WO2017177372A1 - 生成光信号的器件、方法和芯片 - Google Patents

生成光信号的器件、方法和芯片 Download PDF

Info

Publication number
WO2017177372A1
WO2017177372A1 PCT/CN2016/079029 CN2016079029W WO2017177372A1 WO 2017177372 A1 WO2017177372 A1 WO 2017177372A1 CN 2016079029 W CN2016079029 W CN 2016079029W WO 2017177372 A1 WO2017177372 A1 WO 2017177372A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical signal
modulator
electrical modulation
modulated
Prior art date
Application number
PCT/CN2016/079029
Other languages
English (en)
French (fr)
Inventor
王寅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680074448.5A priority Critical patent/CN108370273B/zh
Priority to EP16898191.8A priority patent/EP3425823B1/en
Priority to PCT/CN2016/079029 priority patent/WO2017177372A1/zh
Publication of WO2017177372A1 publication Critical patent/WO2017177372A1/zh
Priority to US16/157,807 priority patent/US10763637B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • Embodiments of the present invention relate to the field of optical communications and, more particularly, to devices, methods, and chips for generating optical signals.
  • the existing high-speed optical signal transmitter can generate single side band (SSB) modulated signals and multi-level pulse amplitude modulation by using multiple optical devices such as an external light source, a beam splitter, and a beam combiner.
  • PAM phase-symbol Quadrature Amplitude Modulation
  • QAM multi-symbol Quadrature Amplitude Modulation
  • an SSB signal or a multi-level QAM signal can be generated by an external light source through an optical beam splitter, two modulators, a phase control region, and an optical combiner.
  • This implementation requires a complete in-phase positive An In-phase Quadrature (IQ) modulator is used to perform phase modulation.
  • IQ In-phase Quadrature
  • a non-return zero (NRZ) signal can be generated by an Electro-absorption Modulated Laser (EML) or a Directly Modulated Laser (DML).
  • EML Electro-absorption Modulated Laser
  • DML Directly Modulated Laser
  • multi-level PAM signals but multi-level PAM signals require higher linearity of the device.
  • the use of these conventional methods of IQ modulators or the increase in linearity requirements of the devices all require higher device requirements and higher cost for the entire device.
  • Embodiments of the present invention provide a device, method, and chip for generating an optical signal, which can reduce the device cost of generating an optical signal.
  • a device for generating an optical signal includes a laser, a first modulator, a second modulator, a first adjustment module, and a combiner; two ends of the laser are respectively coupled to the first modulator and The second modulator is connected to the first adjustment module, and the two ends of the combiner are respectively connected to the first adjustment module and the second modulator; Outputting a first optical signal to the first modulator and outputting a second optical signal to the second modulator
  • the first modulator is configured to receive the first optical signal and the loaded first electrical modulation signal, and modulate the first optical signal according to the first electrical modulation signal to obtain a first a modulated optical signal;
  • the second modulator is configured to receive a second electrical modulation signal loaded by the second optical signal, and to the second optical signal according to the second electrical modulation signal Modulating to obtain a second modulated optical signal;
  • the first adjusting module is configured to adjust a phase of the first modulated optical signal or the first modulated optical signal to reach the combining
  • the optical combiner is configured to
  • optical signals are respectively outputted from two ends of a laser that emits light at both ends, and modulated by a modulator at each end, and then the adjustment module is used to adjust the phase of the modulated optical signal or reach the optical path of the combiner. Finally, the optical signals at both ends of the combiner are combined and the composite signal is output, which can reduce the cost of the device for generating the optical signal.
  • the laser in the embodiment of the present invention has the characteristics of emitting light at both ends. Compared with the beam splitter used in the conventional method, it is no longer necessary to split the light into two beams, which can reduce the complexity of the device.
  • the device further includes a second adjustment module, where the second adjustment module is configured to adjust a phase of the second modulated optical signal or the The second modulated optical signal reaches the optical path of the combiner.
  • the adjustment module adjusts the phase or the optical path, so that the phase difference or the optical path difference of the two modulated optical signals is a predetermined preset value.
  • one of the first electrical modulation signal and the second electrical modulation signal is an original electrical modulation signal, and the other An electrical modulation signal obtained by performing a Hilbert transform on the original electrical modulation signal; wherein the first modulated optical signal and the second modulated optical signal are phase-adjusted
  • the phase difference is
  • the composite signal is a single sideband SSB signal and N is a positive integer.
  • the device further includes a polarization rotator; the polarization rotator is configured to polarize the first modulated optical signal The polarization state of the state or the second modulated optical signal is rotated by 90 degrees plus an integer multiple of 360 degrees.
  • the polarization rotator rotates the polarization state of the modulated optical signal by 90 degrees plus an integer multiple of 360 degrees, and the polarization state of the other modulated optical signal remains unchanged, so that the polarization of the two modulated optical signals is made. State vertical.
  • the device may further include two polarization rotators, one polarization rotator rotates the polarization state of the first modulated optical signal by a first angle, and the other deflection rotator modulates the second path.
  • the polarization state of the optical signal is rotated by a second angle, wherein the sum of the first angle and the second angle is 90 degrees plus an integral multiple of 360 degrees, that is, the polarization state of the two-way modulated optical signal is perpendicular.
  • the first electrical modulation signal is an N-level pulse amplitude modulation signal PAM-N
  • the second electrical modulation signal is combined with the first aspect and the foregoing implementation manner.
  • the composite signal is a PAM-M*N signal; wherein the first modulated optical signal and the second modulated optical signal are optically adjusted
  • the path difference is the preset value.
  • the preset value in the embodiment of the present invention may be zero or a value within a certain range around zero, allowing a certain deviation.
  • generating a PAM-4 signal decomposes a multilevel signal into a two-level signal, which has no requirement for linearity of the device, so that better signal quality can be obtained, and this implementation is highly integrated and can be passed through a single chip. achieve.
  • the first electrical modulation signal is a PAM-N signal
  • the second electrical modulation signal is a PAM-M signal
  • the phase difference between the first modulated optical signal and the second modulated optical signal is phase adjusted
  • the composite signal is an M*N-QAM signal.
  • the device of the embodiment of the invention can realize the output of the M*N-QAM signal, for example, realize the output of the 16-QAM signal.
  • the conventional implementation is implemented by using an external light source and a Mach-Zehnder Modulator (MZM) or IQ modulation.
  • MZM Mach-Zehnder Modulator
  • IQ modulation IQ modulation.
  • the chip size is large and difficult to integrate, and the power consumption is large.
  • the device integration of the embodiment of the present invention is achieved.
  • the device is simple and compact, and the device of the embodiment of the invention can greatly reduce the complexity of the chip and can reduce the cost of the chip.
  • the adjustment module can adjust the phase difference or the optical path difference between the two modulated optical signals by means of electrical injection or thermal tuning.
  • the adjustment module in the embodiment of the invention can realize the phase adjustment and the adjustment of the optical path of different optical signals to the combiner by means of integration, and can also realize the above phase and phase by separately separating devices. Adjustment of the optical path. Different optical signals arrive at the combiner with different optical paths, and different optical signals arrive at the combiner for different times.
  • the device for generating an optical signal in the embodiment of the present invention can be integrated on a chip, that is, the components of the laser, the modulator, the adjustment module, and the like are integrated on one chip, and the laser, the modulator, the adjustment module, and the like can also be used. Implemented by separate chips or devices.
  • a chip comprising a device for generating an optical signal in any of the implementations of the first aspect.
  • a chip provided by an embodiment of the present invention includes the components of the device for generating an optical signal in the above first aspect. Compared with conventional devices that generate optical signals, the chip is compact in structure, eliminating the need for MZM or IQ modulation, resulting in a miniaturized device structure.
  • the device includes: a laser, a first modulator, a second modulator, a first adjustment module, and a combiner; a first modulator and a second modulator, the first modulator being connected to the first adjustment module, the two ends of the combiner being respectively connected to the first adjustment module and the second modulation
  • the laser is configured to output a first path optical signal to the first modulator and a second path optical signal to the second modulator;
  • the first modulator is configured to receive the first path light Signaling and loading the first electrical modulation signal, and modulating the first optical signal according to the first electrical modulation signal to obtain a first modulated optical signal;
  • the second modulator is configured to receive a second electrical modulation signal loaded by the second optical signal, and modulating the second optical signal according to the second electrical modulation signal to obtain a second modulated optical signal;
  • An adjustment module is used to adjust the first road The phase of the processed optical signal or the optical signal of the first modulated signal reaches the optical path of the combiner; the combine
  • the device further includes a second adjustment module, where the second adjustment module is configured to adjust the second modulated light The phase of the signal or the second modulated optical signal reaches the optical path of the combiner.
  • the first electrical modulation signal and the second electrical modulation An electrical modulation signal obtained by performing a Hilbert transform on the original electrical modulation signal; wherein the first modulated optical signal and the second modulated optical signal are phase-adjusted
  • the phase difference between the two is
  • the composite signal is a single sideband SSB signal and N is a positive integer.
  • the device further includes a polarization rotator; the polarization rotator is configured to polarize the first modulated optical signal The polarization state of the state or the second modulated optical signal is rotated by 90 degrees plus an integer multiple of 360 degrees.
  • the first electrical modulation signal is an N-level pulse amplitude modulation signal PAM-N
  • the second electrical modulation signal For the PAM-M signal the composite signal is a PAM-M*N signal; wherein the first modulated optical signal and the second modulated optical signal are optically adjusted
  • the path difference is the preset value.
  • the first electrical modulation signal is a PAM-N signal
  • the second electrical modulation signal is a PAM-M signal
  • the phase difference between the first modulated optical signal and the second modulated optical signal is phase adjusted
  • the composite signal is an M*N-QAM signal.
  • the functions of the various devices and/or units in the chip provided by the above second aspect may refer to the functions of the respective modules and/or units in the device for generating optical signals provided by the first aspect, and are not repeated here to avoid repetition.
  • a method of generating an optical signal is provided, the method being performed by a device that generates an optical signal, the device comprising a laser, a first modulator, a second modulator, a first adjustment module, and a combiner, The two ends of the laser are respectively connected to the first modulator and the second modulator, the first modulator is connected to the first adjustment module, and two ends of the combiner are respectively connected to the first Adjusting the module and the second modulator; the method comprising: the laser outputting a first optical signal to the first modulator and outputting a second optical signal to the second modulator; a modulator receives the first optical signal and the loaded first electrical modulation signal, and modulates the first optical signal according to the first electrical modulation signal to obtain a first modulated optical signal The second modulator receives the second electrical modulation signal loaded by the second optical signal, and modulates the second optical signal according to the second electrical modulation signal to obtain a second path.
  • the adjusting module adjusts a phase of the first modulated optical signal or an optical path of the first modulated optical signal to the combiner; the combiner adjusts the phase or the optical path Combining the first modulated optical signal with the second modulated optical signal to obtain a combination A signal is generated and the composite signal is output.
  • optical signals are respectively outputted from two ends of a laser that emits light at both ends, and modulated by a modulator at each end, and then the adjustment module is used to adjust the phase of the modulated optical signal or reach the optical path of the combiner. Finally, the optical signals at both ends of the combiner are combined and the composite signal is output, which can reduce the cost of the device for generating the optical signal.
  • the device further includes a second adjustment module, where the second adjustment module adjusts a phase of the second modulated optical signal or the second The path modulated optical signal reaches the optical path of the combiner.
  • one of the first electrical modulation signal and the second electrical modulation signal is an original electrical modulation signal, and the other An electrical modulation signal obtained by performing a Hilbert transform on the original electrical modulation signal; wherein the first modulated optical signal and the second modulated optical signal are phase-adjusted
  • the phase difference is
  • the composite signal is a single sideband SSB signal and N is a positive integer.
  • the device further includes a polarization rotator; and a polarization state of the optical signal modulated by the polarization rotator Or the polarization state of the second modulated optical signal is rotated by 90 degrees plus an integral multiple of 360 degrees.
  • the first electrical modulation signal is an N-level pulse amplitude modulation signal PAM-N
  • the second electrical modulation signal For the PAM-M signal, the composite signal is a PAM-M*N signal; wherein the first modulated optical signal and the second modulated optical signal are optically adjusted
  • the path difference is the preset value.
  • the first electrical modulation signal is a PAM-N signal
  • the second electrical modulation signal is a PAM-M signal
  • the phase difference between the first modulated optical signal and the second modulated optical signal is phase adjusted
  • the composite signal is an M*N-QAM signal.
  • each step in the method for generating an optical signal provided by the above third aspect may refer to the functions of each module and/or unit in the device for generating an optical signal provided by the first aspect, and is not repeated here to avoid repetition.
  • FIG. 1 is a schematic structural view of a device for generating an optical signal according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of generating an SSB signal using the device shown in the figure, in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of generating a PAM-N signal using the device shown in the figure, in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of generating an N*M-QAM signal using the device shown in the figure, in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method of generating an optical device according to an embodiment of the present invention.
  • the technical solution of the present invention can be applied to various optical communication systems, for example, Plesiochronous Digital Hierarchy (PDH) optical communication system, Synchronous Digital Hierarchy (SDH) optical communication system, and dense optical wave multiplexing. (Dense Wavelength Division Multiplexing, DWDM) optical communication system, all-optical network optical communication system, and the like.
  • PDH Plesiochronous Digital Hierarchy
  • SDH Synchronous Digital Hierarchy
  • dense optical wave multiplexing dense optical wave multiplexing.
  • DWDM Densense Wavelength Division Multiplexing
  • FIG. 1 is a schematic structural view of a device for generating an optical signal according to an embodiment of the present invention.
  • the device of Figure 1 can be a transmitter that generates an optical signal and is used to emit an optical signal.
  • the device 10 of FIG. 1 includes a laser 11, a first modulator 12, a second modulator 13, a first adjustment module 14, and a combiner 15.
  • the two ends of the laser 11 are respectively connected to the first modulator 12 and the second modulator 13.
  • the first modulator 12 is connected to the first adjustment module 14, and the two ends of the combiner 15 are respectively connected to the first adjustment module 14 and the second modulation. 13.
  • the laser 11 is for outputting a first optical signal to the first modulator 12 and a second optical signal to the second modulator 13.
  • the first modulator 12 is configured to receive the first optical signal and the loaded first electrical modulation signal, and modulate the first optical signal according to the first electrical modulation signal to obtain the first modulated optical signal.
  • the second modulator 13 is configured to receive a second electrical modulation signal loaded by the second optical signal, and modulate the second optical signal according to the second electrical modulation signal to obtain a second modulated optical signal.
  • the first adjustment module 14 is configured to adjust the phase of the first modulated optical signal or the first modulated optical signal to the optical path of the combiner.
  • the combiner 15 is configured to combine the first-modulated optical signal after the phase adjustment or the optical path adjustment and the second-modulated optical signal to obtain a composite signal, and output a composite signal.
  • optical signals are respectively outputted from two ends of a laser that emits light at both ends, and modulated by a modulator at each end, and then the adjustment module is used to adjust the phase of the modulated optical signal or reach the optical path of the combiner. Finally, the optical signals at both ends of the combiner are combined and the composite signal is output, which can reduce the cost of the device for generating the optical signal.
  • the laser as the built-in light source of the whole device has the characteristics of emitting light at both ends, so that the laser can output the optical signal to both ends, and the beam splitter is no longer needed to split the optical signal, thereby simplifying the device structure and making the device structure
  • the device is miniaturized.
  • Conventional devices that generate optical signals usually include a complete set of IQ modulators, which require splitting, modulating, and combining optical signals.
  • a modulator structure has large storage and high manufacturing process requirements.
  • the integration with the light source and the like is realized. Therefore, the conventional method uses a separate light source chip and a modulator chip, which undoubtedly increases the chip size of the device and improves the difficulty of miniaturization and integration of the chip.
  • the device of the embodiment of the invention can utilize an inexpensive EML laser manufacturing platform, and the integration between the light source and the modulator can be easily realized, and the device cost can be reduced.
  • the ability to compact the chip structure allows the chip size to be reduced by several tens of times.
  • SSB modulation is an amplitude modulation technique that makes more efficient use of power and bandwidth.
  • the IQ modulation can divide the data into two paths and perform carrier modulation separately, and the two carriers are orthogonal to each other.
  • IQ modulation is the direction problem of the vector.
  • the in-phase is the same signal in the vector direction; the orthogonal component is the orthogonality of the two signal vectors (for example, 90° difference); the IQ signal is 0° or 180°, and the other is 90°. Or 270°, called I and Q, which are two orthogonal signals.
  • the laser in the embodiment of the present invention may be a distributed feedback laser (DFB).
  • DFB has the characteristics of light output at both ends, and is used in the traditional method. Compared with the DFB, the DFB no longer needs a beam splitter, which can reduce the complexity of the device, making the whole device compact and simple in structure.
  • the laser of the embodiment of the present invention can be used as the laser in the embodiment of the present invention.
  • the laser in the embodiment of the present invention may be Fabry-Perot. (Fabry-Perot laser, FP) laser.
  • the laser in the embodiment of the present invention can be used as a built-in light source of the entire device structure without using the structure of the external light source in the conventional technology, which can improve the integration degree of the entire device, that is, the integration degree of the implementation is high, and can be realized by a single chip. .
  • a modulator in an embodiment of the invention is for receiving a loaded electrical modulated signal and modulating the optical signal with an electrical modulated signal.
  • the modulator in the embodiment of the present invention may be an intensity modulator, such as an Electric Absorption Modulation (EAM), a Mach-Zehnder Modulator (MZ), a micro-ring modulator, or the like.
  • EAM Electric Absorption Modulation
  • MZ Mach-Zehnder Modulator
  • micro-ring modulator or the like.
  • the modulator can convert the baseband signal into a frequency band signal by loading the information to be transmitted on the baseband signal, so that the frequency band signal is suitable for channel transmission, thereby avoiding the influence of interference and noise at the time of receiving the decision.
  • the adjustment module in the embodiment of the present invention can be used to adjust the phase or optical path of the optical signal modulated by the modulator, so that the modulated two signals have a preset phase difference or optical path difference, which can meet the actual process.
  • a function of specifying a phase difference or an optical path difference between two signals is required.
  • the adjustment module in the embodiment of the present invention can adjust the phase of the modulated optical signal.
  • the adjustment module is used to adjust the phase when synthesizing the SSB signal or synthesizing the M*N-QAM signal in FIG. 2 and FIG.
  • the adjustment module can also adjust the optical path of the modulated optical signal.
  • the adjustment module is used to adjust the optical path.
  • the adjustment module can adjust the optical path of the modulated optical signal. It can be considered that the adjustment module can adjust the time when the modulated optical signal reaches the combiner.
  • the optical path of the optical signal arriving at the combiner is different, that is, the time at which the optical signal reaches the combiner is different.
  • the adjustment module makes the optical path difference of the two modulated optical signals zero, that is, the two adjusted optical signals arrive at the combiner synchronously.
  • the adjustment module in the embodiment of the present invention may be one or two.
  • the adjustment module when the adjustment module is one, it can be used only to adjust the phase of one optical signal and one optical signal of the first modulated optical signal and the second modulated optical signal to reach the optical path of the combiner;
  • each adjustment module can be connected to a modulator, and each adjustment module is used to adjust the optical path of one modulated optical signal to the combiner. More accurate with two adjustment modules Adjust the effect and get more efficient phase or path adjustment.
  • an adjustment module (for example, a first adjustment module) is connected to only one end of one modulator (for example, the first modulator). 2 can be connected to an adjustment module at one end of each modulator.
  • the first modulator 12 is connected to the first adjustment module 14, and the second modulator 13 is connected to the second adjustment module 16.
  • the adjustment module in the embodiment of the present invention can implement adjustment of the phase or optical path of the optical signal in the adjustment module by using a control signal.
  • the control signal can be a DC signal.
  • the device for generating an optical signal in the embodiment of the present invention may be a transmitter.
  • the present application aims to provide a simple modular transmitter format, which can meet various modulation formats, such as SSB/PAM-N, QAM, etc.
  • the device or transmitter in the embodiment of the present invention can have a more compact chip structure, which can reduce the cost of the device.
  • the device of FIG. 2 is a schematic diagram of a device for generating an SSB signal according to the embodiment of the present invention. That is, the output signal of the embodiment of the present invention may be an SSB signal.
  • the device of FIG. 2 may include a laser 11, a first modulator 12, a second modulator 13, a first adjustment module 14, and a combiner 15.
  • the device of FIG. 2 may also include a second adjustment module 16.
  • the second adjustment module is an optional module.
  • the laser 11 may be a DFB, and the first modulator and the second modulator may be EAM or ZM.
  • DFB the laser
  • EAM the modulator
  • the combiner 15 can be a multimode interference coupler (MMI).
  • MMI multimode interference coupler
  • the laser 11 acts as a built-in light source for the entire device that generates the optical signal, and the light can cause the laser to emit an optical signal by applying a direct current driving voltage to the laser.
  • the optical signal on the laser is output from both ends of the DFB, respectively, into a first modulator (eg, EAM) and a second modulator (eg, EAM).
  • the first modulator can receive an optical signal (for example, a first optical signal) emitted by the laser, and can also receive an external electrical modulation signal (for example, a first electrical modulation signal), and modulate the optical signal by using the electrical modulation signal to obtain The modulated optical signal (for example, the first modulated optical signal).
  • the second modulator can also receive an optical signal (for example, a second optical signal) emitted by the laser, and can also receive an external electrical modulation signal (for example, a second electrical modulation signal), and use the electrical modulation signal to The optical signal is modulated to obtain a modulated optical signal (eg, a second modulated optical signal).
  • an optical signal for example, a second optical signal
  • an external electrical modulation signal for example, a second electrical modulation signal
  • the optical signal is modulated to obtain a modulated optical signal (eg, a second modulated optical signal).
  • the first electrical modulation signal and the second electrical modulation signal respectively entering the first modulator and the second modulator may be obtained from the original electrical modulation signal.
  • the original electrical modulation signal may be any electrical modulation signal.
  • the original electrical modulation signal may be an NRZ electrical modulation signal, a PAM-4 electrical modulation signal, a 16-QAM electrical modulation signal, or the like.
  • the spectrum of the original electrical modulation signal can be symmetrical. As shown in FIG. 2, the original electrical modulation signal is split into two paths, and the first electrical modulation signal directly enters the first modulator 12.
  • the second electrical modulation signal is subjected to a Hilbert transform to obtain a transformed electrical modulation signal, and the transformed electrical modulation signal enters the second modulator 13.
  • Two electrical modulation signals are respectively applied to the modulators at both ends of the laser. The two modulators respectively modulate the optical signal entering the self modulator using the respective loaded electrical modulation signals.
  • the original electrical modulation signal passes through the first modulator and then passes through the first adjustment module, so that the two modulators can be modulated.
  • the phase difference of the signal is ⁇ /2.
  • the phase difference modulated by the two modulators may also be Where N is a positive integer.
  • two different optical signals can be synthesized by the combiner, and the synthesized signal is output to realize the output of the SSB signal.
  • phase difference between the two optical signals modulated by the two modulators may be In an embodiment of the present invention, only one adjustment module may be connected to one end of the first modulator, so that the phase difference of the modulated two optical signals is satisfied. It is also possible to connect only one adjustment module at one end of the second modulator, so that the phase difference of the modulated two optical signals is satisfied. The only difference between the two implementations is which half-band signal is left.
  • an adjustment module may be respectively connected to one end of the first modulator and the second modulator.
  • the first modulator 12 is connected to the first adjustment module 14.
  • the second modulator 13 is connected to the second adjusting module 16.
  • the first adjusting module and the second adjusting module can cooperate to realize the phase difference of the modulated two optical signals.
  • the first adjustment module and the second adjustment module respectively implement two modulated optical signals Phase difference adjustment. In this way, through the two adjustment modules, a more accurate adjustment effect can be obtained, and the accuracy of the phase adjustment can be improved.
  • FIG. 3 is a schematic diagram of generating a PAM-N signal using the device shown in the figure, in accordance with an embodiment of the present invention. That is, the output signal of the embodiment of the present invention may be a PAM-N signal.
  • the device of FIG. 3 may include a laser 11, a first modulator 12, a second modulator 13, a first adjustment module 14, a combiner 15, and a polarization rotator 17.
  • the laser 11 can be a DFB, and the first modulator and the second modulator can For EAM, it can also be MZ.
  • the laser is used as the DFB, and the modulator is the MZ as an example.
  • the combiner 15 can be a polarization combiner.
  • the electrical modulation signal in the embodiment of the present invention may be a PAM-4 electrical modulation signal, where the electrical modulation signal can be obtained through a circuit.
  • the PAM-4's electrical modulation signal is split into two NRZ signals, representing the Least Significant Bit (LSB) and the Most Significant Bit (MSB).
  • the two NRZ signals are respectively loaded onto the two EAMs to perform signal modulation on the responding optical signals, and the manner of splitting the PAM-4 signals can be performed according to the prior art.
  • the optical power representing one side of the low-order information is P/2
  • the power output of one side representing the high-order information is P.
  • the modulated optical signal on either side of the two sides can adjust the optical path of the modulated optical signal to the combiner through an adjustment module, so that the two modulated optical signals have a preset optical path difference, which makes The method of determining the optical path difference as a preset value can be used to compensate for the optical path deviation caused by the assembly error in the actual assembly process.
  • the adjustment module in the embodiment of the invention may be used to adjust the optical path of the modulated optical signal output by the first modulator to the combiner.
  • any one of the two modulated optical signals can be rotated by 90+P*360 degrees through a polarization rotator, wherein P is an integer and is perpendicular to the polarization state of the other path.
  • the device in an embodiment of the invention may include a polarization rotator as shown in FIG.
  • the device may further comprise two polarization rotators, one polarization rotator rotating the polarization state of the first modulated optical signal by a first angle, and the other deflection rotator rotating the polarization state of the second modulated optical signal
  • the two angles wherein the sum of the first angle and the second angle is 90 degrees plus an integral multiple of 360 degrees, that is, the polarization state of the two-way modulated optical signal is perpendicular.
  • the output signal of the embodiment of the present invention may be a PAM-N signal.
  • the signals input to the two modulators are NRZ signals, as indicated in FIG.
  • the signals input to the two modulators are PAM-4 signals.
  • PAM-N represents a PAM signal having N level states.
  • the PAM-4 signal can represent a signal having four level states
  • the PAM-8 signal can represent a signal having eight level states.
  • the use of the embodiment of the present invention to generate a PAM-N*M signal can bypass the linearity of devices in the prior art.
  • Degree problem For example, generating a PAM-4 signal decomposes a multilevel signal into a two-level signal, and decomposes the multilevel signal into a two-level signal, which has no requirement for the linearity of the device, so that better signal quality can be obtained, and This implementation is highly integrated and can be implemented on a single chip.
  • the adjustment module of the embodiment of the present invention may be one or two.
  • each adjustment module is respectively connected to the modulator.
  • One of the adjustment modules is connected to the modulator at one end and to the polarization rotator at one end.
  • the two adjustment modules can jointly adjust the optical path of the modulated optical signal to the combiner, which can improve the accuracy of the adjustment.
  • the two adjustment modules can also work together to make the modulated optical signal have a specified optical path difference, which can also improve the accuracy of the adjustment optical path.
  • the PAM-4 signal has 4 levels and is the baseband modulation level of 16QAM modulation.
  • the PAM-4 signal is widely used and has a large amount of information, which requires a simple and convenient process for generating a PAM-4 signal.
  • the use of the device of the embodiment of the invention to generate the PAM-4 can meet the requirements of low cost and simple process.
  • the device of FIG. 3 may include a laser 11, a first modulator 12, a second modulator 13, a first adjustment module 14, and a combiner 15.
  • the laser 11 may be a DFB, and the first modulator and the second modulator may be EAM or MZ.
  • the laser is used as a DFB, and the modulator is an EMA as an example.
  • the combiner 15 can be an MMI.
  • the optical signal exits from both ends of the DFB and passes through the two EAMs.
  • the PAM-4 electrical modulation signal is loaded on each of the two EAMs, and the optical signal is modulated by the two EAMs using the electrical modulation signal.
  • One of them passed The adjustment module can be any one of the optical signals by adjusting the module. Then, the two optical signals are combined and output through the combiner. Due to the existence of two signals The phase difference is perpendicular to each other on the complex plane, and finally the 16-QAM signal can be output.
  • N is a positive integer.
  • the signals entering the first modulator and the second modulator can Both are PAM-4 electrically modulated signals.
  • the two PAM-4 electrical modulation signals may be independent of each other or may be split by a 16-QAM electrical modulation signal as shown in FIG.
  • the output signal in the embodiment of the present invention may be an M*N-QAM signal, where N and M are both positive integers.
  • the electrical modulation signals of the first modulator and the second modulator are respectively a PAM-M electrical modulation signal and a PAM-N electrical modulation signal
  • the composite signal synthesized and output by the combiner may be an M*N-QAM signal.
  • M*N-QAM denotes a QAM signal having M*N symbols.
  • 16-QAM represents a QAM signal having 16 symbols, as shown in the signal diagram of FIG.
  • the device of the embodiment of the invention can realize the output of the M*N-QAM signal, for example, realize the output of the 16-QAM signal.
  • the conventional implementation is realized by using an external light source and a Mach-Zehnder Modulator (MZM) or IQ modulation.
  • MZM Mach-Zehnder Modulator
  • IQ modulation IQ modulation.
  • the chip size is large and difficult to integrate, and the power consumption is large.
  • the device of the embodiment of the present invention The integration is simple and the chip structure is compact.
  • the device of the embodiment of the invention can greatly reduce the complexity of the chip and can reduce the chip cost.
  • two adjustment modules may be further included, and the two adjustment modules cooperate to realize the adjustment of the phase of the modulated signal, or use two adjustment modules to jointly adjust the phase of the modulated signal. In this way, the accuracy and flexibility of the adjustment can be improved.
  • a device for generating an optical signal according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 and 4.
  • a method of generating an optical signal according to an embodiment of the present invention will be described in detail below with reference to FIG.
  • FIG. 5 is a schematic flow chart of a method of generating an optical device according to an embodiment of the present invention.
  • the method illustrated in Figure 5 can be performed by a device that generates an optical signal, the device including a laser, a first modulator, a second modulator, a first adjustment module, and a combiner.
  • the two ends of the laser are respectively connected to the first modulator and the second modulator, and the first modulator is connected to the first adjusting module, and the two ends of the combiner are respectively connected to the first adjusting module and the second modulator.
  • the method of generating the optical device can be performed according to the following procedure.
  • the laser outputs a first optical signal to the first modulator and a second optical signal to the second modulator.
  • the first modulator receives the first optical signal and the loaded first electrical modulation signal, and modulates the first optical signal according to the first electrical modulation signal to obtain the first modulated optical signal.
  • the second modulator receives the second electrical modulation signal loaded by the second optical signal, and modulates the second optical signal according to the second electrical modulation signal to obtain the second modulated optical signal.
  • the first adjustment module adjusts a phase of the first modulated optical signal or a first modulated optical signal to an optical path of the combiner.
  • the combiner combines the first modulated optical signal after the phase adjustment or the optical path adjustment with the second modulated optical signal to obtain a composite signal, and outputs a composite signal.
  • optical signals are respectively outputted from two ends of a laser that emits light at both ends, and modulated by a modulator at each end, and then the adjustment module is used to adjust the phase of the modulated optical signal or reach the optical path of the combiner. Finally, the optical signals at both ends of the combiner are combined and the composite signal is output, which can reduce the cost of the device for generating the optical signal.
  • each step in the method for generating an optical signal of the embodiment of the present invention in FIG. 5 may refer to the functions of each module and/or unit in the device for generating an optical signal in FIG. 1 to FIG. 4, and is not repeated here to avoid repetition. .
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明实施例提供了一种生成光信号的器件,该器件包括激光器、第一调制器、第二调制器、第一调整模块和合束器;激光器的两端分别连接两个调制器,第一调制器与第一调整模块连接,合束器的两端分别连接第一调整模块和第二调制器;激光器用于向第一调制器输出第一路光信号,并向第二调制器输出第二路光信号;两个调制器分别用于接收光信号和加载的电调制信号,并根据电调制信号对光信号进行调制,得到第一路调制后的光信号和第二路调制后的光信号;第一调整模块还用于调整第一路调制后的光信号的相位到达合束器的光程;合束器用于对调整后的第一路调制后的光信号和第二路调制后的光信号进行合成并输出合成信号。本发明实施例能够降低器件成本。

Description

生成光信号的器件、方法和芯片 技术领域
本发明实施例涉及光通信领域,并且更具体地,涉及生成光信号的器件、方法和芯片。
背景技术
随着数据中心、大数据应用的兴起,大容量短距离互联成为一个重要的应用场景。这一应用对于系统提出了新的要求,尤其是在更低的器件成本、更长的传输距离、更大的传输容量。
现有的高速光信号发射机可以利用外置光源、分束器、合束器等多个光学器件生成单边带(Single Side Band,SSB)调制信号、多电平脉冲振幅调制(pulse amplitude modulation,PAM)信号、多符号正交幅相调制(Quadrature Amplitude Modulation,QAM)信号等。例如,传统实现方式中,可以通过外置光源经过光分束器、两个调制器、相位控制区域和光合成器等生成SSB信号或多电平QAM信号,这种实现方法需要一个完整的同相正交(In-phase Quadrature,IQ)调制器来进行相位等的调制。再如,传统实现方式中,可以通过电吸收调制激光器(Electro-absorption Modulated Laser,EML)或直接调制激光器(Directly Modulated Laser,DML)等生成不归零码调制信号(non-return zero,NRZ)或多电平PAM信号,但是多电平PAM信号对于器件的线性度要求较高。这些传统的方法IQ调制器的使用或对器件线性度要求的提高都对器件的要求较高,整个器件的成本较高。
发明内容
本发明实施例提供一种生成光信号的器件、方法和芯片,能够降低生成光信号的器件成本。
第一方面,提供了一种生成光信号的器件,包括激光器、第一调制器、第二调制器、第一调整模块和合束器;所述激光器的两端分别连接所述第一调制器和所述第二调制器,所述第一调制器与所述第一调整模块连接,所述合束器的两端分别连接所述第一调整模块和所述第二调制器;所述激光器用于向所述第一调制器输出第一路光信号,并向所述第二调制器输出第二路光 信号;所述第一调制器用于接收所述第一路光信号和加载的第一路电调制信号,并根据所述第一路电调制信号对所述第一路光信号进行调制,得到第一路调制后的光信号;所述第二调制器用于接收所述第二路光信号加载的第二路电调制信号,并根据所述第二路电调制信号对所述第二路光信号进行调制,得到第二路调制后的光信号;所述第一调整模块用于调整所述第一路调制后的光信号的相位或所述第一路调制后的光信号到达所述合束器的光程;所述合束器用于对相位调整或光程调整后的第一路调制后的光信号和所述第二路调制后的光信号进行合成,得到合成信号,并输出所述合成信号。
本发明实施例的通过在两端出光的激光器的两端分别输出光信号,并在每一端利用调制器进行调制,再利用调整模块调整调制后的光信号的相位或到达合束器的光程,最终在合束器对两端的光信号进行合成并输出合成信号,这样能够降低生成光信号的器件成本。
本发明实施例中的激光器具有两端出光的特性,与传统方法中使用的分束器相比,不再需要分光束将光分成两束,这样可以减小器件的复杂度。
结合第一方面,在第一方面的一种实现方式中,所述器件还包括第二调整模块,所述第二调整模块用于调整所述第二路调制后的光信号的相位或所述第二路调制后的光信号到达所述合束器的光程。
调整模块调整相位或光程,可以使得两路调制后的光信号的相位差或光程差为指定的预设值。器件中可以有一个调整模块,仅调整一路光信号的相位或光程,也可以有两个调整模块,分别调整两路光信号的相位或光程。通过调整模块对相位或光程进行调整,可以提高信号合成的效果。当器件中包括两个调整模块时,可以进一步提高信号合成的精确度。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一路电调制信号和所述第二路电调制信号中一个为原始的电调制信号,另一个为对所述原始的电调制信号进行希尔伯特变换后得到的电调制信号;其中,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
Figure PCTCN2016079029-appb-000001
所述合成信号为单边带SSB信号,N为正整数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述器件还包括偏振旋转器;所述偏振旋转器用于对所述第一路调制后的光信号的偏振态或者所述第二路调制后的光信号的偏振态旋转90度加上360度的整数倍。
例如,偏振旋转器对调制后的一路光信号的偏振态旋转90度加上360度的整数倍,另一路调制后的光信号的偏振态保持不变,使得两路调制后的光信号的偏振态垂直。
本发明实施例中,所述器件还可以包括两个偏振旋转器,一个偏振旋转器对第一路调制后的光信号的偏振态旋转第一角度,另一偏转旋转器对第二路调制后的光信号的偏振态旋转第二角度,其中,第一角度和第二角度之和为90度加上360度的整数倍,即两路调制后的光信号的偏振态垂直。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一路电调制信号为N电平脉冲振幅调制信号PAM-N,所述第二路电调制信号为PAM-M信号,所述合成信号为PAM-M*N信号;其中,所述第一路调制后的光信号和所述第二路调制后的光信号经光程调整后二者的光程差为预设值。
本发明实施例中的预设值可以为零或在零附近一定范围内的值,允许有一定的偏差。
利用本发明实施例生成PAM-N*M信号可以绕开现有技术中器件的线性度问题。例如,生成PAM-4信号将多电平信号分解为二电平信号,对于器件的线性度完全没有要求,这样可以获得更好的信号质量,并且这种实现方式集成度高,可以通过单个芯片实现。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一路电调制信号为PAM-N信号,所述第二路电调制信号为PAM-M信号,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
Figure PCTCN2016079029-appb-000002
所述合成信号为M*N-QAM信号。
本发明实施例的器件可以实现M*N-QAM信号的输出,例如实现16-QAM信号的输出。通过常规的实现方式是采用外置光源和一个马赫-曾德尔调制(Mach-Zehnder Modulator,MZM)或IQ调制实现,芯片尺寸较大并且难以集成,功耗较大,本发明实施例的器件集成简单,芯片结构紧凑,过本发明实施例的器件可以大大减低芯片的复杂度,可以减小芯片成本。
在本发明的一个实施例中,调整模块可以通过电注入或热调谐的方式调整两路调制后的光信号之间的相位差或光程差。
本发明实施例中的调整模块可以通过集成方式实现相位的调整和不同光信号到达合束器的光程的调整,也可以通过分离器件分别实现上述相位和 光程的调整。不同光信号到达合束器的光程不同,不同光信号到达合束器的时间就不同。
本发明实施例的生成光信号的器件可以集成在一块芯片上实现,即将激光器、调制器、调整模块等各个组成部分集成在一块芯片上,也可以将激光器、调制器、调整模块等各个组成部分通过分离的芯片或器件实现。
第二方面,提供了一种芯片,所述芯片包括如第一方面所述的任一种实现方式中生成光信号的器件。
本发明实施例提供的一种芯片,包括了上述第一方面中生成光信号的器件的各个组成部分。与传统的生成光信号的器件相比较,芯片结构紧凑,不再需要MZM或IQ调制,使得器件结构小型化。
结合第二方面,在第二方面的一种实现方式中,所述器件包括:激光器、第一调制器、第二调制器、第一调整模块和合束器;所述激光器的两端分别连接所述第一调制器和所述第二调制器,所述第一调制器与所述第一调整模块连接,所述合束器的两端分别连接所述第一调整模块和所述第二调制器;所述激光器用于向所述第一调制器输出第一路光信号,并向所述第二调制器输出第二路光信号;所述第一调制器用于接收所述第一路光信号和加载的第一路电调制信号,并根据所述第一路电调制信号对所述第一路光信号进行调制,得到第一路调制后的光信号;所述第二调制器用于接收所述第二路光信号加载的第二路电调制信号,并根据所述第二路电调制信号对所述第二路光信号进行调制,得到第二路调制后的光信号;所述第一调整模块用于调整所述第一路调制后的光信号的相位或所述第一路调制后的光信号到达所述合束器的光程;所述合束器用于对相位调整或光程调整后的第一路调制后的光信号和所述第二路调制后的光信号进行合成,得到合成信号,并输出所述合成信号。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述器件还包括第二调整模块,所述第二调整模块用于调整所述第二路调制后的光信号的相位或所述第二路调制后的光信号到达所述合束器的光程。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第一路电调制信号和所述第二路电调制信号中的一个为原始的电调制信号,另一个为对所述原始的电调制信号进行希尔伯特变换后得到的电调制信号;其中,所述第一路调制后的光信号和所述第二路调制后的光信号经相 位调整后二者的相位差为
Figure PCTCN2016079029-appb-000003
所述合成信号为单边带SSB信号,N为正整数。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述器件还包括偏振旋转器;所述偏振旋转器用于对所述第一路调制后的光信号的偏振态或者所述第二路调制后的光信号的偏振态旋转90度加上360度的整数倍。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第一路电调制信号为N电平脉冲振幅调制信号PAM-N,所述第二路电调制信号为PAM-M信号,所述合成信号为PAM-M*N信号;其中,所述第一路调制后的光信号和所述第二路调制后的光信号经光程调整后二者的光程差为预设值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第一路电调制信号为PAM-N信号,所述第二路电调制信号为PAM-M信号,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
Figure PCTCN2016079029-appb-000004
所述合成信号为M*N-QAM信号。
上述第二方面提供的芯片中各个器件和/或单元的功能可以参照第一方面提供的生成光信号的器件中各个模块和/或单元的功能,为了避免重复,在此不再重复。
第三方面,提供了一种生成光信号的方法,所述方法由生成光信号的器件执行,所述器件包括激光器、第一调制器、第二调制器、第一调整模块和合束器,所述激光器的两端分别连接所述第一调制器和所述第二调制器,所述第一调制器与所述第一调整模块连接,所述合束器的两端分别连接所述第一调整模块和所述第二调制器;所述方法包括:所述激光器向所述第一调制器输出第一路光信号,并向所述第二调制器输出第二路光信号;所述第一调制器接收所述第一路光信号和加载的第一路电调制信号,并根据所述第一路电调制信号对所述第一路光信号进行调制,得到第一路调制后的光信号;所述第二调制器接收所述第二路光信号加载的第二路电调制信号,并根据所述第二路电调制信号对所述第二路光信号进行调制,得到第二路调制后的光信号;所述第一调整模块调整所述第一路调制后的光信号的相位或所述第一路调制后的光信号到达所述合束器的光程;所述合束器对相位调整或光程调整后的第一路调制后的光信号和所述第二路调制后的光信号进行合成,得到合 成信号,并输出所述合成信号。
本发明实施例的通过在两端出光的激光器的两端分别输出光信号,并在每一端利用调制器进行调制,再利用调整模块调整调制后的光信号相位或到达合束器的光程,最终在合束器对两端的光信号进行合成并输出合成信号,这样能够降低生成光信号的器件成本。
结合第三方面,在第三方面的一种实现方式中,所述器件还包括第二调整模块,所述第二调整模块调整所述第二路调制后的光信号的相位或所述第二路调制后的光信号到达所述合束器的光程。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述第一路电调制信号和所述第二路电调制信号中一个为原始的电调制信号,另一个为对所述原始的电调制信号进行希尔伯特变换后得到的电调制信号;其中,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
Figure PCTCN2016079029-appb-000005
所述合成信号为单边带SSB信号,N为正整数。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述器件还包括偏振旋转器;所述偏振旋转器对所述第一路调制后的光信号的偏振态或者所述第二路调制后的光信号的偏振态旋转90度加上360度的整数倍。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述第一路电调制信号为N电平脉冲振幅调制信号PAM-N,所述第二路电调制信号为PAM-M信号,所述合成信号为PAM-M*N信号;其中,所述第一路调制后的光信号和所述第二路调制后的光信号经光程调整后二者的光程差为预设值。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述第一路电调制信号为PAM-N信号,所述第二路电调制信号为PAM-M信号,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
Figure PCTCN2016079029-appb-000006
所述合成信号为M*N-QAM信号。
上述第三方面提供的生成光信号方法中每一个步骤的执行流程可以参照第一方面提供的生成光信号的器件中各个模块和/或单元的功能,为了避免重复在此不再重复。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的生成光信号的器件的示意性结构图。
图2为根据本发明实施例的利用本图所示的器件生成SSB信号的示意图。
图3为根据本发明实施例的利用本图所示的器件生成PAM-N信号的示意图。
图4为根据本发明实施例的利用本图所示的器件生成N*M-QAM信号的示意图。
图5是本发明一个实施例的生成光器件的方法的示意性流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的技术方案可以应用于各种光通信系统,例如:准同步数字系列(Plesiochronous Digital Hierarchy,PDH)光通信系统、同步数字系列(Synchronous Digital Hierarchy,SDH)光通信系统、密集型光波复用(Dense Wavelength Division Multiplexing,DWDM)光通信系统、全光网光通信系统等。
图1是本发明一个实施例的生成光信号的器件的示意性结构图。图1的器件可以为发射机,生成光信号并用于发射光信号。图1的器件10包括激光器11、第一调制器12、第二调制器13、第一调整模块14和合束器15。
激光器11的两端分别连接第一调制器12和第二调制器13,第一调制器12与第一调整模块14连接,合束器15的两端分别连接第一调整模块14和第二调制器13。
激光器11用于向第一调制器12输出第一路光信号,并向第二调制器13输出第二路光信号。
第一调制器12用于接收第一路光信号和加载的第一路电调制信号,并根据第一路电调制信号对第一路光信号进行调制,得到第一路调制后的光信号。
第二调制器13用于接收第二路光信号加载的第二路电调制信号,并根据第二路电调制信号对第二路光信号进行调制,得到第二路调制后的光信号。
第一调整模块14用于调整第一路调制后的光信号的相位或第一路调制后的光信号到达合束器的光程。
合束器15用于对相位调整或光程调整后的第一路调制后的光信号和第二路调制后的光信号进行合成,得到合成信号,并输出合成信号。
本发明实施例的通过在两端出光的激光器的两端分别输出光信号,并在每一端利用调制器进行调制,再利用调整模块调整调制后的光信号的相位或到达合束器的光程,最终在合束器对两端的光信号进行合成并输出合成信号,这样能够降低生成光信号的器件成本。
本发明实施例中激光器作为整个器件的内置光源具有两端出光的特性,这样激光器可以向两端输出光信号,不再需要使用分束器对光信号进行分束,从而能够简化器件结构,使得器件小型化。
传统的生成光信号的器件中通常包括一套完整的IQ调制器,需要对光信号进行分束、调制和合束这样的设置,这样的调制器结构的储存大,制作工艺的要求很高,难以实现与光源等的集成,因此常规的方式是采用分离的光源芯片与调制器芯片,这无疑会增大器件的芯片尺寸,提高芯片小型化、集成化的难度。本发明实施例的器件可以利用廉价的EML激光器制造平台,容易实现光源与调制器之间的集成,能够降低器件成本。能够紧凑芯片结构,使得芯片尺寸可以缩小几十倍。
SSB调制是一种可以更加有效的利用电能和带宽的调幅技术。IQ调制可以为将数据分为两路,分别进行载波调制,两路载波相互正交。IQ调制是矢量的方向问题,同相就是矢量方向相同的信号;正交分量就是两个信号矢量正交(例如,相差90°);IQ信号是一路是0°或180°,另一路是90°或270°,叫做I路和Q路,它们就是两路正交的信号。
本发明实施例中的激光器可以为分布式反馈激光器(Distributed Feedback Laser,DFB)。DFB具有两端出光的特性,与传统方法中使用分束 器相比,DFB不再需要分束器,可以减小器件的复杂度,使得整个器件小型化,结构简单。
本发明实施例中对具体的激光器种类不做限定,只要能够满足两端出光的激光器都可以作为本发明实施例中的激光器,例如,本发明实施例中的激光器可以为法布里—珀罗(Fabry-Perot laser,FP)激光器。
本发明实施例中的激光器可以作为整个器件结构的内置光源,而无需采用传统技术中外置光源的结构,这样能够提高整个器件的集成度,即这种实现方式集成度高,可以通过单个芯片实现。
本发明实施例中的调制器(包括第一调制器或第二调制器)用于接收加载的电调制信号,并利用电调制信号对光信号进行调制。本发明实施例中的调制器可以为强度调制器,例如电吸收调制器(Electricity Absorb Modulation,EAM),马赫-曾德尔调制器(Mach-Zehnder Modulator,MZ),微环调制器等。
调制器可以通过在基带信号上加载所需要传递的信息,将基带信号变换成频带信号,使得到频带信号适用于信道传输,这样能够避免接收判决时干扰和噪声的影响。
本发明实施例中的调整模块可以用于调整经过调制器调制后的光信号的相位或光程,使得调制后的两个信号具有预设的相位差或光程差,这样可以满足实际工艺中需要两个信号之间具有指定相位差或光程差的功能。
本发明实施例中的调整模块可以调整调制后光信号的相位,例如,图2和图4中合成SSB信号或合成M*N-QAM信号时调整模块用于调整相位。
另外,调整模块还可以调整调制后光信号的光程,例如图3合成PAM-M*N信号时调整模块用于调整光程。调整模块可以调整调制后光信号的光程可以认为调整模块可以调整调制后的光信号到达合束器的时间。光信号到达合束器的光程不同,即光信号到达合束器的时间不同。例如,调整模块使得两路调制后的光信号的光程差为零,即两路调整后的光信号同步到达合束器。
本发明实施例中的调整模块可以为一个,也可以为两个。当调整模块为一个时,可以仅用于调整第一路调制后的光信号和第二路调制后的光信号中的一路光信号的相位或一路光信号到达合束器的光程;当调整模块为两个时,可以将每个调整模块都与一个调制器相连接,每个调整模块用于调整一路调制后的光信号到达合束器的光程。用两个调整模块可以获得更加精确的 调整效果,以及能够获得更加高效的相位或光程调整功能。如图1为仅在一个调制器(例如,第一调制器)的一端连接一个调整模块(例如,第一调整模块)。图2可以在每个调制器的一端分别连接一个调整模块,例如,图2中第一调制器12与第一调整模块14相连接,第二调制器13与第二调整模块16相连接。
本发明实施例中的调整模块可以通过控制信号实现对调整模块中光信号相位或光程的调整。控制信号可以是直流信号。
本发明实施例中生成光信号的器件可以为发射机,本申请旨在提供一种简单的模块化的发射机形式,这样能够满足多种调制格式,例如SSB/PAM-N、QAM等的要求,并且本发明实施例中的器件或发射机可以具有更加紧凑的芯片结构,能够降低器件的成本。
下面举例说明利用本发明实施例的器件生成各类光信号。
图2为根据本发明实施例的本图所示的器件生成SSB信号的示意图。即本发明实施例的输出信号可以为SSB信号。图2的器件可以包括激光器11、第一调制器12、第二调制器13、第一调整模块14和合束器15。图2的器件还可以包括第二调整模块16。其中,第二调整模块为可选的模块。
本发明实施例中激光器11可以为DFB,第一调制器和第二调制器可以为EAM,也可以为ZM。下面可以激光器为DFB,调制器为EAM为例进行说明。
本发明实施例中合束器15可以为多模干涉耦合器(Multimode Interference,MMI)。
激光器11(例如,DFB)作为整个生成光信号的器件的内置光源,光可以通过在激光器施加直流的驱动电压,使得激光器发出光信号。激光器上的光信号从DFB的两端分别输出,分别进入第一调制器(例如EAM)和第二调制器(例如EAM)。第一调制器可以接收激光器发出的光信号(例如第一路光信号),还可以接收外界的电调制信号(例如第一路电调制信号),并且利用电调制信号对光信号进行调制,得到调制后的光信号(例如第一路调制后的光信号)。同理,第二调制器也可以接收激光器发出的光信号(例如第二路光信号),还可以接收外界的电调制信号(例如第二路电调制信号),并且利用该电调制信号对该光信号进行调制,得到调制后的光信号(例如第二路调制后的光信号)。
本发明实施例中,分别进入第一调制器和第二调制器的第一路电调制信号和第二路电调制信号可以由原始的电调制信号获得。这里,原始的电调制信号可以为任一电调制信号,例如,原始的电调制信号可以为NRZ电调制信号、PAM-4电调制信号、16-QAM电调制信号等。原始的电调制信号的频谱可以是对称的,如图2所示,将原始的电调制信号分为两路,第一路电调制信号直接进入第一调制器12中。第二路电调制信号经过希尔伯特变换后得到变换后的电调制信号,变换后的电调制信号进入第二调制器13中。两路电调制信号分别加载到激光器两端的调制器。两个调制器分别利用各自加载的电调制信号对进入自身调制器的光信号进行调制。
当图2所示的器件中只有一个调整模块时,例如,只有第一调整模块,原始的电调制信号经过第一调制器后再经过第一调整模块,可以使得经过两个调制器调制后的信号的相位差为π/2。可选地,经过两个调制器调制后的相位差也可以为
Figure PCTCN2016079029-appb-000007
其中,N为正整数。最终两束不同的光信号可以通过合束器进行合成,并输出合成后的信号,实现SSB信号的输出。
应理解,经过两个调制器调制后的两路光信号的相位差可以为
Figure PCTCN2016079029-appb-000008
在本发明的一个实施例中,可以仅在第一调制器的一端连接一个调整模块,使得调制后的两路光信号的相位差满足
Figure PCTCN2016079029-appb-000009
也可以仅在第二调制器的一端连接一个调整模块,使得调制后的两路光信号的相位差满足
Figure PCTCN2016079029-appb-000010
两种实现方案仅不同的是留下哪一个半边带信号。
在本发明的另一个实施例中,还可以在第一调制器和第二调制器的一端分别连接一个调整模块,如图2所示,第一调制器12与第一调整模块14相连接,第二调制器13与第二调整模块16相连接,这时,第一调整模块和第二调整模块可以共同作用实现调制后的两路光信号的相位差。例如,第一调整模块和第二调整模块分别实现两路调制后的光信号
Figure PCTCN2016079029-appb-000011
的相位差调整。这样通过两个调整模块,可以获得更加准确的调整效果,能够提高相位调整的准确性。
图3为根据本发明实施例的利用本图所示的器件生成PAM-N信号的示意图。即本发明实施例的输出信号可以为PAM-N信号。图3的器件可以包括激光器11、第一调制器12、第二调制器13、第一调整模块14、合束器15和偏振旋转器17。
本发明实施例中激光器11可以为DFB,第一调制器和第二调制器可以 为EAM,也可以为MZ。这里以激光器为DFB,调制器为MZ为例进行说明。
本发明实施例中合束器15可以为偏振合束器。
光从DFB激光器两端出射,分别经过左右两个MZ。本发明实施例中的电调制信号可以为PAM-4电调制信号,这里的电调制信号可以通过电路得到。PAM-4的电调制信号被拆分成两路NRZ信号,分别代表低位信息(Least Significant Bit,LSB)与高位信息(Most Significant Bit,MSB)。两路NRZ信号分别加载到两个EAM上对于响应的光信号进行信号调制,拆分PAM-4信号的方式可以按照现有技术执行。其中,代表低位信息的一侧出光功率为P/2,而代表高位信息的一侧出光功率为P。两侧中任意一侧经过调制后的光信号可以通过一个调整模块调整调制后的光信号到达合束器的光程,使得两路调制后的光信号具有预设的光程差,这种使得光程差为预设值的方法可以用于弥补实际装配过程中的装配误差造成的光程偏差。
本发明实施例中的调整模块可以用来调整第一调制器输出的调制后的光信号到达合束器的光程。
另外,两路调制后的光信号中任意一路经过一个偏振旋转器可以实现偏振态旋转90+P*360度,其中,P为整数,从而与另一路的偏振态垂直。最后通过合束器,将经调整模块和偏振旋转器输出的两路信号进行合成,并输出合成信号。
本发明实施例中的器件可以包括一个偏振旋转器,如图3所示。器件还可以包括两个偏振旋转器,一个偏振旋转器对第一路调制后的光信号的偏振态旋转第一角度,另一偏转旋转器对第二路调制后的光信号的偏振态旋转第二角度,其中,第一角度和第二角度之和为90度加上360度的整数倍,即两路调制后的光信号的偏振态垂直。
本发明实施例的输出信号可以为PAM-N信号。例如,当电调制信号为PAM-4信号时,输入两个调制器的信号为NRZ信号,如图3中所标示的。当电调制信号为PAM-16信号时,输入两个调制器的信号为PAM-4信号。
本发明实施例中,PAM-N表示一个具有N个电平状态的PAM信号。例如,PAM-4信号可以表示具有4个电平状态的信号,PAM-8信号可以表示具有8个电平状态的信号。
利用本发明实施例生成PAM-N*M信号可以绕开现有技术中器件的线性 度问题。例如,生成PAM-4信号将多电平信号分解为二电平信号,将多电平信号分解为二电平信号,对于器件的线性度完全没有要求,这样可以获得更好的信号质量,并且这种实现方式集成度高,可以通过单个芯片实现。
本发明实施例的调整模块可以为一个,也可以为两个。当调整模块为两个时,每个调整模块分别与调制器相连接。其中一个调整模块一端与调制器相连接,一端与偏振旋转器相连接。两个调整模块可以共同调整调制后的光信号到达合束器的光程,这样能够提高调整的精度。两个调整模块还可以共同作用,使得调制后的光信号具有指定的光程差,这样也可以提高调整光程的准确性。
由于PAM-4信号包括的信息量是NRZ信号包括的信息量的两倍,因此如果使用PAM-4来代替NRZ,则在同样的信号速率下传输的信息量可以提升一倍,原100GbE的信号吞吐率可以提升到200GbE。PAM-4信号具有4个电平,是16QAM调制的基带调制电平。PAM-4信号的应用广泛,而且信息量大,就要求生成PAM-4信号的工艺简单方便成本低。利用本发明实施例的器件生成PAM-4能够满足成本低,工艺简单的要求。
图4为根据本发明实施例的利用本图所示的器件生成N*M-QAM信号的示意图。即本发明实施例的输出信号可以为M*N-PAM信号。图3的器件可以包括激光器11、第一调制器12、第二调制器13、第一调整模块14和合束器15。
本发明实施例中激光器11可以为DFB,第一调制器和第二调制器可以为EAM,也可以为MZ。这里以激光器为DFB,调制器为EMA为例进行说明。
本发明实施例中合束器15可以为MMI。
光信号从DFB两端出射,分别经过左右两个EAM。在两个EAM上分别加载PAM-4电调制信号,通过两个EAM利用电调制信号对光信号进行调制。其中一路通过
Figure PCTCN2016079029-appb-000012
调整模块,通过调整模块的可以为任意一路光信号。然后,通过合束器将两路光信号合成并输出。由于两路信号之间存在
Figure PCTCN2016079029-appb-000013
相位差,在复平面上相互垂直,最终可以输出16-QAM信号。这里,N为正整数。
输出信号为16-QAM信号时,进入第一调制器和第二调制器的信号可以 都为PAM-4电调制信号。两路PAM-4电调制信号可以为相互独立的信号,也可以是由如图4中所示的16-QAM电调制信号拆分得到的。
本发明实施例中的输出信号可以为M*N-QAM信号,这里N和M均为正整数。当第一调制器和第二调制器的电调制信号分别为PAM-M电调制信号和PAM-N电调制信号时,合束器合成并输出的合成信号可以为M*N-QAM信号。M*N-QAM表示具有M*N个符号的QAM信号。例如,16-QAM表示具有16个符号的QAM信号,如图4中画出的信号图。
本发明实施例的器件可以实现M*N-QAM信号的输出,例如实现16-QAM信号的输出。通过常规的实现方式是采用外置光源和一个马赫-曾德尔调制器(Mach-Zehnder Modulator,MZM)或IQ调制实现,芯片尺寸较大并且难以集成,功耗较大,本发明实施例的器件集成简单,芯片结构紧凑,过本发明实施例的器件可以大大减低芯片的复杂度,可以减小芯片成本。
本发明实施例中也可以包括两个调整模块,两个调整模块共同作用实现对调制后的信号的相位的调整,或者,使用两个调整模块共同实现对调制后的信号相位的调整。这样,能够提高调整的精确度和灵活性。
以上结合图1和图4详细描述了根据本发明实施例的生成光信号的器件,下面将结合图5详细描述根据本发明实施例的生成光信号的方法。
图5是本发明一个实施例的生成光器件的方法的示意性流程图。图5所示的方法可以由生成光信号的器件执行,该器件包括激光器、第一调制器、第二调制器、第一调整模块和合束器。激光器的两端分别连接第一调制器和第二调制器,第一调制器与第一调整模块连接,合束器的两端分别连接第一调整模块和第二调制器。
生成光器件的方法可以根据下列流程执行。
101,激光器向第一调制器输出第一路光信号,并向第二调制器输出第二路光信号。
102,第一调制器接收第一路光信号和加载的第一路电调制信号,并根据第一路电调制信号对第一路光信号进行调制得到第一路调制后的光信号。
103,第二调制器接收第二路光信号加载的第二路电调制信号,并根据第二路电调制信号对第二路光信号进行调制得到第二路调制后的光信号。
104,第一调整模块调整第一路调制后的光信号的相位或第一路调制后的光信号到达合束器的光程。
105,合束器对相位调整或光程调整后的第一路调制后的光信号和第二路调制后的光信号进行合成得到合成信号,并输出合成信号。
本发明实施例的通过在两端出光的激光器的两端分别输出光信号,并在每一端利用调制器进行调制,再利用调整模块调整调制后的光信号的相位或到达合束器的光程,最终在合束器对两端的光信号进行合成并输出合成信号,这样能够降低生成光信号的器件成本。
图5的本发明实施例的生成光信号方法中每一个步骤的执行流程可以参照图1至图4中生成光信号的器件中各个模块和/或单元的功能,为了避免重复在此不再重复。
应理解,本发明中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法的具体流程,可以参考前述系统实施例中的响应描述,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和 方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种生成光信号的器件,其特征在于,包括:
    激光器、第一调制器、第二调制器、第一调整模块和合束器;
    所述激光器的两端分别连接所述第一调制器和所述第二调制器,所述第一调制器与所述第一调整模块连接,所述合束器的两端分别连接所述第一调整模块和所述第二调制器;
    所述激光器用于向所述第一调制器输出第一路光信号,并向所述第二调制器输出第二路光信号;
    所述第一调制器用于接收所述第一路光信号和加载的第一路电调制信号,并根据所述第一路电调制信号对所述第一路光信号进行调制,得到第一路调制后的光信号;
    所述第二调制器用于接收所述第二路光信号加载的第二路电调制信号,并根据所述第二路电调制信号对所述第二路光信号进行调制,得到第二路调制后的光信号;
    所述第一调整模块用于调整所述第一路调制后的光信号的相位或所述第一路调制后的光信号到达所述合束器的光程;
    所述合束器用于对相位调整或光程调整后的第一路调制后的光信号和所述第二路调制后的光信号进行合成,得到合成信号,并输出所述合成信号。
  2. 如权利要求1所述的器件,其特征在于,所述器件还包括第二调整模块,
    所述第二调整模块用于调整所述第二路调制后的光信号的相位或所述第二路调制后的光信号到达所述合束器的光程。
  3. 如权利要求1或2所述的器件,其特征在于,
    所述第一路电调制信号和所述第二路电调制信号中一个为原始的电调制信号,另一个为对所述原始的电调制信号进行希尔伯特变换后得到的电调制信号;
    其中,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
    Figure PCTCN2016079029-appb-100001
    所述合成信号为单边带SSB信号,N为正整数。
  4. 如权利要求1或2所述的器件,其特征在于,所述器件还包括偏振 旋转器;
    所述偏振旋转器用于对所述第一路调制后的光信号的偏振态或者所述第二路调制后的光信号的偏振态旋转90度加上360度的整数倍。
  5. 如权利要求4所述的器件,其特征在于,
    所述第一路电调制信号为N电平脉冲振幅调制信号PAM-N,所述第二路电调制信号为PAM-M信号,所述合成信号为PAM-M*N信号;
    其中,所述第一路调制后的光信号和所述第二路调制后的光信号经光程调整后二者的光程差为预设值。
  6. 如权利要求1或2所述的器件,其特征在于,
    所述第一路电调制信号为PAM-N信号,所述第二路电调制信号为PAM-M信号,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
    Figure PCTCN2016079029-appb-100002
    所述合成信号为M*N-QAM信号。
  7. 一种芯片,其特征在于,所述芯片包括如权利要求1-6任一项所述的生成光信号的器件。
  8. 一种生成光信号的方法,其特征在于,所述方法由生成光信号的器件执行,所述器件包括激光器、第一调制器、第二调制器、第一调整模块和合束器,所述激光器的两端分别连接所述第一调制器和所述第二调制器,所述第一调制器与所述第一调整模块连接,所述合束器的两端分别连接所述第一调整模块和所述第二调制器;
    所述方法包括:
    所述激光器向所述第一调制器输出第一路光信号,并向所述第二调制器输出第二路光信号;
    所述第一调制器接收所述第一路光信号和加载的第一路电调制信号,并根据所述第一路电调制信号对所述第一路光信号进行调制,得到第一路调制后的光信号;
    所述第二调制器接收所述第二路光信号加载的第二路电调制信号,并根据所述第二路电调制信号对所述第二路光信号进行调制,得到第二路调制后的光信号;
    所述第一调整模块调整所述第一路调制后的光信号的相位或所述第一路调制后的光信号到达所述合束器的光程;
    所述合束器对相位调整或光程调整后的第一路调制后的光信号和所述 第二路调制后的光信号进行合成,得到合成信号,并输出所述合成信号。
  9. 如权利要求8所述的方法,其特征在于,所述器件还包括第二调整模块,
    所述第二调整模块调整所述第二路调制后的光信号的相位或所述第二路调制后的光信号到达所述合束器的光程。
  10. 如权利要求8或9所述的方法,其特征在于,
    所述第一路电调制信号和所述第二路电调制信号中一个为原始的电调制信号,另一个为对所述原始的电调制信号进行希尔伯特变换后得到的电调制信号;
    其中,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
    Figure PCTCN2016079029-appb-100003
    所述合成信号为单边带SSB信号,N为正整数。
  11. 如权利要求8或9所述的方法,其特征在于,所述器件还包括偏振旋转器;
    所述偏振旋转器对所述第一路调制后的光信号的偏振态或者所述第二路调制后的光信号的偏振态旋转90度加上360度的整数倍。
  12. 如权利要求11所述的方法,其特征在于,
    所述第一路电调制信号为N电平脉冲振幅调制信号PAM-N,所述第二路电调制信号为PAM-M信号,所述合成信号为PAM-M*N信号;
    其中,所述第一路调制后的光信号和所述第二路调制后的光信号经光程调整后二者的光程差为预设值。
  13. 如权利要求8或9所述的方法,其特征在于,
    所述第一路电调制信号为PAM-N信号,所述第二路电调制信号为PAM-M信号,所述第一路调制后的光信号和所述第二路调制后的光信号经相位调整后二者的相位差为
    Figure PCTCN2016079029-appb-100004
    所述合成信号为M*N-QAM信号。
PCT/CN2016/079029 2016-04-12 2016-04-12 生成光信号的器件、方法和芯片 WO2017177372A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680074448.5A CN108370273B (zh) 2016-04-12 2016-04-12 生成光信号的器件、方法和芯片
EP16898191.8A EP3425823B1 (en) 2016-04-12 2016-04-12 Device and method for generating optical signal, and chip
PCT/CN2016/079029 WO2017177372A1 (zh) 2016-04-12 2016-04-12 生成光信号的器件、方法和芯片
US16/157,807 US10763637B2 (en) 2016-04-12 2018-10-11 Optical signal generation device and method and chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079029 WO2017177372A1 (zh) 2016-04-12 2016-04-12 生成光信号的器件、方法和芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/157,807 Continuation US10763637B2 (en) 2016-04-12 2018-10-11 Optical signal generation device and method and chip

Publications (1)

Publication Number Publication Date
WO2017177372A1 true WO2017177372A1 (zh) 2017-10-19

Family

ID=60042305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079029 WO2017177372A1 (zh) 2016-04-12 2016-04-12 生成光信号的器件、方法和芯片

Country Status (4)

Country Link
US (1) US10763637B2 (zh)
EP (1) EP3425823B1 (zh)
CN (1) CN108370273B (zh)
WO (1) WO2017177372A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141213A (zh) * 2020-01-17 2021-07-20 华为技术有限公司 一种相干发射机、控制相干发射机的方法及相干收发系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425823B1 (en) * 2016-04-12 2021-10-06 Huawei Technologies Co., Ltd. Device and method for generating optical signal, and chip
US10686531B1 (en) * 2019-06-03 2020-06-16 Zte Corporation Monitoring and correcting I/Q imbalance in high-speed optical communications systems
CN111525963B (zh) * 2020-04-10 2021-05-18 东南大学 一种相干信道化接收机的集成结构
CN114079832B (zh) * 2020-08-21 2023-03-28 华为技术有限公司 一种光源、光传输方法和光注入锁定系统
US11838055B2 (en) * 2021-01-22 2023-12-05 Nokia Solutions And Networks Oy Apparatus comprising serially connected electro-absorption modulators

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232330A (zh) * 2007-01-26 2008-07-30 日立通讯技术株式会社 光相位调制器的控制方法
CN101527422A (zh) * 2009-04-17 2009-09-09 山东大学 一种不同方向出光的双波长固体激光器
CN102819120A (zh) * 2011-06-09 2012-12-12 三菱电机株式会社 光调制器以及光调制方法
CN104218998A (zh) * 2013-06-04 2014-12-17 富士通光器件株式会社 光源模块和光收发器
CN104702339A (zh) * 2014-12-10 2015-06-10 北京邮电大学 一种模拟光链路线性化的方法及装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745273A (en) 1996-11-27 1998-04-28 Lucent Technologies Inc. Device for single sideband modulation of an optical signal
US6424444B1 (en) * 2001-01-29 2002-07-23 Stratalight Communications, Inc. Transmission and reception of duobinary multilevel pulse-amplitude-modulated optical signals using finite-state machine-based encoder
US6490069B1 (en) * 2001-01-29 2002-12-03 Stratalight Communications, Inc. Transmission and reception of duobinary multilevel pulse-amplitude-modulated optical signals using subtraction-based encoder
US20040208436A1 (en) * 2002-01-16 2004-10-21 Teraphase Technologies, Inc. Forming optical signals having soliton pulses with certain spectral band characteristics
US20050141642A1 (en) * 2002-06-28 2005-06-30 Advantest Corporation Transformer, transforming apparatus, transforming method and machine readable medium storing thereon program
JP4563944B2 (ja) * 2006-01-31 2010-10-20 富士通株式会社 光送信器
JP4893202B2 (ja) * 2006-09-28 2012-03-07 沖電気工業株式会社 光時分割多重差動位相変調信号生成装置
US8340197B2 (en) * 2008-02-28 2012-12-25 Invertix Corporation System and method for modulating a signal at an antenna
JP5186993B2 (ja) * 2008-04-30 2013-04-24 富士通株式会社 偏波多重光送受信装置
GB0904600D0 (en) * 2009-03-18 2009-04-29 Cip Technologies Ltd Optical single-sideband transmitter
EP2362558B1 (en) * 2010-02-16 2016-04-13 Xieon Networks S.à r.l. Optical network element
CN102137057B (zh) * 2010-06-18 2013-09-25 华为技术有限公司 一种信号生成方法及装置
US8879873B2 (en) * 2011-02-25 2014-11-04 Nippon Telegraph And Telephone Corporation Optical modulator
KR20130138323A (ko) * 2011-04-14 2013-12-18 알까뗄 루슨트 낮은 차수의 변조기들을 사용하여 높은 차수의 변조 방식들을 구현하기 위한 방법 및 장치
JP5946312B2 (ja) * 2011-05-23 2016-07-06 日本オクラロ株式会社 光出力モジュール、光送受信機、及び光伝送システム
CN103620988B (zh) * 2011-06-29 2017-03-29 瑞典爱立信有限公司 用于在光信号的上下边带中分配单独的信息的传送器和传送器中的方法
JP2014206633A (ja) * 2013-04-12 2014-10-30 住友電気工業株式会社 光変調装置
US9496962B1 (en) * 2013-06-27 2016-11-15 Clariphy Communications, Inc. Systems and methods for biasing optical modulating devices
US9071363B2 (en) * 2013-09-12 2015-06-30 Futurewei Technologies, Inc. Optical transmitters with unbalanced optical sidebands separated by gaps
US9369211B2 (en) * 2013-10-14 2016-06-14 Nec Corporation Optical square QAM signal emulation using all-optical PAM to QAM signal conversion
EP2933935A1 (en) * 2014-04-14 2015-10-21 Alcatel Lucent A method of modulating light in a telecommunication network
US10078232B1 (en) * 2014-07-11 2018-09-18 Acacia Communications, Inc. Advanced optical modulation generation by combining orthogonal polarized optical signals
US9912408B2 (en) * 2014-10-28 2018-03-06 Luxtera, Inc. Method and system for silicon photonics wavelength division multiplexing transceivers
US9838239B2 (en) * 2015-01-22 2017-12-05 Futurewei Technologies, Inc. Digital generation of multi-level phase shifting with a Mach-Zehnder modulator (MZM)
US9841560B2 (en) * 2015-09-18 2017-12-12 Luxtera, Inc. Method and system for partial integration of wavelength division multiplexing and bi-directional solutions
JP6681217B2 (ja) * 2016-02-29 2020-04-15 日本ルメンタム株式会社 光情報伝送システム、及び光送信器
EP3425823B1 (en) * 2016-04-12 2021-10-06 Huawei Technologies Co., Ltd. Device and method for generating optical signal, and chip
JP6571882B2 (ja) * 2016-09-30 2019-09-04 三菱電機株式会社 光変調器および光変調器の制御方法
JP6625231B2 (ja) * 2016-09-30 2019-12-25 三菱電機株式会社 光変調装置及び光変調装置のタイミング調整方法
US10175422B2 (en) * 2017-04-10 2019-01-08 Alcatel-Lucent Usa Inc. Modular optical device and modules therefor
US10411807B1 (en) * 2018-04-05 2019-09-10 Nokia Solutions And Networks Oy Optical transmitter having an array of surface-coupled electro-absorption modulators
US10623106B2 (en) * 2018-12-18 2020-04-14 Intel Corporation Orthogonal frequency division multiplexing single sideband transmission over a waveguide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232330A (zh) * 2007-01-26 2008-07-30 日立通讯技术株式会社 光相位调制器的控制方法
CN101527422A (zh) * 2009-04-17 2009-09-09 山东大学 一种不同方向出光的双波长固体激光器
CN102819120A (zh) * 2011-06-09 2012-12-12 三菱电机株式会社 光调制器以及光调制方法
CN104218998A (zh) * 2013-06-04 2014-12-17 富士通光器件株式会社 光源模块和光收发器
CN104702339A (zh) * 2014-12-10 2015-06-10 北京邮电大学 一种模拟光链路线性化的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425823A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141213A (zh) * 2020-01-17 2021-07-20 华为技术有限公司 一种相干发射机、控制相干发射机的方法及相干收发系统
CN113141213B (zh) * 2020-01-17 2022-09-23 华为技术有限公司 一种相干发射机、控制相干发射机的方法及相干收发系统
US11888529B2 (en) 2020-01-17 2024-01-30 Huawei Technologies Co., Ltd. Coherent transmitter, method for controlling coherent transmitter, and coherent transceiver system

Also Published As

Publication number Publication date
US20190052046A1 (en) 2019-02-14
EP3425823B1 (en) 2021-10-06
CN108370273A (zh) 2018-08-03
EP3425823A1 (en) 2019-01-09
CN108370273B (zh) 2020-07-14
EP3425823A4 (en) 2019-04-17
US10763637B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2017177372A1 (zh) 生成光信号的器件、方法和芯片
US8676060B2 (en) Quadrature amplitude modulation signal generating device
US9071363B2 (en) Optical transmitters with unbalanced optical sidebands separated by gaps
JP5249416B2 (ja) 高次変調のための光変調器
US20220358080A1 (en) Silicon photonics based module for executing peer-to-peer transactions
US6384954B1 (en) Optical modulator
WO2017079871A1 (zh) 一种调制器、调制系统以及实现高阶调制的方法
US8824900B2 (en) Optical single-sideband transmitter
US20120121264A1 (en) Apparatus and method for transmitting light, and apparatus and method for receiving light
US9893803B2 (en) Integrated driver redundancy for a silicon photonics device
US6522438B1 (en) High-speed optical duobinary modulation scheme
CN108900253B (zh) 多调制格式兼容的高速激光信号产生系统与方法
US8867652B2 (en) Transmitter for multi-format data
JP4809270B2 (ja) 光送信装置及び方法
US7212691B2 (en) Polarization-shaped duobinary optical transmission apparatus
Lu et al. Flexible high-order QAM transmitters for elastic optical networks
KR102186056B1 (ko) 정현파로 세기 변조된 광학 펄스를 입력신호로 사용하는 광학적 시분할 다중화 방식 광전송 시스템
Ragheb et al. Laser phase noise impact on optical DP-MQAM: experimental investigation
WO2016145641A1 (zh) 转换光信号的调制码型的器件和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016898191

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016898191

Country of ref document: EP

Effective date: 20181005

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898191

Country of ref document: EP

Kind code of ref document: A1