WO2017177454A1 - 加减法3d打印工艺及3d打印系统 - Google Patents

加减法3d打印工艺及3d打印系统 Download PDF

Info

Publication number
WO2017177454A1
WO2017177454A1 PCT/CN2016/079468 CN2016079468W WO2017177454A1 WO 2017177454 A1 WO2017177454 A1 WO 2017177454A1 CN 2016079468 W CN2016079468 W CN 2016079468W WO 2017177454 A1 WO2017177454 A1 WO 2017177454A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
cnc
reduction processing
layer
material reduction
Prior art date
Application number
PCT/CN2016/079468
Other languages
English (en)
French (fr)
Inventor
陈名乔
Original Assignee
深圳万为智能制造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳万为智能制造科技有限公司 filed Critical 深圳万为智能制造科技有限公司
Priority to PCT/CN2016/079468 priority Critical patent/WO2017177454A1/zh
Publication of WO2017177454A1 publication Critical patent/WO2017177454A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to the field of additive manufacturing, CNC material reduction processing technology, and equipment technology, and relates to a 3D printer, and more particularly to an addition and subtraction 3D printing process, and a 3D printing system using the same.
  • 3D printing is a technique for manufacturing a three-dimensional product by layer-by-layer addition of materials by a 3D printing device according to a designed 3D model.
  • This layer-by-layer stack forming technique is also referred to as additive manufacturing.
  • 3D printing combines cutting-edge technologies in digital modeling technology, electromechanical control technology, information technology, materials science and chemistry, etc. It is a kind of rapid prototyping technology and is known as the core technology of the "third industrial revolution”.
  • 3D printing does not need to make molds in advance, it does not have to remove a large amount of materials in the manufacturing process, and the final product can be obtained without complicated forging process. Therefore, structural optimization and material saving can be achieved in production. save energy.
  • 3D printing technology is suitable for new product bursts, rapid single and small batch parts manufacturing, complex shape parts manufacturing, mold design and manufacturing, etc. It is also suitable for the manufacture of difficult materials, shape design inspection, assembly inspection and fast Reverse engineering and so on. Therefore, the 3D printing industry has received more and more attention at home and abroad, and will become the next sunrise industry with broad development prospects.
  • 3D printing has been applied in the fields of product prototyping, mold making, artistic creative products, jewelry making, etc., and can replace the traditional fine processing technology that these fields rely on.
  • the introduction of 3D printing technology has also opened up a broader space for development.
  • the CNC material reduction manufacturing process is very mature, but it needs to be able to process the blank of the workpiece for processing, the loss rate is as high as 90% - 10%, the loss rate is high, the energy consumption is high, and the labor is laborious. This problem needs to be solved urgently.
  • the object of the present invention is to provide an additive/subtractive 3D printing process by overcoming the above-mentioned deficiencies of the prior art, and the 'addition and subtraction rapid prototyping technology' of the present invention adopts a technical scheme of 'layered printing, same layer processing'. , layered printing for additive manufacturing, the same layer processing is reduced material manufacturing.
  • the advantages of 3D printing technology and CNC material reduction manufacturing technology are combined, and the new technology has the advantages of rapid processing and high processing precision. 1, 1%-5% loss rate, low consumption; 2, can process the inside of the workpiece; 3, reduce tool interference by more than 90%; 4, make 3D printing additive manufacturing process can use higher layer thickness without losing its Precision.
  • the present invention provides an additive and subtractive 3D printing process, which includes the following process steps:
  • step S101 printing a target product layer by layer with a 3D printing device
  • Step S103 after each layer is printed, the layer is subjected to material reduction processing by a CNC material reduction processing system.
  • each layer printed by the 3D printing device has an outer contour larger than the size of its target contour.
  • the target contour size is reached.
  • the method further includes the following steps:
  • Step S205 determining whether each layer has been printed, if not already printed, repeating steps S101 and S103 until each layer is printed.
  • step S5021 is further included.
  • Step S5021 determining whether the latest printed layer needs cooling processing
  • Step S5022 if a cooling process is required, the latest printed layer is cooled to a preset temperature range by using an air cooling system.
  • step S5023 if the cooling process is not required, then step S5023;
  • Step S5023 analyzing the interference state of the current latest printing layer, from the CNC tool reduction processing system, CN
  • One or two of the C laser material reduction processing system modes are selected. If the CNC tool reduction processing is selected, the step S5024 is skipped, and if the CNC laser material reduction processing is selected, the step S5025 is skipped;
  • Step S5024 using a CNC tool material reduction processing system for material reduction processing
  • Step S5025 using a CNC laser material reduction processing system for material reduction processing.
  • the CNC material reduction processing system is a five-axis CNC material reduction processing system.
  • the 3D printing device uses one or more printing targets of plastic, ceramic, and metal materials.
  • the 3D printing device is a desktop level 3D printer or an industrial grade 3D printer.
  • the present invention also discloses a 3D printing system, including:
  • a rack the rack is provided with a 3D printing device and a CN as described above for printing a target product layer by layer
  • the 3D printing device is provided with at least one printing nozzle
  • the CNC material reduction processing system is configured to perform material reduction processing on each layer printed by the 3D printing device.
  • the CNC material reduction processing system is a five-axis CNC material reduction processing system.
  • the 3D printing device is provided with four printing nozzles.
  • the CNC material reduction processing system is a five-axis CNC material reduction processing system, and the five-axis CNC material reduction processing system uses a tool and a laser or a laser to reduce material processing.
  • the rack is further provided with an air cooling system.
  • the air-cooling system blows pre-cooled air onto the target product and rapidly cools it by convection of cold air.
  • the air cooling system may also be provided with an air filtering device.
  • a temperature detecting device is further included to detect the temperature of the target product.
  • the method further includes a single chip, wherein the single chip is used to control a manufacturing step of the 3D printing device, and the single chip is further used to control a processing step of the CNC material reduction processing system.
  • the invention adopts the 3D printing manufacturing process of 'layer printing, same layer processing', and combines the advantages of 3D printing technology and CNC material reduction manufacturing technology.
  • the addition and subtraction process of the invention has fast processing and processing precision. High advantage.
  • the addition and subtraction process of the invention has advantages over the traditional 3D printing technology, mainly reflected in the fact that the simple 3D printing technology cannot balance the printing layer thickness and the printing precision, and the addition and subtraction process of the invention can balance the printing layer thickness and the printing precision. .
  • the addition and subtraction process of the present invention also has advantages over the conventional CNC material reduction manufacturing technology: 1%-5 ⁇ 3 ⁇ 4 loss rate, low consumption; machining of the inside of the workpiece; reducing tool interference by more than 90%.
  • the product is manufactured by using the CNC material reduction manufacturing process alone, and the interference problem cannot be solved, and the manufacturing efficiency is low.
  • the material loss rate is high, and the additive manufacturing method of the present invention combines the additive manufacturing and the material reduction manufacturing perfectly, and realizes a great leap in processing efficiency, processing precision, and processing speed.
  • the invention can realize the CNC material reduction processing under the hot state, and can also realize the CNC material reduction processing after cooling, and is selected according to actual needs.
  • the addition and subtraction process of the present invention combines a 3D printing device and a CNC five-axis processing device, and can also combine CNC laser processing equipment.
  • the addition and subtraction process of the present invention is different from the existing manufacturing process of the prior additive manufacturing and the post-CNC reduction manufacturing.
  • the addition and subtraction process of the invention adopts CNC five-axis mechanical material reduction processing, has little or no interference, and is easy to process the inside of the product, realizes internal and external processing of the product, and enables 3D printed products, the inside thereof, The outside maintains high precision.
  • the addition and subtraction process of the invention can also adopt laser reduction material, the spot size of the laser can be flexibly adjusted, and the processing precision is higher, and the plastic or metal material can be easily burned by adjusting the power of the laser, thereby obtaining higher processing. Accuracy, when it is not possible to use CNC C tools, laser reduction can be used to further reduce the effect of interference on the material reduction.
  • the invention has good stability, high reliability, convenient operation and use, novel design, strong practicability and easy application.
  • FIG. 3 is a process flow diagram 2 of the present invention, and FIG. 3 is a further definition of FIG. 2;
  • FIG. 5 is a process flow diagram 4 of the present invention, and FIG. 5 is a further definition of FIG. 4;
  • Figure 7 is a process flow diagram 6 of the present invention.
  • FIG. 8 is a process flow diagram VII of the present invention.
  • FIG. 9 is a perspective structural view of a 3D printing system of the present invention.
  • Target product 30 [0056] Target product 30.
  • the present invention provides an additive and subtractive 3D printing process comprising the following process steps:
  • Step S101 the target product 30 is printed layer by layer by using the 3D printing device 20; Step S103, after each layer is printed
  • the layer is subjected to material reduction processing using a CNC material reduction processing system 10.
  • the present invention performs the subtractive material processing by using the 3D printing device 20 for each printing layer, thereby realizing the additive manufacturing and subtractive material alternate addition and subtraction 3D printing process. For this reason, the process of the present invention is referred to as 'addition and subtraction process'.
  • step S103 is specifically step S103A, step S103A: after each layer is printed, the layer is subjected to material reduction processing by a five-axis CNC material reduction processing system 10.
  • each layer printed by the 3D printing device 20 has an outer contour larger than the size of its target contour.
  • the target contour size is reached. Since the excess portion of the 3D printing device 20 additive printing needs to be 'subtracted' during the material reduction process, the outer contour of each layer printed by the 3D printing device 20 should be larger than the target contour size, in general, the ratio The target profile is 1% to 5% larger.
  • step S103 the method further includes the following steps: Step S205, determining whether each layer has been printed, and if not printing, repeating steps S101 and S103 until each layer is completed. Finished printing.
  • step S101, step S103, step S205 constitute a complete processing process, through which a complete target product 30 can be prepared.
  • the additive and subtractive 3D printing manufacturing process of the present invention includes step S101, step S103A, and step S205.
  • step S103A may be replaced by step S103A1 or step S103A2.
  • the step S103A1 is specifically as follows: After each layer is printed, the five-axis CNC tool reduction processing system is used for material reduction processing.
  • Step S103A2 is specifically as follows: After each layer is printed, the five-axis CNC laser material reduction processing system is used for material reduction processing.
  • step S101 further has a step S5021, step S5021, determining whether the latest printed layer requires cooling processing; step S5022, if cooling processing is required, using an air cooling system The newly printed layer is cooled to within the preset temperature range.
  • the present invention discloses the use of an air-cooling system to blow cold air for cooling treatment.
  • an air-cooling system to blow out a normal temperature airflow, to cool the convection, or to use other methods of cooling and processes.
  • These cooling means and processes can be used to cool the printed layer of the hot state without causing damage to its properties.
  • the air cooling system can be a fan. If cold air is required, cold air can be obtained by using an air conditioner or a heat pump. In addition, natural cooling can also be used.
  • the preset temperature range means that after cooling, the layer should be made to meet the critical threshold of the CNC material reduction system 10 to avoid the problem of sticking of hot materials.
  • step S5023 the interference state of the current latest printing layer is analyzed, and the machining is reduced from the CNC tool 101. Select one or two of the system and CNC laser material processing system mode. If CNC tool 1 01 is selected, the process jumps to step S5024. If CNC laser material reduction is selected, the process proceeds to step S5025. Step S5024, CNC is adopted.
  • the tool 101 material reduction processing system performs material reduction processing; in step S5025, the CNC laser material reduction processing system is used for material reduction processing. Step S5024 and step S5025 are further defined in step S103.
  • the 3D printing device 20 and the CNC cutter 101 are reduced in material.
  • the system coexists in a set of equipment; the 3D printing device 20 and the CNC laser material reduction processing system coexist in one set of equipment; the 3D printing device 20 and the CNC tool 101 material reduction processing system, the CNC laser material reduction processing system are in one Coexist in the device.
  • select the appropriate processing system If the equipment only contains CN C cutter 101 material reduction processing system or CNC laser material reduction processing system, the CNC material reduction processing system 10 is selected by default. Among them, by adjusting the parameters of the laser, controlling the size of the spot and the power of the laser, the outer contour of the printed layer can be processed to the target contour size, and the laser can burn the material.
  • the CNC tool 101 material reduction system uses suitable cooling means, such as cutting fluid or other cooling means, of course, depending on the specific situation, without the use of cooling means.
  • the CNC tool 101 material reduction processing system may be a CNC tool 101 material reduction processing system capable of automatically changing the tool 101, or may be a CNC tool 101 material reduction processing system for manually changing the tool 101.
  • the CNC material reduction processing system 10 is a five-axis CNC material reduction processing system 10.
  • the five-axis CNC material reduction system 10 can realize the processing of three-dimensional curved surfaces with high processing precision and fast processing speed, and can be adapted to the processing of various complex target products 30.
  • a five-axis linkage machining center can be used, and the rotary axis of the vertical five-axis machining center is preferably a rotary system that relies on a vertical spindle head.
  • the front end of the spindle is a turret, which can wrap 360 degrees around the Z axis to become the C axis.
  • the turret also has an A axis with a rotation around the X axis, generally up to ⁇ 90 degrees.
  • the advantage of this type of setup is that the spindle machining is very flexible and the workbench can be designed to be very large, thus meeting the needs of large 3D printing.
  • the 3D printing device 20 uses one or more of the plastic, ceramic, and metal materials to print the target product 30. That is to say, the printing process includes the following situations: 1. In a target product 30, some layers are printed with a plastic material, some layers are printed with a ceramic material, and some layers are printed with a metal material, thus, After alignment and combination, better printing results can be achieved. 2. In the same layer of printing, one or more of the above three materials are used for printing, so that more requirements can be met. In addition, this embodiment should also include other materials for 3D printing. The process of adding and subtracting the protection and protection of the present invention is not limited to the above three materials, and other materials for 3D printing are used.
  • 3D printed materials include, but are not limited to, engineering plastics, photosensitive resins, rubber-based materials, metallic materials, ceramic materials, colored gypsum materials, artificial bone powder, cell biological materials, and food materials such as granulated sugar.
  • These raw materials are specially developed for the 3D printing apparatus 20 and the process, and are distinguished from ordinary plastics, gypsums, resins, etc., and are generally in the form of powder, filament, lamellar, liquid, and the like.
  • the particle size of the powdery 3D printing material used varies from 1 to 100 ⁇ m depending on the type of printing apparatus and the operating conditions, and in order to maintain good fluidity of the powder, it is generally required that the powder have a high degree of sphericity.
  • Engineering plastics are currently the most widely used type of 3D printing materials. Commonly used are ABS materials, PC materials, nylon fiberglass, PC-ABS materials, PC-ISO materials, and PSU materials.
  • Metal powder materials used for 3D printing mainly include titanium alloys, cobalt-chromium alloys, stainless steel and aluminum alloy materials, as well as precious metal powder materials such as gold and silver for printing jewelry.
  • the above 3D printed materials are merely illustrative of some of the available embodiments and do not cover all of the alternative 3D printed materials.
  • the subtractive processing using the manual cutter 101 or the like is a deteriorating embodiment of the present invention, and such an embodiment is simple in the present invention. Deformation and replacement, but not a new processing technique, are also within the scope of the present invention.
  • the 3D printing device 20 is a desktop level 3D printer or an industrial grade 3D printer.
  • the additive and subtractive manufacturing process of the present invention can be applied to a small 3D printer or a large 3D printer to realize a process of 'layered printing, same layer processing'.
  • the present invention focuses on industrial grade 3D printing.
  • the present invention also discloses a 3D printing system, including: a rack on which the 3D printing device 20 and the CNC as described above are used to print the target product 30 layer by layer.
  • the material processing system 10 wherein the 3D printing device 20 is provided with at least one printing nozzle 201; the CNC material reduction processing system 10 is configured to perform material reduction processing on each layer printed by the 3D printing device 20.
  • the CNC material reduction processing system is a five-axis CNC material reduction processing system.
  • the positional relationship between the 3D printing device 20 and the CNC material reduction processing system 10 may be fixed or may be set separately.
  • a feed system is further included, which is connected to the print nozzle 201.
  • the 3D printing device 20 is provided with four print nozzles 201.
  • the four print nozzles 201 can work independently or separately.
  • the diameters of the four print nozzles 201 can be the same or different.
  • the print nozzles 201 of different calibers can be sequentially increased in size and arranged according to the size of the caliber.
  • the 3D printing device 20 can also be provided with more than four print nozzles 201 for achieving higher printing requirements.
  • the CNC material reduction processing system 10 is a five-axis CNC material reduction processing system 10, and the five-axis CNC material reduction processing system 10 uses a cutter 101 and/or a laser to perform material reduction processing.
  • an air cooling system (not shown) is further disposed on the frame.
  • the air-cooled system blows pre-cooled air onto the target product 30 for rapid cooling by convection of cold air.
  • the air-cooling system may also be provided with an air filtering device (not shown) for providing a clean air flow to prevent the impurities in the air flow from affecting the target product 30 to be printed.
  • An embodiment of the present invention further includes a temperature detecting device (not shown) for detecting the temperature of the target product 30.
  • One embodiment of the present invention further includes a single chip microcomputer (not shown) for controlling the manufacturing steps of the 3D printing device 20, and the single chip device is also used to control the processing of the CNC material reduction processing system 10. step.
  • the present invention adopts the technical scheme of 'layer printing, same layer processing', and combines the advantages of 3D printing technology and CNC material reduction manufacturing technology.
  • the addition and subtraction manufacturing process of the invention has fast processing, The advantage of high processing precision.
  • the addition and subtraction manufacturing process of the invention has stronger advantages than the traditional 3D printing technology, mainly reflected in the fact that the simple 3D printing technology cannot balance the printing layer thickness and the printing precision, and the addition and subtraction process of the invention can take both layers into consideration. Thickness and printing accuracy, the present invention achieves the effect of increasing the printing layer thickness without losing manufacturing precision.
  • the addition and subtraction process of the present invention also has advantages over pure CNC material reduction processing: 1% ⁇ 5 ⁇ 3 ⁇ 4 loss rate, low consumption; can process the inside of the workpiece; reduce tool 101 interference by more than 90%.
  • the use of CNC material reduction processing technology to manufacture products alone cannot solve the interference problem, the processing is difficult and the efficiency is low, and the additive manufacturing method of the present invention is used to combine the additive manufacturing and the material reduction processing to achieve the processing.
  • the addition and subtraction process divides the target product 30 into fewer layers, which is much less layered than the existing 3D printing process, so the processing speed is high and more intelligent.
  • the invention can realize the CNC processing in the hot state, and can also realize the reduction processing of the CNC after cooling, and is selected according to actual needs.
  • the addition and subtraction process of the present invention combines the 3D printing device 20 and the CNC five-axis processing equipment, and can also combine the CNC laser processing equipment.
  • the addition and subtraction process of the present invention is different from the prior art of the prior additive manufacturing and the post-CNC reduction manufacturing.
  • the above existing processes have low printing efficiency, and it is difficult to process the workpiece after printing. Internal problems.
  • the addition and subtraction process of the invention adopts CNC five-axis mechanical material reduction processing, with little or no interference, and is easy to process the inside of the product.
  • the addition and subtraction process of the invention can also adopt laser reduction material, the spot size of the laser can be adjusted, and the processing precision is higher, and the plastic or metal material can be easily burned by adjusting the power of the laser, thereby obtaining higher processing precision.
  • laser reduction can also be used, which further reduces the influence of the interference effect on the material reduction processing.
  • the invention has good stability, high reliability, convenient operation and use, novel design, strong practicability and easy promotion and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

一种加减法3D打印工艺,包括如下工艺步骤:步骤S101,用3D打印装置(20)逐层打印目标产品(30);步骤S103,每一层打印完毕之后,采用CNC减材加工系统(10)对该层进行减材加工。一种3D打印系统,包括机架,所述机架上设有用以将目标产品(30)逐层打印的3D打印装置(20)和CNC减材加工系统(10),所述3D打印装置设有至少一个打印喷嘴(201);所述CNC减材加工系统(10)用以对3D打印装置(20)打印的每一层进行减材加工。采用所述加减法3D制造方法,将增材制造、减材加工完美的结合在一起,实现了加工效率、加工精度、加工速度的极大飞跃,是革命性的产品加工工艺,具有极高的经济价值。

Description

加减法 3D打印工艺及 3D打印系统 技术领域
[0001] 本发明涉及增材制造、 CNC减材加工工艺、 设备技术领域, 涉及 3D打印机, 尤其涉及一种加减法 3D打印工艺, 及采用本工艺的 3D打印系统。
[0002]
[0003] 背景技术
[0004] 3D打印, 是根据所设计的 3D模型, 通过 3D打印设备逐层增加材料来制造三维 产品的技术。 这种逐层堆积成形技术又被称作增材制造。 3D打印综合了数字建 模技术、 机电控制技术、 信息技术、 材料科学与化学等诸多领域的前沿技术, 是快速成型技术的一种, 被誉为 "第三次工业革命"的核心技术。 与传统制造技术 相比, 3D打印不必事先制造模具, 不必在制造过程中去除大量的材料, 也不必 通过复杂的锻造工艺就可以得到最终产品, 因此, 在生产上可以实现结构优化 、 节约材料和节省能源。 3D打印技术适合于新产品幵发、 快速单件及小批量零 件制造、 复杂形状零件的制造、 模具的设计与制造等, 也适合于难加工材料的 制造、 外形设计检査、 装配检验和快速反求工程等。 因此, 3D打印产业受到了 国内外越来越广泛的关注, 将成为下一个具有广阔发展前景的朝阳产业。 目前 , 3D打印已应用于产品原型、 模具制造、 艺术创意产品、 珠宝制作等领域, 可 替代这些领域所依赖的传统精细加工工艺。 除此之外, 在生物工程与医学、 建 筑、 服装等领域, 3D打印技术的引入也为其幵拓了更广阔的发展空间。
[0005] 然而, 采用现有的 3D打印技术制造产品, 如果提高精度则需要减小打印层厚度 , 减小打印层厚度又将导致打印效率大大降低; 如果通过增大层厚加快打印速 度, 又会损失精度, 难以满足高速、 高精度的制造需求。 现有技术中也存在 3D 打印完毕后再次进行切削打磨的制造工艺, 然而这种办法存在着重大的缺陷, 结构较为复杂的产品在打印完毕后, 存在着刀具干涉、 空间干涉等问题, 这种' 先打印、 后表面加工'现有工艺局限性较大, 而且, 该现有也难以加工物体的内 部结构。 [0006] 目前, CNC减材制造工艺已经非常成熟, 但是其需要能包含工件的毛坯进行加 工, 损耗率高达 90%- 10%, 损耗率高能耗高且费吋费工, 该问题亟待解决。
[0007]
[0008] 发明内容
[0009] 本发明的目的在于克服上述现有技术之不足而提供一种加减法 3D打印工艺, 本 发明的 '加减法快速成型技术'采用'分层打印、 同层加工'的技术方案, 分层打印 进行增材制造, 同层加工属于减材制造。 如此, 综合了 3D打印技术、 CNC减材 制造技术的优点, 该新技术具有快速加工、 加工精度高的优点。 1、 1%-5%的损 耗率, 消耗低; 2、 可加工工件的内部; 3、 减少 90%以上的刀具干涉; 4、 使 3D 打印增材制造工艺可使用更高层厚而不损失其加工精度。
[0010] 为实现上述目的, 本发明提供一种加减法 3D打印工艺, 包括如下工艺步骤:
[0011] 步骤 S101, 用 3D打印装置逐层打印目标产品;
[0012] 步骤 S103, 每一层打印完毕之后, 采用 CNC减材加工系统对该层进行减材加工
[0013] 优选的, 在步骤 S101中, 用 3D打印装置打印的每一层, 其外轮廓皆大于其目 标轮廓的大小。 当经过 CNC减材加工系统减材加工后, 达到目标轮廓大小。
[0014] 优选的, 还包括如下步骤:
[0015] 步骤 S205 , 判定是否每一层都已经打印完毕, 若尚未打印完毕, 则重复执行步 骤 S101、 步骤 S103, 直到每一层都打印完毕。
[0016] 优选的, 在步骤 S101之后, 还具有步骤 S5021 ,
[0017] 步骤 S5021 , 判定最新已打印的该层是否需要冷却处理;
[0018] 步骤 S5022, 若需要冷却处理, 则采用风冷系统将该最新已打印的层冷却至预 设的温度范围之内。
[0019] 优选的, 经过步骤 S5021判定之后, 若不需要冷却处理, 则跳转步骤 S5023;
[0020] 步骤 S5023 , 分析当前最新打印层的干涉状况, 从 CNC刀具减材加工系统、 CN
C激光减材加工系统方式中选择一种或两种, 若选择 CNC刀具减材加工则跳转步 骤 S5024, 若选择 CNC激光减材加工则跳转步骤 S5025;
[0021] 步骤 S5024, 采用 CNC刀具减材加工系统进行减材加工; [0022] 步骤 S5025 , 采用 CNC激光减材加工系统进行减材加工。
[0023] 优选的, 所述 CNC减材加工系统为五轴 CNC减材加工系统。
[0024] 优选的, 所述 3D打印装置采用塑料、 陶瓷、 金属材料中的一种或多种打印目标
¾ 口
厂口 Π。
[0025] 优选的, 所述 3D打印装置为桌面级 3D打印机或工业级 3D打印机。
[0026] 本发明还公幵一种 3D打印系统, 包括:
[0027] 机架, 所述机架上设有用以将目标产品逐层打印的如上述的 3D打印装置和 CN
C减材加工系统, 其中,
[0028] 所述 3D打印装置设有至少一个打印喷嘴;
[0029] 所述 CNC减材加工系统用以对 3D打印装置打印的每一层进行减材加工。
[0030] 优选的, 所述 CNC减材加工系统是五轴 CNC减材加工系统。
[0031] 优选的, 所述 3D打印装置设有 4个打印喷嘴。
[0032] 优选的, 所述 CNC减材加工系统是五轴 CNC减材加工系统, 所述五轴 CNC减材 加工系统采用刀具和 \或激光进行减材加工。
[0033] 优选的, 所述机架上还设有风冷系统。 所述风冷系统将预冷的空气吹到目标产 品上, 通过冷空气对流快速冷却。 所述风冷系统还可以设有一空气过滤装置。
[0034] 优选的, 还包括有温度检测装置, 用以检测目标产品的温度。
[0035] 优选的, 还包括有单片机, 所述单片机用以控制 3D打印装置的制造步骤, 所述 单片机还用来控制 CNC减材加工系统的加工步骤。
[0036] 本发明的有益效果是:
[0037] 1、 本发明采用'分层打印、 同层加工'的 3D打印制造工艺, 综合了 3D打印技术 、 CNC减材制造技术的优点, 本发明的加减法工艺具有加工快速、 加工精度高 的优点。 本发明的加减法工艺比传统的 3D打印技术具有优势, 主要体现在单纯 的 3D打印技术无法兼顾打印层厚与打印精度, 而本发明的加减法工艺则可以兼 顾打印层厚、 打印精度。 本发明的加减法工艺比传统的 CNC减材制造技术也具 有优势: 1%-5<¾的损耗率, 消耗低; 可加工工件的内部; 减少 90%以上的刀具 干涉。
[0038] 2、 单独采用 CNC减材制造工艺制造产品, 无法解决干涉问题, 制造效率低, 材料损耗率高, 而采用本发明的加减法制造方法, 将增材制造、 减材制造完美 的结合在一起, 实现了加工效率、 加工精度、 加工速度的极大飞跃。 本发明可 以实现热态下 CNC减材加工, 也可以实现冷却后 CNC减材加工, 根据实际需要 进行选取。 本发明的加减法工艺, 将 3D打印装置、 CNC五轴加工设备结合在一 起, 还可以将 CNC激光加工设备, 这三者结合在一起。 本发明的加减法工艺, 不同于现有的先增材制造、 后 CNC减材制造的现有的制造工艺, 上述现有的制 造工艺存在着打印效率低, 打印完毕后减材加工较为困难且无法加工工件内部 的问题。 本发明的加减法工艺, 采用 CNC五轴机械减材加工, 干涉小或无干涉 , 还容易加工产品的内部, 实现对产品的内部、 外部同吋加工, 使 3D打印的产 品, 其内部、 外部都保持较高的精度。 此外, 本发明的加减法工艺还可以采用 激光减材, 激光的光斑大小可灵活调节, 加工精度更高, 通过调节激光的功率 可以轻易的烧掉塑料或者金属材料, 从而获得更高的加工精度, 当无法采用 CN C刀具加工吋, 还可以采用激光减材, 进一步降低了干涉效应对减材加工的影响
[0039] 3、 本发明稳定性好, 可靠高, 操作使用方便, 设计新颖, 实用性强, 易于推 广应用。
[0040]
[0041] 附图说明
[0042] 图 1是本发明的整体工艺逻辑流程图;
[0043] 图 2是本发明的工艺流程图一;
[0044] 图 3是本发明的工艺流程图二, 图 3是对图 2的进一步限定;
[0045] 图 4是本发明的工艺流程图三;
[0046] 图 5是本发明的工艺流程图四, 图 5是对图 4的进一步限定;
[0047] 图 6是本发明的工艺流程图五;
[0048] 图 7是本发明的工艺流程图六;
[0049] 图 8是本发明的工艺流程图七;
[0050] 图 9是本发明的一种 3D打印系统的立体结构示意图;
[0051] 附图标记: [0052] CNC减材加工系统 10;
[0053] 刀具 101 ;
[0054] 3D打印装置 20;
[0055] 打印喷嘴 201 ;
[0056] 目标产品 30。
[0057] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
[0058]
[0059] 具体实施方式
[0060] 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至 终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下 面通过参考附图描述的实施例是示例性的, 旨在用于解释本发明, 而不能理解 为对本发明的限制。
[0061] 请参阅图 1和 2, 本发明提供一种加减法 3D打印工艺, 包括如下工艺步骤: 步骤
S101 , 用 3D打印装置 20逐层打印目标产品 30; 步骤 S103, 每一层打印完毕之后
, 采用 CNC减材加工系统 10对该层进行减材加工。
[0062] 在上述实施例中, 本发明通过采用 3D打印装置 20每打印一层都紧着着进行减材 加工, 从而实现增材制造、 减材加工交替式加减法 3D打印工艺。 为此, 本发明 的工艺称之为 '加减法工艺'。
[0063] 请参阅图 3, 更进一步的, 步骤 S103具体为步骤 S103A, 步骤 S103A: 每一层打 印完毕之后, 采用五轴 CNC减材加工系统 10对该层进行减材加工。
[0064] 对上述实施例进一步限定, 在步骤 S101中, 用 3D打印装置 20打印的每一层, 其外轮廓皆大于其目标轮廓的大小。 当经过 CNC减材加工系统 10减材加工后, 达到目标轮廓大小。 由于减材加工过程中, 需要将 3D打印装置 20增材打印的多 余部分 '减'去, 所以采用 3D打印装置 20打印的每一层其外轮廓应大于其目标轮廓 大小, 一般而言, 比目标轮廓大 1%至 5%。
[0065] 请参阅图 4, 在步骤 S103之后, 还包括如下步骤: 步骤 S205 , 判定是否每一层 都已经打印完毕, 若尚未打印完毕, 则重复执行步骤 S101、 步骤 S103, 直到每 一层都打印完毕。 [0066] 在上述实施例中, 步骤 S101、 步骤 S103、 步骤 S205, 组成一个完整的加工工艺 , 通过这种完整的加工工艺可以制备出完整的目标产品 30。
[0067] 请参阅图 5, 本发明的加减法 3D打印制造工艺, 包括步骤 S101、 步骤 S103A、 步骤 S205。
[0068] 请参阅图 6和图 7, 步骤 S103A可以由步骤 S103A1或步骤 S103A2代替。 其中, 步骤 S103A1具体为: 每一层打印完毕之后, 采用五轴 CNC刀具减材加工系统进 行减材加工。 步骤 S103A2具体为: 每一层打印完毕之后, 采用五轴 CNC激光减 材加工系统进行减材加工。
[0069] 本发明的一个实施例, 在步骤 S101之后, 还具有步骤 S5021 , 步骤 S5021 , 判定 最新已打印的该层是否需要冷却处理; 步骤 S5022, 若需要冷却处理, 则采用风 冷系统将该最新已打印的层冷却至预设的温度范围之内。
[0070] 在上述实施例中, 由于打印的材质多种多样, 每一层打印完毕之后, 其是否满 足 CNC减材加工系统 10减材加工的条件也需要具体分析, 故而需要对是否需要 冷却处理进行判断。 然而, 本发明公幵了使用风冷系统, 吹出冷风进行降温处 理。 但是, 采用风冷系统吹出常温气流, 通过对流进行降温, 或者采用其他方 式的降温手段、 工艺都属于本发明的保护范围之内。 这些降温手段、 工艺只要 能满足给热态的已打印层进行降温, 并且不对其性质造成损害即可。 该风冷系 统可以是风机。 若需要采用冷风, 则可采用空调器或者热泵等装置获得冷风。 此外, 还可以采用自然冷却的办法。 预设的温度范围是指, 降温后, 应当使该 层满足 CNC减材加工系统 10的临界阈值, 从而避免热态物料的黏刀问题。
[0071] 请参阅图 5至图 8, 此外, 经过步骤 S5021判定之后, 若不需要冷却处理, 则跳 转步骤 S5023; 步骤 S5023 , 分析当前最新打印层的干涉状况, 从 CNC刀具 101减 材加工系统、 CNC激光减材加工系统方式中选择一种或两种, 若选择 CNC刀具 1 01减材加工则跳转步骤 S5024, 若选择 CNC激光减材加工则跳转步骤 S5025; 步 骤 S5024, 采用 CNC刀具 101减材加工系统进行减材加工; 步骤 S5025 , 采用 CNC 激光减材加工系统进行减材加工。 其中, 步骤 S5024、 步骤 S5025是对步骤 S103 的进一步限定。
[0072] 在上述实施例中, 公幵了三种组合方式: 3D打印装置 20与 CNC刀具 101减材加 工系统在一套设备中并存; 3D打印装置 20与 CNC激光减材加工系统在一套设备 中并存; 3D打印装置 20与 CNC刀具 101减材加工系统、 CNC激光减材加工系统三 者在一套设备中并存。 根据干涉情况选择合适的加工系统, 若设备中只含有 CN C刀具 101减材加工系统或 CNC激光减材加工系统, 则默认选取该 CNC减材加工 系统 10。 其中, 通过调整激光的参数, 控制光斑的大小、 激光的功率, 可以将 已打印层的外轮廓加工至目标轮廓大小, 激光可将物料进行烧除。 根据情况而 定, CNC刀具 101减材加工系统采用合适的冷却手段, 如采用切削液或者其他冷 却手段, 当然, 也可以根据具体情况而定, 不采用冷却手段。 该 CNC刀具 101减 材加工系统可以是能自动换刀具 101的 CNC刀具 101减材加工系统, 也可以是手 动更换刀具 101的 CNC刀具 101减材加工系统。
[0073] 对上述实施例进一步进行限定, 所述 CNC减材加工系统 10为五轴 CNC减材加工 系统 10。 采用五轴 CNC减材加工系统 10可以实现加工三维曲面, 且加工精度高 , 加工速度快, 可以适应各种复杂的目标产品 30的加工处理。 如, 可以采用五 轴联动加工中心, 立式五轴加工中心的回转轴优先采用依靠立式主轴头的回转 的方式。 主轴前端是一个回转头, 能自行环绕 Z轴 360度, 成为 C轴, 回转头上还 有带可环绕 X轴旋转的 A轴, 一般可达 ±90度以上。 这种设置方式的优点是主轴 加工非常灵活, 工作台也可以设计的非常大, 如此, 可以满足大型 3D打印的需 要。
[0074] 本实用新型的一个实施例, 所述 3D打印装置 20采用塑料、 陶瓷、 金属材料中的 一种或多种打印目标产品 30。 也就是说, 本打印工艺中包含以下情形: 1、 在一 个目标产品 30中, 某些层采用塑料材质进行打印, 某些层采用陶瓷材料进行打 印, 某些层采用金属材料进行打印, 如此, 经过排列组合后, 就可以实现更好 的打印效果; 2、 在打印的同一层中, 采用上述三种材料中的一种或者多种进行 打印, 如此, 可以满足更多的需求。 此外, 本实施例还应当包括其他一些可供 3 D打印的原材料, 本发明所公幵、 保护的加减法工艺并不局限于上述的三种材质 , 而采用其他可供 3D打印的材质的对本加减法工艺的变形, 都属于本发明的保 护之内。 如将塑料、 陶瓷等概括为非金属材料, 当然, 这些非金属材料中, 应 当剔除不能满足 3D打印需求的材料, 包括采用人工合成的、 天然的材料使用本 加减法加工工艺都属于对发明的简单变形和置换。 . 目前, 3D打印材料包括但 不限于工程塑料、 光敏树脂、 橡胶类材料、 金属材料、 陶瓷材料、 彩色石膏材 料、 人造骨粉、 细胞生物原料以及砂糖等食品材料。 所用的这些原材料都是专 门针对 3D打印装置 20和工艺而研发的, 与普通的塑料、 石膏、 树脂等有所区别 , 其形态一般有粉末状、 丝状、 层片状、 液体状等。 通常, 根据打印设备的类 型及操作条件的不同, 所使用的粉末状 3D打印材料的粒径为 1〜100μηι不等, 而 为了使粉末保持良好的流动性, 一般要求粉末要具有高球形度。 工程塑料是当 前应用最广泛的一类 3 D打印材料, 常见的有 ABS类材料、 PC类材料、 尼尼龙 玻纤、 PC-ABS材料、 PC-ISO材料、 PSU类材料。 常见的光敏树脂有 Somos Next 材料、 树脂 Somos 11122材料、 Somos 19120材料和环氧树脂等。 应用于 3 D打印 的金属粉末材料主要有钛合金、 钴铬合金、 不锈钢和铝合金材料等, 此外还有 用于打印首饰用的金、 银等贵金属粉末材料。 以上的 3D打印材料仅仅是举出一 些可用的实施例, 而不能涵盖所有的可供选择的 3D打印材料。
[0075] 此外, 需要指出的是, 若采用 3D打印装置 20打印一层之后, 采用手工刀具 101 等进行减材加工, 属于本发明的变劣的实施例, 这种实施例属于本发明的简单 变形和置换, 而不能称之为新的加工工艺, 这种变劣的实施例也属于本发明的 保护范围之内。
[0076] 本发明的一个实施例, 所述 3D打印装置 20为桌面级 3D打印机或工业级 3D打印 机。 根据不同的需要, 本发明的加减法制造工艺, 可以用于小型的 3D打印机, 也可以用于大型的 3D打印机, 实现'分层打印、 同层加工'的加工工艺。 本发明 侧重于工业级 3D打印。
[0077] 请参阅图 9, 本发明还公幵一种 3D打印系统, 包括: 机架, 所述机架上设有用 以将目标产品 30逐层打印的如上述的 3D打印装置 20和 CNC减材加工系统 10, 其 中, 所述 3D打印装置 20设有至少一个打印喷嘴 201 ; 所述 CNC减材加工系统 10用 以对 3D打印装置 20打印的每一层进行减材加工。
[0078] 更为具体的, 所述 CNC减材加工系统是五轴 CNC减材加工系统。
[0079] 更进一步的, 所述 3D打印装置 20和 CNC减材加工系统 10的位置关系可以是固 定的, 也可以分幵设置。 [0080] 对上述实施例进一步限定, 还包括一供料系统, 该供料系统与所述打印喷嘴 20 1相连。
[0081] 本发明的一个实施例, 所述 3D打印装置 20设有 4个打印喷嘴 201。 这 4个打印喷 嘴 201可以同吋工作也可以单独工作, 该 4个打印喷嘴 201的口径可以相同也可以 不同, 不同口径的打印喷嘴 201其口径可以依次增加并按照口径大小进行排列。 此外, 本 3D打印装置 20还可以设置 4个以上的打印喷嘴 201, 用以实现更高的打 印要求。
[0082] 本发明的一个实施例, 所述 CNC减材加工系统 10是五轴 CNC减材加工系统 10, 所述五轴 CNC减材加工系统 10采用刀具 101和\或激光进行减材加工。
[0083] 本发明的一个实施例, 所述机架上还设有风冷系统 (图未视出) 。 所述风冷系 统将预冷的空气吹到目标产品 30上, 通过冷空气对流快速冷却。 所述风冷系统 还可以设有一空气过滤装置 (图未视出) , 用以提供洁净的气流, 防止气流中 的杂质对待打印的目标产品 30造成影响。
[0084] 本发明的一个实施例, 还包括有温度检测装置 (图未视出) , 用以检测目标产 品 30的温度。
[0085] 本发明的一个实施例, 还包括有单片机 (图未视出) , 所述单片机用以控制 3D 打印装置 20的制造步骤, 所述单片机还用来控制 CNC减材加工系统 10的加工步 骤。
[0086] 综上所述, 本发明采用'分层打印、 同层加工'的技术方案, 综合了 3D打印技术 、 CNC减材制造技术的优点, 本发明的加减法制造工艺具有加工快速、 加工精 度高的优点。 本发明的加减法制造工艺比传统的 3D打印技术具有较强的优势, 主要体现在单纯的 3D打印技术无法兼顾打印层厚与打印精度, 而本发明的加减 法工艺则可以兼顾打印层厚、 打印精度, 本发明实现了在增大打印层厚的同吋 不损失制造精度的效果。 本发明的加减法工艺比单纯的 CNC减材加工也具有优 势: 1%〜5<¾的损耗率, 消耗低; 可加工工件的内部; 减少 90%以上的刀具 101 干涉。 单独采用 CNC减材加工工艺制造产品, 无法解决干涉问题, 加工较为困 难, 效率低, 而采用本发明的加减法制造方法, 将增材制造、 减材加工完美的 结合在一起, 实现了加工效率、 加工精度、 加工速度的极大飞跃。 采用本发明 的加减法工艺, 将目标产品 30分为较少的若干层, 比现有的 3D打印工艺分层要 少很多, 所以加工速度高, 且更加智能化。 本发明可以实现热态下 CNC加工, 也可以实现冷却后 CNC减材加工, 根据实际需要进行选取。 本发明的加减法工 艺, 将 3D打印装置 20、 CNC五轴加工设备结合在一起, 还可以将 CNC激光加工 设备, 这三者结合在一起。 本发明的加减法工艺, 不同于现有的先增材制造、 后 CNC减材制造的现有工艺, 上述现有工艺存在着打印效率低, 打印完毕后减 材加工较为困难且无法加工工件内部的问题。 本发明的加减法工艺, 采用 CNC 五轴机械减材加工, 干涉小或无干涉, 还容易加工产品的内部。 此外, 本发明 的加减法工艺还可以采用激光减材, 激光的光斑大小可调节, 加工精度更高, 通过调节激光的功率可以轻易的烧掉塑料或者金属材料, 从而获得更高的加工 精度, 当无法采用 CNC刀具 101加工吋, 还可以采用激光减材, 进一步降低了干 涉效应对减材加工的影响。 本发明稳定性好, 可靠高, 操作使用方便, 设计新 颖, 实用性强, 易于推广应用。
[0087] 在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示例"、 "具体 示例"、 或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构 、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对 上述术语的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体 特征、 结构、 材料或者特点可以在任何的一个或多个实施例或示例中以合适的 方式结合。
[0088] 尽管上面已经示出和描述了本发明的实施例, 可以理解的是, 上述实施例是示 例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在不脱离本发明 的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、 修改、 替换和变型。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种加减法 3D打印工艺, 其特征在于, 包括如下工艺步骤:
步骤 S101, 用 3D打印装置逐层打印目标产品;
步骤 S103, 每一层打印完毕之后, 采用 CNC减材加工系统对该层进 行减材加工。
[权利要求 2] 根据权利要求 1所述的加减法 3D打印工艺, 其特征在于, 还包括如下 步骤:
步骤 S205 , 判定是否每一层都已经打印完毕, 若尚未打印完毕, 则重 复执行步骤 S101、 步骤 S103, 直到每一层都打印完毕。
[权利要求 3] 根据权利要求 1所述的加减法 3D打印工艺, 其特征在于, 在步骤 S101 之后, 还具有步骤 S5021 ,
步骤 S5021 , 判定最新已打印的该层是否需要冷却处理;
步骤 S5022, 若需要冷却处理, 则采用风冷系统将该最新已打印的层 冷却至预设的温度范围之内。
[权利要求 4] 根据权利要求 3所述的加减法 3D打印工艺, 其特征在于,
经过步骤 S5021判定之后, 若不需要冷却处理, 则跳转步骤 S5023; 步骤 S5023 , 分析当前最新打印层的干涉状况, 从 CNC刀具减材加工 系统、 CNC激光减材加工系统方式中选择一种或两种, 若选择 CNC 刀具减材加工则跳转步骤 S5024, 若选择 CNC激光减材加工则跳转步 骤 S5025;
步骤 S5024, 采用 CNC刀具减材加工系统进行减材加工;
步骤 S5025 , 采用 CNC激光减材加工系统进行减材加工。
[权利要求 5] 根据权利要求 1至 4任一项所述的加减法 3D打印工艺, 其特征在于, 所述 CNC减材加工系统为五轴 CNC减材加工系统。
[权利要求 6] 根据权利要求 1至 4任一项所述的加减法 3D打印工艺, 其特征在于, 所述 3D打印装置采用塑料、 陶瓷、 金属材料中的一种或多种打印目 标产品。
[权利要求 7] —种 3D打印系统, 其特征在于, 包括: 机架, 所述机架上设有用以将目标产品逐层打印的如权利要求 1至 6任 一项所述的 3D打印装置和 CNC减材加工系统, 其中,
所述 3D打印装置设有至少一个打印喷嘴;
所述 CNC减材加工系统用以对 3D打印装置打印的每一层进行减材加 工。
[权利要求 8] 根据权利要求 7所述的 3D打印系统, 其特征在于, 所述 3D打印装置设 有 4个打印喷嘴。
[权利要求 9] 根据权利要求 7所述的 3D打印系统, 其特征在于, 所述 CNC减材加工 系统是五轴 CNC减材加工系统, 所述五轴 CNC减材加工系统采用刀 具和 \或激光进行减材加工。
[权利要求 10] 根据权利要求 7至 9任一项所述的 3D打印系统, 其特征在于, 所述机 架上还设有风冷系统。
PCT/CN2016/079468 2016-04-15 2016-04-15 加减法3d打印工艺及3d打印系统 WO2017177454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079468 WO2017177454A1 (zh) 2016-04-15 2016-04-15 加减法3d打印工艺及3d打印系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079468 WO2017177454A1 (zh) 2016-04-15 2016-04-15 加减法3d打印工艺及3d打印系统

Publications (1)

Publication Number Publication Date
WO2017177454A1 true WO2017177454A1 (zh) 2017-10-19

Family

ID=60041256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079468 WO2017177454A1 (zh) 2016-04-15 2016-04-15 加减法3d打印工艺及3d打印系统

Country Status (1)

Country Link
WO (1) WO2017177454A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017295A (ja) * 2013-07-10 2015-01-29 パナソニック株式会社 三次元形状造形物の製造方法およびその製造装置
CN204584273U (zh) * 2015-03-31 2015-08-26 深圳市圆梦精密技术研究院 电子束熔融及切削复合3d打印设备
CN104999080A (zh) * 2015-08-03 2015-10-28 北京理工大学 一种用于精密微细复杂结构件的复合增材制造方法
CN105082543A (zh) * 2015-08-21 2015-11-25 深圳马顿科技有限公司 3d打印设备及3d打印设备的效应器
CN204844868U (zh) * 2015-05-21 2015-12-09 武汉和骏激光技术有限公司 一种带毛刺修补功能的3d打印机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017295A (ja) * 2013-07-10 2015-01-29 パナソニック株式会社 三次元形状造形物の製造方法およびその製造装置
CN204584273U (zh) * 2015-03-31 2015-08-26 深圳市圆梦精密技术研究院 电子束熔融及切削复合3d打印设备
CN204844868U (zh) * 2015-05-21 2015-12-09 武汉和骏激光技术有限公司 一种带毛刺修补功能的3d打印机
CN104999080A (zh) * 2015-08-03 2015-10-28 北京理工大学 一种用于精密微细复杂结构件的复合增材制造方法
CN105082543A (zh) * 2015-08-21 2015-11-25 深圳马顿科技有限公司 3d打印设备及3d打印设备的效应器

Similar Documents

Publication Publication Date Title
CN104404508B (zh) 一种铝合金结构件的激光增材制造方法
CN108555295B (zh) 一种高熵合金构件的激光立体成形方法
CN104759625A (zh) 一种使用激光3d打印技术制备铝合金结构件的材料及方法
WO2019109659A1 (zh) 一种半导体封装模具的型腔加工工艺
CN109079137B (zh) 一种梯度送粉激光增材制造高熵合金的原位制备方法
CN109365811A (zh) 一种选区激光熔化技术成形锌合金制品的方法
CN104786078B (zh) 钛合金整体叶轮的数控加工方法及其配套工装夹具
CN103331322B (zh) 一种挤压铝合金用的模具
CN108170094B (zh) 一种刀具路径平滑压缩的方法
CN105269283A (zh) 一种高寿命pcd刀具的制备方法
CN203484866U (zh) 一种非预埋式异型弯曲水道热作模具
CN105269284A (zh) 一种内凹形复杂轮廓pcd刀具的超精密高效制备工艺方法
CN103522026A (zh) 一种非预埋式异型弯曲水道热作模具及其制造方法
CN108296722A (zh) 一种多组合多角度曲面的加工工艺
CN107127343A (zh) 一种镍基合金结构件的电子束增材制造方法
CN105312563B (zh) 一种镍基双合金整体叶盘的制造方法
CN1830597A (zh) 增压器压气机叶轮模具的加工方法
CN105127758A (zh) 机床用多轴复合装置
CN108941511A (zh) 一种基于3d打印铸造铝合金缸盖的成型工艺
WO2024021218A1 (zh) 钽钨合金制品及其制备方法
CN207824055U (zh) 一种基于3d打印成型的内含螺旋冷却流道的铣刀
CN101773983B (zh) 一种钛合金铸件石墨型芯的制造方法
CN204658567U (zh) 一种激光熔覆直接成型的旋转模切模辊
CN106623840A (zh) 一种合金半固态旋压增材制备装置
CN104057271A (zh) 一种硬质合金工模具的制作方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898272

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16898272

Country of ref document: EP

Kind code of ref document: A1