WO2012068863A1 - 一种自适应多天线分集合并干扰消除方法及装置 - Google Patents

一种自适应多天线分集合并干扰消除方法及装置 Download PDF

Info

Publication number
WO2012068863A1
WO2012068863A1 PCT/CN2011/075361 CN2011075361W WO2012068863A1 WO 2012068863 A1 WO2012068863 A1 WO 2012068863A1 CN 2011075361 W CN2011075361 W CN 2011075361W WO 2012068863 A1 WO2012068863 A1 WO 2012068863A1
Authority
WO
WIPO (PCT)
Prior art keywords
data carrier
matrix
detected
receiving antenna
antenna
Prior art date
Application number
PCT/CN2011/075361
Other languages
English (en)
French (fr)
Inventor
宁迪浩
朱登魁
肖华华
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012068863A1 publication Critical patent/WO2012068863A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to an adaptive multi-antenna diversity combined interference cancellation method and apparatus.
  • Wireless communication systems are always subject to various interferences, and 4th generation communication (4G) systems based on OFDMA (Orthogonal Frequency Division Multiple Access) technology, such as Wimax ( Worldwide Interoperability) For Microwave Access, LTE (Long Term Evolution), it is always subject to more serious OFDM Co-Channel Interference (CCI).
  • 4G 4th generation communication
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Wimax Worldwide Interoperability
  • LTE Long Term Evolution
  • CCI OFDM Co-Channel Interference
  • the interference source usually interferes with multiple data carriers, it can be considered as a kind of broadband interference.
  • the neighboring area interference control/suppression/cancellation problem is a hot research issue, and it is also a problem that the 4G communication system must solve in the same frequency network.
  • Active approaches typically manifest as power control, dynamic frequency reuse, beamforming/scheduling cooperation in the neighborhood, and joint transmission in CoMP (Coordinated Multipoint transmission/reception) under discussion.
  • CoMP Coordinatd Multipoint transmission/reception
  • Technology needs to be discussed in more detail when standards are developed, requiring network structure and signaling support.
  • Passive interference cancellation technology does not rely on signaling interactions, and is usually done by receivers and can be widely applied to various networks.
  • the interference cancellation on the receiving side often depends on the resources of space, time and frequency.
  • the fourth generation communication system widely uses multi-antenna technology ( ⁇ )
  • multi-antenna technology
  • the signal on the antenna responds to the diversity of the samples and receives a wide range of applications from the sputum system.
  • the traditional multi-antenna diversity combining algorithm has equal gain combining, selective combining and Maximum Ratio Combining (MRC). It has excellent performance in noise-limited channel environment, but the interference is limited. The performance of the channel environment is not ideal.
  • MRC Maximum Ratio Combining
  • MRC Maximum Ratio Combining
  • It has excellent performance in noise-limited channel environment, but the interference is limited.
  • the performance of the channel environment is not ideal.
  • a multi-antenna diversity combining algorithm with the main purpose of suppressing interference is called interference suppression combining technology.
  • IRC Interference Rejection Combining
  • the solution to the above problem is to perform adaptive switching between the IRC algorithm and the MRC algorithm, perform IRC merging in a scene with limited interference, and perform MRC merging in a noise-limited scenario.
  • the core idea of the IRC algorithm is to estimate the interference and noise correlation matrix ( ⁇ matrix), use the inverse matrix of the ⁇ matrix to process the received signal, suppress the interference component, and preserve the signal component. Therefore, when the IRC algorithm is actually used, it is a key factor to obtain a more accurate ⁇ matrix estimation. That is to say, the more obvious the characteristics of the interference in the ⁇ matrix, the better the performance of the IRC merging algorithm.
  • the adaptive switching technique combining interference suppression combining and non-interference suppression in the general sense is to determine whether there is interference component in the received signal by using the signal characteristics on the receiving side, and then select a diversity combining algorithm.
  • the IRC algorithm will deteriorate the performance. This is because when the number of samples participating in the statistical calculation of the unitary matrix is insufficient (usually the number of pilots in a certain resource granularity), the calculated value of the unitary matrix cannot reflect the characteristics of the interference.
  • the main component of the estimated unitary matrix is noise.
  • the spatial correlation characteristics of the interference channel cannot be reflected. In this case, since the characteristics of the interference signal cannot be obtained, only the non-interference suppression combining algorithm (MRC) can be selected.
  • MRC non-interference suppression combining algorithm
  • the technical problem to be solved by the present invention is to provide an adaptive multi-antenna diversity and interference cancellation method and apparatus capable of adaptively switching between an interference suppression algorithm (IRC) and a non-interference suppression algorithm (MRC).
  • IRC interference suppression algorithm
  • MRC non-interference suppression algorithm
  • an adaptive multi-antenna diversity and interference cancellation method including:
  • the method further includes:
  • the step of measuring the noise power on each of the receiving antennas comprises: measuring the noise power on each of the receiving antennas by means of a null carrier or a silence frame.
  • the step of performing interference suppression combining detection on the data carrier to be detected includes: calculating an inverse matrix of the NI matrix of the data carrier to be detected, and calculating the merged symbol according to the following formula:
  • the first combined data carrier symbol, 3 ⁇ 4 is the NI matrix estimation value of the first data carrier, is the column vector formed by the response of the first data carrier on each receiving antenna, and H is the channel response of each receiving antenna The column vector formed by the estimate.
  • is the first combined data carrier symbol, the column vector formed by the response of the first data carrier on each receiving antenna, and H is the column vector formed by the estimated values of the channel responses of the receiving antennas.
  • the present invention also provides an adaptive multi-antenna diversity and interference cancellation apparatus, the apparatus comprising:
  • An antenna noise measuring module configured to: measure noise power on each receiving antenna; an adaptive decision module, configured to: determine a sum of diagonal elements of the estimated NI matrix of the data carrier to be detected and each receiving antenna Whether the ratio of the mean values of the noise power is greater than a predetermined threshold;
  • a merging processing module configured to: perform interference suppression combined detection on the to-be-detected data carrier according to a determination result of the adaptive decision module, if the determination result is yes;
  • the detected data carrier is described for non-interference suppression combined detection.
  • the device further includes:
  • a channel estimation module configured to: derive, by channel estimation, a channel response estimate for each data carrier on the resource block;
  • the NI matrix estimation module is configured to: estimate an estimate of the NI matrix of each data carrier based on the channel response estimate derived by the channel estimation module.
  • the antenna noise measurement module is configured to measure noise power on each receiving antenna by means of a null carrier or a silence frame.
  • the merge processing module is configured to perform interference suppression merge detection on the to-be-detected data carrier in the following manner:
  • the first combined data carrier symbol, 3 ⁇ 4 is the NI matrix estimation value of the first data carrier, is the column vector formed by the response of the first data carrier on each receiving antenna, and H is the channel response of each receiving antenna The column vector formed by the estimate.
  • the merge processing module is configured to perform non-interference suppression combined detection on the to-be-detected data carrier in the following manner:
  • the first combined data carrier symbol is a column vector formed by the response of the first data carrier on each receiving antenna, and H is a column vector formed by each receiving antenna channel response estimated value.
  • the invention starts from the NI estimation matrix which affects the most fundamental factor of the IRC merging algorithm, and judges whether the currently obtained NI matrix contains more interference components through the specific numerical features of the NI matrix, and then selects whether to use the IRC algorithm or the MRC algorithm to obtain the most Excellent performance.
  • the interference when there is serious adjacent channel co-channel interference, the interference can be significantly suppressed; at the same time, when there is no co-channel interference or the same-frequency interference is weak, the robust performance can still be obtained without appearing. Deterioration of performance; and, when the NI matrix estimation is inaccurate, it is still stable. Robust performance, and can reduce the complexity and computation in this case.
  • FIG. 1 is a schematic flow chart of an adaptive multi-antenna diversity combining method according to an embodiment of the present invention. Preferred embodiment of the invention
  • the main idea of the present invention is: First, estimating the noise power on each antenna; secondly, comparing the mean values of the bottom noise powers of the plurality of receiving antennas with the diagonal elements of the estimated unitary matrices, and determining whether It contains more interference components, which in turn determines whether to perform matrix inversion and other operations. Finally, the corresponding diversity is processed and processed.
  • the present invention provides an adaptive multi-antenna diversity and interference cancellation method, and specifically adopts the following technical solutions:
  • the method further includes:
  • the measurement of the noise power on the receiving antenna includes, but is not limited to, the following: a) a method of empty carrier, that is, performing noise power estimation on the receiving antenna by using a null carrier that does not transmit any data;
  • performing IRC detection on the data carrier to be detected includes:
  • the first combined data carrier symbol, 3 ⁇ 4 is the NI matrix on the first carrier, the column vector formed by the response of the first carrier on each receiving antenna, and H is the column formed by the channel estimation results of each antenna. vector.
  • performing IRC detection on the data carrier to be detected includes:
  • FIG. 1 is a schematic flowchart of an adaptive multi-antenna diversity combining method according to an embodiment of the present invention. As shown in FIG. 1 , the process mainly includes the following steps:
  • Step 110 estimating a noise floor of the null carrier antenna, measuring noise power on each receiving antenna, where the first receiving antenna is represented;
  • Step 120 Obtain a channel response estimation value of p data carriers on the to-be-detected resource block by using channel estimation, where i, indicating the first _; the first carrier in the root receiving antenna;
  • the sequence correlation channel estimation method may be employed, that is, the correlation characteristics between different sequences sent by different base stations are used to suppress interference.
  • Step 130 the NI matrix estimation obtains an interference noise covariance matrix NI estimated for each data carrier on the resource block to be detected.
  • 3 ⁇ 4 is the estimated value of the NI matrix on the first data carrier, and the dimension is [receiving antenna number * receiving antenna number];
  • the purpose of estimating the NI matrix is to use the inverse matrix of the NI matrix as part of the processing weight, and use the processing weight to suppress interference.
  • Step 140 adaptively determining, determining whether the following formula is true, if yes, proceeding to step 150; otherwise, proceeding to step 160,
  • Step 150 Perform IRC detection according to R and channel estimation results, select one carrier in the resource block to be processed, calculate an inverse matrix of the current carrier ⁇ matrix, and calculate the combined symbol according to the following formula:
  • the z-th merged data carrier symbol is an estimated value of the matrix, and is a column vector formed by the response of the first carrier on each receiving antenna, and H is a column vector formed by each antenna channel estimation result.
  • Step 160 Perform data carrier MRC merge detection, and calculate the merged symbol according to the following formula:
  • step 150 or step 160 the algorithm is terminated, and the next to-be-detected carrier symbol is reselected to repeat the above steps.
  • a receiving system has w receiving antennas on the receiving side and m received signal samples in the receiving SH.
  • each resource block has n resource blocks to be detected, and each resource block has p data carriers to be detected and q pilot carriers.
  • the antenna bottom noise is estimated using an empty carrier that does not transmit any data, and the measurement obtains w, and the receiving antenna bottom noise power is - ⁇ ⁇ .
  • Select a resource block to be detected estimate the channel response on each receiving antenna, and use the q pilot carriers on it to perform channel estimation, and obtain channel estimation values of p data carriers, where
  • Trace ( A ) represents the trace of the A matrix, which is the sum of the diagonal elements; ⁇ represents the mean value of the noise floor power of the receiving antenna.
  • the algorithm is reselected to repeat the above decision step.
  • the next to-be-detected resource block is selected, and the foregoing algorithm is repeated until all the detected resource blocks complete the detection.
  • the application example 2 assumes that there are m receiving antennas on the receiving side of a communication system, and m received signal samples 5 s ... are obtained upon receiving.
  • each resource block has n resource blocks to be detected, and each resource block has p data carriers to be detected and q pilot carriers.
  • the antenna bottom noise is estimated using an empty carrier that does not transmit any data, and the measured bottom noise power of the w receiving antenna is 0 ⁇ 2 ... .
  • the resource block to be detected is selected to complete the unitary matrix estimation Ri of ⁇ data carriers, where Ri represents the first data carrier.
  • Trace ( A ) represents the trace of the A matrix, which is the sum of the diagonal elements; ⁇ represents the mean value of the noise floor power of the receiving antenna.
  • a data carrier to be detected is selected from the current resource block, and the final detected merge symbol is obtained by using the following formula:
  • the algorithm is reselected to repeat the above decision step.
  • the next to-be-detected resource block is selected, and the foregoing algorithm is repeated until all the detected resource blocks complete the detection.
  • the present invention can adaptively determine whether there is interference in the current channel environment, and whether interference characteristics are reflected in the currently estimated interference noise covariance matrix in the presence of interference, and further in the interference suppression algorithm (IRC) Adaptive switching with non-interference suppression algorithm (MRC).
  • IRC interference suppression algorithm
  • MRC Adaptive switching with non-interference suppression algorithm
  • an embodiment of the present invention further provides an adaptive multi-antenna diversity and interference cancellation apparatus.
  • a complete diversity and interference cancellation apparatus it is required to include channel estimation, NI matrix estimation, and diversity and calculation related modules as support.
  • the device mainly includes the following functional modules:
  • An antenna noise measuring module configured to: measure noise power on each receiving antenna;
  • An adaptive decision module configured to: determine whether a ratio of a sum of diagonal elements of the estimated NI matrix of the data carrier to be detected and a mean value of noise power on each receiving antenna is greater than a predetermined threshold;
  • a merging processing module configured to: perform interference suppression combined detection on the to-be-detected data carrier according to a determination result of the adaptive decision module, and if not, perform interference suppression combined detection on the to-be-detected data carrier; Interference suppression combined detection.
  • the apparatus further includes: a channel estimation module and an NI matrix estimation module, where the channel estimation module is configured to obtain, by using channel estimation, a channel response estimation value of each data carrier on the resource block;
  • the NI matrix estimation module is configured to estimate an estimate of the NI matrix for each data carrier based on the channel response estimate derived by the channel estimation module.
  • the antenna noise measuring module is configured to measure the noise power on each receiving antenna by means of a null carrier or a silent frame.
  • the merging processing module is configured to perform interference suppression combining detection on the to-be-detected data carrier in the following manner:
  • the first combined data carrier symbol, 3 ⁇ 4 is the NI matrix estimation value of the first data carrier, is the column vector formed by the response of the first data carrier on each receiving antenna, and H is the channel response of each receiving antenna The column vector formed by the estimate.
  • the merging processing module is configured to perform non-interference suppression combined detection on the data carrier to be detected in the following manner:
  • the present invention can significantly suppress such interference in the presence of severe adjacent-channel co-channel interference; at the same time, robust performance can still be obtained in the absence of co-channel interference or weak co-channel interference. There is no deterioration in performance; and, when the NI matrix estimation is inaccurate, robust performance can still be obtained, and the complexity and computational complexity in this case can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种自适应多天线分集合并干扰消除方法及装置,该方法包括:测量每根接收天线上的噪声功率;判断待检测数据载波的NI矩阵的对角线元素之和与各接收天线上的噪声功率的均值的比值是否大于预定的门限值,若是,则对所述待检测数据载波进行干扰抑制合并检测;否则,对所述待检测数据载波进行非干扰抑制合并检测。本发明从影响IRC合并算法的最根本因素NI估计矩阵入手,通过NI矩阵的特定数值特征判断当前获得的NI矩阵是否包含较多的干扰成份,进而选择使用IRC算法还是MRC算法,使系统获得最优的性能。

Description

一种自适应多天线分集合并干扰消除方法及装置
技术领域
本发明涉及移动通信技术领域, 更具体地, 涉及一种自适应多天线分集 合并干扰消除方法及装置。
背景技术
无线通信系统总是受到各种各样的干扰, 对于以 OFDMA ( Orthogonal Frequency Division Multiple Access, 正交频分多址接入 )技术为基础的第 4代 通信 ( 4G )系统,如 Wimax ( Worldwide Interoperability for Microwave Access, 全球微波互联接入) , LTE ( Long Term Evolution, 长期演进) 而言, 始终受 到较严重的 OFDM同道干扰(Co-Channel Interference, 简称为 CCI ) 。 在蜂 窝网络中, 由于频谱复用的关系, 此种干扰表现为邻区干扰, 由于干扰源通 常干扰多个数据载波, 因而可以认为是一种宽带的干扰。
目前, 邻区干扰控制 /抑制 /消除问题是一个热门的研究问题, 也是 4G通 信系统同频组网必须要解决的问题。 主动式的手段通常表现为功率控制、 动 态的频率复用、 邻区的波束赋形 /调度协作以及正在讨论中的 CoMP ( Coordinated Multipoint transmission/reception , 多点协作传输接收 )中的联合 传输, 这些技术在标准制定时就需要做较详细的讨论, 需要网络结构和信令 支持。 而在被动式的干扰消除技术则不依赖于信令的交互, 通常由接收机完 成, 可以广泛适用于各种网络中。
通常说来, 接收侧的干扰消除往往要依赖于空间、 时间和频率三个维度 的资源, 考虑到第四代通信系统广泛釆用了多天线技术(ΜΙΜΟ ) , 在空间 维度上进行对多个天线上的信号响应样本的分集合并接收被 ΜΙΜΟ系统广泛 的釆用。 传统的多天线分集合并算法有等增益合并, 选择性合并以及最大比 合并(Maximum Ratio Combining, 简称为 MRC )等, 在噪声受限的信道环境 下有着非常优秀的性能, 但在干扰受限的信道环境下性能并不理想, 同时一 类以抑制干扰为主要目的的多天线分集合并算法被称为干扰抑制合并技术 ( Interference Rejection Combining, 简称为 IRC ) , 在消除邻区同频干扰上体 现出了优异的性能。 但 IRC算法的复杂度比 MRC算法高, 且在噪声受限的 场景下相较于 MRC算法并无优势甚至会出现一定程度的性能恶化。
目前,解决上述问题的办法是进行 IRC算法与 MRC算法的自适应切换, 在干扰受限的场景下进行 IRC合并, 在噪声受限的场景下进行 MRC合并。
与传统 MRC合并算法相比, IRC算法的核心思想是进行干扰和噪声相关 矩阵(ΝΙ矩阵) 的估计, 使用 ΝΙ矩阵的逆矩阵来处理接收信号, 抑制干扰 分量, 保留信号分量。 因而在实际使用 IRC 算法时, 能否获得较准确的 ΝΙ 矩阵估计是一个关键因素,也就是说 ΝΙ矩阵中干扰的特性体现的越明显, IRC 合并算法的性能越好。
现有技术中主要存在如下技术问题: 一般意义上的干扰抑制合并与非干 扰抑制合并的自适应切换技术, 是通过接收侧的信号特征来判决接收信号中 有无干扰成份, 进而选择分集合并算法。 但在实际使用时, 往往存在着接收 信号中存在很大的干扰成份,但 ΝΙ矩阵中包含的干扰分量较少或没有, 此时 使用 IRC算法反而会使性能恶化。这是因为参与统计计算 ΝΙ矩阵的样本数量 不足时(通常为一定资源粒度里的导频数目) , ΝΙ矩阵的计算值无法反应干 扰的特性, 此时估计获得的 ΝΙ矩阵的主要成分是噪声, 无法体现出干扰信道 的空间相关特性, 在这种情况下, 由于无法获得干扰信号的特征, 只能选择 使用非干扰抑制的合并算法(MRC ) 。
发明内容
本发明解决的技术问题是提供一种自适应多天线分集合并干扰消除方法 及装置, 能够在干扰抑制算法 (IRC ) 与非干扰抑制算法(MRC ) 间进行自 适应地切换。
为解决上述技术问题, 本发明提供了一种自适应多天线分集合并干扰消 除方法, 包括:
测量每根接收天线上的噪声功率;
判断待检测数据载波的 ΝΙ矩阵的对角线元素之和与各接收天线上的噪 声功率的均值的比值是否大于预定的门限值, 若是, 则对所述待检测数据载 波进行干扰抑制合并检测; 若否, 则对所述待检测数据载波进行非干扰抑制 合并检测。
可选地, 所述方法还包括:
通过信道估计得出资源块上每个数据载波的信道响应估计值;
并根据所述信道响应估计值估计每个数据载波的 NI矩阵的估计值。 可选地, 测量每根接收天线上的噪声功率的步骤包括: 通过空载波或者 静默帧的方式测量各接收天线上的噪声功率。
可选地, 对所述待检测数据载波进行干扰抑制合并检测的步骤包括: 计算所述待检测数据载波的 NI矩阵的逆矩阵,并按照如下公式计算合并 后符号:
Figure imgf000005_0001
其中, 为第 ,个合并后的数据载波符号, ¾为第 I个数据载波的 NI矩 阵估计值, 为各接收天线上第 ,个数据载波的响应构成的列向量, H 为各 接收天线信道响应估计值构成的列向量。
可选地, 对所述待检测数据载波进行非干扰抑制合并检测的步骤包括: 按照如下公式计算合并后符号: . = H ^. ;
^为第 ,个合并后的数据载波符号, 为各接收天线上第 ,个数据载波的 响应构成的列向量, H 为各接收天线信道响应估计值构成的列向量。 本发明还提供了一种自适应多天线分集合并干扰消除装置, 所述装置包 括:
天线噪声测量模块, 其设置为: 测量每根接收天线上的噪声功率; 自适应判决模块, 其设置为: 判断估计的待检测数据载波的 NI矩阵的对 角线元素之和与各接收天线上的噪声功率的均值的比值是否大于预定的门限 值; 以及
合并处理模块, 其设置为: 根据所述自适应判决模块的判决结果, 若判 决结果为是, 则对所述待检测数据载波进行干扰抑制合并检测; 否则, 对所 述待检测数据载波进行非干扰抑制合并检测。
可选地, 所述装置还包括:
信道估计模块, 其设置为: 通过信道估计得出资源块上每个数据载波的 信道响应估计值; 以及
NI矩阵估计模块, 其设置为: 根据所述信道估计模块得出的所述信道响 应估计值估计每个数据载波的 NI矩阵的估计值。
可选地, 所述天线噪声测量模块是设置为通过空载波或者静默帧的方式 测量各接收天线上的噪声功率。
可选地, 若所述自适应判决模块的判决结果为是, 所述合并处理模块是 设置为以如下方式对所述待检测数据载波进行干扰抑制合并检测:
计算所述待检测数据载波的 NI矩阵的逆矩阵,并按照如下公式计算合并 后符号:
Figure imgf000006_0001
其中, 为第 ,个合并后的数据载波符号, ¾为第 I个数据载波的 NI矩 阵估计值, 为各接收天线上第 ,个数据载波的响应构成的列向量, H 为各 接收天线信道响应估计值构成的列向量。
可选地, 若所述自适应判决模块的判决结果为否, 所述合并处理模块是 设置为以如下方式对所述待检测数据载波进行非干扰抑制合并检测:
按照如下公式计算合并后符号: . = H ^. ;
为第 I个合并后的数据载波符号, 为各接收天线上第 I个数据载波的 响应构成的列向量, H 为各接收天线信道响应估计值构成的列向量。 本发明从影响 IRC合并算法的最根本因素 NI估计矩阵入手, 通过 NI矩 阵的特定数值特征判断当前获得的 NI矩阵是否包含较多的干扰成份,进而选 择使用 IRC算法还是 MRC算法, 使系统获得最优的性能。
釆用本发明, 在存在严重的邻区同频干扰时, 能够显著的抑制这种干扰; 同时, 在不存在同频干扰或者同频干扰很弱时, 依然能够获得稳健的性能, 不会出现性能的恶化; 并且, 在出现 NI矩阵估计不准确时, 依然能够获得稳 健的性能, 且能够降低此种情况下的复杂度和运算量。 附图概述
图 1为根据本发明实施例的自适应多天线分集合并方法的流程示意图。 本发明的较佳实施方式
本发明的主要构思为: 首先, 估计每根天线上的噪声功率; 其次, 将多 个接收天线的底噪功率的均值与估计的 ΝΙ矩阵的对角线元素相比较,判决出 ΝΙ矩阵中是否包含较多的干扰成份,进而决定是否进行矩阵求逆和其他运算; 最后, 进行相应分集合并处理。
基于以上构思, 本发明提供一种自适应多天线分集合并干扰消除方法, 具体釆用如下技术方案:
测量每根接收天线上的噪声功率;
判断估计的待检测数据载波的 ΝΙ矩阵的对角线元素之和与各接收天线 上的噪声功率的均值的比值是否大于预定的门限值, 若是, 则对所述待检测 数据载波进行 IRC检测; 否则, 对所述待检测数据载波进行 MRC合并检测。
较佳地, 所述方法还包括:
通过信道估计得出资源块上每个数据载波的信道响应估计值;
并根据所述信道响应估计值估计每个数据载波的干扰噪声协方差矩阵 ( ΝΙ矩阵) 。
较佳地, 所述接收天线上的噪声功率的测量包括但不限于以下方式: a )空载波的方式, 即利用没有发送任何数据的空载波进行所述接收天线 上的噪声功率估计;
b )静默帧的方式, 即某一帧该基站通知用户不发射任何信号, 此时基站 侧就可以测量天线底噪功率。
较佳地, 对所述待检测数据载波进行 IRC检测, 包括:
计算所述待检测数据载波的 NI矩阵的逆矩阵,并按照如下公式计算合并 后符号:
Figure imgf000008_0001
其中, 为第 ,个合并后的数据载波符号, ¾为第 ,个载波上的 NI矩阵, 为各个接收天线上第 ,个载波的响应构成的列向量, H 为各天线信道估计 结果构成的列向量。
较佳地, 对所述待检测数据载波进行 IRC检测, 包括:
按照如下公式计算合并后符号: . = H . .。
为了便于阐述本发明, 以下将结合附图及具体实施例对本发明作进一步 说明。
图 1示出了本发明实施例的自适应多天线分集合并方法的流程示意图, 如图 1所示, 该流程主要包括以下步骤:
步骤 110 , 空载波天线底噪估计, 测量每根接收天线上的噪声功率 , 其 中 表示第 根接收天线;
步骤 120 , 通过信道估计, 得出待检测资源块上 p个数据载波的信道响 应估计值 其中 i、 表示第 _;根接收天线中第 ,个载波;
具体地, 可以釆用序列相关信道估计方法, 即利用不同基站发出的不同 序列之间的相关特性来抑制干扰。
步骤 130 , NI矩阵估计, 获得待检测资源块上每个数据载波的干扰噪声 协方差矩阵 NI的估计值 R
其中, ¾为第 ,个数据载波上的 NI矩阵估计值, 的维度为 [接收天线数 *接收天线数];
其中, 估计 NI矩阵的目的是使用 NI矩阵的逆矩阵作为处理权值的一部 分, 使用该处理权值进行抑制干扰。
步骤 140 , 自适应判决, 判断下式是否成立, 若成立, 则转入步骤 150; 否则转入步骤 160 ,
Figure imgf000009_0001
其中, Trace ( A )表示 A矩阵的迹, 即为其对角线元素的和。 丄^ ,.表 示 根接收天线的底噪功率的均值。 为预定的判决门限值, 为常数。 考虑 到实际应用时 ΝΙ矩阵的对角线元素的抖动问题, 优选的, 取《 = 1.5。
步骤 150, 根据 R和信道估计结果进行 IRC检测, 选择待处理资源块中 的一个载波,计算当前载波 ΝΙ矩阵的逆矩阵 并按照如下公式计算合并 后符号:
其中, 为第 z个合并后的数据载波符号, 为 ^矩阵的估计值, 为 各个接收天线上第 ,个载波的响应构成的列向量, H 为各天线信道估计结果 构成的列向量。
步骤 160,进行数据载波 MRC合并检测,按照如下公式计算合并后符号:
Figure imgf000009_0002
完成上述步骤 150或步骤 160后, 结束本次算法, 重新选择下一待检测 载波符号重复进行以上步骤。
以下将结合若干应用示例对本发明技术方案的实施作更进一步详细描 述。
应用示例一
本应用示例中, 假定某通信系统接收侧具有 w根接收天线, 接收时获得 了 m个接收信号样本 SH
假定该系统有 n个待检测资源块, 每个资源块中有 p个待检测数据载波 和 q个导频载波。
首先, 使用没有发送任何数据的空载波进行天线底噪的估计, 测量获得 w才艮接收天线底噪功率为 — σ。 选择一个待检测资源块, 估计每根接收天线上的信道响应, 利用其上的 q个导频载波进行信道估计, 获得 p个数据载波的信道响应估计值 ήί , 其中
" 表示第 _;根接收天线中第 ,个载波。
选择上述待检测资源块, 完成;?个数据载波的 ΝΙ矩阵估计值 ·, 其中 表示第 ζ·个数据载波。
选择一个待检测数据载波, 按照下式判决其 ΝΙ矩阵 Ri:
Trace(R,) .
~ - > a ,
其中, Trace ( A )表示 A矩阵的迹, 即为 对角线元素的和; 丄 表 示 m才艮接收天线的底噪功率的均值。
假定本应用示例中, 满足上述不等式, 判断 矩阵是否可逆, 若可逆则 计算其逆矩 并按照如下公式计算合并后符号:
Figure imgf000010_0001
若 '矩阵不可逆, 则可以通过对角加载方式解决。
完成后结束本次算法,重新选择下一待检测载波符号重复上述判决步骤。 在完成该资源块所有载波的检测合并后, 选择下一待检测资源块, 重复上述 算法, 直至所有待检测资源块全部完成检测。
应用示例二 假定某通信系统接收侧具有 m根接收天线,接收时获得了 m个接收信号 样本 5s… 。
假定该系统有 n个待检测资源块, 每个资源块中有 p个待检测数据载波 和 q个导频载波。
首先, 使用没有发送任何数据的空载波进行天线底噪的估计, 测量获得 w根接收天线底噪功率为 0^2 ... 。
选择一个待检测资源块, 估计每根接收天线上的信道响应, 利用其上的 q个导频载波进行信道估计, 获得 p个数据载波的信道响应估计值 , 其中 " 表示第 _;根接收天线中第 ,个载波。
选择上述待检测资源块, 完成 ρ个数据载波的 ΝΙ矩阵估计 Ri , 其中 Ri 表示第 ,个数据载波。
选择一个待检测数据载波, 按照下式判决其 NI矩阵 ¾:
Trace(Rt) .
~ - > ,
其中, Trace ( A )表示 A矩阵的迹, 即为 对角线元素的和; 丄 表 示 m才艮接收天线的底噪功率的均值。
假定本应用示例中不满足上述不等式, 则从当前资源块中选择一个待检 测数据载波, 使用如下公式获得最终检测合并符号:
Figure imgf000011_0001
完成后结束本次算法,重新选择下一待检测载波符号重复上述判决步骤。 在完成该资源块所有载波的检测合并后, 选择下一待检测资源块, 重复上述 算法, 直至所有待检测资源块全部完成检测。
根据以上描述, 釆用本发明能够自适应的判决当前信道环境是否存在干 扰, 以及在存在干扰时, 当前估计的干扰噪声协方差矩阵中是否体现了干扰 的特性, 进而在干扰抑制算法 (IRC ) 与非干扰抑制算法(MRC ) 间自适应 的切换。
相应的, 本发明实施例还提供了一种自适应多天线分集合并干扰消除装 置, 作为完整的分集合并干扰消除装置, 需要包括信道估计, NI矩阵估计以 及分集合并计算等相关模块作为支持。 本实施例中, 该装置主要包括以下功 能模块:
天线噪声测量模块, 其设置为: 测量每根接收天线上的噪声功率; 自适应判决模块, 其设置为: 判断估计的待检测数据载波的 NI矩阵的对 角线元素之和与各接收天线上的噪声功率的均值的比值是否大于预定的门限 值;
合并处理模块, 其设置为: 根据所述自适应判决模块的判决结果, 若判 决结果为是, 则对所述待检测数据载波进行干扰抑制合并检测; 否则, 对所 述待检测数据载波进行非干扰抑制合并检测。
较佳地, 所述装置还包括: 信道估计模块和 NI矩阵估计模块, 信道估计模块设置为通过信道估计得出资源块上每个数据载波的信道响 应估计值;
NI矩阵估计模块设置为根据所述信道估计模块得出的所述信道响应估计 值估计每个数据载波的 NI矩阵的估计值。
较佳地, 所述天线噪声测量模块是设置为通过空载波或者静默帧的方式 测量各接收天线上的噪声功率。
较佳地, 所述合并处理模块是设置为以如下方式对所述待检测数据载波 进行干扰抑制合并检测:
计算所述待检测数据载波的 NI矩阵的逆矩阵,并按照如下公式计算合并 后符号:
其中, 为第 ,个合并后的数据载波符号, ¾为第 I个数据载波的 NI矩 阵估计值, 为各接收天线上第 ,个数据载波的响应构成的列向量, H 为各 接收天线信道响应估计值构成的列向量。
较佳地, 所述合并处理模块是设置为以如下方式对所述待检测数据载波 进行非干扰抑制合并检测:
按照如下公式计算合并后符号:
以上仅为本发明的优选实施案例而已, 并不用于限制本发明, 本发明还 可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域 的技术人员可根据本发明做出各种相应的改变和变形, 但这些相应的改变和 变形都应属于本发明所附的权利要求的保护范围。
显然, 本领域的技术人员应该明白, 上述的本发明的各功能模块或各步 骤可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者 分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行 的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或 者将它们分别制作成各个集成电路功能模块, 或者将它们中的多个功能模块 或步骤制作成单个集成电路功能模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。
工业实用性 釆用本发明, 在存在严重的邻区同频干扰时, 能够显著的抑制这种干扰; 同时, 在不存在同频干扰或者同频干扰很弱时, 依然能够获得稳健的性能, 不会出现性能的恶化; 并且, 在出现 NI矩阵估计不准确时, 依然能够获得稳 健的性能, 且能够降低此种情况下的复杂度和运算量。

Claims

权 利 要 求 书
1、 一种自适应多天线分集合并干扰消除方法, 包括:
测量每根接收天线上的噪声功率;
判断待检测数据载波的干扰噪声协方差 (NI )矩阵的对角线元素之和与 各接收天线上的噪声功率的均值的比值是否大于预定的门限值, 若是, 则对 所述待检测数据载波进行干扰抑制合并检测; 若否, 则对所述待检测数据载 波进行非干扰抑制合并检测。
2、 如权利要求 1所述的方法, 所述方法还包括:
通过信道估计得出资源块上每个数据载波的信道响应估计值;
并根据所述信道响应估计值估计每个数据载波的 NI矩阵的估计值。
3、 如权利要求 1所述的方法, 其中, 所述测量每根接收天线上的噪声功 率的步骤包括:
通过空载波或者静默帧的方式测量各接收天线上的噪声功率。
4、 如权利要求 1、 2或 3所述的方法, 其中, 对所述待检测数据载波进 行干扰抑制合并检测的步骤包括:
计算所述待检测数据载波的 NI矩阵的逆矩阵,并按照如下公式计算合并 后符号:
其中, 为第 ,个合并后的数据载波符号, ¾为第 I个数据载波的 NI矩 阵估计值, 为各接收天线上第 ,个数据载波的响应构成的列向量, H 为各 接收天线信道响应估计值构成的列向量。
5、 如权利要求 1、 2或 3所述的方法, 其中, 对所述待检测数据载波进 行非干扰抑制合并检测的步骤包括: 按照如下公式计算合并后符号:
Figure imgf000014_0001
^为第 ,个合并后的数据载波符号, 为各接收天线上第 ,个数据载波的 响应构成的列向量, H 为各接收天线信道响应估计值构成的列向量。
6、 一种自适应多天线分集合并干扰消除装置, 所述装置包括: 天线噪声测量模块, 其设置为: 测量每根接收天线上的噪声功率; 自适应判决模块, 其设置为: 判断估计的待检测数据载波的干扰噪声协 方差 (NI )矩阵的对角线元素之和与各接收天线上的噪声功率的均值的比值 是否大于预定的门限值; 以及
合并处理模块, 其设置为: 若所述自适应判决模块的判决结果为是, 则 对所述待检测数据载波进行干扰抑制合并检测; 若所述自适应判决模块的判 决结果为否, 则对所述待检测数据载波进行非干扰抑制合并检测。
7、 如权利要求 6所述的装置, 所述装置还包括:
信道估计模块, 其设置为: 通过信道估计得出资源块上每个数据载波的 信道响应估计值; 以及
NI矩阵估计模块, 其设置为: 根据所述信道估计模块得出的所述信道响 应估计值估计每个数据载波的 NI矩阵的估计值。
8、 如权利要求 6所述的装置, 其中,
所述天线噪声测量模块是设置为: 通过空载波或者静默帧的方式测量各 接收天线上的噪声功率。
9、 如权利要求 6、 7或 8所述的装置, 其中,
若所述自适应判决模块的判决结果为是, 所述合并处理模块是设置为以 如下方式对所述待检测数据载波进行干扰抑制合并检测:
计算所述待检测数据载波的 NI矩阵的逆矩阵,并按照如下公式计算合并 后符号:
其中, 为第 ,个合并后的数据载波符号, ¾为第 I个数据载波的 NI矩 阵估计值, 为各接收天线上第 ,个数据载波的响应构成的列向量, H 为各 接收天线信道响应估计值构成的列向量。
10、 如权利要求 6、 7或 8所述的装置, 其中,
若所述自适应判决模块的判决结果为否, 所述合并处理模块是设置为以 如下方式对所述待检测数据载波进行非干扰抑制合并检测:
按照如下公式计算合并后符号: . =H . .;
^为第 ,个合并后的数据载波符号, 为各接收天线上第 ,个数据载波的 响应构成的列向量, H 为各接收天线信道响应估计值构成的列向量。
PCT/CN2011/075361 2010-11-23 2011-06-07 一种自适应多天线分集合并干扰消除方法及装置 WO2012068863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105561413A CN102480314A (zh) 2010-11-23 2010-11-23 一种自适应多天线分集合并干扰消除方法及装置
CN201010556141.3 2010-11-23

Publications (1)

Publication Number Publication Date
WO2012068863A1 true WO2012068863A1 (zh) 2012-05-31

Family

ID=46092813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075361 WO2012068863A1 (zh) 2010-11-23 2011-06-07 一种自适应多天线分集合并干扰消除方法及装置

Country Status (2)

Country Link
CN (1) CN102480314A (zh)
WO (1) WO2012068863A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516412A (zh) * 2012-06-28 2014-01-15 联芯科技有限公司 接收数据的多输入多输出检测方法及系统
US9602313B1 (en) 2015-09-01 2017-03-21 Qualcomm Incorporated Time-controlled spatial interference rejection

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873129B (zh) * 2012-12-14 2017-04-05 京信通信系统(中国)有限公司 自适应分集合并方法和装置
CN104283599B (zh) * 2013-07-10 2018-11-06 南京中兴新软件有限责任公司 一种基站、终端以及干扰抑制的方法、装置
CN104469783B (zh) * 2013-09-16 2018-08-14 联芯科技有限公司 一种应用于lte系统的同频干扰抑制方法
CN105827559A (zh) * 2015-01-08 2016-08-03 中兴通讯股份有限公司 天线合并算法的选择方法及装置
CN113258964B (zh) * 2020-02-10 2022-06-17 大唐移动通信设备有限公司 一种干扰抑制方法、装置、电子设备及存储介质
CN112532286B (zh) * 2020-11-17 2021-08-06 广州技象科技有限公司 基于多天线分集接收的分集合并模式选择方法及装置
CN115021858A (zh) * 2021-03-05 2022-09-06 海能达通信股份有限公司 干扰抑制方法和相关装置、基站、存储介质
CN115695097A (zh) * 2021-07-30 2023-02-03 大唐移动通信设备有限公司 一种信道均衡方法、设备、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650543A (zh) * 2002-03-26 2005-08-03 英特尔公司 在多信道接收机中选择权值的方法
US20060291596A1 (en) * 2005-06-23 2006-12-28 Nokia Corporation Method of estimating noise and interference covariance matrix, receiver and radio system
US20080231500A1 (en) * 2007-02-23 2008-09-25 Nokia Corporation Receiving method and receiver
US20090086837A1 (en) * 2007-10-02 2009-04-02 Nokia Corporation Interfering stream identification in wireless communication systems
US20090116568A1 (en) * 2007-11-07 2009-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Interference Rejection Combining and Detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650543A (zh) * 2002-03-26 2005-08-03 英特尔公司 在多信道接收机中选择权值的方法
US20060291596A1 (en) * 2005-06-23 2006-12-28 Nokia Corporation Method of estimating noise and interference covariance matrix, receiver and radio system
US20080231500A1 (en) * 2007-02-23 2008-09-25 Nokia Corporation Receiving method and receiver
US20090086837A1 (en) * 2007-10-02 2009-04-02 Nokia Corporation Interfering stream identification in wireless communication systems
US20090116568A1 (en) * 2007-11-07 2009-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Interference Rejection Combining and Detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516412A (zh) * 2012-06-28 2014-01-15 联芯科技有限公司 接收数据的多输入多输出检测方法及系统
CN103516412B (zh) * 2012-06-28 2017-03-08 联芯科技有限公司 接收数据的多输入多输出检测方法及系统
US9602313B1 (en) 2015-09-01 2017-03-21 Qualcomm Incorporated Time-controlled spatial interference rejection

Also Published As

Publication number Publication date
CN102480314A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2012068863A1 (zh) 一种自适应多天线分集合并干扰消除方法及装置
US9516528B2 (en) Method for estimating interference within a serving cell, user equipment, computer program and computer program products
US8929343B2 (en) Method, computer program, receiver, and apparatus for determining a channel quality index
US9705582B2 (en) Method for reducing complexity of MIMO receiver which shares preprocessing filter in a group unit by adaptively using covariance matrix
US20220217018A1 (en) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
US20140086371A1 (en) Interference cancellation apparatus and receiver
KR102316996B1 (ko) 간섭 제거 방법 및 그 장치
US9220026B2 (en) Base station, wireless terminal, and wireless communication system
US8755477B1 (en) Method and systems of selecting a mode of operation of a multi-antenna receiver in a radio access network
US8351955B2 (en) Method and device for determining antenna cooperation set, method and device for determining base station cooperation set
US8014727B2 (en) Signal processing in electronic apparatus
EP3114775B1 (en) Method for processing received signal of mimo receiver
EP2981012B1 (en) User device and user allocation information estimation method
US9838094B2 (en) Method for processing received signal of MIMO receiver
US8929390B2 (en) Methods and apparatuses for channel estimation in wireless networks
CN113347702B (zh) 干扰源定位方法以及相关设备
US20170048029A1 (en) Method by which mimo transmitter forms re group
US11411632B2 (en) Method to estimate SNR for MU-MIMO based on channel orthogonality
US10812171B2 (en) Interference cancellation method and apparatus for wireless communication system
Mahmood et al. An efficient rank adaptation algorithm for cellular MIMO systems with IRC receivers
KR101049628B1 (ko) 무선 이동통신 시스템에서의 mu-mimo 스케줄링을 위한 수신 전력 기반 페어링 방법
US9686804B2 (en) Method and network node for assisting handling of interference at a receiver device
US20170012693A1 (en) Method for processing received signal of mimo receiver
KR20090090768A (ko) 다중 사용자 다중 입출력 무선통신 시스템의 간섭 제거장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842841

Country of ref document: EP

Kind code of ref document: A1