiple input multiple output user terminal, and enable the base station to communicate with the multiple input multiple output user terminal based on multiple input multiple output technology.
  • the vertical arrival angles of the four user terminals are 8, 6, 7, and 9, respectively, according to the following formula:
  • W M is the weight of the Mth vertical antenna element; ⁇ is the wavelength; ⁇ is the spacing between the vertical antenna elements.
  • the number of the user terminals is 1-8, and the vertical arrival angles of the eight user terminals are -10, 8, 6, 5, 1, 7, 12, respectively. ,-9.
  • the horizontal arrival angle is 20, -12, 18, 30, 1, -33, -23, -40.
  • a plurality of user terminals having a small vertical arrival angle and a large difference in horizontal arrival angles are selected. If the first threshold is set to 10 and the second threshold is set to 3, the absolute value of the difference between the horizontal arrival angles between any two of the plurality of user terminals should be greater than or equal to 10, and arrive vertically. The absolute value of the difference of the angles should be less than or equal to 3.
  • Determining the number of user terminals performing virtual MIMO pairing ie, determining the predetermined number) according to factors such as a signal to noise ratio, a cyclic redundancy code, and a noise size obtained after demodulation of the received data of the previous frame, and determining a predetermined number of jobs may be performed. This is done by the MAC layer (Media Access Control Media Intervention Control Layer). If it is determined that the predetermined number is 2, the user terminals numbered 2 and 3 are selected.
  • the vertical arrival angles of the user terminal 2 and the user terminal 3 are 8 and 6, respectively, and the average value of the vertical arrival angle is 7.5, according to the formula.
  • each vertical antenna element on the base station side can be calculated. If four vertical antenna elements are set on the base station side, the weights of the four vertical antenna elements are [1, e -2 ⁇ j ⁇ sin7.5/ ⁇ , e - 4 ⁇ j ⁇ sin7.5/ ⁇ , e -6 ⁇ j ⁇ sin7.5/ ⁇ ].
  • the selected user terminals 2 and 3 are virtualized into a multi-input and multi-output user terminal, and the base station is In the subsequent communication process of the user terminals 2 and 3, the two user terminals can be regarded as one virtual user terminal having two antennas, and only one virtual frequency terminal is allocated a time-frequency resource, which is beneficial to resources. Configuration to increase the channel capacity of the communication system.
  • the base station When the base station communicates with the virtual multi-input multi-output user terminal and other user terminals, after the antenna array element receives a frame of frequency domain data, the base station uses the calculated weight of each vertical antenna element for each The frequency domain data received by the antenna array element is subjected to vertical weighting processing, and then the processed frequency domain data is combined. For example, 64 antenna elements are combined into 16 antenna elements, and finally the frequency domain data transmitted by these user terminals is demodulated in the horizontal direction.
  • Demodulation methods generally include ZF (Zero-Forcing), SIC (Successive Interference Cancellation), and MMSE (Minimum Mean Square Error).
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the virtual multiple input multiple output communication device in the first embodiment can be used on the virtual multiple input multiple output communication device provided in this embodiment.
  • the multiple input multiple output communication device 40 includes a channel estimation module 401, a user selection module 402, and a virtual communication module 403.
  • the channel estimation module 401 obtains channel estimates for a plurality of user terminals that communicate with the base station via pilots.
  • the user selection module 402 is configured to select a predetermined number of user terminals from a plurality of user terminals in communication with the base station according to a preset condition.
  • the virtual communication module 403 virtualizes the selected predetermined number of user terminals into one multiple input multiple output user terminal, and communicates with the multiple input multiple output user terminal based on the multiple input multiple output technology.
  • the user selection module 402 selects at least two user terminals, that is, the predetermined number is greater than or equal to two.
  • the virtual multiple input multiple output communication device 40 includes a channel estimation module 401, a user selection module 402, a virtual communication module 403, and a number acquisition module 404.
  • Number acquisition module 404 is set to determine The predetermined number.
  • the number obtaining module 404 determines the predetermined number according to the first parameter of the base station currently demodulating the received signal.
  • the base station currently demodulates a frame received signal to obtain an SNR (Signal Noise Ratio) and a CRC (Cyclic Redundancy Check) of the frame signal, and the number obtaining module 404 determines a predetermined number according to the SNR and the CRC, where the first parameter includes the SNR. And CRC.
  • the first parameter by which the number obtaining module 404 determines the predetermined number may further include other parameters that affect the signal quality, such as a noise value.
  • FIG. 6 is a schematic diagram of the user selection module 402 in FIG. 4 or FIG. 5 above.
  • the user selection module 402 includes an angle calculation module 4021, a difference calculation module 4022, a condition screening module 4023, and a user selection module 4024.
  • Angle calculation module 4021 is arranged to determine a horizontal angle of arrival and a vertical angle of arrival for each user terminal in communication with the base station.
  • the manner of determining the horizontal angle of arrival and the vertical angle of arrival includes a plurality, wherein the angle calculation module 4021 can obtain a channel estimate for each user terminal by using pilots, and then use batlett, capon, MUSIC, or ESPRIT according to the channel estimation of each user terminal.
  • the algorithm estimates the horizontal and vertical angles of arrival for each user terminal.
  • the difference calculation module 4022 is arranged to calculate an absolute value of the difference between the absolute value of the difference in the horizontal angle of arrival between the two user terminals in each pair of user terminals and the vertical angle of arrival. Calculating an absolute value of a difference between an absolute value of a difference in a horizontal angle of arrival of two user terminals in each pair of user terminals and a vertical angle of arrival, that is, calculating each of a plurality of user terminals that communicate with the base station The absolute value of the difference between the absolute value of the horizontal arrival angle and the vertical angle of arrival between the user terminals.
  • the condition screening module 4023 is configured to: according to the preset condition and the result calculated by the difference calculation module 4022, select an absolute value of the difference of the horizontal arrival angle from the plurality of user terminals that communicate with the base station is greater than or equal to The first threshold, and the absolute value of the difference of the vertical arrival angles is less than or equal to the second threshold of the user terminal pair. That is, the condition screening module 4023 selects a user terminal that meets a preset condition from a plurality of user terminals that communicate with the base station, and the selected user terminal that meets the preset condition is selected. The absolute value of the difference of the horizontal arrival angles of any two user terminals is greater than or equal to the first threshold, and the absolute value of the difference of the vertical arrival angles is less than or equal to the second threshold.
  • the preset conditions are:
  • x is the first threshold and y is the second threshold.
  • the difference between the horizontal arrival angles of the two user terminals is greater than the first threshold, the greater the difference, the better the communication effect after pairing, if the horizontal angle of arrival When the difference is less than the first threshold, the smaller the difference, the worse the communication effect after pairing.
  • the difference between the vertical arrival angles of the user terminals is greater than the second threshold, the larger the difference is, the worse the communication effect is.
  • the difference between the vertical arrival angles of the user terminals is less than the second threshold, the smaller the difference, the communication The better the effect.
  • x is set to 10 and y is set to 3.
  • the user selection module 4024 selects a predetermined number of user terminals from the user terminals that are selected to meet the preset conditions.
  • the process of determining the predetermined number can be accomplished by the number acquisition module 404 in FIG.
  • the number acquisition module 404 determines that the predetermined number of processes are completed before the user selection module 4024 selects a predetermined number of user terminals from the user terminal pair.
  • the number acquisition module 404 determines a timing definition that is not between the predetermined number of processes and the respective processes performed by the angle calculation module 4021, the difference calculation module 4022, and the condition screening module 4023.
  • the user selection module 4024 selects from the four user terminals. When you have two, you can choose it arbitrarily or according to other established principles.
  • the virtual communication module 403 virtualizes the selected predetermined number of user terminals into one multiple input multiple output user terminal, and makes the base station based on the multiple input multiple output technology and the multiple input. Multi-output user terminals communicate.
  • the virtual multiple input multiple output communication device 40 further includes a weight calculation module 405.
  • the weight calculation module 405 is arranged to calculate the weights of the respective vertical antenna elements.
  • the weight calculation module 405 in this example is described below with reference to FIG. 8. Explain in detail.
  • the weight calculation module 405 includes a mean calculation sub-module 4051 and a weight calculation sub-module 4052.
  • the mean calculation sub-module 4051 is arranged to calculate a mean of the selected predetermined number of vertical arrival angles of the user terminals.
  • the weight calculation sub-module 4052 is arranged to calculate the weight of each vertical antenna element. If the user selection module 402 finally selects four user terminals A, B, C, and D for virtual MIMO pairing, and the vertical arrival angles of the four user terminals are 8, 6, 7, and 9, respectively, then the mean calculation submodule 4051
  • the vertical angle of arrival of a predetermined number of user terminals can be calculated according to the following formula:
  • weight calculation sub-module 4052 calculates the weight of each vertical antenna array element, it is performed according to the following formula:
  • W M is the weight of the Mth vertical antenna element; ⁇ is the wavelength; ⁇ is the spacing between the antenna elements.
  • the virtual multiple input multiple output communication device 40 of FIG. 7 is further described below in conjunction with a specific example.
  • the number of the user terminals is 1-8, and the vertical arrival angles of the eight user terminals are -10, 8, 6, 5, 1, 7, 12, respectively. ,-9. Reach horizontally The angles are 20, -12, 18, 30, 1, -33, -23, -40.
  • the user selection module 402 selects a plurality of user terminals having a small vertical arrival angle and a large difference in horizontal arrival angles. If the first threshold is set to 10 and the second threshold is set to 3, the absolute value of the difference of the horizontal arrival angles between any two of the selected plurality of user terminals should be greater than or equal to 10, vertical. The absolute value of the difference in angle of arrival should be less than or equal to 3.
  • the number obtaining module 404 determines the predetermined number according to factors such as a signal-to-noise ratio, a cyclic redundancy code, a noise level, and the like obtained after demodulation of the received data of the previous frame. Alternatively, determining a predetermined number of jobs can also be done by the MAC layer. If the number acquisition module 404 determines that the predetermined number is two, the user selection module 402 selects the user terminals numbered 2 and 3.
  • the vertical arrival angles of the user terminal 2 and the user terminal 3 are 8 and 6, respectively, and the mean calculation sub-module in the weight calculation module 405 calculates that the average value of the vertical arrival angles of the user terminals 2 and 3 is 7.5, and the weight calculation sub-module is based on formula:
  • each vertical antenna element on the base station side can be calculated. If four vertical antenna elements are set on the base station side, the weights of the four vertical antenna elements are [1, e -2 ⁇ j ⁇ sin7.5/ ⁇ , e - 4 ⁇ j ⁇ sin7.5/ ⁇ , e -6 ⁇ j ⁇ sin7.5/ ⁇ ].
  • the virtual communication module 403 can virtualize the selected user terminals 2 and 3 into one multiple input multiple output user terminal, so that the base station can treat the two user terminals as one during the subsequent communication with the user terminals 2 and 3.
  • a virtual user terminal with two antennas allocates only one time-frequency resource for the one virtual user terminal, which is beneficial to resource allocation and improves the channel capacity of the communication system.
  • the base station When the base station communicates with the virtual multiple input multiple output user terminal and other user terminals, after the antenna array element receives one frame of frequency domain data, the base station uses the calculated weights of the vertical antenna array elements for each antenna.
  • the frequency domain data received by the array element is subjected to vertical weighting processing, and then the processed frequency domain data is combined. For example, combining 64 antenna elements into 16 antenna elements, and finally facing these in the horizontal direction.
  • the frequency domain data sent by the user terminal is demodulated.
  • Demodulation methods generally include ZF, SIC, and MMSE.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present embodiment provides a virtual multiple-input multiple-output communication system, which includes a plurality of user terminals and base stations, and any one of the types of virtual multiple-input multiple-output communication devices provided in Embodiment 2 is disposed in the base station.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in a storage medium (ROM/RAM, disk, optical disk) by a computing device, and in some cases, The steps shown or described are performed in a different order than that herein, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. Therefore, the present disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure also provides a non-transitory storage medium storing computer executable instructions arranged to perform the virtual multiple input multiple output communication method of the above-described embodiments.
  • the present disclosure also provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, The computer is caused to execute the virtual multiple input multiple output communication method of the above embodiment.
  • FIG. 9 is a structural block diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device may include a processor 51 and a memory 53, and may further include a communication interface 52 and a bus 54.
  • the processor 51, the communication interface 52, and the memory 53 can complete communication with each other through the bus 54.
  • Communication interface 52 can be used for information transmission.
  • the processor 51 can call the logic instructions in the memory 53 to perform the virtual multiple input multiple output communication method of the above embodiment.
  • the logic instructions in the memory 53 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • a medium that can store program code, or a transitory storage medium including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the virtual multiple-input multiple-output communication method, apparatus and system provided by the present disclosure can improve the communication effect between the base station and the virtual multi-input and multi-output user terminal based on real-time channel estimation, taking into account the current situation of each user terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供一种虚拟多输入多输出通信方法、装置及系统。所述方法包括获得多个与基站进行通信的用户终端当前的信道估计;根据各所述用户终端的信道估计从各所述用户终端中选择预定数目的用户终端,所述预定数目大于等于二;以及将选择出的所述预定数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信。

Description

虚拟多输入多输出通信方法、装置及系统 技术领域
本公开涉及通信技术领域,例如涉及一种虚拟多输入多输出通信方法、装置及系统。
背景技术
MIMO(Multiple-Input Multiple-Output,多输入多输出)技术是指在发射端和接收端分别设置多个发射天线和接收天线,使得信号通过发射端和接收端的多个天线传送和接收,从而改善通信质量。MIMO能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,是下一代通信的核心技术。尽管MIMO技术在系统容量和频谱利用率方面有显著的优势,但对体积、功耗等都受到限制的移动终端来说,通过配置多根天线来与基站进行MIMO通信是不现实的。首先,移动终端的体积太小,若设置多根天线,则会导致天线间距过小,无法满足天线阵列间隔大于信道相干距离的要求。另一方面,设置多根天线会必然带来用户终端高功耗以及高成本的问题。
为了解决用户终端限于体积和成本不宜配置多天线的问题,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)LTE(Long Term Evolution,长期演进)提出一种上行虚拟MIMO技术,将具有单天线的多个用户组合起来,在同一资源块中形成虚拟的MIMO信道,同时向具有多天线的基站发送数据,从而达到MIMO技术具有的性能。虚拟MIMO技术的关键是选择配对用户的策略,它的优劣直接影响系统性能。
相关技术中有些配对算法是在基站内预设每个用户终端的不适合配对表,每一个不适合配对表中记录有不适合与该用户终端进行配对的其他用户终端的标识信息,当需要进行配对时,由基站将互相不属于对方的不适合配对表的两个未配对用户终端配对。这种配对方式没有考虑每个用户终端的实时的情况,其配对始终基于事先设定好的不适合配对表,而在实际情况中,用户终端的情况可能时刻都在产生变化,上一时刻因位置、角度等因素无法进行配对的用户终端,在此刻可能又会适合彼此的配对。依据固化的配对策略可能会因选择的配对用户不佳,而导致基站与配对的用户终端之间的通信效果差。
发明内容
本公开提供一种虚拟多输入多输出通信方法,包括:
获得与基站进行通信的多个用户终端当前的信道估计;
根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端,所述预定数目大于等于二;以及
将选择出的预订数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信。
可选地,所述被选择出的预定数目的用户终端中的任意两个的水平到达角的差值的绝对值大于或等于第一阈值,且垂直到达角的差值的绝对值小于或等于第二阈值。
可选地,根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端包括:根据每个用户终端的信道估计计算每个用户终端的水平到达角与垂直到达角;计算每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值;根据每个用户终端与其他用户终端的水平到达角的差值与 垂直到达角的差值筛选出第一组用户终端;从筛选出的第一组用户终端对中选择预定数目的用户终端。
可选地,所述根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端之前还包括:根据基站当前解调接收信息的第一参数确定出所述预定数目,所述第一参数包括信噪比和循环冗余校验码。
可选地,将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信之前,所述方法还包括计算每个垂直天线阵元的权值,用于基站与所述多输入多输出用户终端间的通信。
可选地,所述计算每个垂直天线阵元的权值包括:计算所述选择出的预定数目的用户终端的垂直到达角的均值;根据以下公式计算获得每个垂直天线阵元的权值:
WM=e-j(M-1)2πΔsinv/λ
其中,WM为第M个垂直天线阵元的权值;λ为波长;Δ为天线阵元间的间距。
本公开还提供一种虚拟多输入多输出通信装置,包括:
信道估计模块,设置为获得与基站进行通信的多个用户终端当前的信道估计;
用户选择模块,设置为根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端,所述预定数目大于等于二;以及
虚拟通信模块,设置为将选择出的预订数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信。
可选地,被选择出的预定数目的用户终端中的任意两个的水平到达角的差值的绝对值大于或等于第一阈值,且垂直到达角的差值的绝对值小于或等于第二阈值。
可选地,所述用户选择模块包括:角度计算模块,设置为根据每个用户终端的信道估计计算每个用户终端的水平到达角与垂直到达角;差值计算模块,设置为计算每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值;条件筛选模块,设置为根据每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值筛选出第一组用户终端;以及用户选择模块,设置从筛选出的第一组用户终端对中选择预定数目的用户终端。
可选地,所述虚拟多输入多输出通信装置还包括:数目获取模块,设置为:在根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端之前,根据基站当前解调接收信息的第一参数确定出所述预定数目,所述第一参数包括信噪比和循环冗余校验码。
可选地,虚拟多输入多输出通信装置还包括:权值计算模块,设置为:将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信之前,计算每个垂直天线阵元的权值,用于基站与所述多输入多输出用户终端间的通信。
可选地,所述权值计算模块包括:均值计算子模块,设置为计算所述选择出的预定数目的用户终端的垂直到达角的均值;权值计算子模块,设置为根据以下公式计算获得每个垂直天线阵元的权值:
WM=e-j(M-1)2πΔsinv/λ
其中,WM为第M个垂直天线阵元的权值;λ为波长;Δ为天线阵元间的间距。
本公开还提供一种虚拟多输入多输出通信系统,包括多个用户终端和基站,所述基站中包含如上所述的虚拟多输入多输出通信装置。
本公开还提供了一种非暂态存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述的虚拟多输入多输出通信方法。
本公开还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述的虚拟多输入多输出通信方法。
本公开还提供了一种电子设备,包括至少一个处理器和与所述至少一个处理器通信连接的存储器,所述存储器用于存储可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,使所述至少一个处理器执行上述的虚拟多输入多输出通信方法。
本公开提供的虚拟多输入多输出通信方法,基于实时的信道估计,考虑了各用户终端当前的情况,能够提高基站与虚拟出的多输入多输出用户终端之间通信效果。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本公开实施例一中提供的虚拟多输入多输出通信方法的流程图;
图2为本公开实施例一中提供的选择预定数目的用户终端的流程图;
图3为本公开实施例一中提供的计算各天线阵元权值的流程图;
图4为本公开实施例二中提供的虚拟多输入多输出通信装置的结构示意图;
图5为本公开实施例二中提供的虚拟多输入多输出通信装置的结构示意图;
图6为图4或图5中用户选择模块的一种结构示意图;
图7为本公开实施例二中提供的虚拟多输入多输出通信装置的结构示意图;
图8为图7中权值计算模块的一种结构示意图;以及
图9为本公开实施例提供的电子设备的结构框图。
具体实施方式
以下结合附图对本公开的实施例进行详细说明,在不冲突的情况下,以下实施例和实施例中的特征可以相互组合。
实施例一:
本实施例提供一种虚拟多输入多输出通信方法,请参考图1,该方法包括:
S101、获得与基站进行通信的多个用户终端的信道估计。
所谓信道估计,就是从接收数据中将假定的某个信道模型的模型参数估计出来的过程。获取信道估计一般通过导频进行。
S102、根据每个用户终端的信道估计值和预设条件从所述多个用户终端中选择预定数目的用户终端。
在本实施例中,由于是基于MIMO技术进行通信,因此选择出的用户终端至少为两个,也就是说预定数目大于等于2。至于如何确定究竟需要选择多少个用户终端,这需要根据基站当前解调接收信号的第一参数而定,例如基站当前解调一帧接收信号,然后得出了该帧信号的SNR(Signal-Noise Ratio,信噪比)和CRC(Cyclic Redundancy Code,循环冗余码),则基站根据SNR和CRC确定预定 数目究竟为多少,这时第一参数就包括SNR和CRC。第一参数还可以包括其他影响信号质量的参数。
下面对如何根据预设条件从与基站进行通信的多个用户终端中选择预定数目的用户终端进行说明,请结合图2,图2是从与基站进行通信的多个用户终端中选择预定数目的用户终端的流程图:
S201、根据每个用户终端的信道估计计算每个用户终端的水平到达角与垂直到达角。
基站通过导频可以获得每个用户终端的信道估计,然后根据每个用户终端的信道估计,使用batlett(巴特利特算法)、capon(最小方差无畸变响应波束形成算法)、MUSIC(Multiple signal classification,多信号分类算法)或ESPRIT(Estimating Signal Parameters via Rotational Invariance Techniques,基于旋转不变技术的信号参数估计算法)等算法可以计算每个用户终端的水平到达角和垂直到达角。
S202、计算每个用户终端对中的两个用户终端的水平到达角的差值的绝对值与垂直到达角的差值的绝对值。所述与基站进行通信的多个用户终端中,两个用户终端组成一个用户终端对,与基站进行通信的n个用户终端可以组成(n-1)!个用户终端对。计算每个用户终端对中的两个用户终端的水平到达角的差值的绝对值与垂直到达角的差值的绝对值也即:计算与基站进行通信的多个用户终端中的每两个用户终端间的水平到达角的差值的绝对值与垂直到达角的差值的绝对值。通过计算每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值,可以得到每个用户终端对中的两个用户终端的水平到达角的差值的绝对值与垂直到达角的差值的绝对值。
例如,与基站进行通信的多个用户终端包括:用户终端A,用户终端B,用 户终端C以及用户终端D,计算用户终端A与用户终端B的水平到达角的差值的绝对值与垂直到达角的差值的绝对值,用户终端A与用户终端C的水平到达角的差值的绝对值与垂直到达角的差值的绝对值,用户终端A与用户终端D的水平到达角的差值的绝对值与垂直到达角的差值的绝对值,用户终端B与用户终端C的水平到达角的差值的绝对值与垂直到达角的差值的绝对值,用户终端B与用户终端D的水平到达角的差值的绝对值与垂直到达角的差值的绝对值,用户终端C与用户终端D的水平到达角的差值的绝对值与垂直到达角的差值的绝对值。
S203、根据每个用户终端对中的两个用户终端的水平到达角的差值的绝对值与垂直到达角的差值的绝对值筛选出符合预设条件的用户终端对(第一组用户终端)。例如,用户终端n垂直到达角为vn,水平方向到达角位hn,对应的用户终端m的垂直到达角为vm,水平到达角为hm,预设条件为:
|hm-hn|≥x,|vm-vn|≤y
其中,x为第一阈值,y为第二阈值。当两个用户终端间水平到达角的差值的绝对值大于第一阈值x时,两个用户终端间水平到达角的差值的绝对值越大,则该两个用户终端配对后的通信效果越好;当两个用户终端间水平到达角的差值的绝对值小于第一阈值x时,两个用户终端间水平到达角的差值的绝对值越小,则该两个用户终端配对后通信效果越差。当两个用户终端间垂直到达角的差值的绝对值大于第二阈值y时,垂直到达角的差值的绝对值越大,该两个用户终端配对后通信效果越差;当两个用户终端间垂直到达角的差值的绝对值小于第二阈值y时,垂直到达角的差值的绝对值越小,该两个用户终端配对后通信效果越好。可选地,x设置为10,y设置为3。
在步骤S203中,从与基站进行通信的多个用户终端中筛选出符合预设条件的用户终端,所述筛选出的符合预设条件的用户终端中的任意两个用户终端的 水平到达角的差值的绝对值大于等于第一阈值,垂直到达角的差值的绝对值小于等于第二阈值。计算每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值,根据每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值筛选出第一组用户终端。
S204、从筛选出的符合预设条件的用户终端对中选择预定数目的用户终端。
在进行选择之前,需要根据基站解调接收信号的信噪比与循环冗余码等参数确定应当选择多少用户终端进行配对才能达到最佳效果,即确定预定数目。这个确定预定数目的过程要在S204之前完成,与S201、S202和S203之间并没有严格的时序限定。
若满足预设条件的用户终端有4个,预定数目为2个,那么从这4个用户终端中选择2个时,可以任意选择也可根据其他原则进行选择。
S103、将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与该多输入多输出用户终端进行通信。
为了使后续的通信效果更好,在步骤S103之前还需要进一步计算每个垂直天线阵元的权值,这些垂直天线阵元的权值用于基站与多输入多输出用户终端之间的通信。计算每个垂直天线阵元权值的过程请参考图3:
S301、计算选择出的预定数目的用户终端垂直到达角的均值。
若最终选择出了A、B、C、D四个用户终端进行虚拟MIMO配对,这四个用户终端的垂直到达角分别为8、6、7、9,那么根据以下公式:
Figure PCTCN2017073549-appb-000001
其中,v为垂直到达角的均值;a为预定数目,在这里即为4;vi为选择出的第i个用户终端的垂直到达角;根据计算可得:
v=(8+6+7+9)/4=7.5
S302、计算每个垂直天线阵元的权值。
计算每个垂直天线阵元权值时依据以下公式进行:
WM=e-j(M-1)2πΔsinv/λ
WM为第M垂直个天线阵元的权值;λ为波长;Δ为垂直天线阵元间的间距。
下面结合一个具体的示例对本实施例提供的虚拟多输入多输出通信方法进行详细说明:
假设与基站进行通信的一共有八个用户终端,用户终端的编号分别为1-8,这八个用户终端的垂直到达角依次为-10,8,6,-5,1,-7,12,-9。水平到达角依次为20,-12,18,30,1,-33,-23,-40。
选择垂直到达角相差较小并且水平到达角相差较大的多个用户终端。若将第一阈值设置为10,第二阈值设置为3,则所述多个用户终端中的任意两个用户终端之间的水平到达角的差值的绝对值应大于或等于10,垂直到达角的差值的绝对值应小于或等于3。根据上一帧接收数据的解调后获得的信噪比、循环冗余码、噪声大小等因素确定进行虚拟MIMO配对的用户终端的数量(即确定所述预定数目),确定预定数目的工作可以由MAC层(Media Access Control媒体介入控制层)来完成。若确定预定数目为2,则选择编号为2和3的用户终端。
用户终端2和用户终端3的垂直到达角分别为8和6,垂直到达角的均值为7.5,根据公式
WM=e-j(M-1)2πΔsinv/λ
可以计算出基站侧每一垂直天线阵元的权值,假如基站侧设置了4个垂直天线阵元,则这4个垂直天线阵元的权值为[1,e-2πjΔsin7.5/λ,e-4πjΔsin7.5/λ,e-6πjΔsin7.5/λ]。
被选择出的用户终端2和3虚拟成了一个多输入多输出用户终端,基站在与 用户终端2和3的后续通信过程中,可以将这两个用户终端视作一个具备两根天线的虚拟用户终端,仅为这一个虚拟用户终端分配一份时频资源,这样的做法有利于资源配置,提高通信系统的信道容量。
当基站与上述虚拟出的多输入多输出用户终端以及其他的用户终端通信时,在天线阵元接收到一帧频域数据之后,基站利用计算出的每个垂直天线阵元的权值对各天线阵元接收到的频域数据进行垂直加权处理,然后将处理后的频域数据做合并。例如将64个天线阵元合并成16个天线阵元,最后在水平方向对这些用户终端发送的频域数据进行解调。解调的方法一般包括ZF(Zero-Forcing,迫零检测算法)、SIC(Successive Interference Cancellation,串行干扰消除算法)以及MMSE(Minimum Mean Square Error,最小均方误差算法)等。
实施例二:
本实施例提供一种虚拟多输入多输出通信装置,实施例一中的虚拟多输入多输出通信方法能够在本实施例提供的虚拟多输入多输出通信装置上运行使用,请结合图4,虚拟多输入多输出通信装置40包括信道估计模块401、用户选择模块402和虚拟通信模块403。信道估计模块401通过导频获得与基站进行通信的多个用户终端的信道估计。用户选择模块402设置为根据预设条件从与基站进行通信的多个用户终端中选择预定数目的用户终端。虚拟通信模块403将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端,并基于多输入多输出技术与该多输入多输出用户终端进行通信。
在本实施例中,由于是基于MIMO技术进行通信,因此用户选择模块402选择出的用户终端至少为两个,也就是说预定数目大于等于2。在另一个实施例中,如图5所示,虚拟多输入多输出通信装置40包括信道估计模块401、用户选择模块402、虚拟通信模块403以及数目获取模块404。数目获取模块404设置为确定 预定数目。可选地,数目获取模块404根据基站当前解调接收信号的第一参数确定预定数目。例如基站当前解调一帧接收信号得出该帧信号的SNR(Signal Noise Ratio)和CRC(Cyclic Redundancy Check),则数目获取模块404根据SNR和CRC确定预定数目,这时第一参数就包括SNR和CRC。可选地,数目获取模块404确定预定数目所依据的第一参数还可以包括其他影响信号质量的参数,如噪声值。
请结合图6,图6是上述图4或图5中用户选择模块402的一种示意图,用户选择模块402包括角度计算模块4021、差值计算模块4022以及条件筛选模块4023和用户选择模块4024。
角度计算模块4021设置为确定与基站进行通信的每个用户终端的水平到达角与垂直到达角。确定水平到达角和垂直到达角的方式包括多种,其中角度计算模块4021可以通过导频获得每个用户终端的信道估计,然后根据每个用户终端的信道估计,使用batlett、capon、MUSIC或ESPRIT等算法估计出每个用户终端的水平到达角和垂直到达角。
差值计算模块4022设置为计算每个用户终端对中的两个用户终端间的水平到达角的差值的绝对值与垂直到达角的差值的绝对值。计算每个用户终端对中的两个用户终端的水平到达角的差值的绝对值与垂直到达角的差值的绝对值也即:计算与基站进行通信的多个用户终端中的每两个用户终端间的水平到达角的差值的绝对值与垂直到达角的差值的绝对值。
条件筛选模块4023设置为根据预先设定的条件以及差值计算模块4022计算出的结果,从所述与基站进行通信的多个用户终端中筛选出水平到达角的差值的绝对值大于或等于第一阈值,且垂直到达角的差值的绝对值小于或等于第二阈值的用户终端对。即,条件筛选模块4023从与基站进行通信的多个用户终端中筛选出符合预设条件的用户终端,所述筛选出的符合预设条件的用户终端中 的任意两个用户终端的水平到达角的差值的绝对值大于等于第一阈值,垂直到达角的差值的绝对值小于等于第二阈值。
假设用户终端n垂直到达角为vn,水平方向到达角位hn,对应的用户终端m的垂直到达角为vm,水平方向到达角为hm,则预先设定的条件为:
|hm-hn|≥x,|vm-vn|≤y
其中x为第一阈值,y为第二阈值,当两个用户终端间水平到达角的差值大于第一阈值时,差值越大,则配对后的通信效果越好,若水平到达角的差值小于第一阈值时,则差值越小,配对后通信效果越差。当用户终端对间垂直到达角的差值大于第二阈值时,差值越大,通信效果越差,当用户终端对间垂直到达角的差值小于第二阈值时,差值越小,通信效果越好。可选地,x设置为10,y设置为3。
用户选择模块4024从筛选出符合预设条件的用户终端中选择预定数目的用户终端。确定预定数目的过程可以由图5中的数目获取模块404完成。数目获取模块404确定预定数目的过程在用户选择模块4024从用户终端对中选择预定数目的用户终端之前完成。数目获取模块404确定预定数目的过程与角度计算模块4021、差值计算模块4022以及条件筛选模块4023执行的相应流程之间并没有的时序限定。
若条件筛选模块4023筛选出的满足预设条件的用户终端有4个,而数目获取模块404在基站解调接收信号后确定预定数目是2,那么用户选择模块4024从这4个用户终端中选择2个时,可以任意选择也可根据其他既定原则进行选择。
在用户选择模块4024选择预定数目的用户终端后,由虚拟通信模块403将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与该多输入多输出用户终端进行通信。
为了使基站与虚拟出的多输入多输出用户终端之间后续的通信效果更好,如图7所示,虚拟多输入多输出通信装置40还包括权值计算模块405。权值计算模块405设置为计算各垂直天线阵元的权值。对于用户选择模块402、虚拟通信模块403以及数目获取模块404的设置方式,请参考上述示例以及图4-6所示,这里不再赘述,下面结合图8对本实例中的权值计算模块405做详细阐述。
权值计算模块405包括均值计算子模块4051和权值计算子模块4052。均值计算子模块4051设置为计算选择出的预定数目的用户终端垂直到达角的均值。权值计算子模块4052设置为计算各垂直天线阵元的权值。若用户选择模块402最终选择出了A、B、C、D四个用户终端进行虚拟MIMO配对,这四个用户终端的垂直到达角分别为8、6、7、9,那么均值计算子模块4051根据以下公式可以计算出预定数目的用户终端的垂直到达角:
Figure PCTCN2017073549-appb-000002
其中,v为垂直到达角的均值;a为预定数目,在这里即为4;vi为选择出的预定数目的用户终端中的第i个用户终端的垂直到达角。
计算可得:
v=(8+6+7+9)/4=7.5
权值计算子模块4052计算各垂直天线阵元的权值时,依据以下公式进行:
WM=e-j(M-1)2πΔsinv/λ
WM为第M个垂直天线阵元的权值;λ为波长;Δ为天线阵元间的间距。
下面结合一个具体示例对图7中的虚拟多输入多输出通信装置40做进一步说明。
假设与基站进行通信的一共有八个用户终端,用户终端的编号分别为1-8,这八个用户终端的垂直到达角依次为-10,8,6,-5,1,-7,12,-9。水平到达 角依次为20,-12,18,30,1,-33,-23,-40。
用户选择模块402选择垂直到达角相差较小且水平到达角相差较大的多个用户终端。若将第一阈值设置为10,第二阈值设置为3,则所述选择出的多个用户终端中的任意两个之间的水平到达角的差值的绝对值应大于或等于10,垂直到达角的差值的绝对值应小于或等于3。数目获取模块404根据上一帧接收数据的解调后获得的信噪比、循环冗余码、噪声大小等因素确定预定数目。可选地,确定预定数目的工作也可以由MAC层来完成。若数目获取模块404确定预定数目为2,则用户选择模块402选择编号为2和3的用户终端。
用户终端2和用户终端3的垂直到达角分别为8和6,权值计算模块405中的均值计算子模块计算出用户终端2和3的垂直到达角的均值为7.5,权值计算子模块根据公式:
WM=e-j(M-1)2πΔsinv/λ
可以计算出基站侧每一垂直天线阵元的权值,假如基站侧设置了4个垂直天线阵元,则这4个垂直天线阵元的权值为[1,e-2πjΔsin7.5/λ,e-4πjΔsin7.5/λ,e-6πjΔsin7.5/λ]。
虚拟通信模块403可以将被选择出的用户终端2和3虚拟成一个多输入多输出用户终端,使基站在与用户终端2和3的后续通信过程中,可以将这两个用户终端视作一个具备两根天线的虚拟用户终端,仅为这一个虚拟用户终端分配一份时频资源,有利于资源配置,提高通信系统的信道容量。
当基站与上述虚拟出的多输入多输出用户终端以及其他的用户终端通信时,在天线阵元接收到一帧频域数据之后,基站利用计算出的各垂直天线阵元的权值对各天线阵元接收到的频域数据进行垂直加权处理,然后将处理后的频域数据做合并。例如将64个天线阵元合并成16个天线阵元,最后在水平方向对这些 用户终端发送的频域数据进行解调。解调的方法一般包括ZF、SIC以及MMSE等。
实施例三:
本实施例提供一种虚拟多输入多输出通信系统,该系统包括多个用户终端和基站,在基站中设置实施例二中提供的任意一种类型的虚拟多输入多输出通信装置。
本领域的技术人员应该明白,上述本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
本公开还提供了一种非暂态存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述实施例的虚拟多输入多输出通信方法。
本公开还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述实施例的虚拟多输入多输出通信方法。
本公开还提供了一种电子设备。图9是本公开实施例提供的电子设备的结构框图。该电子设备可以包括:处理器(processor)51和存储器(memory)53,还可以包括通信接口(Communications Interface)52和总线54。其中,处理器51、通信接口52、存储器53可以通过总线54完成相互间的通信。通信接口52可以用于信息 传输。处理器51可以调用存储器53中的逻辑指令,以执行上述实施例的虚拟多输入多输出通信方法。
此外,上述的存储器53中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开提供的虚拟多输入多输出通信方法、装置和系统,基于实时的信道估计,考虑了各用户终端当前的情况,能够提高基站与虚拟出的多输入多输出用户终端之间通信效果。

Claims (16)

  1. 一种虚拟多输入多输出通信方法,包括:
    获得与基站进行通信的多个用户终端当前的信道估计;
    根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端,所述预定数目大于等于二;以及
    将选择出的预订数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信。
  2. 如权利要求1所述的虚拟多输入多输出通信方法,其中,被选择出的预定数目的用户终端中的任意两个的水平到达角的差值的绝对值大于或等于第一阈值,且垂直到达角的差值的绝对值小于或等于第二阈值。
  3. 如权利要求1所述的虚拟多输入多输出通信方法,其中,根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端包括:
    根据每个用户终端的信道估计计算每个用户终端的水平到达角与垂直到达角;
    计算每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值;
    根据每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值筛选出第一组用户终端;
    从筛选出的第一组用户终端对中选择预定数目的用户终端。
  4. 如权利要求1所述的所述的虚拟多输入多输出通信方法,其中,所述根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端之前还包括:
    根据基站当前解调接收信息的第一参数确定出所述预定数目,所述第一参数包括信噪比和循环冗余校验码。
  5. 如权利要求1-4任一项所述的虚拟多输入多输出通信方法,其中,将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信之前,所述方法还包括计算每个垂直天线阵元的权值,用于基站与所述多输入多输出用户终端间的通信。
  6. 如权利要求5所述的虚拟多输入多输出通信方法,其中,所述计算每个垂直天线阵元的权值包括:
    计算所述选择出的预定数目的用户终端的垂直到达角的均值;
    根据以下公式计算获得每个垂直天线阵元的权值:
    WM=e-j(M-1)2πΔsinv/λ
    其中,WM为第M个垂直天线阵元的权值;λ为波长;Δ为天线阵元间的间距。
  7. 一种虚拟多输入多输出通信装置,包括:
    信道估计模块,设置为获得与基站进行通信的多个用户终端当前的信道估计;
    用户选择模块,设置为根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端,所述预定数目大于等于二;以及
    虚拟通信模块,设置为将选择出的预订数目的用户终端虚拟成一个多输入多输出用户终端,并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信。
  8. 如权利要求7所述的虚拟多输入多输出通信装置,其中,被选择出的预定数目的用户终端中的任意两个的水平到达角的差值的绝对值大于或等于第一阈值,且垂直到达角的差值的绝对值小于或等于第二阈值。
  9. 如权利要求7所述的虚拟多输入多输出通信装置,其中,所述用户选择模块包括:
    角度计算模块,设置为根据每个用户终端的信道估计计算每个用户终端的水平到达角与垂直到达角;
    差值计算模块,设置为计算每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值;
    条件筛选模块,设置为根据每个用户终端与其他用户终端的水平到达角的差值与垂直到达角的差值筛选出第一组用户终端;以及
    用户选择模块,设置从筛选出的第一组用户终端对中选择预定数目的用户终端。
  10. 如权利要求7所述的虚拟多输入多输出通信装置,还包括:
    数目获取模块,设置为:在根据每个用户终端的信道估计从所述多个用户终端中选择预定数目的用户终端之前,根据基站当前解调接收信息的第一参数确定出所述预定数目,所述第一参数包括信噪比和循环冗余校验码。
  11. 如权利要求7-10任一项所述的虚拟多输入多输出通信装置,还包括:
    权值计算模块,设置为:将选择出的预定数目的用户终端虚拟成一个多输入多输出用户终端并使基站基于多输入多输出技术与所述多输入多输出用户终端进行通信之前,计算每个垂直天线阵元的权值,用于基站与所述多输入多输出用户终端间的通信。
  12. 如权利要求11所述的虚拟多输入多输出通信装置,其中,所述权值计算模块包括:
    均值计算子模块,设置为计算所述选择出的预定数目的用户终端的垂直到达角的均值;
    权值计算子模块,设置为根据以下公式计算获得每个垂直天线阵元的权值:
    WM=e-j(M-1)2πΔsinv/λ
    其中,WM为第M个垂直天线阵元的权值;λ为波长;Δ为天线阵元间的间距。
  13. 一种虚拟多输入多输出通信系统,包括多个用户终端和基站,所述基站中包含如权利要求7-12任一项所述的虚拟多输入多输出通信装置。
  14. 一种非暂态存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-6任一项所述的虚拟多输入多输出通信方法。
  15. 一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行权利要求1-6任一项所述的虚拟多输入多输出通信方法。
  16. 一种电子设备,包括至少一个处理器和与所述至少一个处理器通信连接的存储器,所述存储器用于存储可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,使所述至少一个处理器执行权利要求1-6任一项所述的虚拟多输入多输出通信方法。
PCT/CN2017/073549 2016-04-12 2017-02-15 虚拟多输入多输出通信方法、装置及系统 WO2017177757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610225520.1 2016-04-12
CN201610225520.1A CN107302385B (zh) 2016-04-12 2016-04-12 虚拟多输入多输出通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017177757A1 true WO2017177757A1 (zh) 2017-10-19

Family

ID=60042306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073549 WO2017177757A1 (zh) 2016-04-12 2017-02-15 虚拟多输入多输出通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107302385B (zh)
WO (1) WO2017177757A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9967115B1 (en) 2017-06-08 2018-05-08 The Trustees Of Columbia University In The City Of New York Circuits and methods for spatial equalization of in-band signals in MIMO receivers
CN114071489A (zh) * 2020-07-29 2022-02-18 中国移动通信有限公司研究院 通信节点配对方法、装置、通信节点及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923925B2 (en) 2018-06-25 2024-03-05 Nokia Technologies Oy User selection for MU-MIMO communications
CN114731174A (zh) * 2019-12-31 2022-07-08 华为技术有限公司 无线通信方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340648A (zh) * 2008-08-11 2009-01-07 中兴通讯股份有限公司 一种多用户波束赋形发射权值的生成方法
CN101383645A (zh) * 2007-09-07 2009-03-11 中兴通讯股份有限公司 一种上行多用户设备虚拟多输入多输出的配对方法
WO2012048439A1 (en) * 2010-10-11 2012-04-19 Intel Corporation Uplink noise estimation for virtual mimo
CN103548285A (zh) * 2007-07-23 2014-01-29 上海贝尔股份有限公司 功率控制方法及相应的基站
CN103906252A (zh) * 2012-12-28 2014-07-02 华为技术有限公司 虚拟多输入多输出用户配对方法、系统及基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050697B2 (en) * 2006-08-22 2011-11-01 Nortel Networks Limited Multi-antenna scheduling system and method
CN101568064B (zh) * 2008-04-25 2011-08-10 电信科学技术研究院 一种多用户调度的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548285A (zh) * 2007-07-23 2014-01-29 上海贝尔股份有限公司 功率控制方法及相应的基站
CN101383645A (zh) * 2007-09-07 2009-03-11 中兴通讯股份有限公司 一种上行多用户设备虚拟多输入多输出的配对方法
CN101340648A (zh) * 2008-08-11 2009-01-07 中兴通讯股份有限公司 一种多用户波束赋形发射权值的生成方法
WO2012048439A1 (en) * 2010-10-11 2012-04-19 Intel Corporation Uplink noise estimation for virtual mimo
CN103906252A (zh) * 2012-12-28 2014-07-02 华为技术有限公司 虚拟多输入多输出用户配对方法、系统及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9967115B1 (en) 2017-06-08 2018-05-08 The Trustees Of Columbia University In The City Of New York Circuits and methods for spatial equalization of in-band signals in MIMO receivers
CN114071489A (zh) * 2020-07-29 2022-02-18 中国移动通信有限公司研究院 通信节点配对方法、装置、通信节点及存储介质

Also Published As

Publication number Publication date
CN107302385B (zh) 2021-04-16
CN107302385A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
US9590707B1 (en) Using compressed beamforming information for optimizing multiple-input multiple-output operations
EP3128680B1 (en) Method and apparatus for implementing transparent multi-user multiple-input multiple-output transmission
WO2017177757A1 (zh) 虚拟多输入多输出通信方法、装置及系统
KR101414665B1 (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
EP2904713B1 (en) Scheduling transmission for multi-user, multiple-input, multiple-output data
WO2017078611A1 (en) Codebook subset restriction for full-dimension mimo
US10243634B2 (en) Method and device for dual layer beamforming
US10236949B2 (en) Multiple-antenna data transmission method, base station, user equipment, and system
EP3148279B1 (en) Method and device for determining remote radio unit (rru)
KR20140041884A (ko) 전송 발산 방법, 및 관련 장치 및 시스템
WO2017097269A1 (zh) 一种干扰估计方法和设备
CN110166088B (zh) 以用户为中心的无小区mimo系统的功率控制算法
WO2017040002A1 (en) Optimizing multiple-input multiple-output operations
WO2012068863A1 (zh) 一种自适应多天线分集合并干扰消除方法及装置
JP6111117B2 (ja) ユーザ装置、及びユーザ割当情報推定方法
JP7452540B2 (ja) 電子機器、通信方法、及び記憶媒体
CN103916340B (zh) 一种噪声功率估计方法及网络侧设备
WO2020200471A1 (en) Channel-matrix reduction for precoding control
CN104253639B (zh) 获取信道质量指示的方法及装置
WO2012159266A1 (zh) 自适应多流波束赋形方法和基站
CN108667490B (zh) 一种信道状态信息反馈方法及装置
WO2018115966A1 (zh) 用于对上行大规模mim0信号进行预合并处理的方法和装置
US20170041107A1 (en) Method and apparatus for sending and receiving signal
CN113170437A (zh) 用于多用户多输入多输出的方法和基站
US8923377B2 (en) Methods and devices for receipt of imbalanced transmission signal

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781733

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781733

Country of ref document: EP

Kind code of ref document: A1