WO2017177357A1 - 促使局部地区降雨的覆盖体及方法 - Google Patents

促使局部地区降雨的覆盖体及方法 Download PDF

Info

Publication number
WO2017177357A1
WO2017177357A1 PCT/CN2016/078948 CN2016078948W WO2017177357A1 WO 2017177357 A1 WO2017177357 A1 WO 2017177357A1 CN 2016078948 W CN2016078948 W CN 2016078948W WO 2017177357 A1 WO2017177357 A1 WO 2017177357A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outer skin
covered
buoyancy
rainfall
Prior art date
Application number
PCT/CN2016/078948
Other languages
English (en)
French (fr)
Inventor
林邦彦
林争瑞
Original Assignee
林邦彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林邦彦 filed Critical 林邦彦
Priority to PCT/CN2016/078948 priority Critical patent/WO2017177357A1/zh
Priority to CN201610827761.3A priority patent/CN107278735B/zh
Publication of WO2017177357A1 publication Critical patent/WO2017177357A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G15/00Devices or methods for influencing weather conditions

Definitions

  • the present invention relates to a structure and method for promoting rainfall, and more particularly to a covering and method for causing rainfall in a local area.
  • the prior art of a structure for storing hot air the application greenhouse can transmit sunlight and can block the air inside it from circulating with the outside air, and the internal air temperature is higher than the outside, so that heat can be stored in the air therein.
  • the components that make up the greenhouse are mostly beams and plates that are subjected to bending forces, and then support the weight with walls or columns that are subjected to pressure.
  • This structure increases the thickness of the section as the size increases, and thus also greatly increases the weight of the member itself, so that it is difficult to make a large area and volume.
  • Prior art of air pressure supported structure The outer skin of the existing inflatable building uses an airtight film, and the pressure difference between the inner and outer sides is achieved by a machine such as a blower. This is different from the distribution of the pressure difference caused by the buoyancy of the hot air; the pressure difference between the inner and outer sides of the inlet is nearly zero and then increases upwards.
  • the pressure difference between the inner and outer sides of the former does not vary with height. Variety. Therefore, the two have much different effects on the structural mechanics of the structure; the latter receives less buoyancy at the lower part of the outer skin, and there may be gaps between the inner and outer sides at the lowest point.
  • the buoyancy of the former's outer skin does not change due to the height, and the outer skin and the field are sealed.
  • the existing artificial rainfall technology mostly uses aircraft or rockets to produce ice crystal nucleus compounds such as silver telluride or dry ice into thick clouds with opportunities to rain, or to burn silver iodide on the ground when the front is coming.
  • This technology enables the supercooled water droplets below -5 ° C in the cloud layer to quickly form ice crystals and release the latent heat therein, thereby making the cloud layer more developed and increasing the rainfall by about 10%.
  • the existing artificial rainfall technology requires more weather conditions to match, once there is a chance to rain the thick clouds If the front is not coming, the existing artificial rainfall technology will not be able to achieve the effect of increasing rainfall.
  • meteorological literature records that large areas of forests or houses and other violent fires occasionally cause showers. The reason is that the fire releases a huge amount of heat into the lower atmosphere, thus increasing the atmospheric instability of the local area.
  • meteorologists attempted to increase the thermal energy of the lower atmosphere by using a large amount of combustion on the ground as a method to promote rainfall.
  • considering the deliberate mass burning it is not only uneconomical, but also likely to cause environmental pollution and disasters. Therefore, this prior art has not been promoted.
  • the present invention provides a cover for rain in a local area to promote rainfall in a local area.
  • the present invention further provides a method of causing rainfall in a local area to promote rainfall in a local area.
  • an embodiment of the present invention provides a cover for causing rain in a local area to cover a site capable of receiving thermal energy, so that a space can be formed between the cover and the site to accommodate air.
  • the air inside is heated to receive heat, and the outer air is blocked from mixing and convection between the air and the outside air, and the heat energy is transmitted from the inside to the outside to cause a difference in temperature between the inside and the outside, and the buoyancy generated by the temperature difference between the inside and the outside is used to push up the cover.
  • the outer skin forms a huge space to accommodate the air and store a huge amount of heat in the air inside, using the hot air covered to promote local rainfall.
  • the cover comprises at least one anti-buoyancy device and the outer skin described above.
  • the outer skin is formed of at least a thin body which is capable of withstanding the expected stress caused by the buoyancy of the hot air; the outer skin substantially blocks air from flowing therethrough to the other side.
  • the outer skin is used to cover a site capable of receiving thermal energy; the edge portion of the outer skin is substantially maintained at or near the original height of the surface of the site from the beginning of the gas storage to the filling of the air, however, at the same time, the outer skin
  • the portion inside the edge portion can be pushed up off the surface of the site, so that a large space can be formed between the outer skin and the surface surface below it to accommodate the air;
  • the gap between the edge portion of the outer skin and the surface of the field below it can be used as an air inlet passage for the outside air to enter the space, so that when the inside of the outer skin is pushed up, the outside air enters the space through the air inlet passage;
  • the air inlet passage may be selectively disposed at a lower portion or an edge portion of the outer skin to provide a duct or
  • the anti-buoyancy device includes a plurality of anchor members and a plurality of anti-buoyancy pull members distributed dispersedly below the pushable portions within the edge portions of the cover.
  • the anchor members are dispersedly disposed on the site, and the upper ends of the anti-buoyancy pull members are respectively connected to the respective portions of the outer skin, and the lower ends are connected to the anchor members.
  • the anti-buoyancy pull members are members that provide a tensile force between the outer skin and the anchor members. The tensile strength of each of the anti-buoyancy members can withstand the expected stress caused by the buoyancy of the hot air covered by the outer skin.
  • the anchor is disposed on the lower surface of the outer skin, is an object that can be connected to withstand the upward pulling force, and is anchored to the ground or the original ground, and the anchoring force is sufficient to withstand the upward pulling force caused by the buoyancy of the hot air above it.
  • the object or an object that is placed on the ground or on the original ground with sufficient gravity to withstand the upward pulling force caused by the buoyancy of the hot air above it.
  • the heat received by the air in the covering body may be any one or any of the following: radiant heat of the sun, geothermal heat, heat released from the ground or the water surface, or industrial waste heat, but not limited thereto.
  • the means for receiving thermal energy may be via any one or any of the following: transfer through the skin, transfer through the surface of the field, or transfer via an additional pipe, etc., but not limited thereto.
  • the air covered by the covering body receives heat energy and the outer skin thereof can block the air on the inner and outer sides from mixing and convection, and the air temperature inside the air is higher than the temperature of the outside air, so that the heat energy is stored.
  • the difference in air temperature between the two sides it is also possible to use the difference in air temperature between the two sides to generate buoyancy to push the outer skin to increase its space to accommodate more air.
  • the buoyancy generated by the air temperature difference to cover the outer skin is proportional to the height difference from the air intake channel, in addition to the temperature difference.
  • the invention can make a part of the inner skin of the outer skin be higher than the air inlet channel by a sufficient height difference to form a convex portion of the "starting ridge", thereby allowing the covered air to receive heat energy and
  • the difference in temperature between the inner and outer air caused by the resistance of the outer skin to the outside is generated, and the buoyancy of the protruding portion is greater than the gravity of the protruding portion, and the protruding portion can be pushed up.
  • a sufficient height difference it can be obtained by field experiment or by reference to the following relation (1):
  • H is the height difference (m) between the convex portion of the outer skin and the air inlet passage
  • ⁇ W is the weight (kg) of the convex portion of the outer skin
  • ⁇ A is the projected area (m2) of the convex portion of the outer skin on the horizontal surface
  • ⁇ T is the temperature difference between the inside and outside of the air (°C)
  • C is the air temperature difference buoyancy coefficient (kg/m3-°C).
  • T is the atmospheric temperature (°C) near the cover
  • P is the atmospheric pressure (mb) near the cover.
  • the higher convex original ground in the field or the higher convex original ground material on the site may be used, so that the outer skin laid on the outer skin is higher than the air inlet channel.
  • a convex portion of the "starting ridge” is formed at the higher convex portion; or the protruding portion of the "starting ridge” may be added to the surface of the site by means of an additional struts Raising or raising a portion of the interior of the outer skin provides a sufficient height difference above the intake passage to cause the portion to form a "starting ridge” projection.
  • the convex portion in the outer skin conforms to the above relationship (1), that is, the air buoyancy under the convex portion is greater than the gravity of the convex portion, the convex portion can be started to be Pushing up, while the outside air is attracted through the adjacent intake passage, and then flows below the protruding portion through the gap between the surface of the field and the outer surface, filling the space which is increased by being pushed up.
  • the above-mentioned voids are laid on the site by the outer skin, and the outer skin and the site are located due to the unevenness of the surface of the site, or the original ground objects on the site, or the cushioning of the buoyancy pulling member and the reinforcing member originally disposed under the outer skin.
  • a gap is formed between the at least one intake passage and the space below the outer portion of the raised portion.
  • the outer skin may be formed of a thin object and a reinforcing member.
  • At least a portion of the thin body of the outer skin is translucent.
  • the covering body for causing the local area rainfall further comprises: at least one venting opening is disposed inside the covering outer skin, so that the edge portion of the venting opening covers the edge portion around the outer skin of the skin like the foregoing
  • the manner of setting is continuously maintained at the original height of the surface of the site.
  • the covering body for causing local area rainfall further comprises a plurality of reinforcing members.
  • the thin skin of the outer skin is a film of a plastic film or the like (for example, rubber or artificial rubber, etc.), or a fiber, a line segment, a braid, or a combination thereof is added to the material. Any one or several of a film of a plastic film or the like made of a strong object.
  • Another embodiment of the present invention provides a method for causing rainfall in a local area, comprising the following steps:
  • At least one of the above-mentioned coverings for causing local rainfall is covered with a site capable of receiving thermal energy.
  • the outer skin of the covering body is placed on the surface of the surface, and a part of the outer skin forms a protruding portion of the “starting bulge”, and the covered air receives heat energy to cause a temperature difference between the air on the inner and outer sides. Therefore, the buoyancy of the covered hot air to the protruding portion is greater than the gravity of the protruding portion, so that the covered air buoyancy begins to push up the protruding portion, while attracting outside air to enter the filling due to being pushed through the intake passage. Increase and increase the space.
  • the covered air continues to receive the heat energy, so that the protruding portion continues to be pushed up to a higher level, and the range of being pushed up is gradually enlarged, and the outside air is continuously attracted to the inside, until each The outer skin of the part is pushed up to the height set by each anti-floating puller, so that the space covered by the cover is filled with "primary" air.
  • step four after the "prime heat” air is filled, the heat is further increased, and the temperature of the covered air is further increased. At the same time, the moisture on the site also absorbs heat into latent heat and evaporates into the air covered by the water vapor. After a while The heat is received to make the covered air a hot and wet "hot” air.
  • step 5 after accumulating a large amount of heat energy in the covered air, the covered air can be released to the lower atmosphere at any suitable time to raise the temperature and humidity of the lower atmosphere, thereby increasing the atmosphere in the local area. Stability, which led to the development of small-scale cumulonimbus clouds and rainfall.
  • the method of forming a portion of the outer skin into the protruding portion of the "starting bulge” comprises: determining from the air passage by the field experiment or by calculating the relationship After the required height, the height of the convex portion of the skin laid on the field is detected to be higher than the required height according to the required height, and if so, the convex portion of the outer skin can be utilized as the "starting bulge". Protruding part. If it is not higher than the required height, it is necessary to increase the height of the lifting object or the stacking implement on the site, and raise or push up a part of the inside of the outer skin to make it higher than the required height, thus forming a "starting bulge". The protruding part.
  • the method of releasing the covered hot air comprises releasing at least one anti-buoyancy puller.
  • the method for causing local area rainfall further comprises: adding ice crystal nuclei or condensation nuclei, or both, to the hot air before releasing the covered hot air.
  • the method of adding ice crystal nuclei and/or condensation nuclei comprises: (1) discharging flue gas burning silver iodide into the covered hot air; and/or (2) spraying the saline solution into a mist. Small droplets of water into the hot air covered.
  • the cover covering the rainfall in a local area covers a large area of the space to receive a large volume of air to receive the heat energy, and after five steps as described above, a large area of available heat energy can be received, and a huge amount of heat is stored.
  • the heat is in the huge volume of air it covers.
  • This large volume of high temperature and high humidity air is released into the lower atmosphere to increase the temperature and humidity of the lower atmosphere. Therefore, it can increase the atmospheric instability in local areas.
  • the atmosphere is unstable, releasing it into the lower atmosphere can promote the instability of the local atmosphere. Therefore, it can promote the formation of strong and strong convective convection, and increase the chance of developing into a small-scale cumulonimbus cloud. Therefore, the cover and method of the present invention for causing local area rainfall can effectively generate rainfall in a local area.
  • FIG. 1 is a top plan view of a cover body for causing local area rainfall according to an embodiment of the present invention
  • FIG. 2 is a schematic enlarged view of the A-A section of the cover of FIG. 1 when the cover for causing local rainfall is applied to an uneven ground;
  • 3A is a partially enlarged schematic view showing the edge portion of the outer skin of FIG. 2 on the ground at a higher position in the field;
  • 3B is a partially enlarged schematic view showing the top surface of the outer skin of FIG. 2;
  • FIG. 4 is a schematic enlarged view of a B-B section of the cover of FIG. 1 for causing a partial area rainfall to be applied to a part of the site as a water surface;
  • 5A is a partially enlarged schematic view showing the edge portion of the outer skin of FIG. 4 and the surface of the surface being a water surface;
  • 5B is a cross-sectional view taken along line B-B of FIG. 5A;
  • 5C is a cross-sectional view taken along line C-C of FIG. 5A;
  • FIG. 6 is a top plan view of a cover body for causing local area rainfall according to another embodiment of the present invention.
  • Figure 7 is a schematic enlarged view of the E-E section of Figure 6 when it is full of air;
  • FIG. 8 is a flow chart showing a method of causing local area rainfall according to an embodiment of the present invention.
  • the present invention proposes to increase the temperature and humidity of the lower atmosphere, that is, to increase the atmospheric instability of the local area, so that a small scale is formed in the atmospheric troposphere (the horizontal length is about Cumulonimbus clouds from 0.5 km to 10 km) to cause rainfall in local areas and the structures used.
  • This method requires covering a large amount of air on the ground surface, so that the covered air receives heat energy and blocks its mixing with the outside air and convection to store heat energy in the covered air. After accumulating a large amount of thermal energy, the released air is released into the lower atmosphere to increase the temperature and humidity of the lower atmosphere, and promote the formation of small-scale cumulonimbus clouds, resulting in rainfall opportunities.
  • the structure used in the above method is a covering body which can be used to cover the air on the site, and to receive and store heat energy.
  • the present invention uses the buoyancy generated by the temperature difference between the inner and outer skins to support the inner portion of the outer skin. Huge space to replace existing structures
  • the body is made up of bulky components such as plates, beams and columns.
  • the present invention uses a plurality of anti-buoyancy pull members to be distributed in various parts of the cover body, so as to cancel the buoyancy of the gravity exceeding each part in each part after being filled with air and warming up, therefore, in addition to making the cover body It can be made larger than the larger area and height, and the stress on the outer skin of the cover body is greatly reduced, and the thickness and weight of the thin skin of the outer skin can be reduced within the allowable stress range of the material.
  • the covering body easily reaches a convex portion that conforms to the relationship (1) mentioned below to form a "starting bulge" at the stage of starting to receive thermal energy, and starts to push up the inside of the outer skin and attract air into the inside.
  • the thickness of the thin body of the present invention using the outer skin is, for example, about 0.03 mm to 2.0 mm, but is not limited thereto.
  • the outer skin and the inhaled air continue to proceed.
  • the air When the air is filled, it continues to receive heat and then heats up, so that the buoyancy of the air to the outer skin is much greater than the gravity of the outer skin.
  • the anti-buoyancy puller distributed in each part is subjected to the buoyancy exceeding its gravity in situ, so that the stress of the outer skin is small and can be made thin and light, and the outer skin is not damaged by the large coverage area, and can be formed.
  • a large volume of space accommodates the air.
  • the width of a single cover is, for example, between about 200 and 5 kilometers, but is not limited thereto. Where multiple adjacent covers are used, the length and width dimensions of the field should be increased, for example, from about 500 meters to 20 kilometers or more. The height is about 5 meters to 150 meters after being filled with air.
  • the cover of the present invention for causing rain in a local area is disposed on a site capable of receiving thermal energy, and the surface of the site may be all ground, or part of the ground and part of the water surface.
  • the site can choose to have a flat ground on the ground, or a ground with low or low undulations. There can be no ground objects on the ground, or there are not very high ground objects to facilitate the installation of components such as the outer skin. If there is occasional high-convex ground or ground objects within the edge of the site, it is not advisable to have a design height that exceeds or is close to the skin. Otherwise, it may be treated by trimming or removal. However, the ground below the edge of the outer skin may be selected to be relatively flat and not too high. If the ground is too undulating or the ground is too high, it can be avoided, or trimmed, or removed.
  • FIG. 1 is a top plan view of a cover that promotes rainfall in a local area according to an embodiment of the invention.
  • FIG. 2 is an enlarged schematic view showing the A-A section of the cover of FIG. 1 for applying the rainfall of the local area to the uneven ground.
  • 3A is a partially enlarged schematic view showing the edge portion of the outer skin of FIG. 2 at a higher position on the surface of the field.
  • FIG. 3B is a partially enlarged schematic view showing the top surface of the outer skin of FIG. 2.
  • a cover 10 for causing local area rainfall may be used to cover a surface of a site capable of receiving thermal energy: including ground G and water surface W.
  • the surface of the site Ground G can also be included, but water surface W is not included.
  • the cover 10 includes a sheath 81 and an anti-buoyancy device 11.
  • the edge portion 15 of the outer skin 81 is substantially maintained at or near the original height of the surface of the site (the ground G and the water surface W), and the top portion 111, the slope transition portion 211, and the side portion 311 of the outer skin 81 can be from the surface of the site (ground G and The water surface W) is pushed up so that a space 5 can be formed between the outer skin 81 and the surface of the site (the ground G and the water surface W) to accommodate the air. If a gap is formed between the edge portion 15 of the outer skin 81 and the surface of the field due to unevenness of the ground G or a low ground object on the ground, the gap can be utilized as the intake passage 4.
  • the intake passage is not provided there, and the edge portion 15 and the ground G are closed by the closure 14 The gap between them to increase air tightness.
  • the edge portion 15 of the outer skin 81 is pressed, for example, with soil or other objects to produce a closing effect, as shown in Fig. 3A.
  • the edge portion 15 is immersed in water, and thus there is no gap as an intake passage. Therefore, as long as the intake passage 4 is sufficient at the ground G, there is no intake passage at the water surface W.
  • the anti-buoyancy device 11 includes a plurality of anchor members 12 and a plurality of distributions of the anti-buoyancy pull members 13a, 13b, 13c, the upper end of which is connected to each portion of the outer skin 81, and the lower end of which is connected to the anchor member 12 disposed at the field.
  • the air in the space 5 is heated higher than the outside and thus buoyancy is generated to the outer skin, and the buoyancy is sufficient to push up the top portion 111, the slope transition portion 211 and the side portion 311 of the outer skin by a sufficient height difference, thereby making the space 5 Increase the air that attracts the outside world at the same time to fill the space that is enlarged by the skin being pushed up.
  • the outer skin continues to be pushed up to the preset height of each anti-buoyancy puller and is pulled, thereby allowing the space formed between the cover 10 and the surface of the site (ground G and surface W) to be stored. Full of air.
  • the heat is then continued to heat up the large volume of air contained therein, thereby storing a greater amount of heat in the air being covered.
  • the strength of the outer skin 81 of the covering body 10 can withstand the expected stress caused by the buoyancy of the covered hot air.
  • the thin body 82 constituting the outer skin 81 can block the air in the space 5 from penetrating the outer skin 81 to the outside air, and at least a part of the thin matter 82 has light transmissivity, so that the sunlight can be injected into the outer skin 81 from the outside. , heating the air inside the outer skin 81.
  • the thin shape 82 may be a plastic film having the above functions, or a film of another material having the above functions. For example, it may be polyethylene (PE), ethylene vinyl acetate copolymer (EVA), polyvinyl chloride (PVC), polypropylene.
  • Polypropylene, PP polyethylene terephthalate (PET) or a film of other materials having similar properties, such as a rubber film or an elastomer film, or a combination of any of them.
  • fibers, segments, braids or combinations thereof may be added to the film of the aforementioned plastic film or its similar material to enhance its structural strength.
  • the anchor 12 is fixed or placed on the site for attachment or placement.
  • Each anchor 12 is an article that can be attached to one or more anti-buoyancy pull members and is sufficient to withstand the tension.
  • An example of the former is a pile, a plant, a structure, or any other object fixed to the site fixed to the ground G or the bottom of the water as the anchor 12.
  • an example of the latter is a mass of sufficient weight placed on the ground G or in water, such as concrete, stone, metal or wood, or a combination, such as a container (such as a bag, basket or bucket) to load a weight ( A combination such as soil or the like is used as the anchor 12.
  • the anchor 12 is a pile fixed to the ground G and the bottom of the water, and each anchor 12 can be connected to one or more anti-buoyancy pull members 13a, 13b, 13c to withstand the continued heating after the air is filled. The air buoyancy exceeds the gravity of the outer skin 81.
  • the anti-buoyancy pull members 13a, 13b, 13c of the cover body 10 are members for providing a tensile force between the outer skin 81 and the anchor member 12, and are strong enough to withstand the expected pulling force caused by the buoyancy of the covered hot air.
  • the anti-buoyancy pull members 13a, 13b, 13c are made of a member that transmits a tensile force, and the material thereof can be made of an artificial material, a natural material, or a combination thereof. In the embodiment of Fig.
  • each of the anti-floating pull members 13a is connected to the top portion 111, and each of the anti-floating pull members 13b is connected to the slope transition portion 211, and each of the anti-buoy force pull members 13c is connected to the side portion 311.
  • the anti-buoyancy puller 13a is coupled downwardly with the anchor 12 in a generally vertical direction such that the anchor 12 can counteract the buoyancy experienced by the top surface 111.
  • the anti-buoyancy puller 13b is connected obliquely inwardly and downwardly to the anchor member 12, so that the anchor member 12 counteracts the horizontal and vertical component forces derived from the buoyancy of the slope transition portion 211, and the slope transition portion 211 can be prevented from being affected by the buoyancy.
  • the anti-buoyancy pull member 13c is connected obliquely downwardly to the anchor member 12 so that the anchor member 12 can offset the horizontal and vertical component forces of the side portion 311 due to buoyancy, thereby reducing the stress on the outer skin 81.
  • the cover 10 for causing local area rainfall may further include a plurality of reinforcing members 285 disposed in the outer skin 81 and connected to the side portions 311 from the top portion 111 and the slope transition portion 211, respectively, as shown in FIG. Reduced by the horizontal component of its tensile force The tension of the side portion 311 of the outer skin 81, and the vertical component force of the pulling force thereof, assists the side portion 311 from being pulled away from the field.
  • the reinforcing member 285 can be made of an artificial material, a natural material, or a combination thereof.
  • the outer skin 81 of the cover 10 that causes localized rainfall may further include a plurality of reinforcing members 85, 185, as shown in Figures 2 and 3B.
  • the reinforcing member 85 is disposed in the thin body 82 of the outer skin 81, and the reinforcing member 185 is disposed on the outer surface of the thin body 82 of the outer skin 81 to increase the tension that the outer skin 81 can withstand.
  • the reinforcing members 85, 185 may be made of an artificial material, a natural material, or a combination thereof.
  • H is the height difference (m) between the convex portion of the outer skin 81 and the intake passage; ⁇ W is the weight (kg) of the convex portion of the outer skin 81; ⁇ A is the projected area of the convex portion of the outer skin 81 on the horizontal surface ( M2); ⁇ T is the temperature difference between the inside and outside of the air (°C); C is the air temperature difference buoyancy coefficient (kg/m3-°C).
  • T is the atmospheric temperature (° C.) in the vicinity of the covering 10
  • P is the atmospheric pressure (mb) in the vicinity of the covering 10.
  • the height member 31 may be added, such as a frame or other struts or stacking implements having the same effect, and a portion of the skin 81 on the floor G may be raised above the desired height.
  • a frame is used as the struts 31 to raise a portion of the inner portions 111, 211 of the outer skin 81 to a desired height or more, thereby forming a "starting bulge" projection.
  • edge portion 15 when the edge portion 15 is at the water surface W, since the edge portion 15 and the skin 81 in the vicinity thereof are immersed in water, the edge portion 15 and the skin 81 and the water surface W there are There is no gap between them as an air intake passage. If it is necessary to have an intake passage at the edge portion 15 of the water surface W, it is possible to selectively act as a pipe or a cushion which can form a passage for air to enter under the lower portion or the edge portion 15 of the outer skin 81. Gas channel. As shown in FIG.
  • an additional hollow pipe 42 having any length extends from above the surface water surface W on the outer side of the cover 10 through the edge portion 15 and the vicinity of the outer skin 81 of the vicinity to the ground surface G on the inner side thereof, with a hollow pipe
  • the hollow portion of 42 serves as an intake passage.
  • a spacer may be added, for example, a lower part placed on the bottom of the water, a top surface exposed on the water surface (not shown), or a floating height object 33 (as shown in FIG.
  • a gap is formed between the surface water surface W and the edge portion 15 and the outer skin 81 to allow air to enter the inner space from the outer space thereof.
  • the connected gap acts as an intake passage.
  • the cover 10 of the rainfall in the local area may be added to the pipeline for conveying heat energy (not shown) to transport industrial waste heat or geothermal heat from the adjacent area of the site.
  • the heat enters the space inside the outer skin 81 through the lower edge portion 15 of the outer skin 81.
  • At least a portion of the surface of the water surface W having no other member arrangement or article placement under the cover body 10 may further add an object 22 that can float on the water surface and reduce sunlight transmission, such as floating wood or Plants or plastic articles or other items with air bubbles to reduce the heat transfer from the sun to the water.
  • the present embodiment causes the cover 10 of the local area to accumulate and accumulate a large amount of thermal energy in the air it covers, at least one anti-buoyancy puller 13b, 13c adjacent to the edge portion 15 is released, so that the covered heat
  • the air pushes up the outer skin of the portion (such as the slope transition portion 211 and the side portion 311), and causes the adjacent edge portion 15 to be pushed up off the surface of the site (such as the ground G, the water surface W) to form an opening.
  • the covered hot air is released into the lower atmosphere through the opening.
  • the anti-buoyancy pull members 13a, 13b, 13c may be provided with various fasteners, rings or hooks and the like to be connected with the anchor members 12, so that the anti-buoyancy pull members 13a, 13b, 13c can be easily detached from the anchor members 12. Further, a remote release device may be disposed between the anti-buoyancy pull members 13a, 13b, 13c and the anchor member 12 to allow the respective anti-buoyancy pull members 13a, 13b, 13c to be simultaneously disengaged from the connected anchor member 12.
  • FIG. 6 is a schematic top plan view of a cover for causing rainfall in a local area according to another embodiment of the present invention.
  • FIG. 7 is an enlarged schematic cross-sectional view taken along line E-E of FIG. 6.
  • a covering body 10 for promoting local rainfall in a further embodiment of the present invention further includes: at least one venting opening 30 can be disposed inside the outer skin 81 of the covering body 10, and the placing The edge portion 15 of the air port 30 and the anti-buoyancy pull members 13b, 13c in the vicinity thereof are arranged in a manner similar to the edge portion 15 around the outer skin 81 of the cover 10 and the anti-floating pull members 13b, 13c; during the storage of hot air Continue to maintain the original height of the surface of the site (such as the ground G, water surface W).
  • At least one anti-floating puller 13b, 13c near the edge portion 15 of the venting port 30 is released, so that the covered hot air buoyancy is pushed up near the edge portion 15 of the venting port 30.
  • the outer skin (such as the slope transition portion 211 and the side portion 311), and then the edge portion 15 in the vicinity thereof is also pushed up off the surface of the site (such as the ground G, the water surface W) to form the venting port 30, thereby being able to pass through the venting port 30.
  • the port 30 releases the covered hot air into the lower atmosphere.
  • the configuration and composition of the components are the same as those of the embodiment of FIG. 1 except that the venting port 30 is configured as described above, and details are not described herein again.
  • FIG. 8 is a flow chart of a method for causing local area rainfall according to an embodiment of the present invention.
  • a method for promoting rainfall in a local area disclosed in the present invention comprises the following steps.
  • step 801 a plurality of adjacent or adjacent covers that cause localized rainfall are covered with a site that is capable of receiving thermal energy.
  • Step 802 the outer skin of the cover is placed on the surface of the site, and a part of the outer skin forms a convex portion of the "starting bulge", and the air covered by the outer skin receives heat energy to generate air on the inner side of the outer skin and the outer air outside the outer skin.
  • the temperature difference is such that the buoyancy of the protruding portion is greater than the gravity of the protruding portion, so that the covered buoyancy of the air begins to push up the protruding portion, while attracting outside air to enter the filling via the intake passage to be pushed up. And increase the space.
  • Step 803 the covered air continues to receive thermal energy, so that the protruding portion continues to be pushed up to a higher level, and the range of being pushed up is gradually enlarged, and the outside air is continuously attracted to the inside, until each The outer skin of the part is pushed up to the height set by each anti-buoyancy puller, so that the huge space between the cover and the field is filled with "primary" air.
  • step 804 after the cover is filled with "prime heat” air, it continues to receive heat energy, and the temperature of the covered air is further increased. At the same time, the moisture on the site also absorbs heat into latent heat and evaporates into the air covered by the water vapor. After a period of heat is received, the covered air becomes hot and humid hot air.
  • step 805 after accumulating a large amount of thermal energy in the covered air, the covered air is released to the lower atmosphere at any suitable timing. If several adjacent covers are used, they can be released to the lower atmosphere at substantially the same time to increase the temperature and humidity of the lower atmosphere. Thus increasing the atmospheric instability of the local area, thereby promoting To develop into small-scale cumulonimbus clouds and rain.
  • the method for promoting local rainfall in the present invention utilizes at least one covering for causing rainfall in a local area to cover a large area of the field, and after receiving the above five steps, it can receive a large area of available heat energy and store a huge amount of energy.
  • the heat is in the huge volume of air covered.
  • the release of this large volume of high-temperature and high-humidity air into the lower atmosphere can increase the temperature and humidity of the lower atmosphere, thereby increasing the atmospheric instability in the local area.
  • the atmosphere is unstable, it can promote the occurrence of small-scale cumulonimbus clouds, which will cause local showers to fall.
  • the covered site (such as ground G) lacks moisture, it is possible to make the site have moisture in any way before step 801 or during the process of receiving thermal energy, such as: watering, watering, spraying water mist, etc. There is moisture in it so that the moisture on the site absorbs heat into latent heat and evaporates into the air covered by the water vapor.
  • step 802 in order to cause the bulging portion of the "starting bulge" to be formed inside the outer skin of the outer region causing the rain in the local area, the required height of the bulging portion from the air inlet passage is determined in advance.
  • the desired height can be determined by field experiments or by the relational calculation.
  • the former is: after the air covered by the heat is heated, the machine (such as a pusher) or a high-rise (such as a frame) is pushed up from the low to the inside of the outer skin (such as the top and the slope transition). A part of the height that protrudes, when raised to the height at which the outer skin begins to float by the hot air, is the desired height.
  • the latter is: by the relationship, for example, the above relations (1) and (2), measuring the weight per unit area of the skin, the atmospheric temperature and pressure near the site, and the temperature of the air inside and outside the skin after receiving the heat.
  • the height difference calculated by substituting the above two relations (2) and (1) is the required height from the intake passage.
  • the method of releasing the covered hot air includes releasing at least one anti-floating pull member in the cover that causes the local area to rain, so that the covered hot air pushes up the outer portion of the portion (eg, the slope transition portion) And the side portion), and the edge portion near it is also pushed up off the surface of the field to form an opening.
  • the left edge portion 15 is pushed up off the ground G to form an opening, so that the internal hot air flows to the left side and is released into the lower atmosphere through the opening.
  • the anti-floating pull members 13b, 13c near the edge portion 15 of the venting opening 30 can be loosened to cover the hot air.
  • the buoyancy pushes up the outer skin of the portion (such as the slope transition portion 211 and the side portion 311), and drives the edge portion 15 in the vicinity thereof to be lifted off the ground G to form the venting port 30, and is more concentrated via the venting port 30. Releases hot air into the lower atmosphere.
  • a zipper (not shown) may be disposed on the outer skin top 111 or the slope transition portion 211, and when the inner air is to be released, the anti-floating pull members 13a, 13b near the zipper are loosened to make the portion The outer skin is more elevated, and the tension it receives is also increased. The zipper opens due to its inability to withstand excessive tension and releases its hot air.
  • the timing of releasing the hot air covered it can be released into the lower atmosphere after accumulating a large amount of high-heat air, which can increase the atmospheric instability in the local area and promote the chance of increasing rainfall.
  • the effect is better. For example, between 12 noon and 2 hours before sunset, the near-earth atmosphere is heated by solar radiation to increase its temperature and humidity, that is, the atmosphere. When it is unstable. Alternatively, it may be considered as an appropriate time to release the covered air when the weather stability reported by the meteorological agency is low.
  • ice crystal nucleus or/and condensation nuclei may be added to the covered hot air before releasing the covered hot air.
  • the method is as follows: (1) burning silver iodide, adding the flue gas to the covered hot air, using the silver iodide particles in the flue gas as the ice crystal nucleus suspended in the hot air, or/and (2) spraying the saline solution into the mist.
  • the fine water droplets in the covered hot air are rapidly evaporated in the hot air by the salt water droplets, and the residual salt particles are suspended in the hot air as condensation nuclei.
  • the ice crystal nucleus and/or condensation nuclei are released into the lower atmosphere with hot air.
  • the present invention can accurately apply silver iodide flue gas or the like to the released hot air to rise with the ascending air current.
  • a cover and method for causing rainfall in a local area of the present invention has the following features:
  • the cover body of the present invention receives the regenerative heat energy to heat the covered air, and then uses the buoyancy force caused by the internal and external temperature difference to push the cover body, and does not need to use a wrong material such as a plate, a beam and a column to support the structure, and can Make a lot of space.
  • a cheap material such as a plate, a beam and a column to support the structure
  • the use of a plurality of anti-buoyancy pull members on the various portions of the cover directly withstands most of the buoyancy experienced by the outer skin of each portion and is transmitted to the anchor members on the lower field to offset. Does not cause the buoyancy to accumulate from the center of the top of the skin to the edge. Therefore, the covering body can be made into a large area and a large volume with reference to the length and width of the site, and a large area of regenerative heat energy can be stored in a large volume of air.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Tents Or Canopies (AREA)

Abstract

一种促使局部地区降雨的方法及用以实施该方法的覆盖体,其外皮用以覆盖在能接受到热能的场地上,使其外皮的边缘部分大致保持在场地表面的高度,边缘以内的部分则可以被推升,形成空间容纳空气。使其内空气接受热能及借由外皮阻隔其内外侧空气互相流通减低其内热能的向外传递而造成内外温度差。利用其内较外高温的空气产生的浮力推升外皮边缘以内的部分,因而使外皮与场地表面之间形成巨大的空间容纳巨量空气,再继续接受热能而蓄存巨量热能于其覆盖的空气中,使用所覆盖的热空气促使局部地区的降雨。

Description

促使局部地区降雨的覆盖体及方法 技术领域
本发明涉及一种促使降雨的结构及方法,尤其涉及一种促使局部区域降雨的覆盖体及方法。
背景技术
蓄存热空气的结构体的现有技术:应用温室能使阳光透射并且可以阻隔其内的空气与外界空气流通,而使其内空气温度较外界高,因而能蓄存热能于其内空气中。但是,组成温室的构件多为承受弯矩力的梁、板,再以承受压力的墙或柱支持其重量。此结构方式,当尺寸增加时其断面厚度也随之增加,因此也大幅增加构件本身的重量,以致于甚难做成很大的面积和体积。
空气压力支撑的结构体的现有技术:现有的充气式建筑的外皮使用气密性薄膜,其内外两侧的压力差是由鼓风机(blower)等机具所达成。此不同于由热空气浮力所造成的压力差的分布;后者在进气口处内外两侧的压力差近于零,然后往上递增,然而,前者内外两侧的压力差不随高度变化而变化。因此,该两者对结构体在结构力学的作用有很大的不同;后者在较低部位的外皮所受的浮力较小,在最低处可以有连通内外两侧的空隙存在。然而,前者的外皮所受浮力不因高度不同而变化,其外皮与场地之间则是密闭的。此外,该现有的结构体所受浮力大部分皆由其结构体周围,靠近边缘的外皮承受,因而使其外皮所受张力随其结构体的宽度及高度的增加而相对增加,因此,该结构体的长、宽、高等尺度,因受到此因素的限制而不易扩大。
现有的人工降雨技术多是利用飞机或是火箭将能产生冰晶核的化合物例如錪化银或干冰等投入有机会降雨的浓厚云层中,或在锋面(front)来临时,在地面燃烧碘化银,使其含有碘化银微粒的烟气随上升气流进入云层中等方法。该技术能使云层中的-5℃以下的过冷水滴迅速结成冰晶并释放其中的潜热,因而使该云层更加发展而达到增加大约10%雨量的效果。然而,该现有的人工降雨技术多需要天气条件配合,一旦有机会降雨的浓厚云层 或锋面未到来,该现有的人工降雨技术也就无法施行达到增加降雨的效果。例如,长期干旱需要降雨的地区通常难以出现浓厚云层或锋面,因此,很难有机会利用该现有的人工降雨技术促使降雨来抒解旱象。该现有的人工降雨技术并无法主动促使形成有机会降雨的浓厚云层。此外,该现有的人工降雨技术多是以中尺度云层(水平幅长约介于10公里至数百公里)为实施目标,以促使大范围的增雨。
另一种现有的人工降雨技术:气象学的文献记载,大面积的森林或房屋等的猛烈火灾,偶尔会导致阵雨的发生。其理由是:火灾会释放巨量热能到下层大气(lower atmosphere)中,因而增加该局部地区的大气不稳定度(atmospheric instability)。当大火灾遇到天气条件较不稳定时,就有机会造成小尺度积雨云的发生而降雨。曾有气象专家企图采用在地面大量燃烧增加下层大气的热能当做促使降雨的方法。但是考虑到刻意大量燃烧,不但不经济,而且很可能造成环境污染及灾害。因此,该现有的技术没有被推广施行。
发明内容
本发明提供一种使局部地区降雨的覆盖体,以促使局部区域的降雨。
本发明另提供一种使局部地区降雨的方法,以促使局部区域的降雨。
为达上述优点或其他优点,本发明一实施例提出一种促使局部地区降雨的覆盖体,用以覆盖在能接受到热能的场地上,可使该覆盖体与该场地之间形成空间容纳空气,使其内空气接受热能,再借由其外皮阻隔其内空气与外界空气混合及对流,减低热能自内向外传递以造成内外空气温度差,并利用内外空气温度差产生的浮力推升覆盖体的外皮形成巨大空间容纳空气及蓄存巨量热能于其内空气中,俾用所覆盖的热空气以促使局部地区降雨。
该覆盖体至少包含一抗浮力器具及上述的外皮。
该外皮至少是由一薄形物所成,该外皮的强度可以承受因热空气的浮力所引起的预期应力;该外皮大致可以阻隔空气自其内或外侧贯穿流通至另一面。该外皮用以覆盖在能接收到热能的场地上;该外皮的边缘部自开始储气至充满空气期间一直大致保持在或近于该场地表面的原来高度,然而,在同一时间中,该外皮边缘部以内的部分则可以被推升离开该场地表面,而使该外皮和其下方的场地表面之间能够形成一大空间容纳空气;其中,该 外皮边缘部与其下方的场地表面之间的间隙,更可作为外界空气进入该空间的进气通道,以便当该外皮内部被推升时,让外界的空气经由该进气通道进入该空间内;或者,该进气通道亦可视实际需要,选择性地在该外皮的较低部位或边缘部下方,以设置可形成通道供空气进入的管道或垫高物等方式充当之。
该抗浮力器具包含多个锚件及多个抗浮力拉件,分散地分布在该覆盖体边缘部以内的可被推升部分的下方。锚件分散地设置于场地,各抗浮力拉件的上端分别连接于外皮的各部位,下端连接于锚件。该些抗浮力拉件为在该外皮与该些锚件间提供传递拉力的构件。各该抗浮力拉件的抗张强度可以承受因该外皮所覆盖的热空气的浮力所引起的预期应力。该锚件是被设置在该外皮下方场地,为可供连系以承受向上拉力的对象,并且为锚固于场地或原有地上物,其锚固力足以承受其上方热空气浮力所引起的向上拉力的对象;或为放置于场地上或原有地上物上的有足够重力的足以承受其上方热空气浮力所引起的向上拉力的对象。
该覆盖体内的空气所接受的热能可以如下的任一种或任数种:太阳的辐射热、地热、自地面或水面释放的热、或工业废热等,但不以此为限。其接受热能的途径可以经由如下的任一种或任数种:经由外皮传递进入、经由场地表面传递进入、或经由增设的管道传递进入等,但不以此为限。
借由该覆盖体能使其覆盖的空气接受热能及其外皮能阻隔其内外两侧的空气互相混合及对流,而使其内的空气温度较其外界空气温度为高,因而除得以蓄存热能于其覆盖的空气中之外,亦得以利用该两侧的空气温度差而产生浮力推升该外皮而使其空间增大容纳更多空气。基于空气温度差所产生对覆盖体外皮的浮力,除与该温度差成正比之外,亦与外皮自进气通道计起的高度成正比。本发明在开始蓄热的阶段,可以使外皮内部中的一部分高于进气通道达足够的高度差而使其形成“起动隆起”的凸出部分,因而使被覆盖的空气借由接受热能及借由外皮的阻隔热能向外传递从而造成的内外空气温度差所产生对该凸出部分的浮力能大于该凸出部分的重力而能开始推升该凸出部分。为求得足够的高度差,可以由实地实验求得或参考以下关系式(1)由计算求得:
使浮力大于重力:
H×ΔT×C>ΔW/ΔA
H>ΔW/(C×ΔA×ΔT)     关系式(1)
其中,H为外皮的凸出部分与进气通道的高度差(m);ΔW为外皮的凸出部分的重量(kg);ΔA为外皮的凸出部分在水平面上的投影面积(m2);ΔT为覆盖体内外空气温差(℃);C为空气温差浮力系数(kg/m3-℃)。
依据波以尔查理定律可推算得上述的空气温差浮力系数(coefficient of buoyancy to air temperature difference)C与当地当时大气温度及大气压力的关系如以下关系式(2):
C=0.348P/〔(273+T)×(273+T+ΔT)〕     关系式(2)
其中,T为覆盖体附近的大气温度(℃);P为覆盖体附近的大气压力(mb)。
为使外皮形成”起动隆起”的凸出部分,可利用场地中较高凸的原有地面,或场地上较高凸的原有地上物,使铺放于其上的外皮高于进气通道达足够的高度差的场合,在该较高凸处形成“起动隆起”的凸出部分;或者,该“起动隆起”的凸出部分亦可以在该场地表面上以增设的撑高物等方式撑高或提高该外皮内部中的一部分使高于进气通道达足够的高度差,而使该部分形成“起动隆起”的凸出部分。
当所覆盖的空气接受热能升温而使外皮中的凸出部分符合上述关系式(1),亦即凸出部分下方的空气浮力大于该凸出部分的重力时,就能使该凸出部分开始被推升,同时使外界的空气被吸引经由邻近的进气通道,再经场地表面与外皮面之间的空隙流到该凸出部分下方,填充因被推升而增加的空间。上述空隙是利用外皮铺放在场地时,由于场地表面的凹凸不平,或场地上原有的地上物,或外皮下方原设置的抗浮力拉件及补强构件等垫高外皮而在该外皮与场地之间形成空隙,该空隙可自至少一个进气通道连通至该凸出部分外皮下方的空间。
在该外皮的凸出部分开始被推升后再继续接受热能,而使该凸出部分得以继续被推升更高及范围扩大,同时继续吸引外界的空气入内,一直到各部位的外皮都被推升到各抗浮力拉件所设定的高度而使该外皮与该场地之间的巨大空间充满“初热”空气。在充满空气之后再继续接受热能,而使所覆盖的空气温度更升高。在所覆盖的空气接受热能而升温的同时,场地上的水分亦会吸收热能成为潜热并蒸发成为水气蓄存在所覆盖的空气中。经过 一段时间的接受热能,而使所覆盖的空气成为热且湿的“热”空气。
于蓄存巨量“热”空气后,欲释放出所覆盖的“热”空气时,得以放松或解脱至少一个抗浮力拉件,使其内热空气推高该外皮,而在外皮边缘形成开口使所覆盖的“热”空气流出到下层大气中,以增加局部地区下层大气的温度及湿度。
在本发明的一实施例中,上述的外皮亦可以由薄形物及加强构件所成。
在本发明的一实施例中,上述的外皮的薄形物至少一部分具有透光性。
在本发明的一实施例中,促使局部地区降雨的覆盖体更包含:至少一个放气口设置在覆盖体外皮的内部,使该放气口的边缘部以类似如前述的覆盖体外皮周围的边缘部的设置方式,持续地大致保持在该场地表面的原来高度,在欲释放所覆盖的热空气时,得松脱该放气口附近的抗浮力拉件,使所覆盖的热空气浮力能推起该放气口的边缘部及其附近的外皮,而得以形成放气口释出热空气。
在本发明的一实施例中,上述促使局部地区降雨的覆盖体更包含多个补强构件。
在本发明的一实施例中,上述的外皮的薄形物为塑料膜或其类似材料(例如橡胶或人造橡胶等)的薄膜,或材料中有加入纤维、线段、编织物或其组合等补强物所制成的塑料膜或其类似材料的薄膜等的任何一种或其中数种。
本发明另一实施例提出一种促使局部地区降雨的方法,包含以下步骤:
步骤一,使用至少一个上述的促使局部地区降雨的覆盖体覆盖于能接收到热能的场地。
步骤二,使覆盖体的外皮铺放在场地表面,并使该外皮中的一部分形成“起动隆起”的凸出部分,及使所覆盖的空气接受热能而使内外两侧的空气产生温度差,因而使被覆盖的热空气对该凸出部分的浮力大于该凸出部分的重力,而使所覆盖的空气浮力开始推升该凸出部分,同时吸引外界空气经由进气通道进入填充因被推升而增加的空间。
步骤三,使所覆盖的空气继续接受热能,因而使该凸出部分继续被推升到更高,并且被推升的范围也逐渐扩大,同时,外界的空气也继续被吸引入内,一直到各部位的外皮都被推升到各抗浮力拉件所设定的高度,而使该覆盖体所覆盖的空间充满“初热”的空气。
步骤四,在充满“初热”的空气后,再继续接受热能,而使所覆盖的空气温度更升高。同时场地上的水分亦吸收热能成为潜热并蒸发为水气蓄存在所覆盖的空气中。经过一段时 间的接受热能,而使所覆盖的空气成为热且湿的“热”空气。
步骤五,于累积蓄存很巨量热能于所覆盖的空气中后,即得于任何适当时机释放所覆盖的空气到下层大气中,提升下层大气温度及湿度,因而增加该局部地区的大气不稳定度,从而促使发展成为小尺度积雨云而降雨。
在本发明的一实施例中,使外皮中的一部分形成“起动隆起”的凸出部分的方法包含:事先由实地实验或由上述关系式计算求得该凸出部分自进气通道计起的所需高度后,按照求得的所需高度检测铺放于场地上的外皮凸出部分的高度是否已高于所需高度,如果是,则可以利用该外皮凸出部分当做“起动隆起”的凸出部分。如果未高于所需高度,则需增加设置撑高物或堆高机具等在场地上,撑高或推升该外皮内部中的一部分,使其高度高于所需高度,因而形成“起动隆起”的凸出部分。
在本发明的一实施例中,释放所覆盖的热空气的方法包含松脱至少一个抗浮力拉件。
在本发明的一实施例中,上述促使局部地区降雨的方法更包含:于释放所覆盖的热空气之前,在该热空气中加入冰晶核或凝结核,或以上两者。
在本发明的一实施例中,加入冰晶核及/或凝结核的方法包含:(1)排入燃烧碘化银的烟气到所覆盖的热空气中;及/或(2)喷洒食盐水溶液成雾状细小水滴到所覆盖的热空气中。
在本发明中,促使局部地区降雨的覆盖体覆盖在大面积的场地上容纳巨大体积的空气接受热能,经过如上述五个步骤,即能接受到很大面积的可利用热能,蓄存巨量热能于其覆盖的巨大体积的空气中。利用此巨大体积的高温且高湿的空气释放到下层大气中,以提高该下层大气的温度及湿度。因此能增加局部地区大气不稳定度。尤其在大气较不稳定时将其释放到下层大气中,能促使局部地区大气更不稳定,因此能促使形成强而有力的对流胞向上对流,增加发展成小尺度积雨云而降雨的机会。因此,本发明的促使局部地区降雨的覆盖体及方法可有效产生局部区域的降雨。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图概述
图1绘示本发明一实施例的促使局部地区降雨的覆盖体的俯视示意图;
图2绘示图1的促使局部地区降雨的覆盖体应用于不平整的场地蓄满空气时的A-A剖面放大示意图;
图3A绘示图2中外皮的边缘部分位于场地中地势较高处的地面上的局部放大示意图;
图3B绘示图2中外皮的顶面的局部放大示意图;
图4绘示图1的促使局部地区降雨的覆盖体应用于部分场地为水面,于蓄满空气时的B-B剖面放大示意图;
图5A绘示图4中外皮的边缘部分与场地表面为水面的局部放大示意图;
图5B绘示图5A的B-B剖面示意图;
图5C绘示图5A的C-C剖面示意图;
图6绘示本发明另一实施例的促使局部地区降雨的覆盖体的俯视示意图;
图7绘示图6的E-E剖面于蓄满空气时的放大示意图;以及
图8绘示本发明一实施例的促使局部地区降雨的方法的流程图。
本发明的较佳实施方式
为了改善现有人工降雨技术的限制,本发明提出了以增加下层大气的温度及湿度,亦即增加局部地区的大气不稳定度的手段,使在大气对流层形成小尺度(水平幅长约介于0.5公里至10公里)的积雨云,以造成在局部区域降雨的方法及其所使用的结构。此方法需要在地表覆盖巨量空气,使被覆盖的空气接受热能并阻隔其与外界空气混合及对流而蓄存热能于所覆盖的空气中。俟累积蓄存很巨量热能后,释放所覆盖的空气到下层大气中,以增加下层大气的温度及湿度,促使形成小尺度的积雨云,造成降雨的机会。而上述方法所使用的结构是一种覆盖体,可用以覆盖在场地上容纳空气,接受及蓄存热能。为使该覆盖体能做成更大面积及高度,以接受更多热能蓄存巨量热能于巨大体积的空气中,本发明利用外皮内外温度差所产生的浮力支撑该覆盖体外皮的内部而形成巨大空间,替代现有的结构 体以板、梁及柱等笨重构件。并且本发明采用多个抗浮力拉件分散的布设在该覆盖体的各部位,以便在蓄满空气及升温后,就地抵消在各部位超过各部位重力的浮力,因此,除了使该覆盖体可以做成更大面积及高度之外,也使该覆盖体的外皮所受的应力大幅减小,而可以在其材料的容许应力范围内,减小外皮的薄形物的厚度及重量,使该覆盖体在开始接受热能的阶段容易达到符合下文提及的关系式(1)而形成“起动隆起”的凸出部分而起动推升外皮内部及吸引空气入内。本发明使用外皮的薄形物的厚度例如约在0.03mm至2.0mm之间,但不以此为限。随着继续接受热能而使推升外皮及吸入空气继续进行。当蓄满空气后再继续接受热能而再升温,而使空气对外皮的浮力远大于外皮的重力。再利用分布在各部位的抗浮力拉件就地承受超过其重力的浮力,因而使外皮的应力很小而可以做成薄且轻,也使外皮不会因覆盖面积大而损坏,而能形成很大体积的空间容纳空气。蓄满空气后再继续接受热能,而使其覆盖的很大体积的空气蓄存很巨量热能。单个覆盖体的宽幅例如约在200公尺至5公里之间,但不以此为限。在使用多个相邻近的覆盖体的情形,场地的长宽尺度则应随之增大,例如约在500公尺至20公里或更大。蓄满空气后高度约在5公尺到150公尺之间。
本发明的促使局部地区降雨的覆盖体设置于能接受到热能的场地,该场地表面可以是全部地面,或是部分地面及部分水面。该场地可选择在其地面是平坦的地面,或是高低起伏不很大的地面,该地面之上可以没有地上物,或有不很高的地上物,以方便外皮等构件的装设。如果在场地边缘以内偶有太高凸的地面或地上物,亦不宜有超过或靠近该处外皮的设计高度,否则,可采取修整或移除等方式处理。然而,外皮的边缘部下方的地面,可选择在较平坦及没有太高地上物之处。如果该处地面起伏太大或地上物太高,可采取避开,或修整,或移除等方式处理。
图1绘示本发明一实施例的促使局部地区降雨的覆盖体的俯视示意图。图2绘示图1的促使局部地区降雨的覆盖体应用于不平整的场地蓄满空气时的A-A剖面放大示意图。图3A绘示图2中外皮的边缘部分位于场地表面较高位置的局部放大示意图。图3B绘示图2中外皮的顶面的局部放大示意图。请参照图1与图2,本发明一实施例的促使局部地区降雨的覆盖体10可用以覆盖在能接受到热能的场地表面:包括地面G及水面W。所述的场地表面 也可包含地面G,但不包含水面W。覆盖体10包含外皮81及抗浮力器具11。使外皮81的边缘部15大致保持在或近于场地表面(地面G及水面W)的原来高度,外皮81的顶部111、斜度转变部211及侧部311则可以自场地表面(地面G及水面W)被推升而使外皮81与场地表面(地面G及水面W)之间可以形成空间5容纳空气。外皮81的边缘部15与场地表面之间若因地面G不平整或地面上有低矮的地上物等而形成间隙,可以利用该间隙当做进气通道4。然而,如有部分边缘部15所在的地面G比其他部分的边缘部15所在的地面G高太多时,则不在该处设置进气通道,而以封闭物14封闭该处边缘部15与地面G之间的间隙来增加气密性。例如以土壤或其他物体压住该外皮81的边缘部15以产生封闭的效果,如图3A所示。当边缘部15下方为水面W时,边缘部15浸入水中,因而在此处没有间隙当做进气通道。因此,只要在地面G处有进气通道4即足够,在水面W处可不设进气通道。如果有必要在水面W处设置进气通道时,得以增设的中空管道(将于下文配合图5B说明)或垫高物(将于下文配合图5C说明)等,使形成可连通内外两侧空间的信道替代进气信道4。抗浮力器具11包含多个锚件12及多个抗浮力拉件13a、13b、13c分散的分布,其上端连接外皮81的各部位,其下端连接于设置在场地的锚件12。借由接受热能而使空间5内的空气升温比外界高因而对外皮产生浮力,再借由足够的高度差使浮力足以推升外皮的顶部111、斜度转变部211及侧部311,而使空间5增大同时吸引外界的空气进入填补因外皮被推升而增大的空间。随着继续接受热能,而使外皮继续被推升到各抗浮力拉件预设的高度而被拉住,因而使覆盖体10与场地表面(地面G及水面W)之间所形成的空间蓄满空气。再继续接受热能而使所容纳的巨大体积的空气再升温,因而蓄存更多量热能于所覆盖的空气中。
如图2所示,覆盖体10的外皮81的强度可以承受因所覆盖的热空气的浮力所引起的预期应力。此外,组成外皮81的薄形物82能阻隔空间5内的空气穿透外皮81与外界的空气流通,薄形物82的至少一部分具有透光性,以使阳光能自外射入外皮81内,以对外皮81内的空气加热。该薄形物82可以是具有上述功能的塑料膜,或是具有上述功能的其他材料的薄膜。举例来说,可以为聚乙烯(Polyethylene,PE)、乙烯醋酸乙烯酯共聚物(Ethylene Vinyl Acetate Copolymer,EVA)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚丙烯 (Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)或具有相似特性的其他材料的薄膜,例如橡胶薄膜或人造橡胶薄膜,或其中任数种薄膜的组合。此外,前述塑料膜或其特性类似材料的薄膜中亦可加入纤维、线段、编织物或其组合来增强其结构强度。
在覆盖体10蓄满空气后再继续接受热能,而使其内空气继续升温,因而使空气浮力超过外皮81的重力,该超过外皮81重力的部分是由各部位的抗浮力拉件13a、13b、13c承受,再传递到锚件12而抵消。锚件12是被固定或被放置在场地的可供固定或放置之处。每一锚件12是可供连系单一个或多个抗浮力拉件,并足以承受其拉力的物件。前者的例子为固定于地面G或水底的桩、植物、构造物、或其他任何固定于该场地的物等当做锚件12。而后者的例子为,放置在地面G或水中的足够重量的块状物,如混凝土、石头、金属或木材等,或组合体,例如容器(如袋、篮或桶等)中装填重物(如土壤等)的组合体当做锚件12。在图2实施例中,锚件12为固定于地面G及水底的桩,各锚件12可以连接一个或多个抗浮力拉件13a、13b、13c以承受在蓄满空气后继续升温而使空气浮力超过外皮81重力的部分。
覆盖体10的抗浮力拉件13a、13b、13c为在外皮81与锚件12间提供传递拉力的构件,其强度要能承受因所覆盖的热空气的浮力所引起的预期拉力。抗浮力拉件13a、13b、13c是由可传递拉力的构件所成,其材质可以由人造材料、天然材料或其组合所制成。在图2实施例中,各抗浮力拉件13a连接顶部111、各抗浮力拉件13b连接斜度转变部211,而各抗浮力拉件13c连接侧部311。抗浮力拉件13a以大致垂直的方向向下与锚件12连接,使锚件12可以抵消顶面111所承受的浮力。抗浮力拉件13b朝内往下斜与锚件12连接,使锚件12抵消斜度转变部211因受浮力而衍生的水平及垂直分力,更可以避免斜度转变部211因受浮力而衍生的水平及垂直分力转嫁累积至侧部311及边缘部15从而造成损坏。抗浮力拉件13c朝内往斜下与锚件12连接,使锚件12可以抵消侧部311因受浮力而衍生的水平及垂直分力,因此而使外皮81所受的应力更减小。
促使局部地区降雨的覆盖体10可更包含有多个补强构件285设置于外皮81内,并且分别自顶部111及斜度转变部211连接至侧部311,如图2所示。以其拉力的水平分力减小 侧部311外皮81的张力,并以其拉力的垂直分力辅助侧部311被拉离场地。而补强构件285可以由人造材料、天然材料或其组合所制成。
促使局部地区降雨的覆盖体10的外皮81可更包含有多个加强构件85、185,如图2及3B所示。加强构件85设置于外皮81的薄形物82内,加强构件185设置于外皮81的薄形物82的外表面,以增加外皮81所能承受的张力。而加强构件85、185,可以由人造材料、天然材料、或其组合所制成。
为使促使局部地区降雨的覆盖体10的内部能被空气推升及吸入空气,需事先预估形成“起动隆起”的凸出部分的自进气通道计起的所需高度。可以由实地实验求得,亦可以参考以下关系式(1)由计算求得。
使浮力大于重力:
H×ΔT×C>ΔW/ΔA
H>ΔW/(C×ΔA×ΔT)     关系式(1)
其中,H为外皮81的凸出部分与进气通道的高度差(m);ΔW为外皮81的凸出部分的重量(kg);ΔA为外皮81的凸出部分在水平面上的投影面积(m2);ΔT为覆盖体内外空气温差(℃);C为空气温差浮力系数(kg/m3-℃)。
依据波以尔查理定律可推算得上述的空气温差浮力系数C与当地当时大气温度及大气压力的关系如以下关系式(2):
C=0.348P/〔(273+T)×(273+T+ΔT)〕     关系式(2)
其中,T为覆盖体10附近的大气温度(℃);P为覆盖体10附近的大气压力(mb)。
求得自进气通道计起的所需高度后,检测铺放于场地中较高凸的原有地面G或场地上较高凸的原有地上物上的外皮81凸出部分的高度是否高于所需高度。如果是,则可以利用该较高凸的原有地面G或原有地上物上方外皮的凸出部分当做“起动隆起”的凸出部分。如果不是,则可增加设置撑高物31,例如构架或其他具有相同功效的撑高物品或堆高机具等,设在场地地面G上撑高外皮81的一部分使高于所需高度。在图2实施例中,使用构架作为撑高物31撑高该外皮81内部111、211中的一部分达到所需高度以上,因而形成“起动隆起”的凸出部分。
如图4及图5A,当边缘部15是在水面W之处时,由于边缘部15及其附近的外皮81浸入水中,因而在此处的边缘部15及其附近的外皮81与水面W之间没有间隙可以当做进气通道。如有必要在水面W的边缘部15有进气通道时,可以选择性地在外皮81的较低部位或边缘部15下方以增设可形成通道供空气进入的管道或垫高物等方式充当进气信道。如图5B所示,以增设的具任何长度的中空管道42自覆盖体10外侧的场地水面W上方延伸经过边缘部15及其附近的外皮81下方至其内侧的场地地面G上方,以中空管道42的中空部分作为进气通道。此外,亦可以增设垫高物,例如下部放置于水底,上部露出水面的垫高物(图上未示),或可浮性垫高物33(如图5C)等,放置于边缘部15及其附近外皮81的下方,自边缘部15外侧至内侧水岸边,使在场地水面W与边缘部15及外皮81之间形成可供空气自其外侧空间进入其内侧空间的间隙,以此可连通的间隙作为进气通道。
当场地的邻近地区有工业废热或地热等可利用的情形,促使局部地区降雨的覆盖体10可增加设置输送热能的管道(图上未示),以便自场地的邻近地区输送工业废热或地热等热能经外皮81的边缘部15下方进入外皮81内侧的空间。
此外,如图4所示,在上述覆盖体10下方没有其他构件设置或物品放置的水面W的至少一部分面积更可增设能浮于水面且能减少阳光透射的物体22,例如可浮的木材或植物或具有气泡的塑料制品或其他物品,以减少太阳辐射热传递进入水中。
而当本实施例促使局部地区降雨的覆盖体10累积蓄存很巨量热能于其覆盖的空气中后,松脱邻近边缘部15的至少一抗浮力拉件13b、13c,使得所覆盖的热空气推升该部分的外皮(如斜度转变部211及侧部311),并带动其邻近的边缘部15也被推升离开场地表面(如地面G、水面W),而形成开口,使其覆盖的热空气经由该开口被释放进入下层大气中。抗浮力拉件13a、13b、13c上可以设置各式扣件、环或钩等构件与锚件12连接,使抗浮力拉件13a、13b、13c可以方便地脱离锚件12。更可以在抗浮力拉件13a、13b、13c与锚件12之间装设遥控松脱装置,让各抗浮力拉件13a、13b、13c得以同步地脱离所连接的锚件12。
请参阅图6及图7,图6绘示本发明另一实施例的促使局部地区降雨的覆盖体的俯视示意图。图7绘示图6的E-E剖面放大示意图。本发明另一实施例所揭露的一种促使局部地区降雨的覆盖体10更包含:可设置至少一个放气口30于覆盖体10的外皮81内部,该放 气口30的边缘部15及其附近的抗浮力拉件13b、13c以类似前述的覆盖体10的外皮81周围的边缘部15及抗浮力拉件13b、13c的设置方式;在蓄存热空气期间持续的大致保持在场地表面(如地面G、水面W)的原来高度。在欲释放所覆盖的热空气时,得松脱该放气口30边缘部15附近的至少一抗浮力拉件13b、13c,使所覆盖的热空气浮力推升该放气口30的边缘部15附近的外皮(如斜度转变部211及侧部311),再带动其附近的边缘部15也被推升离开场地表面(如地面G、水面W),而形成放气口30,因而得以经由该放气口30释放出所覆盖的热空气进入下层大气中。而图6实施例中,除放气口30如上述的组件配置之外,各组件的配置及组成与图1实施例相同,在此不再赘述。
请参照图8,图8绘示本发明一实施例的促使局部地区降雨的方法的流程图。本发明所揭露的一种促使局部地区降雨的方法,包含以下步骤。
步骤801,使用一个或相邻近的数个促使局部地区降雨的覆盖体覆盖在能接受到热能的场地。
步骤802,使覆盖体的外皮铺放在场地表面,并使该外皮中的一部分形成“起动隆起”的凸出部分,及使外皮所覆盖的空气接受热能而使外皮内侧空气与外皮外侧空气产生温度差,而使该凸出部分所受的浮力大于该凸出部分的重力,而使所覆盖的空气浮力开始推升该凸出部分,同时吸引外界空气经由进气通道进入填充因被推升而增加的空间。
步骤803,使所覆盖的空气继续接受热能,因而使该凸出部分继续被推升到更高,并且被推升的范围也逐渐扩大,同时,外界的空气也继续被吸引入内,一直到各部位的外皮都被推升到各抗浮力拉件所设定的高度,而使该覆盖体与该场地之间的巨大空间充满“初热”空气。
步骤804,覆盖体在充满“初热”空气后,再继续接受热能,而使所覆盖的空气温度更升高。同时场地上的水分也吸收热能成为潜热并蒸发成为水气蓄存在所覆盖的空气中。经过一段时间的接受热能,而使所覆盖的空气成为热且湿的热空气。
步骤805,于累积蓄存很巨量热能于所覆盖的空气中后,即得于任何适当时机释放所覆盖的空气到下层大气中。如果是使用数个相邻近的覆盖体,则可以大致同时进行释放到下层大气中,以提升下层大气的温度及湿度。因而增加该局部地区的大气不稳定度,从而促 使发展成小尺度积雨云而降雨。
本发明促使局部地区降雨的方法,利用至少一个促使局部地区降雨的覆盖体覆盖于大面积的场地上,经过如上述五个步骤,即能接受到很大面积的可利用热能,蓄存巨量热能于所覆盖的巨大体积空气中。释放此巨大体积的高温且高湿的空气到下层大气中,可以提高该下层大气的温度及湿度,因此能增加局部地区大气不稳定度。尤其在大气较不稳定时,更能促使发生小尺度的积雨云,因而有机会使局部地区降阵雨。
如果所覆盖的场地(如地面G)缺乏水分更可以在步骤801之前或在接受热能的过程中,以任何方式使场地上有水分,例如:灌水、浇水、喷水雾等方式,使场地上有水分,以便使场地上的水分吸收热能成为潜热并蒸发成为水气蓄存在所覆盖的空气中。
在步骤802中,为使促使局部地区降雨的覆盖体外皮内部形成“起动隆起”的凸出部分,需事先求得该凸出部分自进气通道计起的所需高度。可以由实地实验求得所需高度或由关系式计算求得所需高度。前者是:使所覆盖的空气受热升温后,以机具(例如推高机)或撑高物(例如构架),从低慢慢加高推升该外皮内部(如顶部、斜度转变部)中的一部分使凸出,当加高到该外皮开始被热空气浮起时的高度,就是所需的高度。后者是:由关系式,例如上述关系式(1)及(2),实地量测外皮等构件的单位面积重量,场地附近的大气温度及压力,以及接受热能后外皮内外两侧空气的温度差等数据,代入上述两个关系式(2)及(1)中计算出的高度差就是自进气通道计起的所需高度。根据以上任一方法求得所需高度后,再检测铺放于场地上的较高凸的原有地面或场地上较高凸的原有地上物上面的外皮凸出部分的高度是否已高于所需的高度。如果是,则可以利用该外皮的凸出部分当做“起动隆起”的凸出部分。如果未达到所需高度,则需增加设置撑高物或推高机具等在场地上,撑高或推升外皮的一部分使高于所需高度,而形成“起动隆起”的凸出部分。
在步骤805中,释放所覆盖的热空气的方法包含松脱促使局部地区降雨的覆盖体中的至少一抗浮力拉件,使所覆盖的热空气推起该部分的外皮(如斜度转变部及侧部),并带动其附近的边缘部也被推升离开场地表面而形成开口。以图2为例,使左侧的边缘部15被推升离开地面G因而形成开口,使其内热空气流向左侧经由该开口释放进入下层大气中。若以图7为例,得松脱放气口30边缘部15附近的抗浮力拉件13b、13c,使所覆盖的热空气 浮力推起该部分的外皮(如斜度转变部211及侧部311),并带动其附近的边缘部15也被推升离开地面G而形成放气口30,以及得以经由放气口30更集中地释放出热空气进入下层大气中。此外,也可以在外皮顶部111或斜度转变部211装设夹链(未绘示),于欲释放出其内空气时,放松夹链附近的抗浮力拉件13a、13b,使该部分的外皮更升高,其所受的张力也增大,夹链因无法承受过大的张力而打开而释放其内热空气。至于释放所覆盖的热空气的时机:可于累积蓄存巨量高热能空气后释放到下层大气中,即能使局部地区的大气不稳定度增加,而促使增加降雨的机会。然而,以于大气较不稳定之时释放,其效果较佳,例如,在正午12点至日落前2小时之间,近地大气因太阳辐射而使其温度及湿度升高,亦即大气较不稳定之时。或者,亦可参照气象机构所发报的天气稳定度低之时,作为释放所覆盖空气的适当时机。
而在步骤805,释放所覆盖的热空气之前,更可以在所覆盖的热空气中加入冰晶核或/及凝结核。其方法例如:(1)燃烧碘化银,使其烟气加入所覆盖的热空气中,利用烟气中的碘化银微粒当做冰晶核悬浮在该热空气中,或/及(2)喷洒食盐水溶液成雾状细小水滴在所覆盖的热空气中,利用含盐小水滴在热空气中迅速蒸发后残余的食盐微粒当做凝结核悬浮在该热空气中。使该冰晶核或/及凝结核随热空气被释放进入下层大气中。能使对流胞中的水气更容易结成云并释放潜热,因而更助长对流胞的上升及发展。现有技术在地面燃烧碘化银、很难准确的施放到锋面的上升气流中,然而,本发明则可将碘化银烟气等准确的施放到所释放的热空气中随上升气流上升。
综合以上所述实施例,本发明的一种促使局部地区降雨的覆盖体及方法具有以下特点:
1.利用本发明的覆盖体接受可再生热能而使所覆盖的空气升温,再利用内外温差所造成的浮力推举覆盖体,不需使用板、梁及柱等笨重构材支持在结构体,而能做成很大空间。从而,使用多个抗浮力拉件于覆盖体的各部位,直接承受各部位外皮所受的大部分浮力,传递到其下方场地上的锚件而抵消。不会使所受浮力从外皮顶部中央累积到边缘。因此使覆盖体能参照场地的长、宽尺度做成很大面积及很大体积,接受很大面积的可再生热能蓄存于很大体积的空气中。
2.释放该覆盖体所蓄存的巨量热、湿空气到下层大气中,以提高局部地区下层大气的 温度及湿度,亦即增加其不稳定度而增加下雨的机会。不需等待有下雨征兆的浓厚云层或锋面来临才能实施促使下雨。即使在晴天,只要有可再生热能之时,即能实施促使下雨,有抒解旱象的功效。并且,利用可再生热能于本发明促使下雨,可避免造成环境污染及灾害。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种促使局部地区降雨的覆盖体,其特征在于,用以覆盖在能接受到热能的场地上,可使该覆盖体与该场地之间形成巨大空间容纳巨量的空气,及使该覆盖体内空气接受热能,再借由该覆盖体的外皮阻隔其内空气与外界空气混合及对流,减低热能向外传递,造成内外空气温度差,并利用内外空气温度差产生的浮力推升该覆盖体的外皮形成巨大空间容纳空气及蓄存巨量热能于其内空气中,俾用所覆盖的热空气以促使局部地区降雨,该覆盖体至少包含外皮及抗浮力器具,其中:
    该外皮至少是由薄形物所成,该外皮的强度可以承受因热空气的浮力所引起的预期应力,该外皮大致可以阻隔空气自其内侧或外侧贯穿流通至另一面,该外皮用以覆盖在能接受到热能的场地上,该外皮的边缘部自开始储气至充满空气期间一直大致保持在或近于该场地表面的原来高度,在同一时间中,该外皮的该边缘部以内的部分则可以被推升离开该场地表面,而使该外皮和其下方的场地表面之间能够形成一大空间容纳空气,其中该外皮的该边缘部与其下方的场地表面之间的间隙,更适于作为外界空气进入该空间的进气通道;
    该抗浮力器具包含多个锚件及多个抗浮力拉件,分散地分布在该覆盖体的该边缘部以内的可被推升部分的下方,该些锚件分散地设置于场地,该些抗浮力拉件的上端分别连接于该外皮的各部位,下端连接于该些锚件,各该抗浮力拉件为在其连接的该锚件与该外皮间提供传递拉力的构件,该抗浮力拉件的抗张强度适于承受因该外皮所覆盖的热空气的浮力所引起的预期应力,该些锚件是被设置在该外皮下方场地,为可供连系以承受向上拉力的物件,并且为锚固或放置于场地或地上物,其锚固力或自身重量足以承受其上方热空气浮力所引起的向上拉力的物件;
    该覆盖体适于利用该场地中较高凸的原有地面或原有地上物,使铺放于其上的外皮高于进气通道达足够的高度差,而在该较高凸处形成“起动隆起”的凸出部分,因而使被覆盖的空气借由接受热能及借由外皮的阻隔热能向外传递从而造成的内外空气温度差所产生对该凸出部分的浮力能大于该凸出部分的重力,而能开始推升该凸出部分,同时吸引外界空气入内,再继续使所覆盖的空气接受热能,而使该凸出部分得以继续被推升更高及范围更扩大,同时继续吸引外界的空气入内,一直到使该覆盖体的巨大空间蓄满“初热”空气,之后再继续接受热能,而使所覆盖的空气温度更升高,因而得以蓄存更多热能于所覆盖的 巨大体积空气中,在接受热能的同时,该场地上的水分会吸收热能成为潜热并蒸发成为水气蓄存在所覆盖的空气中,而使所覆盖的空气成为热且湿的空气,于蓄存巨量热且湿的空气后,欲释放出所覆盖的空气时,得以松脱至少一个抗浮力拉件,使其内热空气推高该外皮,而在外皮边缘形成开口使所覆盖的热且湿的空气流出到下层大气中,以增加局部地区下层大气的温度及湿度,增加局部地区大气不稳定度,促使局部地区降雨。
  2. 根据权利要求1所述的促使局部地区降雨的覆盖体,其特征在于,该外皮的薄形物至少一部分具有透光性。
  3. 根据权利要求1所述的促使局部地区降雨的覆盖体,其特征在于,该外皮是由薄形物及加强构件所组成。
  4. 根据权利要求1所述的促使局部地区降雨的覆盖体,其特征在于,更包含多个补强构件。
  5. 根据权利要求1所述的促使局部地区降雨的覆盖体,其特征在于,更包含撑高物,设置在场地上,以撑高该外皮内部中的一部分使该部分高于进气通道达足够的高度差而形成“起动隆起”的凸出部分,因而使被覆盖的空气借由接受热能及借由外皮的阻隔热能向外传递而造成的内外空气温度差所产生对该凸出部分的浮力能大于该凸出部分的重力,而能开始推升该凸出部分。
  6. 根据权利要求1所述的促使局部地区降雨的覆盖体,其特征在于,在外皮内部设置至少一个放气口,使覆盖体欲释放出所覆盖的热空气时,得以松脱该放气口附近的至少一个抗浮力拉件,使所覆盖的热空气浮力能推起该放气口的边缘部及其附近的外皮,而形成放气口释放出空气。
  7. 一种促使局部地区降雨的方法,其特征在于,包含:
    使用至少一权利要求1-6中任一项所述的促使局部地区降雨的覆盖体覆盖于能接受到热能的场地;
    使该覆盖体的外皮铺放在场地表面,并使该外皮中的一部分形成“起动隆起”的凸出部分,及使所覆盖的空气接受热能而使该外皮内外两侧的空气产生温度差,因而起动所覆盖的空气浮力推升该凸出部分,同时吸引外界空气经由进气通道进入填充因被推升而增加 的空间;
    使所覆盖的空气继续接受热能,因而继续推升外皮及吸引外界空气入内,一直推升到各抗浮力拉件所设定的高度,因而充满“初热”空气;
    使所覆盖的空气再继续接受热能,而使所覆盖的空气温度更高,场地上的水分亦接收热能成为潜热并蒸发为水气蓄存在所覆盖的空气中,因而累积蓄存更多热能于所覆盖的空气中;以及
    释放该所覆盖的空气到下层大气中,提升下层大气的温度及湿度,增加局部地区的大气不稳定度,从而促使发展成小尺度积雨云而降雨。
  8. 根据权利要求7所述的促使局部地区降雨的方法,其特征在于,使外皮中的一部分形成“起动隆起”的凸出部分的方法包含撑高该覆盖体的外皮内部中的一部分使其高度达到能使被覆盖的空气借由接受热能及外皮阻隔热能向外传递所造成的内外空气温度差所产生对该凸出部分的浮力大于该凸出部分的重力。
  9. 根据权利要求7所述的促使局部地区降雨的方法,其特征在于,释放该所覆盖的热空气的方法包含松脱至少一个该抗浮力拉件。
  10. 根据权利要求7所述的促使局部地区降雨的方法,其特征在于,更包含于释放所覆盖热空气之前,在该受热后的空气中加入冰晶核或/及凝结核。
PCT/CN2016/078948 2016-04-11 2016-04-11 促使局部地区降雨的覆盖体及方法 WO2017177357A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/078948 WO2017177357A1 (zh) 2016-04-11 2016-04-11 促使局部地区降雨的覆盖体及方法
CN201610827761.3A CN107278735B (zh) 2016-04-11 2016-09-18 促使局部地区降雨的覆盖体及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078948 WO2017177357A1 (zh) 2016-04-11 2016-04-11 促使局部地区降雨的覆盖体及方法

Publications (1)

Publication Number Publication Date
WO2017177357A1 true WO2017177357A1 (zh) 2017-10-19

Family

ID=60042065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078948 WO2017177357A1 (zh) 2016-04-11 2016-04-11 促使局部地区降雨的覆盖体及方法

Country Status (2)

Country Link
CN (1) CN107278735B (zh)
WO (1) WO2017177357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110175793A (zh) * 2019-06-14 2019-08-27 吉林工程技术师范学院 一种基于地面需求分析的人工增雨飞机航线设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064781A (zh) * 1991-03-09 1992-09-30 苏士法 一种多功能的空调器
JP2007082408A (ja) * 2005-09-20 2007-04-05 Wandaa Kikaku:Kk 太陽熱エネルギ−を利用した人工降雨方法
JP2010007047A (ja) * 2008-05-29 2010-01-14 Mitsuhiro Fujiwara 人工降雨等発生方法
CN102027869A (zh) * 2009-10-06 2011-04-27 胡永生 应用烟囱式导风塔对自然环境空调的方法及其设备
CN104412875A (zh) * 2013-08-22 2015-03-18 杨琳 循环资源与循环能源的集成装置
CN104890829A (zh) * 2015-05-25 2015-09-09 吕怀民 充气膜结构体、充气体装置及其形成的人工控制气候方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011726B2 (ja) * 2003-08-01 2012-08-29 旭硝子株式会社 太陽熱利用発電システム用被覆資材及びそれを展張した太陽熱利用発電システム
WO2010076959A1 (en) * 2009-01-05 2010-07-08 Pukyong National University Industry-University Cooperation Foundation System and method for facilitating artificial rain shower by ground heating
RU2431957C1 (ru) * 2010-08-23 2011-10-27 Владимир Леонидович Письменный Способ получения дождевых облаков
KR20140024782A (ko) * 2012-08-21 2014-03-03 이건희 해수를 이용한 인공강우 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064781A (zh) * 1991-03-09 1992-09-30 苏士法 一种多功能的空调器
JP2007082408A (ja) * 2005-09-20 2007-04-05 Wandaa Kikaku:Kk 太陽熱エネルギ−を利用した人工降雨方法
JP2010007047A (ja) * 2008-05-29 2010-01-14 Mitsuhiro Fujiwara 人工降雨等発生方法
CN102027869A (zh) * 2009-10-06 2011-04-27 胡永生 应用烟囱式导风塔对自然环境空调的方法及其设备
CN104412875A (zh) * 2013-08-22 2015-03-18 杨琳 循环资源与循环能源的集成装置
CN104890829A (zh) * 2015-05-25 2015-09-09 吕怀民 充气膜结构体、充气体装置及其形成的人工控制气候方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110175793A (zh) * 2019-06-14 2019-08-27 吉林工程技术师范学院 一种基于地面需求分析的人工增雨飞机航线设计方法
CN110175793B (zh) * 2019-06-14 2023-04-25 吉林工程技术师范学院 一种基于地面需求分析的人工增雨飞机航线设计方法

Also Published As

Publication number Publication date
CN107278735B (zh) 2020-01-10
CN107278735A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN104838924A (zh) 温室大棚太阳能空气集热储热循环系统
FR2957388A1 (fr) Cheminee solaire de production d'electricite, de recyclage d'eau et de production agricole
CN104542123A (zh) 温室大棚降温储热和保温系统
WO2017177357A1 (zh) 促使局部地区降雨的覆盖体及方法
KR101547020B1 (ko) 수직방향으로 이격된 생산시설을 갖추고 있는 온실의 난방시스템
WO2021090665A1 (ja) 農業用ハウス及びその構築方法
Roberts et al. Floor heating of greenhouses
TW201736677A (zh) 促使局部地區降雨之覆蓋體及方法
JP6531928B1 (ja) 温室
CN105220912B (zh) 一种全地上节能甘薯贮藏大棚及其应用
CN104488601A (zh) 一种具有蓄热作用的农业大棚骨架
JP5841689B1 (ja) 温室
CN208783336U (zh) 一种改进型连栋温室
Aberkani et al. Energy saving achieved by retractable liquid foam between double polyethylene films covering greenhouses
ES2304289B1 (es) Captador solar de bajo coste.
JP6603908B1 (ja) 浮舟
CN204742016U (zh) 温室种植棚
GB2497917A (en) Home in a dome with rainwater harvesting
KR101616476B1 (ko) 복합 영농 시설
Betts Diurnal cycle
CN206866187U (zh) 一种寒地多功能日光温室
JPS5835008Y2 (ja) 温床ハウスにおける保温用マット
RU78910U1 (ru) Водонагревательная гелиоустановка
Liang et al. Microclimate in naturally ventilated tunnel greenhouses: effects of passive heating and greenhouse cover
JP6099111B1 (ja) 水蒸気団放出装置、水蒸気団放出システム及び水蒸気団放出方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898176

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898176

Country of ref document: EP

Kind code of ref document: A1