WO2017175754A1 - 無線通信システム及び通信方法 - Google Patents

無線通信システム及び通信方法 Download PDF

Info

Publication number
WO2017175754A1
WO2017175754A1 PCT/JP2017/014071 JP2017014071W WO2017175754A1 WO 2017175754 A1 WO2017175754 A1 WO 2017175754A1 JP 2017014071 W JP2017014071 W JP 2017014071W WO 2017175754 A1 WO2017175754 A1 WO 2017175754A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
quantization
value
llr
terminal
Prior art date
Application number
PCT/JP2017/014071
Other languages
English (en)
French (fr)
Inventor
宮本 健司
寺田 純
桑野 茂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP17779132.4A priority Critical patent/EP3425807B1/en
Priority to US16/085,057 priority patent/US10404501B2/en
Priority to CN201780021003.5A priority patent/CN108886372B/zh
Priority to JP2018510613A priority patent/JP6646734B2/ja
Publication of WO2017175754A1 publication Critical patent/WO2017175754A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/45Soft decoding, i.e. using symbol reliability information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation

Definitions

  • the present invention relates to a wireless communication system and a communication method.
  • BBU Base Band Unit
  • RRH Remote Radio Head
  • RRH Remote Radio Head
  • FIG. 5 BBU performs a function of MAC (Media Access Control) layer or higher and a coding function which is a part of a physical layer function
  • SPP Split-PHY Processing
  • the signal bit obtained by demodulation is not output as a bit value of 0 or 1, but indicates the probability that the signal bit is 0 or 1
  • a soft decision demodulation method that outputs as a ratio of real values called likelihood (Non-patent Document 2).
  • the output is called a log likelihood ratio or LLR (Log Likelihood Ratio).
  • LLR Log Likelihood Ratio
  • FIG. 6 is a diagram illustrating a configuration example of a wireless communication system to which the SPP method is applied.
  • the wireless communication system includes a terminal 91, an RRH 92, and a BBU 93.
  • the RRH 92 includes an RF reception unit 921, a channel estimation unit 922, a demodulation unit 923, and an LLR quantization unit 924.
  • the BBU 93 includes a decoding unit 931 and a higher-order function unit 932.
  • the RRH 92 and the BBU 93 perform a predetermined setting before starting reception processing of a radio signal transmitted from the terminal 91.
  • the upper function unit 932 transmits a control signal to the demodulation unit 923.
  • the demodulation unit 923 sets a demodulation parameter for performing demodulation according to the state of the wireless transmission path based on the control signal.
  • the demodulation parameter indicates, for example, a parameter indicating a modulation method used for demodulation such as QPSK (Quadrature Shift Keying) or 16QAM (Quadrature Amplitude Modulation), and a coding rate used for demodulation such as 1/3 or 3/4. Includes parameters.
  • the radio signal transmitted from the terminal 91 is received by the RF receiving unit 921 through the radio transmission path.
  • the RF receiving unit 921 outputs a reference signal included in the received radio signal to the channel estimation unit 922, and outputs a data signal included in the received radio signal to the demodulation unit 923.
  • the reference signal is a signal for extracting channel information of the wireless transmission path, and is a signal including a known signal between the terminal 10 and the RRH 20.
  • the data signal is a signal to be sent to the BBU 93 and includes a signal bit sequence.
  • the channel estimation unit 922 estimates channel information of the wireless transmission path based on the reference signal, outputs the channel information to the demodulation unit 923, and feeds it back to the BBU 93.
  • Demodulation section 923 performs soft decision demodulation on the data signal using the demodulation parameter indicated by the control signal and the channel information output from channel estimation section 922. Demodulation section 923 outputs the LLR value obtained by the soft decision demodulation to LLR quantization section 924. Since the LLR value output from the demodulator 923 to the LLR quantizer 924 is a real value, the LLR quantizer 924 transmits the value obtained by quantization of the LLR value to the BBU 93.
  • the decoding unit 931 receives the quantized LLR value from the RRH 92 and obtains signal bits by performing decoding processing on the received LLR value.
  • the decoding unit 931 outputs the obtained signal bits to the upper function unit 932 as information transmitted from the terminal 91.
  • Non-patent Document 3 LLR value samples are collected to obtain a statistical distribution of LLR values, and an optimal quantization threshold and quantization level for a predetermined number of quantization bits are determined for the statistical distribution.
  • an object of the present invention is to provide a wireless communication system and a communication method that can reduce processing delay in LLR quantization.
  • a radio communication system includes an RF receiver that receives a radio signal from a terminal, and a radio transmission path between the terminal and the radio signal received by the RF receiver.
  • a channel estimation unit that estimates channel information; a demodulation unit that performs soft decision demodulation on the radio signal based on the channel information estimated by the channel estimation unit; and a soft decision demodulation performed by the demodulation unit.
  • a decoding unit that performs a decoding process on the log likelihood ratio quantized by the quantization unit.
  • the channel estimation unit calculates a variance value of the log likelihood ratio based on the channel information.
  • the calculated variance value is output to the quantization unit.
  • the variance value of the log likelihood ratio is calculated based on the channel information estimated by the channel estimation unit.
  • a higher-order function unit that calculates and transmits to the quantization unit.
  • the quantization unit is used in wireless communication with the terminal.
  • a quantization threshold and a quantization level are determined based on a Gaussian distribution having an average value and a variance value of log likelihood ratios determined according to a modulation method to be used.
  • a communication method comprising: an RF reception step for receiving a radio signal from a terminal; and a radio transmission path between the terminal based on the radio signal received by the RF reception step.
  • a channel estimation step for estimating the channel information, a demodulation step for performing soft decision demodulation on the radio signal based on the channel information estimated by the channel estimation step, and a logarithmic likelihood obtained by the demodulation step
  • the frequency ratio is based on a statistical distribution determined by an average value of log likelihood ratios determined according to a modulation scheme used in radio communication with the terminal and a variance value of log likelihood ratios obtained based on the channel information.
  • a quantization step for quantization, and a decoding step for performing a decoding process on the log likelihood ratio quantized by the quantization step It has a.
  • 1 is a block diagram illustrating a configuration example of a wireless communication system according to a first embodiment.
  • LLR log likelihood ratio
  • FIG. 1 is a diagram showing an example of a statistical distribution of LLR values obtained from a signal modulated by BPSK (Binary Phase Shift Keying) which is a binary modulation method.
  • BPSK Binary Phase Shift Keying
  • the horizontal axis indicates the LLR value
  • the vertical axis indicates the appearance frequency of the LLR value.
  • BPSK As shown in FIG. 1, two distributions are obtained: a Gaussian distribution indicating that the modulated signal bit is 1 and a Gaussian distribution indicating that the signal bit is 0. It is done.
  • the wireless communication system and the communication method reduce processing delay caused by LLR quantization by acquiring a statistical distribution of LLR values based on the dispersion value and characteristics of LLR values.
  • FIG. 2 is a block diagram illustrating a configuration example of the wireless communication system 1 according to the first embodiment.
  • the wireless communication system 1 includes a terminal 10 and an RRH 20 and a BBU 30 that function as a base station.
  • the RRH 20 and the BBU 30 are communicably connected with each other via a wire (for example, an optical fiber or a coaxial line).
  • the RRH 20 as a radio apparatus includes an RF reception unit 21, a channel estimation unit 22, a demodulation unit 23, and an LLR quantization unit 24.
  • the BBU 30 as a signal processing device includes a decoding unit 31 and a higher-level function unit 32.
  • the RRH 20 and the BBU 30 perform a predetermined setting before starting reception processing of a radio signal transmitted from the terminal 10. This setting is the same as the setting performed by the RRH 92 and the BBU 93 shown in FIG.
  • the RF receiver 21 receives a radio signal transmitted from the terminal 10 with an antenna.
  • the RF reception unit 21 outputs a reference signal included in the received radio signal to the channel estimation unit 22, and outputs a data signal included in the received radio signal to the demodulation unit 23.
  • the reference signal is a signal for extracting channel information of a wireless transmission path between the terminal 10 and the RRH 20.
  • the data signal is a signal including a series of signal bit strings to be sent to the BBU 30.
  • the channel estimation unit 22 compares a known signal between the terminal 10 and the RRH 20 with the reference signal output from the RF reception unit 21, and determines the amount of phase rotation and attenuation received by the radio signal in the radio transmission path.
  • the channel information shown is estimated.
  • Channel estimation unit 22 outputs the channel information to demodulation unit 23 and transmits the channel information to BBU 30.
  • the channel estimation part 22 extracts the noise signal contained in a reference signal based on a known signal and channel information.
  • the channel estimation unit 22 calculates the variance value of the LLR value when performing soft decision demodulation on the data signal from the power (noise power) of the extracted noise signal.
  • the channel estimation unit 22 outputs the calculated variance value to the LLR quantization unit 24.
  • a method of using the noise power value as the variance value as it is, a method of using the difference of the noise power value with respect to the reference value as the variance value, or normalizing the noise power value
  • a method of using the obtained value is a variance value.
  • a dispersion value for each noise power value at which a clear difference in wireless transmission characteristics appears can be measured in advance, and a table that can be obtained from the noise power value created based on the measurement result can be used. An approximate function that can obtain a variance value from a noise power value determined based on the measurement result is used.
  • the channel estimation unit 22 is provided with a table in advance.
  • the channel estimation unit 22 stores an approximate function in advance. Whether or not a difference appears in the radio transmission characteristics is determined using, for example, an error rate of a signal bit obtained in the decoding unit 31, an occurrence rate of retransmission between the terminal 10 and the RRH 20, and the like.
  • the demodulator 23 performs soft decision demodulation on the data signal based on the channel information estimated by the channel estimator 22 and the demodulation parameter determined by the control signal.
  • the demodulator 23 outputs a sequence of LLR values obtained by soft decision demodulation to the LLR quantizer 24.
  • the LLR quantization unit 24 calculates a statistical distribution of the LLR values based on the average value of the LLR values and the variance value of the LLR values.
  • the average value of the LLR value is a value determined according to the modulation method used in communication between the terminal 10 and the RRH 20.
  • the variance value of the LLR value is a variance value calculated by the channel estimation unit 22.
  • the LLR quantization unit 24 determines a quantization threshold and a quantization level in the quantization for the LLR value based on the LLR statistical distribution. For the determination of the quantization threshold and the quantization level, a known technique, for example, the technique of Non-Patent Document 3 is used.
  • the LLR quantization unit 24 quantizes the LLR value output from the demodulation unit 23 based on the determined quantization threshold and quantization level, and transmits the digital signal obtained by the quantization to the BBU 30.
  • the decoding unit 31 receives a digital signal indicating a quantized LLR value from the LLR quantization unit 24, and performs a decoding process on the received digital signal to obtain a signal bit.
  • the decoding unit 31 outputs the obtained signal bits to the upper function unit 32 as information transmitted from the terminal 10.
  • the channel estimation unit 22 calculates the dispersion value of the LLR value from the power of the noise signal included in the wireless signal.
  • the LLR quantization unit 24 calculates the statistical distribution of the LLR values from the average value of the LLR values determined according to the modulation scheme and the variance value of the LLR values calculated by the channel estimation unit 22, and further performs quantization based on the statistical distribution I do. Since the LLR quantization unit 24 does not need to collect samples of LLR values in order to obtain a statistical distribution of LLR values, the LLR value variance value can be acquired from the channel estimation unit 22 and the LLR value quantization can be started as soon as it can be obtained. Can do.
  • the wireless communication system 1 includes the channel estimation unit 22 and the LLR quantization unit 24, thereby reducing processing delay in LLR quantization.
  • FIG. 3 is a block diagram illustrating a configuration example of the wireless communication system 2 according to the second embodiment.
  • the wireless communication system 2 includes a terminal 10 and an RRH 40 and a BBU 50 that function as a base station.
  • the RRH 40 as a radio apparatus includes an RF receiver 21, a channel estimator 42, a demodulator 23, and an LLR quantizer 24.
  • a BBU 50 as a signal processing device includes a decoding unit 31 and a higher-level function unit 52.
  • the RRH 40 and the BBU 50 perform a predetermined setting before starting the reception process of the radio signal transmitted from the terminal 10, as with the RRH 20 and the BBU 30 of the radio communication system 1 in the first embodiment.
  • the channel estimation unit 42 in the RRH 40 compares a known signal between the terminal 10 and the RRH 40 with the reference signal output from the RF reception unit 21, and performs wireless communication on the wireless transmission path. Channel information indicating the phase rotation amount and attenuation amount received by the signal is estimated.
  • the channel estimation unit 42 transmits estimation information including the estimated channel information and the reference signal to the BBU 50.
  • the channel estimation unit 42 outputs the estimated channel information to the demodulation unit 23.
  • the upper functional unit 52 in the BBU 50 calculates the dispersion value of the LLR value based on the estimation information received from the channel estimation unit 42 of the RRH 40. Similar to the channel estimation unit 22 in the first embodiment, the higher-level function unit 52 extracts a noise signal included in the reference signal, and calculates a variance value of the LLR value from the power of the extracted noise signal. The upper function unit 52 transmits the calculated dispersion value of the LLR value to the LLR quantization unit 24 of the RRH 40.
  • the LLR quantizing unit 24 in the second embodiment uses the LLR value dispersion value received from the higher-order function unit 52 of the BBU 50 instead of the LLR value dispersion value output from the channel estimation unit 22 to obtain the LLR value. Calculate the statistical distribution of.
  • the calculation load on the RRH 40 can be reduced by calculating the dispersion value of the LLR value in the BBU 50.
  • the LLR quantizing unit 24 does not need to collect samples of LLR values in order to obtain a statistical distribution of LLR values, and therefore, as soon as the LLR value dispersion value can be obtained from the BBU 50, the LLR value can be obtained. Quantization can begin.
  • the wireless communication system 2 includes the channel estimation unit 42, the higher-level function unit 52, and the LLR quantization unit 24, thereby reducing processing delay in LLR quantization.
  • FIG. 4 is a diagram illustrating an example of a statistical distribution of LLR values obtained from a signal modulated by 16QAM, which is a multi-level modulation method.
  • the horizontal axis represents the LLR value
  • the vertical axis represents the appearance frequency of the LLR value.
  • the LLR value 0 Symmetric four Gaussian distributions. Even in the case of using a multi-level modulation method, the ratio and average value of each Gaussian distribution are determined in advance based on the modulation method, as in the case of using a binary modulation method.
  • the channel estimation unit 22 extracts a noise signal included in the reference signal based on the estimated channel information, the reference signal, and the known signal, and calculates a dispersion value of the LLR value from the power of the noise signal.
  • the LLR quantization unit 24 calculates the Gaussian distribution of each signal point based on the dispersion value of the LLR value calculated by the channel estimation unit 22 and the ratio and average value of each Gaussian distribution determined in advance according to the modulation scheme.
  • the LLR value is quantized using the calculated Gaussian distribution as a statistical distribution.
  • the LLR quantization unit 24 similarly uses the LLR value to obtain the statistical distribution of the LLR values. Since it is not necessary to collect the samples, the LLR value quantization can be started as soon as the dispersion value of the LLR value can be acquired from the channel estimation unit 22, and the processing delay in the LLR quantization can be reduced.
  • a multi-level modulation scheme such as 16QAM or 64QAM can be used as in the first embodiment.
  • the higher-order function unit 52 is based on channel information and reference signals included in the estimation information received from the channel estimation unit 22, and a known signal.
  • a noise signal included in the reference signal is extracted, and a variance value of the LLR value is calculated from the power of the noise signal.
  • the LLR quantization unit 24 calculates and calculates the Gaussian distribution of each signal point based on the variance value of the LLR value calculated by the higher-order function unit 52 and the predetermined ratio and average value of each Gaussian distribution.
  • the LLR value is quantized using a Gaussian distribution as a statistical distribution.
  • the LLR quantization unit 24 similarly uses the LLR value to obtain a statistical distribution of the LLR values. Therefore, as soon as the dispersion value of the LLR value can be obtained from the BBU 50, the quantization of the LLR value can be started, and the processing delay in the LLR quantization can be reduced.
  • the LLR quantization can be performed by calculating the statistical distribution of the LLR values without collecting the LLR values, thereby reducing the processing delay in the LLR quantization. Can do.
  • the wireless communication system includes a configuration in which the function as a base station that performs wireless communication with the terminal is divided into BBU and RRH has been described.
  • the functional unit may be provided in one device, or may be provided dispersed in three or more devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

無線通信システムは、端末から無線信号を受信するRF受信部と、RF受信部により受信された無線信号に基づいて端末と無線装置との間における無線伝送路のチャネル情報を推定するチャネル推定部と、チャネル推定部により推定されたチャネル情報に基づいて、無線信号に対して軟判定復調を行う復調部と、復調部による軟判定復調により得られた対数尤度比を、端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値とチャネル情報に基づいて得られる対数尤度比の分散値とで定まる統計分布に基づいて量子化する量子化部と、量子化部により量子化された対数尤度比に対して復号処理を行う復号部と、を備える。

Description

無線通信システム及び通信方法
 本発明は、無線通信システム及び通信方法に関する。
 無線通信システム、特に移動体通信システムにおいて、基地局設置の柔軟性を高めるため、基地局が有する機能をBBU(Base Band Unit)とRRH(Remote Radio Head)との2つの装置に分担させ、BBUとRRHとを物理的に離れた構成とすることが検討されている。BBUとRRHとにおける機能分割方式の一形態として、図5に示すように、MAC(Media Access Control)層以上の機能と物理層の機能の一部である符号化の機能とをBBUが行い、符号化機能以外の物理層の機能をRRHが行う機能分割方式が検討されている(非特許文献1)。この機能分割方式は、SPP(Split-PHY Processing)方式と呼ばれる。
 基地局や端末において受信した無線信号を復調する方式には、復調して得られた信号ビットを0又は1のビット値として出力するのではなく、信号ビットが0又は1である確からしさを示す尤度(Likelihood)と呼ばれる実数値の比として出力する軟判定復調方式がある(非特許文献2)。軟判定復調方式では、出力は対数尤度比あるいはLLR(Log Likelihood Ratio)と呼ばれる。LLRの値は、一般に、正の大きい値であるほど信号ビットが1である可能性が高いことを示し、負の小さい値(絶対値が大きい値)であるほど信号ビットが0である可能性が高いことを示す。
 図6は、SPP方式が適用された無線通信システムの構成例を示す図である。無線通信システムは、端末91とRRH92とBBU93とを備える。RRH92は、RF受信部921とチャネル推定部922と復調部923とLLR量子化部924とを備える。BBU93は、復号部931と上位機能部932とを備える。
 RRH92及びBBU93は、端末91から送信される無線信号の受信処理を開始する前に所定の設定を行う。具体的には、上位機能部932は制御信号を復調部923へ送信する。復調部923は、制御信号に基づいて、無線伝送路の状態に応じた復調を行うための復調パラメータを設定する。復調パラメータには、例えばQPSK(Quadrature Phase Shift Keying)や16QAM(Quadrature Amplitude Modulation)などの復調に使用する変調方式を示すパラメータ、1/3や3/4などの復調に使用する符号化率を示すパラメータなどが含まれる。
 端末91から送信された無線信号は、無線伝送路を経て、RF受信部921で受信される。RF受信部921は、受信した無線信号に含まれる参照信号をチャネル推定部922へ出力し、受信した無線信号に含まれるデータ信号を復調部923へ出力する。参照信号は、無線伝送路のチャネル情報を抽出するための信号であり、端末10とRRH20との間において既知の信号を含む信号である。データ信号は、BBU93へ送るべき信号であって信号ビットの系列を含む信号である。チャネル推定部922は、参照信号に基づいて無線伝送路のチャネル情報を推定し、チャネル情報を復調部923へ出力するとともにBBU93へフィードバックする。
 復調部923は、制御信号により指示された復調パラメータと、チャネル推定部922から出力されたチャネル情報とを用いて、データ信号に対する軟判定復調を行う。復調部923は、軟判定復調により得られたLLR値をLLR量子化部924へ出力する。復調部923からLLR量子化部924へ出力されるLLR値は実数値であるため、LLR量子化部924は、LLR値に対する量子化により得られた値をBBU93へ送信する。
 復号部931は、量子化されたLLR値をRRH92から受信し、受信したLLR値に対して復号処理を行うことで信号ビットを得る。復号部931は、得られた信号ビットを端末91から送信された情報として上位機能部932へ出力する。
 RRH92において得られるLLR値に対する量子化ビット数を少なくするほど、RRH92とBBU93との間における伝送量を少なくできる。単に量子化ビット数を少なくすると、LLR値の量子化誤差が大きくなってしまう。そこで、LLR量子化の手法として、LLR値のサンプルを集めてLLR値の統計分布を求め、その統計分布に対して所定の量子化ビット数における最適な量子化閾値と量子化レベルとを決定する手法がある(非特許文献3)。
宮本健司、外3名、「将来無線アクセスに向けた基地局機能分割方式の提案」、信学技報、vol.115、no.123、CS2015-15、pp.33-38、2015年7月 大槻知明、「情報通信の基礎と動向[III] -誤り訂正符号-」、電子情報通信学会誌、Vol.90、No.7、pp.549-555、2007年7月 C. Novak, et al., "Quantization for soft-output demodulators in bit-interleaved coded modulation systems," ISIT 2009, pp.1070-1074, 2009
 しかし、前述の手法では、LLR値の統計分布を定めるために充分なLLR値のサンプルが集まるまで量子化の開始を待つ必要があり、無線通信システムにおける処理遅延が増加する問題がある。
 前述の事情に鑑み、本発明は、LLR量子化における処理遅延を削減できる無線通信システム及び通信方法を提供することを目的としている。
 本発明の第1の実施態様における無線通信システムは、端末から無線信号を受信するRF受信部と、前記RF受信部により受信された前記無線信号に基づいて前記端末との間における無線伝送路のチャネル情報を推定するチャネル推定部と、前記チャネル推定部により推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調部と、前記復調部による軟判定復調により得られた対数尤度比を、前記端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値と前記チャネル情報に基づいて得られる対数尤度比の分散値とで定まる統計分布に基づいて量子化する量子化部と、前記量子化部により量子化された対数尤度比に対して復号処理を行う復号部と、を備える。
 また、本発明の第2の実施態様によれば、上記の第1の実施態様の無線通信システムにおいて、前記チャネル推定部は、前記チャネル情報に基づいて、対数尤度比の分散値を算出し、算出した分散値を前記量子化部へ出力する。
 また、本発明の第3の実施態様によれば、上記の第1の実施態様の無線通信システムにおいて、前記チャネル推定部により推定された前記チャネル情報に基づいて、対数尤度比の分散値を算出し、前記量子化部へ送信する上位機能部、を備える。
 また、本発明の第4の実施態様によれば、上記の第1、第2及び第3の実施態様のいずれかの無線通信システムにおいて、前記量子化部は、前記端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値及び分散値を有するガウス分布に基づいて、量子化閾値と量子化レベルとを決定する。
 また、本発明の第5の実施態様における通信方法は、端末から無線信号を受信するRF受信ステップと、前記RF受信ステップにより受信された前記無線信号に基づいて前記端末との間における無線伝送路のチャネル情報を推定するチャネル推定ステップと、前記チャネル推定ステップにより推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調ステップと、前記復調ステップにより得られた対数尤度比を、前記端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値と前記チャネル情報に基づいて得られる対数尤度比の分散値とで定まる統計分布に基づいて量子化する量子化ステップと、前記量子化ステップにより量子化された対数尤度比に対して復号処理を行う復号ステップと、を有する。
 本発明によれば、LLR量子化により生じる処理遅延を削減することが可能となる。
2値の変調方式であるBPSKで変調された信号から得られるLLR値の統計分布の一例を示す図。 第1の実施形態における無線通信システムの構成例を示すブロック図。 第2の実施形態における無線通信システムの構成例を示すブロック図。 多値の変調方式である16QAMで変調された信号から得られるLLR値の統計分布の一例を示す図。 従来のSPPの機能分割方式の一例を示す図。 従来のSPP方式が適用された無線通信システムの構成例を示す図。
 以下、図面を参照して、本発明の実施形態における無線通信システム及び通信方法を説明する。なお、以下の実施形態では、同一の符号を付した構成要素は同様の動作を行うものとして、重複する説明を適宜省略する。
 以下に説明する各実施形態では、LLR(対数尤度比)の値の統計分布を定めるために充分なLLR値のサンプルを集めることに代えて、変調方式に応じて定まるLLR値の平均値と、受信信号に含まれる雑音信号の電力から算出できる分散値とから統計分布を定める。LLR値の統計分布は、分散値及び平均値で定まる対称なガウス分布(正規分布)の形をとる。
 図1は、2値の変調方式であるBPSK(Binary Phase Shift Keying)で変調された信号から得られるLLR値の統計分布の一例を示す図である。図1において、横軸はLLR値を示し、縦軸はLLR値の出現頻度を示す。BPSKにおいては、図1に示すように、変調された1ビットの信号ビットが1である可能性を示すガウス分布と、信号ビットが0である可能性を示すガウス分布との2つ分布が得られる。各実施形態の無線通信システム及び通信方法は、図1に示すようにLLR値の統計分布がLLR値=0の直線に対して対称なガウス分布の形をとる特性を利用する。無線通信システム及び通信方法は、LLR値の分散値及び特性に基づいてLLR値の統計分布を取得することによりLLR量子化により生じる処理遅延を削減する。
[第1の実施形態]
 図2は、第1の実施形態における無線通信システム1の構成例を示すブロック図である。無線通信システム1は、端末10と、基地局として機能するRRH20及びBBU30とを備える。RRH20とBBU30とは、有線(例えば光ファイバ又は同軸線)にて通信可能に接続されている。無線装置としてのRRH20は、RF受信部21とチャネル推定部22と復調部23とLLR量子化部24とを備える。信号処理装置としてのBBU30は、復号部31と上位機能部32とを備える。
 RRH20及びBBU30は、端末10から送信される無線信号の受信処理を開始する前に所定の設定を行う。この設定は、図6において示したRRH92及びBBU93が行う設定と同じ設定である。
 RF受信部21は、端末10から送信される無線信号をアンテナで受信する。RF受信部21は、受信した無線信号に含まれる参照信号をチャネル推定部22へ出力し、受信した無線信号に含まれるデータ信号を復調部23へ出力する。参照信号は、端末10とRRH20との間の無線伝送路のチャネル情報を抽出するための信号である。データ信号は、BBU30へ送る信号ビット列の系列を含む信号である。
 チャネル推定部22は、端末10とRRH20との間において既知の信号と、RF受信部21から出力される参照信号とを比較し、無線伝送路において無線信号が受ける位相回転量と減衰量とを示すチャネル情報を推定する。チャネル推定部22は、チャネル情報を復調部23へ出力するとともに、チャネル情報をBBU30へ送信する。また、チャネル推定部22は、既知の信号とチャネル情報とに基づいて、参照信号に含まれる雑音信号を抽出する。チャネル推定部22は、データ信号に対して軟判定復調を行う場合におけるLLR値の分散値を、抽出した雑音信号の電力(雑音電力)から算出する。チャネル推定部22は、算出した分散値をLLR量子化部24へ出力する。
 雑音電力からLLR値の分散値を算出する手法としては、雑音電力値をそのまま分散値として用いる手法、基準値に対する雑音電力値の差分を分散値として用いる手法、又は、雑音電力値を正規化して得られる値を分散値として用いる手法などがある。また、他の手法として、例えば無線伝送特性に明確な差が現れる雑音電力値ごとの分散値を事前に測定し、測定結果に基づいて作成した雑音電力値から分散値を得られるテーブルを用いたり、測定結果に基づいて定めた雑音電力値から分散値を得られる近似関数を用いたりする。テーブルを用いる場合、チャネル推定部22にはテーブルが予め備えられ、関数を用いる場合、チャネル推定部22には近似関数が予め記憶される。無線伝送特性において差が現れているか否かの判定は、例えば、復号部31において得られる信号ビットの誤り率や、端末10とRRH20との間における再送の発生率などを用いて行われる。
 復調部23は、チャネル推定部22により推定されたチャネル情報と、制御信号により定められる復調パラメータに基づいて、データ信号に対する軟判定復調を行う。復調部23は、軟判定復調により得られるLLR値の系列をLLR量子化部24へ出力する。
 LLR量子化部24は、LLR値の平均値とLLR値の分散値とに基づいて、LLR値の統計分布を算出する。LLR値の平均値は、前述のように、端末10とRRH20との間の通信において用いられる変調方式に応じて定まる値である。LLR値の分散値は、チャネル推定部22により算出される分散値である。LLR量子化部24は、LLRの統計分布に基づいて、LLR値に対する量子化における量子化閾値と量子化レベルとを決定する。量子化閾値と量子化レベルとの決定には、公知の技術、例えば非特許文献3の技術が用いられる。LLR量子化部24は、決定した量子化閾値と量子化レベルとに基づいて、復調部23から出力されるLLR値を量子化し、量子化により得られたデジタル信号をBBU30へ送信する。
 BBU30において、復号部31は、量子化されたLLR値を示すデジタル信号をLLR量子化部24から受信し、受信したデジタル信号に対して復号処理を行うことで信号ビットを得る。復号部31は、得られた信号ビットを端末10から送信された情報として上位機能部32へ出力する。
 第1の実施形態の無線通信システム1では、RRH20において、チャネル推定部22が無線信号に含まれる雑音信号の電力からLLR値の分散値を算出する。LLR量子化部24が変調方式に応じて定まるLLR値の平均値とチャネル推定部22により算出されたLLR値の分散値とからLLR値の統計分布を算出し、更に統計分布に基づいた量子化を行う。LLR量子化部24は、LLR値の統計分布を得るためにLLR値のサンプルを集める必要がないため、LLR値の分散値をチャネル推定部22から取得でき次第LLR値の量子化を開始することができる。無線通信システム1は、チャネル推定部22とLLR量子化部24とを備えることにより、LLR量子化における処理遅延を削減できる。
[第2の実施形態]
 第2の実施形態における無線通信システムでは、LLR値の分散値の算出をBBUにおいて行う。図3は、第2の実施形態における無線通信システム2の構成例を示すブロック図である。無線通信システム2は、端末10と、基地局として機能するRRH40及びBBU50とを備える。無線装置としてのRRH40は、RF受信部21とチャネル推定部42と復調部23とLLR量子化部24とを備える。信号処理装置としてのBBU50は、復号部31と上位機能部52とを備える。
 RRH40及びBBU50は、第1の実施形態における無線通信システム1のRRH20及びBBU30と同様に、端末10から送信される無線信号の受信処理を開始する前に所定の設定を行う。
 RRH40における、チャネル推定部42は、チャネル推定部22と同様に、端末10とRRH40との間において既知の信号と、RF受信部21から出力される参照信号とを比較し、無線伝送路において無線信号が受ける位相回転量と減衰量とを示すチャネル情報を推定する。チャネル推定部42は、推定したチャネル情報と参照信号とを含む推定情報をBBU50へ送信する。チャネル推定部42は、推定したチャネル情報を復調部23へ出力する。
 BBU50における、上位機能部52は、RRH40のチャネル推定部42から受信する推定情報に基づいて、LLR値の分散値を算出する。上位機能部52は、第1の実施形態におけるチャネル推定部22と同様に、参照信号に含まれる雑音信号を抽出し、抽出した雑音信号の電力からLLR値の分散値を算出する。上位機能部52は、算出したLLR値の分散値を、RRH40のLLR量子化部24へ送信する。
 第2の実施形態におけるLLR量子化部24は、チャネル推定部22から出力されるLLR値の分散値に代えて、BBU50の上位機能部52から受信するLLR値の分散値を用いて、LLR値の統計分布を算出する。
 第2の実施形態の無線通信システム2では、BBU50において、LLR値の分散値を算出することにより、RRH40における演算負荷を軽減することができる。また、無線通信システム2においても、LLR量子化部24は、LLR値の統計分布を得るためにLLR値のサンプルを集める必要がないため、LLR値の分散値をBBU50から取得でき次第LLR値の量子化を開始することができる。無線通信システム2は、チャネル推定部42、上位機能部52及びLLR量子化部24を備えることにより、LLR量子化における処理遅延を削減できる。
[変形例1]
 第1の実施形態における無線通信システム1において、端末10とRRH20との無線通信に用いる変調方式に、BPSK以外にも16QAMや64QAMのような多値変調の変調方式を用いることができる。図4は、多値の変調方式である16QAMで変調された信号から得られるLLR値の統計分布の一例を示す図である。図4において、横軸はLLR値を示し、縦軸はLLR値の出現頻度を示す。図4に示すように、変調方式に16QAMを用いた場合におけるLLR値の統計分布は、図1に示したBPSKに比べ信号点(シンボル)数が増加するため、LLR値=0の直線に対して対称な4つのガウス分布となる。多値の変調方式を用いる場合においても、2値の変調方式を用いる場合と同様に、それぞれのガウス分布の割合及び平均値は、変調方式に基づいて予め定まる。
 チャネル推定部22は、推定したチャネル情報と参照信号と既知の信号とに基づいて、参照信号に含まれる雑音信号を抽出し、雑音信号の電力からLLR値の分散値を算出する。LLR量子化部24は、チャネル推定部22により算出されたLLR値の分散値と、変調方式に応じて予め定まるそれぞれのガウス分布の割合及び平均値とに基づいて、各信号点のガウス分布を算出し、算出したガウス分布を統計分布として使用してLLR値の量子化を行う。
 第1の実施形態において、端末10とRRH20との間における無線通信に多値の変調方式を用いる場合においても、同様に、LLR量子化部24は、LLR値の統計分布を得るためにLLR値のサンプルを集める必要がないため、LLR値の分散値をチャネル推定部22から取得でき次第LLR値の量子化を開始することができ、LLR量子化における処理遅延を削減できる。
[変形例2]
 第2の実施形態における無線通信システム2においても、第1の実施形態と同様に、16QAMや64QAMのような多値の変調方式を用いることができる。無線通信システム2において多値の変調システムを適用する場合には、上位機能部52は、チャネル推定部22から受信する推定情報に含まれるチャネル情報及び参照信号と、既知の信号とに基づいて、参照信号に含まれる雑音信号を抽出し、雑音信号の電力からLLR値の分散値を算出する。LLR量子化部24は、上位機能部52により算出されたLLR値の分散値と、予め定まるそれぞれのガウス分布の割合及び平均値とに基づいて、各信号点のガウス分布を算出し、算出したガウス分布を統計分布として使用してLLR値の量子化を行う。
 第2の実施形態において、端末10とRRH40との間における無線通信に多値の変調方式を用いる場合においても、同様に、LLR量子化部24は、LLR値の統計分布を得るためにLLR値のサンプルを集める必要がないため、LLR値の分散値をBBU50から取得でき次第LLR値の量子化を開始することができ、LLR量子化における処理遅延を削減できる。
[変形例3]
 第1又は第2の実施形態では、1つのBBUに対して1つのRRHが通信可能に接続されている構成例を示したが、1つのBBUに対して複数のRRHが通信可能に接続されていてもよい。
 上述の各実施形態における無線通信システムによれば、LLR値のサンプルを集めることなくLLR値の統計分布を算出してLLR量子化を行うことができるため、LLR量子化における処理遅延を削減することができる。
 なお、上述の各実施形態では、端末との無線通信を行う基地局としての機能をBBUとRRHとに分けた構成を無線通信システムが備える場合について説明したが、BBUとRRHとに備えられる各機能部が1つの装置に備えられていてもよいし、3つ以上の装置に分散して備えられていてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 LLR量子化により生じる処理遅延を削減することが不可欠な用途にも適用できる。
 1,2…無線通信システム
 10,91…端末
 20,40,92…RRH
 21,921…RF受信部
 22,42,922…チャネル推定部
 23,923…復調部
 24,924…LLR量子化部
 30,50,93…BBU
 31,931…復号部
 32,52,932…上位機能部

Claims (5)

  1.  端末から無線信号を受信するRF受信部と、
     前記RF受信部により受信された前記無線信号に基づいて前記端末との間における無線伝送路のチャネル情報を推定するチャネル推定部と、
     前記チャネル推定部により推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調部と、
     前記復調部による軟判定復調により得られた対数尤度比を、前記端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値と前記チャネル情報に基づいて得られる対数尤度比の分散値とで定まる統計分布に基づいて量子化する量子化部と、
     前記量子化部により量子化された対数尤度比に対して復号処理を行う復号部と、
     を備える、無線通信システム。
  2.  前記チャネル推定部は、
     前記チャネル情報に基づいて、対数尤度比の分散値を算出し、算出した分散値を前記量子化部へ出力する、
     請求項1に記載の無線通信システム。
  3.  前記チャネル推定部により推定された前記チャネル情報に基づいて、対数尤度比の分散値を算出し、前記量子化部へ送信する上位機能部、を備える、
     請求項1に記載の無線通信システム。
  4.  前記量子化部は、
     前記端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値及び分散値を有するガウス分布に基づいて、量子化閾値と量子化レベルとを決定する、
     請求項1から請求項3のいずれか一項に記載の無線通信システム。
  5.  端末から無線信号を受信するRF受信ステップと、
     前記RF受信ステップにより受信された前記無線信号に基づいて前記端末との間における無線伝送路のチャネル情報を推定するチャネル推定ステップと、
     前記チャネル推定ステップにより推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調ステップと、
     前記復調ステップにより得られた対数尤度比を、前記端末との無線通信において用いられる変調方式に応じて定まる対数尤度比の平均値と前記チャネル情報に基づいて得られる対数尤度比の分散値とで定まる統計分布に基づいて量子化する量子化ステップと、
     前記量子化ステップにより量子化された対数尤度比に対して復号処理を行う復号ステップと、
     を有する、通信方法。
PCT/JP2017/014071 2016-04-06 2017-04-04 無線通信システム及び通信方法 WO2017175754A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17779132.4A EP3425807B1 (en) 2016-04-06 2017-04-04 Wireless communication system and communication method
US16/085,057 US10404501B2 (en) 2016-04-06 2017-04-04 Wireless communication system and communication method
CN201780021003.5A CN108886372B (zh) 2016-04-06 2017-04-04 无线通信系统以及通信方法
JP2018510613A JP6646734B2 (ja) 2016-04-06 2017-04-04 無線通信システム及び通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-076552 2016-04-06
JP2016076552 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175754A1 true WO2017175754A1 (ja) 2017-10-12

Family

ID=60000388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014071 WO2017175754A1 (ja) 2016-04-06 2017-04-04 無線通信システム及び通信方法

Country Status (5)

Country Link
US (1) US10404501B2 (ja)
EP (1) EP3425807B1 (ja)
JP (1) JP6646734B2 (ja)
CN (1) CN108886372B (ja)
WO (1) WO2017175754A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10659261B2 (en) * 2016-11-11 2020-05-19 Nippon Telegraph And Telephone Corporation Radio communication system and radio communication method
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022598A1 (fr) * 1999-09-17 2001-03-29 Fujitsu Limited Procede et dispositif de creation de donnees de decision ponderee
JP2013535912A (ja) * 2010-07-23 2013-09-12 クゥアルコム・インコーポレイテッド 無線通信における判定メトリクスの選択的な量子化
WO2014136578A1 (ja) * 2013-03-04 2014-09-12 シャープ株式会社 受信装置および受信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815557B2 (ja) * 2002-08-27 2006-08-30 ソニー株式会社 符号化装置及び符号化方法、並びに復号装置及び復号方法
EP1463229A1 (en) * 2003-03-27 2004-09-29 Motorola Inc. Quality of service metric for communication systems
CN1607733A (zh) * 2003-10-16 2005-04-20 华为技术有限公司 Turbo码译码器中的量化方法
CN1773867B (zh) * 2004-11-08 2012-01-11 华为技术有限公司 Turbo码译码方法
KR20080083176A (ko) * 2005-12-20 2008-09-16 인터디지탈 테크날러지 코포레이션 결합 랜덤성으로부터 비밀키를 발생하는 방법 및 시스템
US7756222B2 (en) * 2006-05-04 2010-07-13 Integrated System Solution Corporation Adaptive quantization method and apparatus for an OFDM receiver
GB0712701D0 (en) * 2007-06-29 2007-08-08 Inc Icera Processing transmission in a wireless communication system
CN101227241B (zh) * 2008-02-02 2011-07-13 中兴通讯股份有限公司 一种估计信道误码率的方法
EP2134017B1 (en) * 2008-05-09 2015-04-01 Vodafone Holding GmbH Method and system for data communication
EP2202904B1 (en) * 2008-12-23 2013-10-02 Ntt Docomo, Inc. A relay station and a decoder
US8767889B2 (en) * 2011-08-23 2014-07-01 Texas Instruments Incorporated Normalization of soft bit information for FEC decoding
US8644370B2 (en) * 2012-01-25 2014-02-04 Silicon Laboratories Providing slope values for a demapper
US9071401B2 (en) * 2013-10-17 2015-06-30 Cisco Technology, Inc. Pilot-less noise estimation
US9602242B2 (en) * 2014-06-10 2017-03-21 Telefonaktiebolaget L M Ericsson (Publ) Coherent reception with noisy channel state information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022598A1 (fr) * 1999-09-17 2001-03-29 Fujitsu Limited Procede et dispositif de creation de donnees de decision ponderee
JP2013535912A (ja) * 2010-07-23 2013-09-12 クゥアルコム・インコーポレイテッド 無線通信における判定メトリクスの選択的な量子化
WO2014136578A1 (ja) * 2013-03-04 2014-09-12 シャープ株式会社 受信装置および受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425807A4 *

Also Published As

Publication number Publication date
JP6646734B2 (ja) 2020-02-14
JPWO2017175754A1 (ja) 2018-08-16
CN108886372B (zh) 2022-08-23
CN108886372A (zh) 2018-11-23
EP3425807A4 (en) 2019-10-30
US20190089562A1 (en) 2019-03-21
EP3425807B1 (en) 2020-10-21
EP3425807A1 (en) 2019-01-09
US10404501B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
KR100708264B1 (ko) 수신 다이버시티를 갖는 무선 시스템에서의 등화, 소프트역매핑 및 위상 에러 보정의 결합 수행 방법 및 무선수신기
RU2536371C2 (ru) Определение качества беспроводного канала связи на основе принятых данных
US5737365A (en) Method and apparatus for determining a received signal quality estimate of a trellis code modulated signal
CN107645366B (zh) 高速移动环境下的自适应调制传输方法
EP2569891B1 (en) Channel quality estimation from raw bit error rate
JP6949152B2 (ja) 通信方法、通信装置、および記憶媒体
US9203555B2 (en) Optimum signal constellation design and mapping for few-mode fiber based LDPC-coded CO-OFDM
JP6646734B2 (ja) 無線通信システム及び通信方法
US8340231B1 (en) Optimal symbol detection in the presence of non-gaussian interference
CN101237434A (zh) 一种格雷映射m-psk调制的软判决方法
US7260162B2 (en) Method and apparatus for selecting an equalization algorithm depending on the used coding algorithm or on the channel quality
US9503305B1 (en) Method for low complexity decision metric compression of higher-order square-QAM constellation
CN107836100B (zh) 用于使用稀疏不连续的时域导频的低复杂度isi估计的方法和装置
CN110176977B (zh) Ofdm数据链中基于agc的高阶qam软判决方法
US8989314B1 (en) Method and apparatus for jointly decoding independently encoded signals
CN100539571C (zh) 一种正交振幅调制方式下的信噪比估计方法
US12095559B2 (en) Symbol interleaving for parameter estimation
US10396872B2 (en) Communication system, relay apparatus, receiving apparatus, relay method, receiving method, relay program, and receiving program
EP0543549A2 (en) Data decoding device
CN105337918B (zh) 对数似然比的获取方法及装置
US20060078061A1 (en) Likelihood calculating method and communication method
JP2017092611A (ja) 無線通信システム、通信方法、無線受信装置、及び、プログラム
US6757547B1 (en) Methods and devices for improving the performance of wireless devices using speed and noise metrics
KR100880664B1 (ko) 디.씨.엠.을 사용하는 유.더블유.비.용엠.비.-오.에프.디.엠 시스템에서 효율적인 연판정 복조방법 및 그 장치
JP6397376B2 (ja) 送信電力制御方法、無線通信システム及び無線通信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510613

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017779132

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017779132

Country of ref document: EP

Effective date: 20181002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779132

Country of ref document: EP

Kind code of ref document: A1