WO2017177604A1 - 一种大型光伏阵列中电池面板的故障检测定位系统 - Google Patents

一种大型光伏阵列中电池面板的故障检测定位系统 Download PDF

Info

Publication number
WO2017177604A1
WO2017177604A1 PCT/CN2016/096748 CN2016096748W WO2017177604A1 WO 2017177604 A1 WO2017177604 A1 WO 2017177604A1 CN 2016096748 W CN2016096748 W CN 2016096748W WO 2017177604 A1 WO2017177604 A1 WO 2017177604A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
battery
detection
monitoring terminal
positioning system
Prior art date
Application number
PCT/CN2016/096748
Other languages
English (en)
French (fr)
Inventor
徐建荣
周峰
徐斐
解玉凤
周乐成
包文中
Original Assignee
苏州瑞得恩自动化设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞得恩自动化设备科技有限公司 filed Critical 苏州瑞得恩自动化设备科技有限公司
Priority to JP2018568349A priority Critical patent/JP6741798B2/ja
Priority to EP16898419.3A priority patent/EP3444944B1/en
Priority to ES16898419T priority patent/ES2886142T3/es
Priority to US16/093,319 priority patent/US10418936B2/en
Publication of WO2017177604A1 publication Critical patent/WO2017177604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the technical field of photovoltaic power generation, and relates to a fault detection and positioning system for a battery panel in a large-scale photovoltaic array, in particular to a system structure and a method for detecting and locating a faulty solar panel.
  • a photovoltaic array is a core component of a photovoltaic power generation system, and is composed of several photovoltaic cells panels connected in series and in parallel.
  • the photovoltaic array power generation efficiency is seriously affected. Therefore, how to conveniently monitor the power generation of the PV array and timely detect and locate the fault panel is a key issue to improve the efficiency of the power plant.
  • the prior art photovoltaic power generation system fault detection method has the following limitations: for example,
  • Another category is time domain reflectometry based on high frequency signal injection (review of photovoltaic array fault diagnosis methods, Power Electronics Technology, March 2013, Vol. 47, No. 3), the principle is to inject high into the photovoltaic panel The frequency signal is then detected by its reflected signal, and the fault detection and positioning of the photovoltaic array is performed according to different changes of the reflected signal.
  • the method is not real-time, and has high requirements on equipment and limited diagnostic accuracy;
  • Another category is sensor-based troubleshooting and various improvements to this category.
  • the method can realize online fault diagnosis and positioning to a certain extent; among them, the Chinese patent (Application No. 201310737368.1) discloses a device for detecting current and voltage faults of photovoltaic panel strings, which can be measured in real time, but only Fault analysis of different strings can not locate the fault panel. For large photovoltaic power plants, it still needs a lot of labor cost for panel inspection, and the manual measurement data is very inconvenient in terms of preservation, post-processing and analysis; Among them, the Chinese patent (Application No.
  • 201080001447.0 discloses a fault detection method for a solar power generation system, in which the current value of each solar battery module or the current value of each solar battery string and the total of the entire solar power generation system The current value is measured and the fault is calculated.
  • the method has the problem that the current sensor is too much and the cost is too high.
  • the Chinese patent Application No. 201010251723.0 proposes a method for saving the number of sensors, and the battery boards are first connected in parallel to form a layer, and then several layers are formed in series (TCT). Structure), using the maximum value of each layer of sensor current to detect whether the panel is faulty.
  • TCT series
  • Structure using the maximum value of each layer of sensor current to detect whether the panel is faulty.
  • the structure of photovoltaic power plants is mainly serial-parallel (SP-structure).
  • the structure of this patent needs to change the connection mode of the original mainstream photovoltaic array.
  • the Chinese patent proposes a method for saving the number of sensors for the mainstream SP structure panel array, in the case where each string of M boards has a detection accuracy of L
  • the number of sensors can be reduced to M/L, but this method has obvious disadvantages: the number of sensors required for each string of panels is still large, and if high resolution is required, the number of sensors is still the same as the number of battery panels; Moreover, the measurement voltage range of each sensor in the method is different, which brings trouble to the selection of the sensor; at the same time, the method has special requirements for the placement position of the sensor, which brings complexity to the installation of the power station.
  • the inventor of the present application proposes a photovoltaic panel fault detection system capable of real-time online monitoring, a small number of sensors, high electrical detection accuracy, and easy installation and implementation for the mainstream panel array structure.
  • the present invention aims to provide a system for detecting faults of a photovoltaic array panel in real time in view of the deficiencies in the prior art, and particularly relates to a fault detection and positioning system for a battery panel in a large-scale photovoltaic array, and more particularly to a faulty solar panel.
  • the invention can be accurate Positioning to a faulty photovoltaic panel and minimizing the number of sensors is easy to implement and install in existing power plants.
  • the invention provides a fault detection and positioning system for a battery panel in a large-scale photovoltaic array, which comprises a first photovoltaic panel fault detection and positioning system, a second photovoltaic panel fault detection and positioning system, and/or a third photovoltaic panel fault detection system. GPS.
  • the present invention provides a first photovoltaic panel fault detection and positioning system, including:
  • a battery panel array of a series-connected rear-parallel structure comprising n series-parallel battery strings, wherein each battery string comprises m serially connected battery panels;
  • each detection box (type A) is connected to a corresponding battery string for detecting the operation of the battery string;
  • each cluster panel voltage detecting line is used to connect each panel in a battery string and a detection box corresponding to the battery string (Class A);
  • a monitoring terminal connected to all detection boxes (type A), for receiving data of the detection box (class A), and transmitting control signals to the detection box (class A);
  • An environmental parameter detecting module is connected to the monitoring terminal and configured to send the environmental parameter to the monitoring terminal;
  • the detection box (class A) includes a string current detecting module, a panel voltage detecting module and a control module: wherein the string current detecting module is configured to detect the corresponding box (category A) a current parameter of the battery string, the string current detecting module is connected in series with the string current line, and an output thereof is connected to the control module; wherein the panel voltage detecting module is configured to detect each battery panel in the corresponding battery string a voltage parameter, the panel voltage detecting module is connected to a cluster of panel detecting lines, and an output thereof is connected to the control module; wherein the control module is connected to the string current detecting module and the panel voltage detecting module
  • the utility model is configured to perform control, data collection and processing functions on the string current detecting module and the panel voltage detecting module, wherein the control module is connected to the monitoring terminal, and is configured to send data to the monitoring terminal and receive a control signal of the monitoring terminal. .
  • the structure of the panel voltage detecting module comprises a voltage sensor and m power switches, wherein each power switch is connected in series on a voltage signal detecting line of a battery panel, wherein the voltage sensor is connected to the voltage signal detecting line. End. Under the control of the control module, each work is turned on in turn. The rate switch further turns on the connection of the voltage signal detection line of each battery panel to the voltage sensor, and sequentially measures the voltage parameters of each battery panel in the corresponding string.
  • the string current detecting module has a structure including a current sensor connected in series to the string current line, the output of which is connected to the control module.
  • the present invention provides an operation flow for the first photovoltaic panel fault detection and positioning system, including:
  • the control module performs current value sampling from the current detecting unit
  • control module sequentially turns on the power switches corresponding to each panel, and sequentially collects the voltage values of the panels;
  • the control module performs algorithm processing based on the collected current and voltage values
  • the control module sends the data and the processing result to the monitoring terminal
  • the monitoring terminal samples the environmental parameters at the same time
  • the monitoring terminal performs algorithm processing on data and environmental parameters obtained from all control modules, and gives an analysis result of the running condition of the power station, including indicating the location of the fault panel;
  • the monitoring terminal determines whether the fault condition has reached the level that the user needs to repair, and if so, performs power station maintenance and panel fault repair, and if not, returns to 1.2;
  • the first photovoltaic panel fault detection and positioning system and corresponding operation flow of the invention can overcome the problem of too many sensors faced in the existing sensor-based detection method, and only one current sensor is needed for each string A voltage sensor significantly reduces the cost. At the same time, it also has the advantages of good real-time detection, online detection without disturbing the operation of the power station, and automatic formation of a database for later analysis.
  • the present invention proposes a second photovoltaic panel fault detection and positioning system, including:
  • a battery panel array of a series-connected rear-parallel structure comprising n series-parallel battery strings, wherein each battery string comprises m serially connected battery panels;
  • each of which is connected to a corresponding battery string for detecting the operation of the battery string;
  • each cluster panel voltage detecting line is used to connect each panel in a battery string and a detection box corresponding to the battery string (Class B);
  • a combiner box with current detection function is connected with the current lines of the plurality of battery strings, the output one is used for transmitting power generation externally, and the output 2 is used for sending each group of current detection results to the monitoring terminal;
  • a monitoring terminal is connected with all detection boxes (class B) for receiving data of the detection box (class B), and transmitting a control signal to the detection box (class B), and the monitoring terminal simultaneously receives the current detection function
  • An environmental parameter detecting module is connected to the monitoring terminal and configured to send the environmental parameter to the monitoring terminal;
  • the detection box (class B) includes a panel voltage detecting module and a control module: wherein the panel voltage detecting module is configured to detect a voltage parameter of each battery panel in the corresponding battery string, the panel voltage The detection module is connected to a cluster of panel detection lines, and the output thereof is connected to the control module; wherein the control module is connected to the panel voltage detection module for controlling, data collecting and processing the panel voltage detection module, etc. Function, the control module is connected to the monitoring terminal, and is configured to send data to the monitoring terminal and receive a control signal of the monitoring terminal;
  • the structure of the panel voltage detecting module is the same as the panel voltage detecting module proposed in the first type of photovoltaic panel fault detecting and positioning system.
  • the present invention provides an operation flow for the second photovoltaic panel fault detection and positioning system, including:
  • the control module sequentially turns on the power switches corresponding to the respective panels, and sequentially collects the voltage values of the panels;
  • the control module performs algorithm processing based on the collected voltage values
  • the control module sends the data and the processing result to the monitoring terminal
  • the monitoring terminal collects the current values of the strings from the combiner box at the same time;
  • the monitoring terminal collects environmental parameters at the same time
  • the monitoring terminal performs algorithm processing on the obtained data, and gives an analysis result of the running condition of the power station, including indicating the location of the fault panel;
  • the second photovoltaic panel fault detection and positioning system and the corresponding operation flow of the invention have the following effects: on the basis of the advantages of the first photovoltaic panel fault detection and positioning system and the corresponding operation flow proposed by the invention, the original utilization is fully utilized
  • the current detection data of the combiner box in the power station further reduces the cost of the new detection module.
  • the present invention proposes a third photovoltaic panel fault detection and positioning system, including:
  • a battery panel array of a series-connected rear-parallel structure comprising a 2n series-parallel battery string, wherein each battery string comprises m serially connected battery panels;
  • a plurality of detection boxes (category c), each of which is connected to two parallel battery packs for detecting the operation of the two parallel battery strings;
  • each cluster panel voltage detecting line is used for connecting each panel of the two parallel battery strings and the detecting box corresponding to the two parallel battery strings (category c);
  • a combiner box with current detection function is connected with the current lines of the plurality of battery strings, the output one is used for transmitting power generation externally, and the output 2 is used for sending each group of current detection results to the monitoring terminal;
  • a monitoring terminal is connected with all detection boxes (category c) for receiving data of the detection box (class C), and transmitting control signals to the detection box (class c), and the monitoring terminal simultaneously receives the current detection function
  • An environmental parameter detecting module is connected to the monitoring terminal and configured to send the environmental parameter to the monitoring terminal;
  • the detection box includes a panel voltage detecting module 2 and a control module: wherein the panel voltage detecting module 2 is configured to detect the voltage of each battery panel in the corresponding two parallel battery strings. a parameter, the panel voltage detecting module 2 is connected to a cluster of panel detecting lines, and an output thereof is connected to the control module; wherein the control module is connected to the panel voltage detecting module 2 for the panel voltage detecting module 2. Perform control, data collection, and processing functions, and the control module is connected to the monitoring terminal for transmitting data to the monitoring terminal and receiving control signals of the monitoring terminal.
  • the structure of the panel voltage detecting module 2 includes a voltage sensor and 2m power switches, wherein each power switch is connected in series on a voltage signal detecting line of one of the two parallel battery strings.
  • the voltage sensor is connected to the end of the voltage signal detection line.
  • each power switch is sequentially turned on, and then the connection of the voltage signal detection line of each battery panel to the voltage sensor is sequentially turned on, and each of the corresponding two parallel strings is sequentially measured.
  • the voltage parameters of the panel are provided.
  • the operation flow of the third photovoltaic panel fault detection and positioning system of the present invention is the same as the operation flow of the second photovoltaic panel fault detection and positioning system proposed by the present invention.
  • the third photovoltaic panel fault detection and positioning system proposed by the present invention further includes three, four, and more parallel battery strings sharing the panel voltage detecting module; correspondingly, the present invention provides
  • the panel voltage detection module of the three photovoltaic panel fault detection and positioning systems also includes the number of power switches that are consistent with the number of battery panels included in the corresponding parallel battery string.
  • the third photovoltaic panel fault detection and positioning system proposed by the present invention has the effect that the cost of the newly added detecting component is greatly reduced on the basis of the advantages of the second photovoltaic panel fault detecting and positioning system proposed by the present invention.
  • the structure included in the detection box (class C) in the third photovoltaic panel fault detection and positioning system of the present invention can also be used in the first photovoltaic panel fault detection and positioning system proposed by the present invention.
  • the panel detection module and the controller achieve the effect of substantially reducing the detection cost of the first photovoltaic panel failure detection and positioning system proposed by the present invention.
  • FIG. 1 Block diagram of a first photovoltaic panel fault detection and positioning system proposed by the present invention.
  • Figure 2 One embodiment of a string current sensing module in a first photovoltaic panel fault detection and positioning system proposed by the present invention.
  • FIG. 3 One embodiment of a panel voltage sensing module in a first photovoltaic panel fault detection and positioning system proposed by the present invention.
  • FIG. 1 Block diagram of a second photovoltaic panel fault detection and positioning system proposed by the present invention.
  • FIG. 7 Block diagram of a third photovoltaic panel fault detection and location system proposed by the present invention.
  • FIG. 1 is a block diagram of a first photovoltaic panel inspection system according to the present invention, comprising a battery panel array of a series-connected rear-parallel structure, the array comprising n series-parallel battery strings, wherein each battery string comprises m
  • the battery panels as shown in the figure, the panels 11, 12,,, 1m are connected in series to form a first battery string, the panels n1, n2, ... nm are connected in series to form an nth battery string, etc., the n batteries
  • the strings are connected in parallel and connected to the combiner box (not shown here for the sake of simplicity);
  • each detection box (type A) is connected to a corresponding battery string for detecting the operation of the battery string.
  • the detection box (type A) 110 is connected to the first battery string
  • the detection box (type A) 1n0 is connected to the nth battery string;
  • each cluster panel voltage detecting line for connecting each panel in a battery string and a detecting box (category A) corresponding to the battery string
  • one end of the panel voltage detecting line cluster 401 is all panel voltage detecting lines drawn from the panels 11, 12, ... 1m, and the other end is connected to the panel voltage detecting module 112 inside the detecting box (type A) 110
  • Panel power One end of the voltage detecting line cluster 40n is all the panel voltage detecting lines from the panels n1, n2, ... nm, and the other end is connected to the panel voltage detecting module n12 inside the detecting box (type A) n10;
  • a monitoring terminal 301 connected to all of the detection boxes (Class A) 110, ... 1n0 for receiving data of the detection boxes (Class A) 110, ... 1n0, to the detection box (Class A) 110, ... 1n0 send a control signal;
  • An environment parameter detecting module 201 is connected to the monitoring terminal 301 and configured to send the environment parameter to the monitoring terminal 301;
  • the internal structures of the detection boxes (class A) 110, ... 1n0 are the same, and the detection box (type A) 110 is taken as an example to describe the internal structure:
  • a string current detecting module 111, a panel voltage detecting module 112 and a control module 113 are included.
  • the string current detecting module 111 is connected in series with the first battery string (consisting of the panels 11 , 12 , . . . , 1 m in series) for collecting current parameters of the first battery string, and the output is connected to the control.
  • the panel voltage detecting module 112 is configured to detect voltage parameters of each of the battery panels 11, 12, . . . 1m in the first battery string, and the panel voltage detecting module 112 is connected to a cluster of panel detecting lines 401, and the output thereof is Connected to the control module 113;
  • the control module 113 is connected to the string current detecting module and the panel voltage detecting module, and is configured to perform functions such as control, data collection and processing on the string current detecting module 111 and the panel voltage detecting module 112, and the control module 113 and the monitoring terminal.
  • the 301 is connected to transmit data to the monitoring terminal 301 and receive a control signal from the monitoring terminal 301.
  • FIG. 2 is an embodiment of a string current detecting module in a first photovoltaic panel fault detecting and positioning system according to the present invention, wherein a current sensor 211 is connected between each battery string and the combiner box, and the current sensor 211 is used for Measuring the current of the battery string in which it is located, the output of the current sensor 211 is connected to the control module in the detection box (Class A) to which the battery string is connected (as shown in FIG. 1), and FIG. 3 shows the proposed by the present invention.
  • An embodiment of the panel voltage detecting module in the first photovoltaic panel fault detection and positioning system for simplicity, only the panel voltage detecting module corresponding to one battery string is given in FIG. 3;
  • the control signal line 330 is derived from the output of the control module, and the local detection lines of each of the battery panels pass through the power switches 321, 322, ..., 32n, and are assembled into a panel voltage detection line 340, which is connected to the voltage sensor 310.
  • the voltage sensor 301 outputs the collected voltage value and sends it to the control module.
  • the control module is connected to the monitoring terminal;
  • control module sends a control signal through the control signal line 330, sequentially turns on the power switches such as 321, 322, ... 32n, and sequentially turns on the connection between the local detection line of the voltage signal of each battery panel and the voltage sensor 310.
  • the voltage parameters of each battery panel are measured in turn and sent to the control module for processing.
  • FIG. 4 shows an embodiment of an operation flow of the first photovoltaic panel fault detection and positioning system proposed by the present invention, and the specific steps thereof include:
  • the monitoring terminal 301 starts monitoring (401); the control modules 111, ... 1n1 of each detection box (Class A) 110, ... 1n0 are turned on once every fixed time (402); each control module 113, .. 1n3 performs current value sampling (403) from the current detecting units 111, ... 1n1; at the same time as (403), each of the control modules 113, ... 1n3 sequentially turns on the power switches corresponding to the respective series panels in the corresponding string.
  • the voltage values of the panels are sequentially collected (404); the control modules 113, ..., 1n3 perform algorithm processing (405) based on the collected current and voltage values; the control modules 113, ...
  • Monitoring terminal 301 (406); monitoring terminal 301 samples environmental parameters from environmental parameter detecting module 201 at the same time (407); monitoring terminal 301 performs algorithm processing on data and environmental parameters obtained from all control modules, and gives
  • the analysis result of the running condition of the power station includes indicating the fault panel position (408); the monitoring terminal 301 determines whether the fault condition reaches the degree that the user needs to be repaired (409), and if so, performs the power station maintenance and the panel fault repair (410). If not, go back to 402 If the plant maintenance and panel failure repairs are completed, go back to (401).
  • FIG. 5 shows an embodiment of the structure of the second photovoltaic panel fault detecting and positioning system proposed by the present invention, including a battery panel array with a series connection and a parallel structure, and a diagram
  • the battery panel array has the same structure, the array comprises n series-parallel battery strings, wherein each battery string comprises m serially connected battery panels;
  • each detection box (Class B) is connected to a corresponding battery string for detecting the operation of the battery string, in this figure
  • the detection box (type B) 510 is connected to the first battery string
  • the detection box (B) 5n0 is connected to the nth battery string;
  • the structure of FIG. 1 further includes a plurality of cluster panel voltage detecting lines, and each cluster panel voltage detecting line is used to connect each panel in a battery string and a detection box corresponding to the battery string (Class B) );
  • Figure 5 further includes a combiner box 501 with current detection function, connected to the current lines of the plurality of battery strings, the output one for external transmission power generation, and the second output for transmitting each string current detection result to the monitoring terminal. ;
  • a monitoring terminal connected to all of the detection boxes (B types) 510, ... 5n0 for receiving data of the detection boxes (Class B) 510, ... 5n0, to the detection box (Class B) 510, ...5n0 transmitting a control signal, and the monitoring terminal simultaneously receives the respective sets of string current detection results output by the combiner box 501 with the current detecting function;
  • An environment parameter detecting module 502 is connected to the monitoring terminal and configured to send the environment parameter to the monitoring terminal;
  • the internal structure of the detection box (B type) 510, ... 5n0 is the same, and the detection box (B type) 510 is taken as an example to describe the internal structure thereof: a panel voltage detecting module 511 and a control module 512 are included:
  • the panel voltage detecting module 511 is configured to detect voltage parameters of each battery panel in the corresponding battery string, the panel voltage detecting module 511 is connected to a cluster of panel detecting lines, and the output thereof is connected to the control module 512; wherein, the control module 512 and the panel voltage
  • the detecting module 511 is connected to perform functions such as control, data collection and processing on the panel voltage detecting module 511.
  • the control module 512 is connected to the monitoring terminal for transmitting data to the monitoring terminal and receiving control signals of the monitoring terminal.
  • the structure of the panel voltage detecting module 511 has the same structure as the panel voltage detecting module in FIG.
  • FIG. 6 shows an operation flow of the second photovoltaic panel fault detection and positioning system proposed by the present invention. The specific steps are as follows:
  • the monitoring terminal starts monitoring (601);
  • control module of each detection box starts detection once every fixed time (602);
  • Each control module sequentially turns on the power switch corresponding to each connected battery panel, and sequentially collects the voltage parameter values of each battery panel (603);
  • Each control module performs algorithm processing based on the collected voltage values (604);
  • Each control module sends the data and the processing result to the monitoring terminal (605);
  • the monitoring terminal collects the string current parameter values from the combiner box 501 with the current detecting function at the same time (606);
  • the monitoring terminal collects environmental parameters from the environmental parameter detecting module 502 at the same time (607);
  • the monitoring terminal performs algorithm processing on the obtained data, and gives an analysis result of the running condition of the power station, including indicating the fault panel position (608);
  • FIG. 7 shows an embodiment of a structure of a third photovoltaic panel fault detection and positioning system according to the present invention, comprising: a battery panel array of a series-connected rear-parallel structure, comprising a 2n series-parallel battery string, wherein Each battery string comprises m battery panels connected in series;
  • a plurality of detection boxes (class C) 710, ... 7n0 are also included, and each detection box (category c) is connected to two parallel battery pack strings for detecting the operation of the two parallel battery pack strings;
  • the utility model further includes a plurality of cluster panel voltage detecting lines, wherein each cluster panel voltage detecting line is used for connecting each of the two parallel battery strings and the detecting box corresponding to the two parallel battery strings (category c);
  • a combiner box 701 with current detection function is connected to the current lines of a plurality of battery strings, and the input thereof One for transmitting power generation for external transmission, and the second output for transmitting each group of current detection results to the monitoring terminal 702;
  • a monitoring terminal 702 is connected to all the detection boxes (class C) 710, ... 7n0 for receiving data of the detection boxes (class C) 710, ... 7n0, and to the detection box (class c) 710. .. 7n0 sends a control signal, and the monitoring terminal 702 simultaneously receives the respective series current detection results output by the combiner box 701 with the current detecting function;
  • An environment parameter detecting module 703 is connected to the monitoring terminal 702 and configured to send the environment parameter to the monitoring terminal 702.
  • the detection box (c) 710, ... 7n0 has the same internal structure, and the detection box (c) 710 is taken as an example to describe the internal structure thereof: a panel voltage detecting module 711 and a control module 712, wherein The panel voltage detecting module 711 is configured to detect voltage parameters of each battery panel in the corresponding two parallel battery strings.
  • the panel voltage detecting module 711 is connected to a cluster of panel detecting lines, and the output thereof is connected to the control module 712.
  • the control module 712 is connected to the panel voltage detecting module 711 for controlling, data collecting and processing the panel voltage detecting module 711, and the control module 712 is connected to the monitoring terminal 702 for The monitoring terminal 702 transmits data and receives a control signal of the monitoring terminal 702.
  • FIG. 8 shows a structural embodiment of the panel voltage detecting module 711 of FIG. 7, including a voltage sensor 801, 2m power switches (m is the number of battery panels per string) 811, 812, ... 81m, 821, 822, ... 82m, wherein each power switch is connected in series on a voltage signal detecting line of a battery panel, wherein the voltage sensor 801 is connected to the end of the voltage signal detecting line 804. Under the control of the control module 802, each power switch is sequentially turned on, and then the voltage signal local detection line of each battery panel is sequentially connected with the voltage sensor 801, and the voltage parameters of the corresponding 2m battery panels are sequentially measured.
  • 2m power switches m is the number of battery panels per string
  • the operation flow of the structure shown in FIG. 7 is the same as the operation flow shown in FIG. 6; the third photovoltaic panel failure detection and positioning system illustrated in FIG. 7 can be extended to every three or four. And the case where more parallel battery strings share the panel voltage detecting module, and accordingly, the panel voltage detecting module used thereof also includes the work corresponding to the number of battery panels included in the corresponding parallel battery string. The number of rate switches.
  • the structure included in the detection box (class C) illustrated in FIG. 8 can also be used for the panel detection module and controller in the first photovoltaic panel failure detection and positioning system illustrated in FIG. 1 to achieve sufficient reduction.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种大型光伏阵列中电池面板的故障检测定位系统,包括第一种光伏面板故障检测定位系统,第二种光伏面板故障检测定位系统和/或第三种光伏面板故障检测定位系统;检测定位系统能实时检测光伏阵列面板故障,尤其能准确定位到某一块故障光伏电板,并且能够将传感器的数量降到最低,降低检测成本,易于在现有电站中实现和安装。

Description

一种大型光伏阵列中电池面板的故障检测定位系统 技术领域
本发明涉及光伏发电技术领域,涉及一种大型光伏阵列中电池面板的故障检测定位系统,尤其涉及一种对故障太阳能面板检测并定位的系统结构及方法。
背景技术
随着石化能源日益紧缺,太阳能光伏发电已经成为越来越重要的能源替代选项。现有技术公开了光伏阵列是光伏发电系统的核心组成部分,它由若干块串并联的光伏电池面板组成。在生产和使用过程中,由于光伏电池面板所处户外环境以及数量庞大,常常出现故障且得不到及时替换,导致光伏阵列发电效率受到严重影响。因此如何方便地监控光伏阵列的发电情况,并对故障面板进行及时检测定位,是提高电站运行效率的关键问题。
目前,现有技术的光伏发电系统故障检测方法尚存在下述局限性:如,
一种类别是基于红外图像检测法,中国专利(申请号201310605759.8)公布了一种利用红外热像仪进行太阳能板缺陷检测的装置,利用可传动的框架与遮光板构成红外热像检测空间,可判断一块光伏电板上故障位置与故障类型。该类方法存在的问题是:装置架设困难,对温度相差不明显的状态区分困难,且实时性差,不易实现在线故障诊断和报警等;
另一种类别是基于高频信号注入的时域反射法(光伏阵列故障诊断方法综述,电力电子技术,2013年3月,第47卷第3期),其原理是向光伏电池板中注入高频信号,然后检测它的反射信号,根据反射信号的不同变化来进行光伏阵列的故障检测和定位。该方法不具有实时性,并且对设备要求较高,诊断精度有限;
另一种类别是基于传感器的故障诊断方法以及对此作出的各种改进,该类别 方法能在一定程度上实现在线的故障诊断和定位;其中,中国专利(申请号201310737368.1)公布了一种针对光伏面板组串的电流电压检测故障的装置,该装置能实时测量,但是只能对不同组串进行故障分析,无法定位到故障面板,这对于大型光伏电站来讲仍然需要耗费很大的人工成本进行面板检测,且人工测量的数据在保存、后期处理和分析等方面非常不便利;其中,中国专利(申请号201080001447.0)公布了一种太阳能发电系统的故障检测方法,该方法中,对每一个太阳能电池模块的电流值或每一个太阳能电池串的电流值以及整个太阳能发电系统的总电流值进行测量,并经过计算判断故障。该方法存在所需电流传感器太多、成本太高的问题;其中,中国专利(申请号201010251723.0)提出一种可以节省传感器数量的方法,将电池板先并联成一层,再串联形成若干层(TCT结构),利用了各层传感器电流最大值检测出电池板是否有故障。然而,目前光伏发电站的结构都是以先串联再并联(Serial-Parallel,SP结构)为主,因此该专利(申请号201010251723.0)这一结构需要改变原有的主流光伏阵列连接方式,在实际应用中缺乏兼容性和经济性;其中,中国专利(申请号201210015861.8)提出一种针对主流的SP结构面板阵列的可以节省传感器数量的方法,在每串M个电板、检测精度为L的情况下,可以将传感器数量降到M/L,但是该方法有较明显的不足:每串电池板所需的传感器数量仍然较多,如果需要高分辨率,那么传感器数量仍然跟电池面板数量持平;而且该方法中每个传感器的测量电压范围都不相同,为传感器的选型带来麻烦;同时该方法对于传感器的放置位置有特殊要求,给电站安装带来复杂性。
基于现有技术的现状,本申请的发明人拟针对主流面板阵列结构提出一种能在线实时监测、传感器数量少、电学检测精度高、易于安装和实现的光伏面板故障检测系统。
发明内容
本发明的目的在于针对现有技术中存在的不足,提供一种实时检测光伏阵列面板故障的系统,具体涉及一种大型光伏阵列中电池面板的故障检测定位系统,尤其涉及一种对故障太阳能面板检测并定位的系统结构及方法。本发明可以准确 定位到某一块故障光伏电板,并且能够将传感器的数量降到最低,且易于在现有电站中实现和安装。
为实现上述目的,本发明通过下述技术方案:
本发明提供了一种大型光伏阵列中电池面板的故障检测定位系统,其包括第一种光伏面板故障检测定位系统,第二种光伏面板故障检测定位系统,和/或第三种光伏面板故障检测定位系统。
具体的,本发明提出第一种光伏面板故障检测定位系统,包括:
先串联后并联结构的电池面板阵列,包含n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
若干个检测箱(A类),每个检测箱(A类))连接在一个对应的电池组串上,用于检测该电池组串的工作情况;
若干簇面板电压检测线,每簇面板电压检测线用以连接一个电池组串中的每个面板和该电池组串所对应的检测箱(A类);
一个监控终端,跟所有的检测箱(A类)连接,用于接收检测箱(A类)的数据、向检测箱(A类)发送控制信号;
一个环境参数检测模块,与监控终端相连接,用于向监控终端发送环境参数;
所述检测箱(A类)内包括一个组串电流检测模块、一个面板电压检测模块和一个控制模块:其中,所述组串电流检测模块用于检测所述检测箱(A类)所对应的电池组串的电流参数,所述组串电流检测模块跟组串电流线串联,其输出连接到所述控制模块;其中,所述面板电压检测模块用于检测对应电池组串内每块电池面板的电压参数,所述面板电压检测模块跟一簇面板检测线相连,其输出连接到所述控制模块;其中,所述控制模块所述控制模块跟组串电流检测模块和面板电压检测模块相连接,用于对所述组串电流检测模块、面板电压检测模块进行控制、数据收集和处理等功能,所述控制模块跟监控终端相连接,用以向监控终端发送数据、接受监控终端的控制信号。
本发明中,所述面板电压检测模块的结构,包括一个电压传感器、m个功率开关,其中每个功率开关串联在一个电池面板的电压信号检测线上,其中电压传感器连接在电压信号检测线的末端。在所述控制模块的控制下,依次开启每个功 率开关,进而依次开通每个电池面板的电压信号检测线跟所述电压传感器的连接,依次测得对应组串内每个电池面板的电压参数。
本发明中,所述组串电流检测模块的结构,包括一个电流传感器,所述电流传感器串联于组串电流线上,其输出连接到所述控制模块上。
本发明提出一种针对所述第一种光伏面板故障检测定位系统的操作流程,包括:
1.1监控终端启动监控;
1.2各检测箱(A类)的控制模块每隔固定时间开启一次检测;
1.3控制模块从电流检测单元进行电流值采样;
1.4跟1.3同时,控制模块依次开启各面板对应的功率开关,依次采集各面板的电压值;
1.5控制模块基于所采集的电流、电压值进行算法处理;
1.6控制模块将数据和处理结果发送给监控终端;
1.7监控终端对同一时间内的环境参数进行采样;
1.8监控终端对从所有控制模块获得的数据、环境参数进行算法处理,给出电站运行情况的分析结果,包括指示故障面板位置;
1.9监控终端判断故障情况是否达到用户设定的需要修复的程度,如果是,则进行电站维护及面板故障修复,如果否,则回到1.2;
1.10如果电站维护及面板故障修复完成后,则回到1.1。
本发明的第一种光伏面板故障检测定位系统及对应的操作流程,其能克服现有基于传感器的检测方法中所面临的传感器数量太多的问题,针对每一个组串,只需一个电流传感器、一个电压传感器,明显降低了成本,同时,还具备检测实时性好、在线检测不干扰电站运行、检测结果自动形成数据库便于后期分析等优点。
基于现有具有电流检测功能的汇流箱模块,本发明提出第二种光伏面板故障检测定位系统,包括:
先串联后并联结构的电池面板阵列,包含n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
若干个检测箱(B类),每个检测箱(B类))连接在一个对应的电池组串上,用于检测该电池组串的工作情况;
若干簇面板电压检测线,每簇面板电压检测线用以连接一个电池组串中的每个面板和该电池组串所对应的检测箱(B类);
一个带电流检测功能的汇流箱,跟多个电池组串的电流线相连接,其输出一用于对外传输发电功率,输出二用于向监控终端发送各组串电流检测结果;
一个监控终端,跟所有的检测箱(B类)连接,用于接收检测箱(B类)的数据、向检测箱(B类)发送控制信号,所述监控终端同时接受所述带电流检测功能的汇流箱所输出的各组串电流检测结果;
一个环境参数检测模块,跟监控终端相连接,用于向监控终端发送环境参数;
其中,所述检测箱(B类)内包括一个面板电压检测模块和一个控制模块:其中,所述面板电压检测模块用于检测对应电池组串内每块电池面板的电压参数,所述面板电压检测模块跟一簇面板检测线相连,其输出连接到所述控制模块;其中,所述控制模块跟面板电压检测模块相连接,用于对所述面板电压检测模块进行控制、数据收集和处理等功能,所述控制模块跟监控终端相连接,用以向监控终端发送数据、接受监控终端的控制信号;
其中,所述面板电压检测模块的结构,与所述的第一种光伏面板故障检测定位系统中所提出的面板电压检测模块相同。
本发明提出一种针对所述第二种光伏面板故障检测定位系统的操作流程,包括:
2.1控终端启动监控;
2.2各检测箱的控制模块每隔固定时间开启一次检测;
2.3控制模块依次开启各面板对应的功率开关,依次采集各面板的电压值;
2.4控制模块基于所采集的电压值进行算法处理;
2.5控制模块将数据和处理结果发送给监控终端;
2.6监控终端采集同一时间来自汇流箱的各组串电流值;
2.7跟2.6同时,监控终端采集同一时间的环境参数;
2.8监控终端对获得的数据进行算法处理,给出电站运行情况的分析结果,包括指示故障面板位置;
2.9故障情况是否达到用户设定的需要修复的程度,如果是,则进行电站维护及面板故障修复,如果否,则回到2.2;
2.10电站维护及面板故障修复,如果完成,则回到2.1。
本发明的第二种光伏面板故障检测定位系统及对应的操作流程,其效果是:在本发明所提出的第一种光伏面板故障检测定位系统及对应的操作流程的优势基础上,充分利用原有电站中汇流箱的电流检测数据,进一步降低了新增检测模块的成本。
为进一步降低检测成本,本发明提出第三种光伏面板故障检测定位系统,包括:
先串联后并联结构的电池面板阵列,包含2n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
若干个检测箱(c类),每个检测箱(c类)跟两个并联电池组串相连接上,用于检测这两个并联电池组串的工作情况;
若干簇面板电压检测线,每簇面板电压检测线用以连接两个并联电池组串中的每个面板和该两个并联电池组串所对应的检测箱(c类);
一个带电流检测功能的汇流箱,跟多个电池组串的电流线相连接,其输出一用于对外传输发电功率,输出二用于向监控终端发送各组串电流检测结果;
一个监控终端,跟所有的检测箱(c类)连接,用于接收检测箱(c类)的数据、向检测箱(c类)发送控制信号,所述监控终端同时接受所述带电流检测功能的汇流箱所输出的各组串电流检测结果;
一个环境参数检测模块,跟监控终端相连接,用于向监控终端发送环境参数;
其中,所述检测箱(c类)内包括一个面板电压检测模块二和一个控制模块:其中,所述面板电压检测模块二用于检测对应的两个并联电池组串内每块电池面板的电压参数,所述面板电压检测模块二跟一簇面板检测线相连,其输出连接到所述控制模块;其中,所述控制模块跟面板电压检测模块二相连接,用于对所述面板电压检测模块二进行控制、数据收集和处理等功能,所述控制模块跟监控终端相连接,用以向监控终端发送数据、接受监控终端的控制信号。
其中,所述面板电压检测模块二的结构,包括一个电压传感器、2m个功率开关,其中每个功率开关串联在所述两个并联电池组串内的其中一个电池面板的电压信号检测线上,其中电压传感器连接在电压信号检测线的末端。在所述控制模块的控制下,依次开启每个功率开关,进而依次开通每个电池面板的电压信号检测线跟所述电压传感器的连接,依次测得对应的两个并联组串中每个电池面板的电压参数。
本发明的第三种光伏面板故障检测定位系统的操作流程,与本发明提出的第二种光伏面板故障检测定位系统的操作流程相同。
应当指出的是,本发明提出的第三种光伏面板故障检测定位系统,还包括三个、四个以及更多个并联电池组串共用面板电压检测模块的情况;相应地,本发明提出的第三种光伏面板故障检测定位系统中面板电压检测模块,也包括跟对应的并联电池组串中所包含的电池面板数量相一致的功率开关数目。
本发明提出的第三种光伏面板故障检测定位系统,其效果在于,在本发明所提出的第二种光伏面板故障检测定位系统的优势基础上,大幅降低了新增检测部件的成本。
应当指出的是,本发明所提的第三种光伏面板故障检测定位系统中的检测箱(c类)所包含的结构,也可用于本发明所提的第一种光伏面板故障检测定位系统中的面板检测模块和控制器,以达到充分降低本发明所提的第一种光伏面板故障检测定位系统的检测成本的效果。
附图说明
图1.本发明提出的第一种光伏面板故障检测定位系统的框图。
图2.本发明提出的第一种光伏面板故障检测定位系统中的组串电流检测模块的一个实施例。
图3.本发明提出的第一种光伏面板故障检测定位系统中的面板电压检测模块的一个实施例。
图4.本发明提出的第一种光伏面板故障检测定位系统的操作流程。
图5.本发明提出的第二种光伏面板故障检测定位系统的框图。
图6.本发明提出的第二种光伏面板故障检测定位系统的操作流程。
图7.本发明提出的第三种光伏面板故障检测定位系统的框图。
图8.本发明提出的第三种光伏面板故障检测定位系统的面板电压检测模块的实施例。
具体实施方式
下面结合实施例对本发明的具体实施方式做进一步的详细描述。
实施例1
图1是本发明提出的第一种光伏面板检测系统的框图,其中包括一个先串联后并联结构的电池面板阵列,该阵列包含n串并联的电池组串,其中每个电池组串包含m个串联的电池面板,如图中,面板11、12、,,,1m串联成第一个电池组串,面板n1、n2、...nm串联成第n个电池组串等,这n个电池组串又并联在一起,连接到汇流箱上(此处为了简略,未标出);
还包括n个检测箱(A类)110、...1n0等,每个检测箱(A类))连接在一个对应的电池组串上,用于检测该电池组串的工作情况,在本图中,检测箱(A类)110连接在前述第一个电池组串上,检测箱(A类)1n0连接在前述第n个电池组串上;
还包括若干簇面板电压检测线401、402、...40n,每簇面板电压检测线用以连接一个电池组串中的每个面板和该电池组串所对应的检测箱(A类),例如面板电压检测线簇401的一端是来自面板11、12、...1m中引出的所有面板电压检测线,另一端连接到检测箱(A类)110内部的面板电压检测模块112上,而面板电 压检测线簇40n的一端是来自面板n1、n2、...nm中引出的所有面板电压检测线,另一端连接到检测箱(A类)n10内部的面板电压检测模块n12上;
还包括一个监控终端301,跟所有的检测箱(A类)110、...1n0相连接,用于接收检测箱(A类)110、...1n0的数据、向检测箱(A类)110、...1n0发送控制信号;
一个环境参数检测模块201,跟监控终端301相连接,用于向监控终端301发送环境参数;
其中检测箱(A类)110、...1n0的内部结构相同,以检测箱(A类)110为例,描述其内部结构:
包括一个组串电流检测模块111、一个面板电压检测模块112和一个控制模块113,
其中,组串电流检测模块111跟第一个电池组串(由面板11、12、...1m串联构成)相串联,用于采集第一个电池组串的电流参数,其输出连接到控制模块113;
其中,面板电压检测模块112用于检测第一个电池组串内每块电池面板11、12、...1m的电压参数,该面板电压检测模块112跟一簇面板检测线401相连,其输出连接到控制模块113;
其中,控制模块113跟组串电流检测模块和面板电压检测模块相连接,用于对组串电流检测模块111、面板电压检测模块112进行控制、数据收集和处理等功能,控制模块113跟监控终端301相连接,用以向监控终端301发送数据、接受监控终端301的控制信号。
实施例2
图2是本发明提出的第一种光伏面板故障检测定位系统中的组串电流检测模块的一个实施例,其中每个电池组串和汇流箱之间连接一个电流传感器211,电流传感器211用于测量所在的电池组串的电流,电流传感器211的输出连接到该电池组串所连接检测箱(A类)中的控制模块上(如图1中所示),图3显示了本发明提出的第一种光伏面板故障检测定位系统中的面板电压检测模块的一个实施例;为简便,图3中只给出了一个电池组串所对应的面板电压检测模块为例;功率开 关321、322、...32n分别连接在电池面板351、352、...35n的局部检测线上,控制信号线330跟功率开关321、322、...32n的控制端分别相连接,控制信号线330来自于控制模块的输出,每个电池面板的局部检测线经过功率开关321、322、...32n之后,汇集成面板电压检测线340,连接到电压传感器310上。电压传感器301输出采集到的电压值,发送给控制模块。控制模块跟监控终端相连接;
其工作过程是:控制模块通过控制信号线330发送控制信号,依次开启321、322、...32n等功率开关,进而依次开通每个电池面板的电压信号的局部检测线跟电压传感器310的连接,依次测得每个电池面板的电压参数,并发送给控制模块进行处理。
结合图1所示的结构,图4显示了本发明提出的第一种光伏面板故障检测定位系统的操作流程实施例,其具体步骤包括:
首先,监控终端301启动监控(401);各检测箱(A类)110、...1n0的控制模块111、...1n1每隔固定时间开启一次检测(402);各控制模块113、...1n3从电流检测单元111、...1n1进行电流值采样(403);跟(403)同时,各控制模块113、...1n3依次开启其对应组串内各串联面板对应的功率开关,依次采集各面板的电压值(404);控制模块113、...1n3基于所采集的电流、电压值进行算法处理(405);控制模块113、...1n3将数据和处理结果发送给监控终端301(406);监控终端301在同一时间内,从环境参数检测模块201对环境参数进行采样(407);监控终端301对从所有控制模块获得的数据和环境参数进行算法处理,给出电站运行情况的分析结果,包括指示故障面板位置(408);监控终端301判断故障情况是否达到用户设定的需要修复的程度(409),如果是,则进行电站维护及面板故障修复(410),如果否,则回到402;如果电站维护及面板故障修复完成后,则回到(401)。
实施例3
基于现有具有电流检测功能的汇流箱模块,图5给出本发明提出第二种光伏面板故障检测定位系统的结构的一种实施例,包括一个先串联后并联结构的电池面板阵列,与图1中电池面板阵列结构相同,该阵列包含n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
还包括若干个检测箱(B类)510、...5n0等,每个检测箱(B类)连接在一个对应的电池组串上,用于检测该电池组串的工作情况,在本图中,检测箱(B类)510连接在第一个电池组串上,检测箱(B)5n0连接在前述第n个电池组串上;
与图1结构相同的,图5结构还包括若干簇面板电压检测线,每簇面板电压检测线用以连接一个电池组串中的每个面板和该电池组串所对应的检测箱(B类);
图5还包括一个带电流检测功能的汇流箱501,跟多个电池组串的电流线相连接,其输出一用于对外传输发电功率,输出二用于向监控终端发送各组串电流检测结果;
还包括一个监控终端,跟所有的检测箱(B类)510、...5n0连接,用于接收检测箱(B类)510、...5n0的数据、向检测箱(B类)510、...5n0发送控制信号,监控终端同时接受所述带电流检测功能的汇流箱501所输出的各组串电流检测结果;
一个环境参数检测模块502,跟监控终端相连接,用于向监控终端发送环境参数;
其中,检测箱(B类)510、...5n0的内部结构相同,以检测箱(B类)510为例,描述其内部结构:包括一个面板电压检测模块511和一个控制模块512:其中,面板电压检测模块511用于检测对应电池组串内每块电池面板的电压参数,面板电压检测模块511跟一簇面板检测线相连,其输出连接到控制模块512;其中,控制模块512跟面板电压检测模块511相连接,用于对面板电压检测模块511进行控制、数据收集和处理等功能,控制模块512跟监控终端相连接,用以向监控终端发送数据、接受监控终端的控制信号。
其中,所述面板电压检测模块511的结构,与图3中的面板电压检测模块有相同的结构。
实施例4
结合图5的结构,图6给出了本发明提出的第二种光伏面板故障检测定位系统的操作流程实施例,具体步骤是:
首先,监控终端启动监控(601);
各检测箱(B类)的控制模块每隔固定时间开启一次检测(602);
每个控制模块依次开启所连接的各电池面板对应的功率开关,依次采集各电池面板的电压参数值(603);
各控制模块基于所采集的电压值进行算法处理(604);
各控制模块将数据和处理结果发送给监控终端(605);
监控终端采集同一时间来自带电流检测功能的汇流箱501的各组串电流参数值(606);
跟(606)同时,监控终端采集同一时间内来自环境参数检测模块502的环境参数(607);
监控终端对获得的数据进行算法处理,给出电站运行情况的分析结果,包括指示故障面板位置(608);
判断故障情况是否达到用户设定的需要修复的程度(609),如果是,则进行电站维护及面板故障修复(610),如果否,则回到(602);如果电站维护及面板故障修复(610)完成,则回到(601)。
实施例5
结合图7,图7给出了本发明提出第三种光伏面板故障检测定位系统的结构的实施例,包括:一个先串联后并联结构的电池面板阵列,包含2n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
还包括若干个检测箱(c类)710、...7n0,每个检测箱(c类)跟两个并联电池组串相连接上,用于检测这两个并联电池组串的工作情况;
还包括若干簇面板电压检测线,每簇面板电压检测线用以连接两个并联电池组串中的每个面板和该两个并联电池组串所对应的检测箱(c类);
一个带电流检测功能的汇流箱701,跟多个电池组串的电流线相连接,其输 出一用于对外传输发电功率,输出二用于向监控终端702发送各组串电流检测结果;
一个监控终端702,跟所有的检测箱(c类)710、...7n0连接,用于接收检测箱(c类)710、...7n0的数据、向检测箱(c类)710、...7n0发送控制信号,监控终端702同时接受带电流检测功能的汇流箱701所输出的各组串电流检测结果;
一个环境参数检测模块703,跟监控终端702相连接,用于向监控终端702发送环境参数;
其中,检测箱(c类)710、...7n0的内部结构相同,以检测箱(c类)710为例,描述其内部结构:包括一个面板电压检测模块二711和一个控制模块712,其中,面板电压检测模块二711用于检测对应的两个并联电池组串内每块电池面板的电压参数,所述面板电压检测模块二711跟一簇面板检测线相连,其输出连接到控制模块712;其中,控制模块712跟面板电压检测模块二711相连接,用于对所述面板电压检测模块二711进行控制、数据收集和处理等功能,控制模块712跟监控终端702相连接,用以向监控终端702发送数据、接受监控终端702的控制信号。
实施例6
结合图8,图8给出了图7中面板电压检测模块二711的结构实施例,包括一个电压传感器801、2m个功率开关(m为每串电池面板的数量)811、812、...81m、821、822、...82m,其中每个功率开关串联在一个电池面板的电压信号检测线上,其中电压传感器801连接在电压信号检测线804的末端。在控制模块802的控制下,依次开启每个功率开关,进而依次开通每个电池面板的电压信号局部检测线跟电压传感器801的连接,依次测得对应的2m个电池面板的电压参数。
本发明中,图7所给出的结构的操作流程,与图6所示例的操作流程相同;图7所示例的第三种光伏面板故障检测定位系统,还可以扩展到每三个、四个以及更多个并联电池组串共用面板电压检测模块的情况,相应地,其所采用的面板电压检测模块,也包括跟对应的并联电池组串中所包含的电池面板数量相一致的功 率开关数目。
本发明中,图8所示例的检测箱(c类)所包含的结构,也可用于图1所示例的第一种光伏面板故障检测定位系统中的面板检测模块和控制器,以达到充分降低图1所示例的第一种光伏面板故障检测定位系统的检测成本的效果。
尽管对本发明的描述是以参考实例的方式作出的,但是本领域的技术人员将认知到,在不脱离本发明的范围和精神的前提下,可以在形式或者细节上作出改变。

Claims (17)

  1. 一种大型光伏阵列中电池面板的故障检测定位系统,其中,其包括第一种光伏面板故障检测定位系统,第二种光伏面板故障检测定位系统,和/或第三种光伏面板故障检测定位系统。
  2. 如权利要求1所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的第一种光伏面板故障检测定位系统,其包括:
    先串联后并联结构的电池面板阵列,包含n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
    若干个检测箱(A类),每个检测箱(A类)连接在一个对应的电池组串上,用于检测该电池组串的工作情况;
    若干簇面板电压检测线,每簇面板电压检测线用以连接一个电池组串中的每个面板和该电池组串所对应的检测箱(A类);
    一个监控终端,与所有的检测箱(A类)连接,用于接收检测箱(A类)的数据、向检测箱(A类)发送控制信号;和,
    一个环境参数检测模块,与监控终端相连接,用于向监控终端发送环境参数。
  3. 如权利要求2所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的检测箱(A类),包括一个组串电流检测模块、一个面板电压检测模块和一个控制模块:所述组串电流检测模块跟组串电流线串联,其输出连接到所述控制模块;所述面板电压检测模块与一簇面板检测线相连,其输出连接到所述控制模块;所述控制模块与组串电流检测模块和面板电压检测模块相连接,所述控制模块与监控终端相连接。
  4. 如权利要求3所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的面板电压检测模块,包括一个电压传感器、m个功率开关,其中每个功率开关串联在一个电池面板的电压信号检测线上,其中电压传感器连接在电压信号检测线的末端。
  5. 如权利要求3所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的控制模块,控制依次开启所述每个功率开关,进而 依次开通每个电池面板的电压信号检测线与所述电压传感器的连接,依次测得对应组串内每个电池面板的电压参数。
  6. 如权利要求3所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的组串电流检测模块的结构,包括一个电流传感器,所述电流传感器串联于组串电流线上,所述电流传感器的输出连接到权利要求4所述的控制模块上。
  7. 一种针对权利要求1或2所述的第一种光伏面板故障检测定位系统的操作流程,其包括:
    (1.1)监控终端启动监控;
    (1.2)各检测箱(A类)的控制模块每隔固定时间开启一次检测;
    (1.3)控制模块从电流检测单元进行电流值采样;
    (1.4)与(1.3)同时,控制模块依次开启各面板对应的功率开关,依次采集各面板的电压值;
    (1.5)控制模块基于所采集的电流、电压值进行算法处理;
    (1.6)控制模块将数据和处理结果发送给监控终端;
    (1.7)监控终端对同一时间内的环境参数进行采样;
    (1.8)监控终端对从所有控制模块获得的数据、环境参数进行算法处理,给出电站运行情况的分析结果,包括指示故障面板位置;
    (1.9)监控终端判断故障情况是否达到用户设定的需要修复的程度,如果是,则进行电站维护及面板故障修复,如果否,则回到(1.2);
    (1.10)如果电站维护及面板故障修复完成后,则回到(1.1)。
  8. 如权利要求1所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的第二种光伏面板故障检测定位系统,其包括:
    先串联后并联结构的电池面板阵列,包含n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
    若干个检测箱(B类),每个检测箱(B类)连接在一个对应的电池组串上,用于检测该电池组串的工作情况;
    若干簇面板电压检测线,每簇面板电压检测线用以连接一个电池组串中的每个面板和该电池组串所对应的检测箱(B类);
    一个带电流检测功能的汇流箱,与多个电池组串的电流线相连接,其输出一用于对外传输发电功率,输出二用于向监控终端发送各组串电流检测结果;
    一个监控终端,与所有的检测箱(B类)连接,用于接收检测箱(B类)的数据、向检测箱(B类)发送控制信号,所述监控终端同时接受所述带电流检测功能的汇流箱所输出的各组串电流检测结果;和,
    一个环境参数检测模块,与监控终端相连接,用于向监控终端发送环境参数。
  9. 如权利要求8所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的的检测箱(B类),包括一个面板电压检测模块和一个控制模块:
    所述面板电压检测模块用于检测对应电池组串内每块电池面板的电压参数,所述面板电压检测模块与一簇面板检测线相连,其输出连接到所述控制模块;
    所述控制模块与面板电压检测模块相连接,用于对所述面板电压检测模块进行控制、数据收集和处理等功能,所述控制模块与监控终端相连接,用以向监控终端发送数据、接受监控终端的控制信号。
  10. 如权利要求9所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的面板电压检测模块与权利要求4所述的面板电压检测模块有相同的结构。
  11. 一种针对权利要求8所述的第二种光伏面板故障检测定位系统的操作流程,其包括:
    (2.1)控终端启动监控;
    (2.2)各检测箱的控制模块每隔固定时间开启一次检测;
    (2.3)控制模块依次开启各面板对应的功率开关,依次采集各面板的电压值;
    (2.4)控制模块基于所采集的电压值进行算法处理;
    (2.5)控制模块将数据和处理结果发送给监控终端;
    (2.6)监控终端采集同一时间来自汇流箱的各组串电流值;
    (2.7)与(2.6)同时,监控终端采集同一时间的环境参数;
    (2.8)监控终端对获得的数据进行算法处理,给出电站运行情况的分析结果,包括指示故障面板位置;
    (2.9)故障情况是否达到用户设定的需要修复的程度,如果是,则进行电站维护及面板故障修复,如果否,则回到(2.2);
    (2.10)电站维护及面板故障修复,如果完成,则回到(2.1)。
  12. 如权利要求1所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的第三种光伏面板故障检测定位系统,其包括:
    先串联后并联结构的电池面板阵列,包含2n串并联的电池组串,其中每个电池组串包含m个串联的电池面板;
    若干个检测箱(C类),每个检测箱(C类)与两个并联电池组串相连接上,用于检测所述两个并联电池组串的工作情况;
    若干簇面板电压检测线,每簇面板电压检测线用以连接两个并联电池组串中的每个面板和该两个并联电池组串所对应的检测箱(C类);
    一个带电流检测功能的汇流箱,与多个电池组串的电流线相连接,其输出一用于对外传输发电功率,输出二用于向监控终端发送各组串电流检测结果;
    一个监控终端,与所有的检测箱(C类)连接,用于接收检测箱(C类)的数据、向检测箱(C类)发送控制信号,所述监控终端同时接受所述带电流检测功能的汇流箱所输出的各组串电流检测结果;和,
    一个环境参数检测模块,跟监控终端相连接,用于向监控终端发送环境参数。
  13. 如权利要求12所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的检测箱(C类),包括一个面板电压检测模块二和一个控制模块:所述面板电压检测模块二用于检测对应的两个并联电池组串内每块电池面板的电压参数,所述面板电压检测模块二跟一簇面板检测线相连,其输出连接到所述控制模块;其中,所述控制模块与面板电压检测模块二相连接,用于对所述面板电压检测模块二进行控制、数据收集和处理等功能,所述控制模块与监控终端相连接,用以向监控终端发送数据、接受监控终端的控制信号。
  14. 如权利要求13所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的面板电压检测模块二,包括一个电压传感器、2m个功率开关,其中每个功率开关串联在所述两个并联电池组串内的其中一个电池面板的电压信号检测线上,其中电压传感器连接在电压信号检测线的末端;在所述控制模块的控制下,依次开启每个功率开关,进而依次开通每个电池面板的电压信号检测线与所述电压传感器的连接,依次测得对应的两个并联组串中每个电池面板的电压参数。
  15. 如权利要求12所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的第三种光伏面板故障检测定位系统的操作流程与权利要求11所述的操作流程相同。
  16. 如权利要求12所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的检测定位系统还包含扩展到每三个、四个以及更多个并联电池组串共用面板电压检测模块,其所采用的面板电压检测模块,包括与对应的并联电池组串中所包含的电池面板数量相一致的功率开关数目。
  17. 如权利要求13所述的大型光伏阵列中电池面板的故障检测定位系统,其中,所述的检测箱(C类)所包含的结构可用于权利要求1所述的第一种光伏面板故障检测定位系统中的面板检测模块和控制器,达到充分降低所述的第一种光伏面板故障检测定位系统的检测成本的效果。
PCT/CN2016/096748 2016-04-13 2016-08-25 一种大型光伏阵列中电池面板的故障检测定位系统 WO2017177604A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018568349A JP6741798B2 (ja) 2016-04-13 2016-08-25 大型の太陽電池アレイにおける電池パネルの故障検出と位置特定システム
EP16898419.3A EP3444944B1 (en) 2016-04-13 2016-08-25 Fault detection and positioning system for cell panel in large-scale photovoltaic array
ES16898419T ES2886142T3 (es) 2016-04-13 2016-08-25 Sistema de detección y posicionamiento de fallos para el panel de células en una matriz fotovoltaica a gran escala
US16/093,319 US10418936B2 (en) 2016-04-13 2016-08-25 Fault detection and positioning system for cell panel in large-scale photovoltaic array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610227187.8 2016-04-13
CN201610227187.8A CN107294492A (zh) 2016-04-13 2016-04-13 一种大型光伏阵列中电池面板的故障检测定位系统

Publications (1)

Publication Number Publication Date
WO2017177604A1 true WO2017177604A1 (zh) 2017-10-19

Family

ID=60041345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096748 WO2017177604A1 (zh) 2016-04-13 2016-08-25 一种大型光伏阵列中电池面板的故障检测定位系统

Country Status (6)

Country Link
US (1) US10418936B2 (zh)
EP (1) EP3444944B1 (zh)
JP (1) JP6741798B2 (zh)
CN (1) CN107294492A (zh)
ES (1) ES2886142T3 (zh)
WO (1) WO2017177604A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819439A (zh) * 2017-11-09 2018-03-20 陆刚 光伏板在线故障监测装置及系统
CN107659265A (zh) * 2017-11-09 2018-02-02 陆刚 光伏板故障检测装置及系统
US11293989B2 (en) * 2018-03-15 2022-04-05 Nec Corporation Anomaly detection device, anomaly detection method, and recording medium
CN108881994B (zh) * 2018-06-29 2020-01-14 北京微播视界科技有限公司 视频访问方法、客户端、装置、终端、服务器和存储介质
CN108964608A (zh) * 2018-06-30 2018-12-07 苏州格远电气有限公司 组串式光伏阵列单板电压采集系统和方法
CN110768628B (zh) * 2018-07-27 2021-10-08 东南大学 一种光伏阵列故障检测方法
TWI668935B (zh) * 2018-10-31 2019-08-11 國立勤益科技大學 太陽光電模組陣列故障診斷方法及其系統
CN110244117A (zh) * 2019-07-01 2019-09-17 江苏康博光伏电力科技有限公司 一种光伏电站的光伏面板工况监测方法
JP7232228B2 (ja) * 2019-10-16 2023-03-02 タタ コンサルタンシー サービシズ リミテッド ソーラーパネルネットワークにおける故障の検出、診断及び位置確認のための方法及びシステム
CN111865216B (zh) * 2020-07-22 2022-07-15 阳光新能源开发股份有限公司 一种光伏组件物理位置的识别方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288856A (zh) * 2011-05-16 2011-12-21 复旦大学 基于无线方式通讯的光伏极板故障危害检测设备和方法
KR20140112877A (ko) * 2013-03-14 2014-09-24 한국전자통신연구원 모니터링 장치
CN104704702A (zh) * 2015-01-29 2015-06-10 湖北民族学院 光伏发电系统及其故障检测方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US20090207543A1 (en) * 2008-02-14 2009-08-20 Independent Power Systems, Inc. System and method for fault detection and hazard prevention in photovoltaic source and output circuits
EP2538450A4 (en) 2010-02-19 2015-06-17 Onamba Co Ltd METHOD FOR DETECTING THE FAILURE OF A PHOTOVOLTAIC GENERATOR
CN101893678B (zh) 2010-08-12 2012-05-23 天津大学 大型光伏阵列的故障诊断方法
JP5511622B2 (ja) 2010-10-14 2014-06-04 三菱電機株式会社 太陽電池モジュールの故障診断装置および方法
JP5819602B2 (ja) * 2010-11-29 2015-11-24 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
US20130015875A1 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
US8933721B2 (en) 2011-10-27 2015-01-13 Infineon Technologies Austria Ag Power source arrangement and method of diagnosing a power source arrangement
CN102565663B (zh) 2012-01-17 2014-07-02 天津大学 一种光伏阵列故障诊断的方法
JP2013175662A (ja) 2012-02-27 2013-09-05 Sharp Corp 太陽光発電システムおよびその診断方法
JP5841906B2 (ja) * 2012-07-03 2016-01-13 Jx日鉱日石エネルギー株式会社 故障検知装置、故障検知システム、及び故障検知方法
CN102867871B (zh) * 2012-08-28 2015-08-05 深圳蓝波绿建集团股份有限公司 一种智能汇流箱及其光伏系统
DE102013101314A1 (de) * 2013-02-11 2014-08-14 Phoenix Contact Gmbh & Co. Kg Sichere Photovoltaik-Anlage
JP6209412B2 (ja) * 2013-09-27 2017-10-04 株式会社日立製作所 太陽光発電システムの故障診断システム及び故障診断方法
JP2015079799A (ja) 2013-10-15 2015-04-23 パナソニックIpマネジメント株式会社 発電監視装置及び発電監視システム
CN103674964B (zh) 2013-11-26 2015-09-02 中国计量学院 使用红外热像仪进行太阳能板缺陷检测装置
CN103715983B (zh) * 2013-12-26 2016-03-30 广东易事特电源股份有限公司 太阳能发电系统的故障检测装置和方法
CN103944508A (zh) * 2014-03-22 2014-07-23 联合光伏(深圳)有限公司 一种光伏阵列的性能优化及诊断方法
CN104485888A (zh) * 2014-12-23 2015-04-01 常州天合光能有限公司 光伏组件户外实时发电量及运行监测控制系统
KR101643962B1 (ko) * 2015-01-19 2016-08-10 한국에너지기술연구원 태양전지모듈의 전체 및 부분 고장 진단 기능을 가지는 태양전지장치 및 태양전지모듈 고장진단 방법
CN104601108B (zh) * 2015-02-10 2017-02-01 河海大学常州校区 一种小型光伏电站的故障诊断方法
JP6474305B2 (ja) * 2015-04-23 2019-02-27 株式会社日立製作所 太陽光発電システムの診断方法及び監視装置
CN205051650U (zh) * 2015-10-27 2016-02-24 国家电网公司 一种促进光伏发电系统稳定运行的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288856A (zh) * 2011-05-16 2011-12-21 复旦大学 基于无线方式通讯的光伏极板故障危害检测设备和方法
KR20140112877A (ko) * 2013-03-14 2014-09-24 한국전자통신연구원 모니터링 장치
CN104704702A (zh) * 2015-01-29 2015-06-10 湖北民族学院 光伏发电系统及其故障检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444944A4 *

Also Published As

Publication number Publication date
US10418936B2 (en) 2019-09-17
EP3444944B1 (en) 2021-06-23
EP3444944A4 (en) 2020-02-19
ES2886142T3 (es) 2021-12-16
JP2019514339A (ja) 2019-05-30
US20190149089A1 (en) 2019-05-16
EP3444944A1 (en) 2019-02-20
CN107294492A (zh) 2017-10-24
JP6741798B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
WO2017177604A1 (zh) 一种大型光伏阵列中电池面板的故障检测定位系统
Wang et al. Fault diagnosis and operation and maintenance of PV components based on BP neural network with data cloud acquisition
CN104391189B (zh) 基于三级诊断的大型光伏阵列故障诊断定位方法
CN102116847B (zh) 用于电池组的单体电池性能参数采集系统
CN104796082A (zh) 一种光伏发电系统在线故障诊断系统及方法
CN103472331A (zh) 一种基于光伏物理模型的光伏发电故障诊断系统
CN106786531B (zh) 一种配电终端优化配置方法
CN103002004B (zh) 一种数据远程采集与管理系统
KR102182820B1 (ko) 태양광 모듈의 고장 및 열화 상태 진단 기능을 갖는 태양광 발전장치 및 그 발전 관리방법
Jianeng et al. Fault diagnosis method and simulation analysis for photovoltaic array
WO2022222507A1 (zh) 一种mlpe光伏系统及其mlpe设备检测方法
CN102565663A (zh) 一种光伏阵列故障诊断的方法
CN103399219A (zh) 光伏发电站性能实时监测方法
CN105044440A (zh) 一种基于ltc6803的燃料电池单片电压巡检系统
CN104574221A (zh) 一种基于损失电量特征参数的光伏电站运行状态辨识方法
CN117332920A (zh) 一种新能源场站运行故障演化分析方法
CN202372630U (zh) 光伏电站蓄电池状态无线传感器网络监测装置
CN109672220A (zh) 一种村级的光伏电站管理系统及其控制方法
CN207573313U (zh) 一种基于电阻计算的光伏组串故障诊断与监测装置
CN109830981A (zh) 一种户级的光伏电站管理系统及其控制方法
Zhang et al. Module-level fault diagnosis of photovoltaic array based on wireless sensor networks and inverter activated IV scanning
CN212278194U (zh) 一种组件级的光伏电站故障检测装置
CN204945219U (zh) 一种基于ltc6803的燃料电池单片电压巡检系统
TWI788513B (zh) 太陽能模組
CN114545113A (zh) 基于存内计算架构的绝缘子健康状况诊断方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018568349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016898419

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016898419

Country of ref document: EP

Effective date: 20181113

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898419

Country of ref document: EP

Kind code of ref document: A1