WO2017175524A1 - Ion scavenger for solar cell, solar cell sealant composition containing same, and solar cell module - Google Patents

Ion scavenger for solar cell, solar cell sealant composition containing same, and solar cell module Download PDF

Info

Publication number
WO2017175524A1
WO2017175524A1 PCT/JP2017/008215 JP2017008215W WO2017175524A1 WO 2017175524 A1 WO2017175524 A1 WO 2017175524A1 JP 2017008215 W JP2017008215 W JP 2017008215W WO 2017175524 A1 WO2017175524 A1 WO 2017175524A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
solar cell
substituted
zirconium phosphate
scavenger
Prior art date
Application number
PCT/JP2017/008215
Other languages
French (fr)
Japanese (ja)
Inventor
大野 康晴
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2018510273A priority Critical patent/JP6658871B2/en
Priority to CN201780018404.5A priority patent/CN108778991B/en
Priority to KR1020187029975A priority patent/KR102311985B1/en
Publication of WO2017175524A1 publication Critical patent/WO2017175524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention provides a solar cell ion-trapping agent that highly selectively adsorbs Na + ions causing PID (Potential Induced Degradation) of a solar cell and provides a solar cell with excellent PID resistance, and a solar cell including the same.
  • the present invention relates to a sealing agent composition and a solar cell module.
  • a solar cell is a composite body including a plurality of solar cell modules, and the solar cell module includes a front surface side transparent protective member, a layer in which the solar cell elements are sealed, and a back surface side protective member (back sheet). It has a structure provided with.
  • a large-scale solar power generation system called a mega solar that installs a large number of crystalline silicon solar cell modules on a large site and constructs a solar power generation system for electric power business has been rapidly increasing.
  • a large-scale photovoltaic power generation system in order to simplify wiring work between solar cell modules and reduce costs by reducing the number of wires and connection boxes, a large number of solar cell modules are connected in series, and the maximum system voltage is increased. It is often designed as high as 600V to 1000V.
  • a sudden characteristic deterioration phenomenon called PID may occur in the crystalline silicon solar cell module.
  • the cause and generation mechanism have not yet been elucidated.
  • the PID phenomenon is likely to occur and proceed when a high system voltage is applied to the solar cell module and the solar cell module is in a high temperature or high humidity state, and a reverse high voltage is applied to the solar cell module. It is reported that the characteristics are recovered by the above.
  • the surface of the crystalline silicon solar cell module is usually covered with a cover glass made of soda lime glass.
  • a cover glass made of soda lime glass.
  • sodium ions (Na + ions) that are metal ions are generated from the soda lime glass.
  • the cover glass of the crystalline silicon solar cell module is supported by a metal frame, and the metal frame is connected to the ground and has a ground potential.
  • the surface of the doped layer (N-type) on the light incident side of the crystalline silicon solar battery cell is covered with an insulating passivation film.
  • This passivation film is polarized by the attachment of charged ions.
  • P type polarity reversal region
  • Patent Document 1 discloses an EVA in which solar cells are sealed using EVA in order to prevent water vapor from entering the solar cell module.
  • a structure is disclosed in which an ionomer resin layer is provided on the opposite side of a resin solar battery cell. Further, although the improvement of the PID phenomenon is not directly aimed at, the study has been made to increase the volume resistivity of the sealing material.
  • Patent Document 2 a silane coupling agent having 4 or less carbon atoms in a functional group directly bonded to a silicon atom is added at a ratio of 5 parts by weight or less with respect to 100 parts by weight of an ethylene / vinyl acetate copolymer.
  • a solar cell encapsulant is disclosed.
  • Patent Document 3 includes a structural unit derived from ethylene and a structural unit derived from an unsaturated ester, and the total of the structural unit derived from ethylene and the structural unit derived from an unsaturated ester is 100 mass. %, A resin containing 0.001 to 5 parts by mass of metakaolin with respect to 100 parts by mass of the ethylene-unsaturated ester copolymer whose amount of structural units derived from the unsaturated ester is 20 to 35% by mass. A solar cell encapsulant obtained using the composition is disclosed.
  • Patent Document 4 discloses an inorganic ion collection selected from the group consisting of ethylene copolymers, pentavalent metal oxides, hexavalent metal oxides, heptavalent metal oxides, and phosphate metal salts.
  • the resin composition for solar cell sealing materials containing an agent is disclosed.
  • JP 2011-77172 A Japanese Patent Laid-Open No. 11-54766 JP2013-64115A JP2015-138805A
  • Patent Document 4 describes an example using zirconium phosphate (an inorganic ion exchanger) as a metal phosphate, but this ion scavenger captures Na + ions, but is not sufficient.
  • zirconium phosphate an inorganic ion exchanger
  • H + ions are released by ion exchange, depending on the configuration, there is a problem in that the pH is lowered and the sealing resin is adversely affected, or corrosion of the constituent members of the solar cell element such as electrodes is promoted.
  • An object of the present invention is to provide an ion scavenger for solar cell that highly selectively adsorbs Na + ions that cause PID of the solar cell.
  • Another object of the present invention is to provide a solar cell encapsulant composition that suppresses the decrease in output caused by PID and the corrosion of constituent members of solar cell elements such as electrodes, and a long-life solar cell. Is to provide modules.
  • the present inventor has disclosed that ⁇ -zirconium phosphate in which at least a part of an ion exchange group is substituted with at least one ion selected from lithium ion, potassium ion, rubidium ion, cesium ion, magnesium ion and calcium ion, and , At least part of the ion exchange group contains at least one of ⁇ -titanium phosphate substituted with at least one ion selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion It was found that the ion scavenger for solar cells selectively adsorbs Na + ions resulting from PID, and the present invention was completed. 1.
  • An ion scavenger for solar cells comprising at least one of titanium. 2.
  • the component (B) is the ⁇ -titanium phosphate in which 0.1 to 7.0 meq / g of the total ion exchange capacity is substituted with the ion (b1).
  • the ion-trapping agent for solar cells as described. 5.
  • a solar cell encapsulant composition comprising: the solar cell ion scavenger according to any one of 1 to 5 above; and a resin. 7). 7. The solar cell encapsulant composition as described in 6 above, wherein the resin contains an ethylene / vinyl acetate copolymer resin.
  • a solar cell module comprising: a sealing layer sealed with a sealant composition.
  • the ion scavenger for solar cells of the present invention adsorbs Na + ions that cause PID of solar cells with high selectivity and does not easily release H + ions. Therefore, a decrease in output due to PID is suppressed.
  • the sealing agent composition for solar cells of this invention can suppress the corrosion of the structural member of solar cell elements, such as an electrode, and can provide a long-life solar cell module.
  • Ion scavenger for solar cell of the present invention is (A) at least part of the ion exchange group is selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion.
  • ion trapping agent for solar cell (A) ion trapping agent for solar cell
  • B at least part of the ion exchange group is lithium ion, potassium ⁇ -titanium phosphate substituted with at least one ion (b1) selected from ions, cesium ions, rubidium ions, magnesium ions and calcium ions (hereinafter referred to as “ion trapping agent for solar cells (B)”) At least one of the above.
  • the ion exchange group is usually a proton.
  • the solar cell ion-trapping agent is, for example, a solar cell element 11 constituting the solar cell module 10 shown in FIG.
  • Inclusion in at least one of the sealing layer 13 containing the resin and the back surface side protection member 17 out of the protection member 15 and the back surface side protection member 17 can increase the life of the solar cell. That is, since the ion scavenger for solar cells of the present invention does not release protons (H + ), it is suppressed that the constituent members of the solar cell are decomposed or deteriorated, and a decrease in output is also suppressed.
  • the resin includes an ethylene / vinyl acetate copolymer resin
  • acetic acid and the like are easily generated, leading to deterioration of the solar cell.
  • the sealing layer includes the solar cell ion scavenger of the present invention, Such a problem does not occur.
  • the ion scavenger for solar cells of the present invention is an inorganic compound, it is excellent in thermal stability and stability in a solvent. For this reason, when it is made to contain in the structural member of a solar cell, it is stable even in the state where the electric charge was applied.
  • Ion scavenger for solar cells As described above, the ion scavenger (A) for solar cells of the present invention is a substitution product of ⁇ -zirconium phosphate ions (a1).
  • the ⁇ -zirconium phosphate is a compound represented by the following formula (1).
  • the ion (a1) is at least one selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion, and calcium ion, but from the viewpoint of good capturing properties of Na + ions, An ion derived from an alkali metal element (lithium ion, potassium ion, rubidium ion or cesium ion) is preferable.
  • the amount of the substituted ion (a1) is preferably 0.1 to 6.7 meq / g, more preferably 1.0 to 6.7 meq / g. It is. From the viewpoint of Na + ion adsorption ability, 3.5 to 6.7 meq / g is more preferable.
  • x is preferably 0 ⁇ x ⁇ 0.1, more preferably 0 ⁇ x ⁇ 0.02, from the viewpoint of Na + ion trapping properties.
  • Hf is contained, it is preferably 0.005 ⁇ x ⁇ 0.1, more preferably 0.005 ⁇ x ⁇ 0.02.
  • x> 0.2 the ion exchange performance by the ions (a1) is improved, but since radioactive isotopes are present, when the components of the solar cell include electronic components, it may have an adverse effect.
  • the method for producing the ion scavenger (A) for solar cells of the present invention is not particularly limited.
  • ⁇ -zirconium phosphate substituted with lithium ions ⁇ -zirconium phosphate is added to a lithium hydroxide (LiOH) aqueous solution, stirred for a certain period of time, filtered, washed and dried. be able to.
  • the concentration of the LiOH aqueous solution is not particularly limited. In the case of a high concentration, the basicity of the reaction solution becomes high, and a part of ⁇ -zirconium phosphate may be eluted, so that it is preferably 1 mol / L or less, more preferably 0.1 mol / L or less.
  • the same ion exchange method as described above can be applied.
  • the solar cell ion scavenger (B) of the present invention is a substitution product of ⁇ -titanium phosphate ions (b1).
  • the ion (b1) is at least one selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion, and calcium ion, but from the viewpoint of good capturing properties of Na + ions, An ion derived from an alkali metal element (lithium ion, potassium ion, rubidium ion or cesium ion) is preferable.
  • the amount of the substituted ion (b1) is preferably 0.1 to 7.0 meq / g, more preferably 1.0 to 7.0 meq / g. It is. From the viewpoint of Na + ion adsorption capacity, 3.5 to 7.0 meq / g is more preferable.
  • the method for producing the ion scavenger for solar cells (B) of the present invention is not particularly limited, and can be the same method as the method for producing the ion scavenger for solar cells (A).
  • the ion scavenger for solar cells of the present invention usually has a layered structure, and the upper limit of the median particle size is preferably 5.0 ⁇ m, more preferably 3.0 ⁇ m, still more preferably 2.0 ⁇ m, and the lower limit is The thickness is usually 0.2 ⁇ m, preferably 0.5 ⁇ m. What is necessary is just to select a preferable particle size by the kind of structural member to which the ion scavenger for solar cells of this invention is applied.
  • the water content of the ion scavenger for solar cells of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the moisture content is 10% by mass or less, in the case of a member constituting a solar cell, it is possible to suppress the generation of gas due to the occurrence of water electrolysis, and to suppress the malfunction of the battery. be able to.
  • the water content can be measured by the Karl Fischer method.
  • the moisture content of the ion scavenger for solar cells is 10% by mass or less
  • a commonly used powder drying method can be applied.
  • a method of heating at 100 ° C. to 300 ° C. for about 6 to 24 hours under atmospheric pressure or reduced pressure can be mentioned.
  • the solar cell sealant composition of the present invention contains the above-described solar cell ion scavenger of the present invention and a resin.
  • the solar cell encapsulant composition of the present invention may contain other components such as a crosslinking agent, a crosslinking aid, an adhesion improver, an ultraviolet absorber, a light stabilizer, and an antioxidant, which will be described later. it can.
  • the sealing composition for solar cells of the present invention is suitable for forming the sealing layer 13 between the front surface side transparent protective member 15 and the back surface side protective member 17 constituting the solar cell module 10 shown in FIG. It is.
  • Examples of the resin contained in the solar cell encapsulant composition of the present invention include ethylene / vinyl acetate copolymer resins; polyolefin resins such as polyethylene and polypropylene; ionomer resins; ethylene / methacrylic acid copolymers; ethylene / methacrylic acid.
  • Examples include ester copolymers; ethylene / acrylic acid copolymers; ethylene / acrylic acid ester copolymers; polyvinyl fluoride resins; polyvinyl chloride resins.
  • an ethylene / vinyl acetate copolymer resin is particularly preferable because a sealing layer having excellent transparency can be formed.
  • the ethylene / vinyl acetate copolymer resin is not particularly limited, but has a heat resistance of 100 ° C. to 150 ° C. due to a high degree of cross-linking due to a high gel fraction after, for example, a vacuum heating lamination process when manufacturing a solar cell module. Since it can be obtained smoothly, an ethylene / vinyl acetate copolymer in which the content of structural units derived from vinyl acetate is preferably 20 to 40% by mass, more preferably 25 to 35% by mass, still more preferably 28 to 33% by mass. Polymerized resins are preferred.
  • the melt mass flow rate (MFR) of the ethylene / vinyl acetate copolymer resin is preferably 1 g to 40 g / 10 min, more preferably 15 g to 40 g / 10 min in a method (190 ° C.) according to JIS K 7210.
  • the Vicat softening point is preferably 30 ° C. to 40 ° C. in a method according to JIS K 7206.
  • the content ratio of the ion scavenger for solar cells is the content of the resin from the viewpoint of the transparency of the encapsulating layer and the ability to capture Na + ions in the encapsulating layer. Is preferably 0.01 to 1.0 part by mass, more preferably 0.05 to 0.5 part by mass.
  • the median particle size of the ion scavenger for solar cells is preferably 0.5 to 5.0 ⁇ m, more preferably 0.7 to 2.0 ⁇ m, from the viewpoint of power generation efficiency of the solar cell.
  • the sealing agent composition for solar cells of the present invention may contain other components as described above.
  • the crosslinking agent an organic peroxide, an azo compound, a tin compound, or the like can be used. These may be used alone or in combination of two or more.
  • organic peroxides examples include hydroperoxides such as diisopropylbenzene hydroperoxide and 2,5-dimethyl-2,5-di (hydroperoxy) hexane; di-tert-butyl peroxide, tert-butyl cumylper Dialkyl peroxides such as oxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-peroxy) hexyne-3 Oxides; diacyl peroxides such as bis-3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, benzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dichlorobenzoyl peroxide; tert- Butyl peroxyacete Tert-butyl peroxy-2-ethylhex
  • azo compound examples include azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile).
  • tin compound examples include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, and dioctyltin dilaurate.
  • the content ratio is preferably 0.01 to 2.0 parts by mass when the content of the resin is 100 parts by mass, More preferably, it is 0.05 to 1.5 parts by mass.
  • the crosslinking aid promotes a crosslinking reaction by the crosslinking agent, and is preferably a polyfunctional monomer having at least one of a carbon atom-carbon atom double bond and an epoxy group, more preferably an allyl group, methacryloyl.
  • Examples of the polyallyl compound include triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate and the like.
  • poly (meth) acryloxy compound examples include trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1 , 9-nonanediol diacrylate and the like.
  • Epoxy compounds include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, trimethylol.
  • Examples include propane polyglycidyl ether.
  • the content is preferably 0.01 to 3.0 parts by mass when the content of the resin is 100 parts by mass. More preferably, it is 0.05 to 2.0 parts by mass.
  • the adhesion improver is preferably a silane compound having a polymerizable unsaturated bond such as a methacryloyl group, an acryloyl group, or a vinyl group, or a hydrolyzable group such as an alkoxy group.
  • a coupling agent can be used. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl).
  • the content is preferably 0.01 to 3.0 mass when the content of the resin is 100 mass parts. Part.
  • Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, triazine compounds, salicylic acid ester compounds, and the like. These may be used alone or in combination of two or more.
  • Examples of the ultraviolet absorber include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxy Benzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2,4- Dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2- (2-
  • the content is preferably 0.01 to 3.0 parts by mass when the content of the resin is 100 parts by mass. It is.
  • the light stabilizer is not particularly limited as long as it captures radicals generated by photodegradation, and a hindered amine compound, a thiol compound, a thioether compound, or the like can be used. These may be used alone or in combination of two or more.
  • the light stabilizer is preferably a hindered amine compound, and specific examples thereof include dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate of succinate.
  • the content is preferably 0.01 to 3.0 parts by mass when the content of the resin is 100 parts by mass. It is.
  • the antioxidant is not particularly limited as long as it provides thermal stability against the heat energy of sunlight.
  • Monophenol compound, bisphenol compound, polymer phenol compound, sulfur compound, phosphoric acid compound Etc. can be used. These may be used alone or in combination of two or more.
  • the antioxidant include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, 2,2'-methylene-bis -(4-Methyl-6-tert-butylphenol), 2,2'-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4'-thiobis- (3-methyl-6-tert- Butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [ ⁇ 1,1-dimethyl-2- ⁇ - (3-tert-butyl-4 -Hydroxy-5-methylphenyl)
  • the content ratio is preferably 0.05 to 3.0 parts by mass when the content of the resin is 100 parts by mass. It is.
  • the encapsulant composition for solar cells of the present invention can be produced by mixing raw material components, but the ion-trapping agent for solar cells, other components, etc. are used as a matrix for the resin. It is preferable that it is a form disperse
  • a component that forms a crosslinked structure with a resin, such as a crosslinking agent is blended, it is preferable that the resin be included in an uncrosslinked or semicrosslinked state. Therefore, when forming the sealing layer 13 in FIG. 1, for example, after kneading the solar cell sealing agent composition of the present invention, it is put into an extruder and thinned by T-die molding or calendar molding. It is preferable to use an uncrosslinked or semi-crosslinked solar cell module encapsulant sheet obtained by processing into a predetermined size.
  • the solar cell module of the present invention includes a solar cell element 11, a front surface side transparent protective member 15, a back surface side protective member 17, and the front surface side transparent protective member 15 and Between the said back surface side protection member 17, the solar cell element 11 is provided with the sealing layer 13 sealed (embedded) using the sealing compound composition for solar cells of the said invention.
  • the solar cell elements 11 are connected by an interconnector 19. In FIG. 1, the collecting electrode and the like are omitted.
  • the solar cell element 11 has a function of converting light incident on the light-receiving surface by photoelectric effect into electricity, and preferably includes silicon, a compound semiconductor, and the like.
  • the sealing layer 13 is preferably a layer made of a crosslinked resin composition formed using a solar cell sealing agent composition containing a crosslinking agent, and the solar cell element 11 and the interconnector 19 are predetermined. It is embedded so as to be fixed at the position.
  • the surface-side transparent protective member 15 is usually made of a material excellent in weather resistance, wind pressure resistance, weather resistance and the like, and can be made of a resin such as a polyester resin or a polycarbonate resin, or glass. It consists of glass such as lime glass.
  • the back-side protection member 17 is usually made of a material having excellent weather resistance, such as hydrolysis-resistant polyethylene terephthalate resin or polyvinyl fluoride resin. The back surface side protection member 17 may have an action of reflecting light transmitted through the sealing layer 13.
  • the method for producing the solar cell module of the present invention is not particularly limited, and conventionally known methods can be applied.
  • a non-crosslinked or semi-crosslinked solar cell module encapsulant sheet, a solar cell element, and a crosslink obtained by using a back surface side protective member and a solar cell encapsulant composition containing a crosslinking agent
  • the laminate can be subjected to a vacuum heating lamination method in which heat and pressure bonding is performed in a vacuum state.
  • the solar cell element is buried between the two solar cell module encapsulant sheets to form a crosslinked resin composition, and a sealing layer and a back surface side protective member including the same, and
  • the surface-side transparent protective member and the sealing layer can be bonded and integrated, respectively, to produce the solar cell module of the present invention.
  • the sealing layer 13 contains a special ion scavenger, moisture that has entered the sealing layer 13 and acid generated by hydrolysis are captured during use of the solar cell.
  • the solar cell element 11 can be prevented from degrading, and when the surface-side transparent protective member is made of glass, PID (Potential-induced degradation; solar cell) is applied to the sealing layer 13 from the glass. Even if sodium ions (Na + ions), which is the main cause of the high voltage applied to the module and the output is permeated, can be prevented from diffusing, the output of the solar cell module 10 can be reduced. Can be suppressed.
  • Evaluation method (1) pH measurement The pH of the aqueous solution after adding the ion scavenger in (2) below or the extracted water obtained in (3) below is a glass electrode type hydrogen ion concentration indicator “Horiba Ltd.” D-51 "(model name). The measurement is based on JIS Z 8802 “pH measurement method”, and the measurement temperature is 25 ° C.
  • Na + ion concentration 8 hours after adding the ion scavenger was measured with an ICP emission spectrometer “iCAP7600 DUO” (model name) manufactured by Thermo Fisher Scientific.
  • acquisition rate was calculated
  • required by the following formula. Na + ion capture rate ((initial concentration (100 ppm) ⁇ Na + ion concentration after test (after 8 hours)) / initial concentration (100 ppm)) ⁇ 100
  • ⁇ -zirconium phosphate (Z1) ⁇ -zirconium phosphate (H type) (hereinafter referred to as “ ⁇ -zirconium phosphate (Z1)”).
  • the above ⁇ -zirconium phosphate (Z1) was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
  • ZrH 2.03 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter of ⁇ -zirconium phosphate (Z1) was measured by a laser diffraction particle size distribution analyzer “LA-700” (model name) manufactured by Horiba, Ltd. As a result, it was 0.9 ⁇ m.
  • ⁇ -zirconium phosphate (Z1) 25 g was added while stirring 1000 mL of a 0.1N-LiOH aqueous solution, and this was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum-dried at 150 ° C. for 20 hours to obtain lithium ion-substituted ⁇ -zirconium phosphate composed of ZrLi 1.03 H 1.00 (PO 4 ) 2.01 ⁇ 0.05H 2 O. Manufactured. The water content by the Karl Fischer method was 0.5%. This lithium ion-substituted ⁇ -zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions.
  • Example 2 Except that the amount of 0.1N-LiOH aqueous solution used was 2500 mL, the same operation as in Example 1 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with lithium ions.
  • all Li-substituted ⁇ -zirconium phosphate A1-2 it was referred to as “all Li-substituted ⁇ -zirconium phosphate A1-2”.
  • the solar cell ion scavenger composed of all Li-substituted ⁇ -zirconium phosphate A1-2, the above-described various evaluations were performed, and the results are shown in Table 1.
  • Example 3 ZrK 1.03 H 1.00 (PO 4 ) 2.01 ⁇ 0.0. was carried out in the same manner as in Example 1 except that a 0.1N—KOH aqueous solution was used instead of the 0.1N—LiOH aqueous solution.
  • This potassium-substituted ⁇ -zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions. Hereinafter, it was referred to as “4 meq-K substituted ⁇ -zirconium phosphate A1-3”.
  • the solar cell ion scavenger comprising 4meq-K-substituted ⁇ -zirconium phosphate A1-3, the above various evaluations were performed, and the results are shown in Table 1.
  • Example 4 Except that the amount of 0.1N KOH aqueous solution used was 2500 mL, the same operation as in Example 3 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with potassium ions.
  • potassium-substituted ⁇ -zirconium phosphate composed of ZrK 2.03 (PO 4 ) 2.01 was produced. The moisture content was 0.4%.
  • all K-substituted ⁇ -zirconium phosphate A1-4 Next, using the solar cell ion scavenger composed of this all-K-substituted ⁇ -zirconium phosphate A1-4, the above-mentioned various evaluations were performed, and the results are shown in Table 1.
  • Example 5 After dissolving 0.272 mol of zirconium oxychloride octahydrate with Hf content of 0.18% in 850 mL of deionized water, 0.788 mol of oxalic acid dihydrate was added and dissolved. I let you. While stirring this aqueous solution, 0.57 mol of phosphoric acid was added. This was refluxed at 98 ° C. for 8 hours with stirring. After cooling, the resulting precipitate was washed well with water, and then dried at 150 ° C. to obtain a scaly powder composed of zirconium phosphate.
  • ⁇ -zirconium phosphate (Z2) ⁇ -zirconium phosphate
  • Z2 ⁇ -zirconium phosphate
  • the above ⁇ -zirconium phosphate (Z2) was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
  • Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter of ⁇ -zirconium phosphate (Z2) was 0.8 ⁇ m.
  • ⁇ -zirconium phosphate (Z2) 25 g was added while stirring 1000 mL of a 0.1N-LiOH aqueous solution, and this was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum-dried at 150 ° C. for 20 hours to obtain lithium composed of Zr 0.99 Hf 0.01 Li 1.03 H 1.00 (PO 4 ) 2.01 ⁇ 0.2H 2 O. An ion-substituted ⁇ -zirconium phosphate was produced. The water content by the Karl Fischer method was 0.4%.
  • This lithium ion-substituted ⁇ -zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions.
  • 4 meq-Li substituted ⁇ -zirconium phosphate A2-1 4 meq-Li substituted ⁇ -zirconium phosphate A2-1.
  • Example 6 Except that the amount of 0.1N-LiOH aqueous solution used was 2500 mL, the same operation as in Example 5 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with lithium ions. Further, lithium ion-substituted ⁇ -zirconium phosphate composed of Zr 0.99 Hf 0.01 Li 2.03 (PO 4 ) 2.01 ⁇ 0.1H 2 O was produced. The moisture content was 0.3%. Hereinafter, it was referred to as “all Li-substituted ⁇ -zirconium phosphate A2-2”. Next, using the solar cell ion scavenger composed of all Li-substituted ⁇ -zirconium phosphate A2-2, the above various evaluations were performed. The results are shown in Table 1.
  • Example 7 Zr 0.99 Hf 0.01 K 1.03 H 1.00 (PO) was carried out in the same manner as in Example 5 except that a 0.1N-KOH aqueous solution was used instead of the 0.1N-LiOH aqueous solution.
  • This potassium-substituted ⁇ -zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions.
  • various evaluations described above were performed using the ion scavenger for solar cells composed of this 4 meq-K substituted ⁇ -zirconium phosphate A2-3, and the results are shown in Table 1.
  • Example 8 Except that the amount of 0.1N KOH aqueous solution used was 2500 mL, the same operation as in Example 7 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with potassium ions. In addition, a potassium-substituted ⁇ -zirconium phosphate composed of Zr 0.99 Hf 0.01 K 2.03 (PO 4 ) 2.01 was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all K-substituted ⁇ -zirconium phosphate A2-4”. Next, using the solar cell ion scavenger composed of this all-K-substituted ⁇ -zirconium phosphate A2-4, the above various evaluations were performed. The results are shown in Table 1.
  • Example 9 The same operation as in Example 5 was performed except that 2500 mL of a 0.1 N—Rb 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 6. A rubidium-substituted ⁇ -zirconium phosphate having 7 meq / g) substituted with rubidium ions was produced. The moisture content was 0.5%. Hereinafter, it was referred to as “all Rb-substituted ⁇ -zirconium phosphate A2-5”. Next, using the solar cell ion scavenger composed of all Rb-substituted ⁇ -zirconium phosphate A2-5, the above various evaluations were performed, and the results are shown in Table 1.
  • Example 10 The same operation as in Example 5 was performed except that 2500 mL of a 0.1 N—Cs 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 6. Cesium-substituted ⁇ -zirconium phosphate having 7 meq / g) substituted with cesium ions was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all Cs-substituted ⁇ -zirconium phosphate A2-6”. Next, using the solar cell ion scavenger composed of all Cs-substituted ⁇ -zirconium phosphate A2-6, the above various evaluations were performed, and the results are shown in Table 1.
  • Example 11 The same procedure as in Example 5 was performed except that 2500 mL of 0.1N- (CH 3 COO) 2 Mg aqueous solution was used instead of the 0.1N-LiOH aqueous solution, and all cation exchange groups (cation exchange capacity) were obtained. : 6.7 meq / g) was substituted with magnesium ions to produce a magnesium-substituted ⁇ -zirconium phosphate. The moisture content was 0.5%. Hereinafter, it was referred to as “all Mg-substituted ⁇ -zirconium phosphate A2-7”. Next, using the solar cell ion scavenger composed of this all-Mg-substituted ⁇ -zirconium phosphate A2-7, the above various evaluations were performed, and the results are shown in Table 1.
  • Example 12 All cation exchange groups (cation exchange capacities) were obtained in the same manner as in Example 5 except that 2500 mL of 0.1N— (CH 3 COO) 2 Ca aqueous solution was used instead of the 0.1N—LiOH aqueous solution. : 6.7 meq / g) of calcium-substituted ⁇ -zirconium phosphate in which calcium ions were substituted. The moisture content was 0.6%. Hereinafter, it was referred to as “total Ca-substituted ⁇ -zirconium phosphate A2-8”. Next, using the solar cell ion scavenger composed of this all-Ca-substituted ⁇ -zirconium phosphate A2-8, the above-mentioned various evaluations were performed, and the results are shown in Table 1.
  • Example 13 405 g of 75% phosphoric acid was added to 400 mL of deionized water, and 137 g of titanyl sulfate (TiO 2 equivalent content: 33%) was added while stirring the aqueous solution. This was refluxed at 100 ° C. for 48 hours with stirring. After cooling, the resulting precipitate was washed well with water and dried at 150 ° C. to obtain a scaly powder composed of titanium phosphate. As a result of analyzing this titanium phosphate, it was confirmed that it was ⁇ -titanium phosphate (H type).
  • the ⁇ -titanium phosphate was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
  • the median diameter of ⁇ -titanium phosphate was measured and found to be 0.7 ⁇ m.
  • ⁇ -titanium phosphate 25 g was added to 1000 mL of 0.1N-LiOH aqueous solution while stirring, and this was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum-dried at 150 ° C. for 20 hours to obtain a lithium ion-substituted ⁇ -titanium phosphate composed of TiLi 1.03 H 1.00 (PO 4 ) 2.01 ⁇ 0.2H 2 O. Manufactured. The moisture content was 0.5%.
  • This lithium ion-substituted ⁇ -titanium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions.
  • Example 14 Except that the amount of 0.1N-LiOH aqueous solution used was 2500 mL, the same operation as in Example 13 was performed to replace all cation exchange groups (cation exchange capacity: 7.0 meq / g) with lithium ions. Further, lithium ion-substituted ⁇ -titanium phosphate made of TiLi 2.03 (PO 4 ) 2.01 ⁇ 0.1H 2 O was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all Li-substituted ⁇ -titanium phosphate B-2”. Next, using the solar cell ion scavenger composed of all Li-substituted ⁇ -titanium phosphate B-2, various evaluations described above were performed, and the results are shown in Table 1.
  • Example 15 The same operation as in Example 13 was carried out except that a 0.1N-KOH aqueous solution was used instead of the 0.1N-LiOH aqueous solution, and TiK 1.03 H 1.00 (PO 4 ) 2.01 .
  • the solar cell ion scavenger composed of this 4 meq-K substituted ⁇ -titanium phosphate B-3, various evaluations described above were carried out, and the results are shown in Table 1.
  • Example 16 Except that the amount of 0.1N KOH aqueous solution used was 2500 mL, the same operation as in Example 13 was performed, and all the cation exchange groups (cation exchange capacity: 7.0 meq / g) were replaced with potassium ions. Furthermore, potassium-substituted ⁇ -titanium phosphate composed of TiK 2.03 (PO 4 ) 2.00 was produced. The moisture content was 0.5%. Hereinafter, it was referred to as “all K-substituted ⁇ -titanium phosphate B-4”. Next, various evaluations described above were performed using this solar cell ion scavenger composed of all-K-substituted ⁇ -titanium phosphate B-4, and the results are shown in Table 1.
  • Example 17 The same operation as in Example 13 was performed except that 2500 mL of a 0.1 N—Rb 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 7. A rubidium-substituted ⁇ -titanium phosphate having 0 meq / g) substituted with rubidium ions was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all Rb-substituted ⁇ -titanium phosphate B-5”. Next, using the solar cell ion scavenger composed of this all-Rb-substituted ⁇ -titanium phosphate B-5, various evaluations described above were performed, and the results are shown in Table 1.
  • Example 18 The same operation as in Example 13 was performed except that 2500 mL of a 0.1 N—Cs 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 7.
  • all Cs-substituted ⁇ -titanium phosphate B-6 it was referred to as “all Cs-substituted ⁇ -titanium phosphate B-6”.
  • the solar cell ion scavenger composed of all Cs-substituted ⁇ -titanium phosphate B-6, the above various evaluations were performed. The results are shown in Table 1.
  • Example 19 The same operation as in Example 13 was performed except that 2500 mL of 0.1N- (CH 3 COO) 2 Mg aqueous solution was used instead of the 0.1N-LiOH aqueous solution, and all cation exchange groups (cation exchange capacity) were obtained. : 7.0 meq / g) was substituted with magnesium ions to produce magnesium substituted ⁇ -titanium phosphate. The moisture content was 0.5%. Hereinafter, it was referred to as “total Mg-substituted ⁇ -titanium phosphate B-7”. Next, various evaluations described above were performed using the ion scavenger for solar cells made of all Mg-substituted ⁇ -titanium phosphate B-7, and the results are shown in Table 1.
  • Example 20 The same procedure as in Example 13 was performed except that 2500 mL of 0.1 N— (CH 3 COO) 2 Ca aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity) were obtained. : 7.0 meq / g) was substituted with calcium ions to produce calcium substituted ⁇ -titanium phosphate. The moisture content was 0.4%. Hereinafter, it was referred to as “total Ca-substituted ⁇ -titanium phosphate B-8”. Next, using the solar cell ion scavenger composed of this all-Ca-substituted ⁇ -titanium phosphate B-8, various evaluations described above were performed, and the results are shown in Table 1.
  • Example 21 All Li-substituted ⁇ -zirconium phosphate A1-2 and all K-substituted ⁇ -zirconium phosphate A1-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  • Example 22 Total Li-substituted ⁇ -zirconium phosphate A1-2 and total Li-substituted ⁇ -zirconium phosphate A2-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  • Example 23 Total Li-substituted ⁇ -zirconium phosphate A1-2 and total K-substituted ⁇ -zirconium phosphate A2-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  • Example 24 Total Li-substituted ⁇ -zirconium phosphate A1-2 and total Li-substituted ⁇ -titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  • Example 25 All Li-substituted ⁇ -zirconium phosphate A1-2 and all K-substituted ⁇ -titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 26 Total K-substituted ⁇ -zirconium phosphate A1-4 and total Li-substituted ⁇ -zirconium phosphate A2-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 27 Total K-substituted ⁇ -zirconium phosphate A1-4 and total K-substituted ⁇ -zirconium phosphate A2-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 28 Total K-substituted ⁇ -zirconium phosphate A1-4 and total Li-substituted ⁇ -titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 29 Total K-substituted ⁇ -zirconium phosphate A1-4 and total K-substituted ⁇ -titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 30 Total Li-substituted ⁇ -zirconium phosphate A2-2 and total K-substituted ⁇ -zirconium phosphate A2-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 31 Total Li-substituted ⁇ -zirconium phosphate A2-2 and total Li-substituted ⁇ -titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 32 Total Li-substituted ⁇ -zirconium phosphate A2-2 and total K-substituted ⁇ -titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 33 Total K-substituted ⁇ -zirconium phosphate A2-4 and total Li-substituted ⁇ -titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 34 Total K-substituted ⁇ -zirconium phosphate A2-4 and total K-substituted ⁇ -titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Example 35 Total Li-substituted ⁇ -titanium phosphate B-2 and total K-substituted ⁇ -titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  • Comparative Example 1 Various evaluations were performed using an inorganic ion exchanger “IXE100” (trade name) manufactured by Toagosei Co., Ltd., which is ⁇ -zirconium phosphate (H type) not substituted with a cation. The results are shown in Table 2.
  • Comparative Example 5 A Y-type zeolite “Mizuka Sieves Y-520” (trade name) manufactured by Mizusawa Chemical Co., Ltd. was dried at 150 ° C. for 20 hours and then subjected to various evaluations. The results are shown in Table 2.
  • the ion scavengers for solar cells of Examples 1 to 35 have a high Na + ion trapping rate in an aqueous NaCl solution and the pH fluctuation is within 1. Also, in the extracted water after the crosslinked resin test piece was immersed in pure water, the ion scavengers for solar cells of Examples 1 to 35 exhibited high elution suppression performance of Na + ions. From these results, the ion scavenger of the present invention adsorbs Na + ions, which are considered to be the cause of solar cell PID, while there is no pH fluctuation, and therefore does not promote deterioration of the sealing resin. The PID of the solar cell can be suppressed.
  • the ion scavenger for solar cells of the present invention adsorbs Na + ions causing PID of solar cells with high selectivity and does not easily release H + ions. It can be made to contain in the member which forms a back surface side protection member. Thereby, the solar cell excellent in durability can be formed. It can also be used by adding to a silver electrode paste or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The ion scavenger for a solar cell according to the present invention contains (A) an α-zirconium phosphate in which at least a portion of ion-exchange groups is substituted by at least one type of an ion (a1) selected from among a lithium ion, a potassium ion, a cesium ion, a rubidium ion, a magnesium ion, and a calcium ion, and/or (B) an α-titanium phosphate in which at least a portion of ion-exchange groups is substituted by at least one type of an ion (b1) selected from among a lithium ion, a potassium ion, a cesium ion, a rubidium ion, a magnesium ion, and a calcium ion.

Description

太陽電池用イオン捕捉剤及びそれを含む太陽電池用封止剤組成物並びに太陽電池モジュールIon scavenger for solar cell, encapsulant composition for solar cell containing the same, and solar cell module
 本発明は、太陽電池のPID(Potential Induced Degradation)の原因となるNaイオンを高選択的に吸着し、耐PID性に優れた太陽電池を与える太陽電池用イオン捕捉剤及びそれを含む太陽電池用封止剤組成物並びに太陽電池モジュールに関する。 INDUSTRIAL APPLICABILITY The present invention provides a solar cell ion-trapping agent that highly selectively adsorbs Na + ions causing PID (Potential Induced Degradation) of a solar cell and provides a solar cell with excellent PID resistance, and a solar cell including the same. The present invention relates to a sealing agent composition and a solar cell module.
 環境問題に対する意識の高まりから、クリーンなエネルギー源としての太陽電池が利用されている。一般に、太陽電池は、複数の太陽電池モジュールを備える複合体であり、この太陽電池モジュールは、表面側透明保護部材と、太陽電池素子が封止された層と、裏面側保護部材(バックシート)とを備える構造を有している。 太陽 Solar cells are being used as a clean energy source due to increased awareness of environmental issues. Generally, a solar cell is a composite body including a plurality of solar cell modules, and the solar cell module includes a front surface side transparent protective member, a layer in which the solar cell elements are sealed, and a back surface side protective member (back sheet). It has a structure provided with.
 近年、多数の結晶シリコン太陽電池モジュールを広い敷地に設置し、電力事業用の太陽光発電システムを構築するメガソーラーと呼ばれる大規模の太陽光発電システムが急増している。このような大規模の太陽光発電システムにおいては、太陽電池モジュール間の配線工事の簡素化、配線本数や接続箱の削減によるコスト低減のため、太陽電池モジュールを多数直列接続し、最大システム電圧を600V乃至1000V程度に高く設計することが多い。しかし、このようなシステム電圧の高い結晶シリコン太陽光発電システムにおいては、結晶シリコン太陽電池モジュールにPIDと呼ばれる急激な特性低下現象が発生することがある。
 このような結晶シリコン太陽電池モジュールのPID現象については、まだ十分に原因や発生機構が解明されてはいない。しかし、PID現象は、太陽電池モジュールに高いシステム電圧がかかり、且つ、高温又は高湿状態になったときに、発生及び進行しやすく、また、太陽電池モジュールに逆方向の高電圧を印加することにより特性が回復することが報告されている。
In recent years, a large-scale solar power generation system called a mega solar that installs a large number of crystalline silicon solar cell modules on a large site and constructs a solar power generation system for electric power business has been rapidly increasing. In such a large-scale photovoltaic power generation system, in order to simplify wiring work between solar cell modules and reduce costs by reducing the number of wires and connection boxes, a large number of solar cell modules are connected in series, and the maximum system voltage is increased. It is often designed as high as 600V to 1000V. However, in such a crystalline silicon solar power generation system having a high system voltage, a sudden characteristic deterioration phenomenon called PID may occur in the crystalline silicon solar cell module.
Regarding the PID phenomenon of such a crystalline silicon solar cell module, the cause and generation mechanism have not yet been elucidated. However, the PID phenomenon is likely to occur and proceed when a high system voltage is applied to the solar cell module and the solar cell module is in a high temperature or high humidity state, and a reverse high voltage is applied to the solar cell module. It is reported that the characteristics are recovered by the above.
 以下、一般的なP型ウエハを用いて構成された結晶シリコン太陽電池セルを使用した結晶シリコン太陽電池モジュールにおいてPID現象が発生する機構について説明する。結晶シリコン太陽電池モジュールの表面は、通常、ソーダライムガラスからなるカバーガラスで覆われている。ここで、カバーガラス表面に水分があると、ソーダライムガラスから金属イオンであるナトリウムイオン(Naイオン)を生じる。結晶シリコン太陽電池モジュールのカバーガラスは、金属フレームで支持され、金属フレームはアースに接続されて接地電位になっている。 Hereinafter, a mechanism in which the PID phenomenon occurs in a crystalline silicon solar battery module using a crystalline silicon solar battery cell configured using a general P-type wafer will be described. The surface of the crystalline silicon solar cell module is usually covered with a cover glass made of soda lime glass. Here, when there is moisture on the surface of the cover glass, sodium ions (Na + ions) that are metal ions are generated from the soda lime glass. The cover glass of the crystalline silicon solar cell module is supported by a metal frame, and the metal frame is connected to the ground and has a ground potential.
 このような状態で結晶シリコン太陽電池モジュールの内部配線に負のシステム電圧がかかると、結晶シリコン太陽電池モジュールの内外で大きな電位差を生じる。カバーガラスの表面のNaイオン(金属イオン)は、この電位差によってカバーガラス中や封止充填樹脂中を移動し、結晶シリコン太陽電池セルの表面に到達する。高温高湿の条件ではカバーガラスや封止樹脂の体積抵抗が低下し、リーク電流が増え、Naイオン(金属イオン)が移動しやすくなる。 When a negative system voltage is applied to the internal wiring of the crystalline silicon solar cell module in such a state, a large potential difference is generated inside and outside the crystalline silicon solar cell module. Na + ions (metal ions) on the surface of the cover glass move in the cover glass and in the sealing filling resin due to this potential difference, and reach the surface of the crystalline silicon solar cell. Under high temperature and high humidity conditions, the volume resistance of the cover glass and the sealing resin is reduced, the leakage current is increased, and Na + ions (metal ions) are easily moved.
 通常、結晶シリコン太陽電池セルの光入射側のドープ層(N型)の表面は、絶縁性のパッシベーション膜で覆われている。このパッシベーション膜は、帯電イオンが付着することにより分極する。これにより、結晶シリコン太陽電池セルの光入射側のドープ層(N型)のパッシベーション層との界面近傍に極性逆転領域(P型)が形成され、光発生キャリアの移動が妨げられ、セル特性が低下する。 Usually, the surface of the doped layer (N-type) on the light incident side of the crystalline silicon solar battery cell is covered with an insulating passivation film. This passivation film is polarized by the attachment of charged ions. As a result, a polarity reversal region (P type) is formed in the vicinity of the interface between the doped layer (N type) of the light incident side of the crystalline silicon solar cell and the passivation layer, the movement of photogenerated carriers is prevented, and the cell characteristics are improved. descend.
 このようなPID現象の発生を防止する方法として、これまでに幾つかの方法が提案されている。たとえば太陽光発電システムでの対応方法としては、絶縁トランス付きのインバータを使用し、インバータ入力の負極を接地する等して太陽電池モジュールの内部が外部に対して負の電位にならないようにする方法が知られている。しかし、近年、インバータの高効率化やコストダウンのためトランスレス化が進んでおり、このようなシステムでの対応は困難になりつつある。 As a method for preventing the occurrence of such a PID phenomenon, several methods have been proposed so far. For example, as a method for dealing with solar power generation systems, use an inverter with an insulation transformer and ground the negative electrode of the inverter input so that the inside of the solar cell module does not become negative with respect to the outside. It has been known. However, in recent years, transformer-less has been progressing for higher efficiency and cost reduction of inverters, and it is becoming difficult to cope with such systems.
 一方、太陽電池モジュールでの対応方法として、特許文献1には、EVAを用いて太陽電池セルが封止された太陽電池モジュールにおいて、太陽電池モジュールの内部への水蒸気の侵入を防止するため、EVA樹脂の太陽電池セルと反対側にアイオノマー樹脂層を設ける構造が開示されている。
 また、PID現象の改善を直接の目的とはしていないが、封止材の体積抵抗率を増やす検討がされている。特許文献2には、珪素原子に直接結合する官能基の炭素原子数が4以下のシランカップリング剤が、エチレン・酢酸ビニル共重合体100重量部に対して5重量部以下の割合で添加された太陽電池封止材が開示されている。また、特許文献3には、エチレンに由来する構造単位と、不飽和エステルに由来する構造単位とを有し、エチレンに由来する構造単位と不飽和エステルに由来する構造単位との総和を100質量%とするとき、不飽和エステルに由来する構造単位の量が20~35質量%であるエチレン-不飽和エステル共重合体100質量部に対して、メタカオリンを0.001~5質量部含有する樹脂組成物を用いて得られた太陽電池用封止材が開示されている。
 更に、特許文献4には、エチレン共重合体と、五価金属の酸化物、六価金属の酸化物、七価金属の酸化物、リン酸金属塩からなる群より選ばれた無機イオン捕集剤とを含有する太陽電池封止材用樹脂組成物が開示されている。
On the other hand, as a method for dealing with solar cell modules, Patent Document 1 discloses an EVA in which solar cells are sealed using EVA in order to prevent water vapor from entering the solar cell module. A structure is disclosed in which an ionomer resin layer is provided on the opposite side of a resin solar battery cell.
Further, although the improvement of the PID phenomenon is not directly aimed at, the study has been made to increase the volume resistivity of the sealing material. In Patent Document 2, a silane coupling agent having 4 or less carbon atoms in a functional group directly bonded to a silicon atom is added at a ratio of 5 parts by weight or less with respect to 100 parts by weight of an ethylene / vinyl acetate copolymer. A solar cell encapsulant is disclosed. Patent Document 3 includes a structural unit derived from ethylene and a structural unit derived from an unsaturated ester, and the total of the structural unit derived from ethylene and the structural unit derived from an unsaturated ester is 100 mass. %, A resin containing 0.001 to 5 parts by mass of metakaolin with respect to 100 parts by mass of the ethylene-unsaturated ester copolymer whose amount of structural units derived from the unsaturated ester is 20 to 35% by mass. A solar cell encapsulant obtained using the composition is disclosed.
Further, Patent Document 4 discloses an inorganic ion collection selected from the group consisting of ethylene copolymers, pentavalent metal oxides, hexavalent metal oxides, heptavalent metal oxides, and phosphate metal salts. The resin composition for solar cell sealing materials containing an agent is disclosed.
特開2011-77172号公報JP 2011-77172 A 特開平11-54766号公報Japanese Patent Laid-Open No. 11-54766 特開2013-64115号公報JP2013-64115A 特開2015-138805号公報JP2015-138805A
 特許文献4には、リン酸金属塩として、リン酸ジルコニウム(無機用イオン交換剤)を用いた例が記載されているが、このイオン捕捉剤は、Naイオンを捕捉するものの、十分ではなく、また、イオン交換でHイオンを放出するため、構成によってはpHが下がり封止樹脂に悪影響を及ぼしたり、電極等の、太陽電池素子の構成部材の腐食を助長したりするという問題がある。
 本発明の目的は、太陽電池のPIDの原因となるNaイオンを高選択的に吸着する太陽電池用イオン捕捉剤を提供することである。
 更に、本発明の他の目的は、PIDに起因する出力の低下や、電極等の、太陽電池素子の構成部材の腐食を抑制する太陽電池用封止剤組成物、及び、長寿命な太陽電池モジュールを提供することである。
Patent Document 4 describes an example using zirconium phosphate (an inorganic ion exchanger) as a metal phosphate, but this ion scavenger captures Na + ions, but is not sufficient. In addition, since H + ions are released by ion exchange, depending on the configuration, there is a problem in that the pH is lowered and the sealing resin is adversely affected, or corrosion of the constituent members of the solar cell element such as electrodes is promoted. .
An object of the present invention is to provide an ion scavenger for solar cell that highly selectively adsorbs Na + ions that cause PID of the solar cell.
Another object of the present invention is to provide a solar cell encapsulant composition that suppresses the decrease in output caused by PID and the corrosion of constituent members of solar cell elements such as electrodes, and a long-life solar cell. Is to provide modules.
 本発明者は、イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオンに置換されたα-リン酸ジルコニウム、並びに、イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオンに置換されたα-リン酸チタンの少なくとも一方を含有する太陽電池用イオン捕捉剤が、PIDに起因するNaイオンを選択的に吸着することを見い出し、本発明を完成するに至った。
1.(A)イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオン(a1)に置換されたα-リン酸ジルコニウム、並びに、(B)イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオン(b1)に置換されたα-リン酸チタンの少なくとも一方を含有することを特徴とする太陽電池用イオン捕捉剤。
2.上記成分(A)は、全イオン交換容量のうち、0.1~6.7meq/gが上記イオン(a1)に置換されたα-リン酸ジルコニウムである上記1に記載の太陽電池用イオン捕捉剤。
3.上記イオン(a1)に置換される前のα-リン酸ジルコニウムが、下記式(1)で表される化合物である上記1又は2に記載の太陽電池用イオン捕捉剤。
   Zr1-xHf(PO・mHO   (1)
(式中、0≦x≦0.2であり、2<b≦2.1であり、aは、3b-a=4を満たす正数であり、0≦m≦2である。)
4.上記成分(B)は、全イオン交換容量のうち、0.1~7.0meq/gが上記イオン(b1)に置換されたα-リン酸チタンである上記1乃至3のいずれか一項に記載の太陽電池用イオン捕捉剤。
5.上記イオン(b1)に置換される前のα-リン酸チタンが、下記式(2)で表される化合物である上記1乃至4のいずれか一項に記載の太陽電池用イオン捕捉剤。
   TiH(PO・nHO   (2)
(式中、2<t≦2.1であり、sは、3t-s=4を満たす正数であり、0≦n≦2である。)
6.上記1乃至5のいずれか一項に記載の太陽電池用イオン捕捉剤と、樹脂とを含有することを特徴とする太陽電池用封止剤組成物。
7.上記樹脂が、エチレン・酢酸ビニル共重合樹脂を含む上記6に記載の太陽電池用封止剤組成物。
8.表面側透明保護部材と、裏面側保護部材と、太陽電池素子と、上記表面側透明保護部材及び上記裏面側保護部材の間に、上記太陽電池素子が、上記6又は7に記載の太陽電池用封止剤組成物を用いて封止された封止層と、を備えることを特徴とする太陽電池モジュール。
The present inventor has disclosed that α-zirconium phosphate in which at least a part of an ion exchange group is substituted with at least one ion selected from lithium ion, potassium ion, rubidium ion, cesium ion, magnesium ion and calcium ion, and , At least part of the ion exchange group contains at least one of α-titanium phosphate substituted with at least one ion selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion It was found that the ion scavenger for solar cells selectively adsorbs Na + ions resulting from PID, and the present invention was completed.
1. (A) α-zirconium phosphate in which at least part of the ion exchange group is substituted with at least one ion (a1) selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion; (B) α-phosphoric acid in which at least a part of the ion exchange group is substituted with at least one ion (b1) selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion An ion scavenger for solar cells, comprising at least one of titanium.
2. 2. The ion trap for solar cell according to 1 above, wherein the component (A) is α-zirconium phosphate in which 0.1 to 6.7 meq / g of the total ion exchange capacity is substituted with the ion (a1) Agent.
3. 3. The ion scavenger for solar cells according to 1 or 2 above, wherein the α-zirconium phosphate before being substituted with the ion (a1) is a compound represented by the following formula (1).
Zr 1-x Hf x H a (PO 4) b · mH 2 O (1)
(Where 0 ≦ x ≦ 0.2, 2 <b ≦ 2.1, a is a positive number satisfying 3b−a = 4, and 0 ≦ m ≦ 2.)
4). The component (B) is the α-titanium phosphate in which 0.1 to 7.0 meq / g of the total ion exchange capacity is substituted with the ion (b1). The ion-trapping agent for solar cells as described.
5. The ion scavenger for solar cells according to any one of 1 to 4 above, wherein the α-titanium phosphate before being substituted with the ion (b1) is a compound represented by the following formula (2).
TiH s (PO 4 ) t · nH 2 O (2)
(In the formula, 2 <t ≦ 2.1, s is a positive number satisfying 3t−s = 4, and 0 ≦ n ≦ 2.)
6). A solar cell encapsulant composition comprising: the solar cell ion scavenger according to any one of 1 to 5 above; and a resin.
7). 7. The solar cell encapsulant composition as described in 6 above, wherein the resin contains an ethylene / vinyl acetate copolymer resin.
8). The solar cell element for solar cells according to 6 or 7 above, between the front surface side transparent protective member, the back surface side protective member, the solar cell element, and the front surface side transparent protective member and the back surface side protective member. A solar cell module comprising: a sealing layer sealed with a sealant composition.
 本発明の太陽電池用イオン捕捉剤は、太陽電池のPIDの原因となるNaイオンを高選択的に吸着し、Hイオンを放出しにくい。従って、PIDに起因する出力の低下が抑制される。また、本発明の太陽電池用封止剤組成物は、電極等の、太陽電池素子の構成部材の腐食を抑制し、長寿命の太陽電池モジュールを与えることができる。 The ion scavenger for solar cells of the present invention adsorbs Na + ions that cause PID of solar cells with high selectivity and does not easily release H + ions. Therefore, a decrease in output due to PID is suppressed. Moreover, the sealing agent composition for solar cells of this invention can suppress the corrosion of the structural member of solar cell elements, such as an electrode, and can provide a long-life solar cell module.
本発明の太陽電池モジュールを示す概略断面図である。It is a schematic sectional drawing which shows the solar cell module of this invention.
 以下、本発明を詳細に説明する。
1.太陽電池用イオン捕捉剤
 本発明の太陽電池用イオン捕捉剤は、(A)イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオン(a1)に置換されたα-リン酸ジルコニウム(以下、「太陽電池用イオン捕捉剤(A)」という)、並びに、(B)イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオン(b1)に置換されたα-リン酸チタン(以下、「太陽電池用イオン捕捉剤(B)」という)の少なくとも一方を含有する。イオン交換基は、通常、プロトンである。
 本発明において、太陽電池用イオン捕捉剤を、例えば、図1に示される太陽電池モジュール10を構成する太陽電池素子11、この太陽電池素子11を樹脂で封止する封止層13、表面側透明保護部材15及び裏面側保護部材17のうち、樹脂を含む封止層13及び裏面側保護部材17の少なくとも一方に含有させることにより、太陽電池の長寿命化を図ることができる。即ち、本発明の太陽電池用イオン捕捉剤は、プロトン(H)を放出することがないため、太陽電池の構成部材が分解したり、変質したりすることが抑制され、出力低下も抑制される。
Hereinafter, the present invention will be described in detail.
1. Ion scavenger for solar cell The ion scavenger for solar cell of the present invention is (A) at least part of the ion exchange group is selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion. Α-zirconium phosphate substituted with one kind of ion (a1) (hereinafter referred to as “ion trapping agent for solar cell (A)”), and (B) at least part of the ion exchange group is lithium ion, potassium Α-titanium phosphate substituted with at least one ion (b1) selected from ions, cesium ions, rubidium ions, magnesium ions and calcium ions (hereinafter referred to as “ion trapping agent for solar cells (B)”) At least one of the above. The ion exchange group is usually a proton.
In the present invention, the solar cell ion-trapping agent is, for example, a solar cell element 11 constituting the solar cell module 10 shown in FIG. Inclusion in at least one of the sealing layer 13 containing the resin and the back surface side protection member 17 out of the protection member 15 and the back surface side protection member 17 can increase the life of the solar cell. That is, since the ion scavenger for solar cells of the present invention does not release protons (H + ), it is suppressed that the constituent members of the solar cell are decomposed or deteriorated, and a decrease in output is also suppressed. The
 上記イオン(a1)に置換される前のα-リン酸ジルコニウム及び上記イオン(b1)に置換される前のα-リン酸チタンには、いずれも、層内にOH基が多く存在するため、予め、リチウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、マグネシウムイオン又はカルシウムイオンが置換された構造とすることにより、Hイオンを放出することなく、Naイオンが選択的に吸着されると考えられる。
 本発明の太陽電池用イオン捕捉剤は、中性であるため、電解液に添加した場合でも、そのpHを大きく変動させることはない。封止層13がアルカリ性又は酸性の物質を含む場合、pHの変化に伴い、樹脂が分解することがある。例えば、樹脂がエチレン・酢酸ビニル共重合樹脂を含む場合、酢酸等が生成し易くなり、太陽電池の劣化につながるが、本発明の太陽電池用イオン捕捉剤を含む封止層であれば、このような不具合が生じることはない。
 また、本発明の太陽電池用イオン捕捉剤は、無機化合物であるため、熱安定性や、溶剤中での安定性に優れている。このため、太陽電池の構成部材に含有させた場合、電荷がかかった状態でも安定である。
Since both α-zirconium phosphate before substitution with the ion (a1) and α-titanium phosphate before substitution with the ion (b1) have many OH groups in the layer, By adopting a structure in which lithium ions, potassium ions, rubidium ions, cesium ions, magnesium ions or calcium ions are substituted in advance, it is considered that Na + ions are selectively adsorbed without releasing H + ions. It is done.
Since the ion scavenger for solar cells of the present invention is neutral, even when it is added to the electrolytic solution, its pH does not fluctuate greatly. When the sealing layer 13 contains an alkaline or acidic substance, the resin may be decomposed with a change in pH. For example, when the resin includes an ethylene / vinyl acetate copolymer resin, acetic acid and the like are easily generated, leading to deterioration of the solar cell. However, if the sealing layer includes the solar cell ion scavenger of the present invention, Such a problem does not occur.
Moreover, since the ion scavenger for solar cells of the present invention is an inorganic compound, it is excellent in thermal stability and stability in a solvent. For this reason, when it is made to contain in the structural member of a solar cell, it is stable even in the state where the electric charge was applied.
1-1.太陽電池用イオン捕捉剤(A)
 本発明の太陽電池用イオン捕捉剤(A)は、上記のように、α-リン酸ジルコニウムのイオン(a1)による置換体である。
 上記α-リン酸ジルコニウムは、以下の式(1)で示される化合物である。
   Zr1-xHf(PO・mHO   (1)
(式中、0≦x≦0.2であり、2<b≦2.1であり、aは、3b-a=4を満たす数であり、0≦m≦2である。)
1-1. Ion scavenger for solar cells (A)
As described above, the ion scavenger (A) for solar cells of the present invention is a substitution product of α-zirconium phosphate ions (a1).
The α-zirconium phosphate is a compound represented by the following formula (1).
Zr 1-x Hf x H a (PO 4) b · mH 2 O (1)
(In the formula, 0 ≦ x ≦ 0.2, 2 <b ≦ 2.1, a is a number satisfying 3b−a = 4, and 0 ≦ m ≦ 2.)
 上記α-リン酸ジルコニウムのイオン交換基は、通常、プロトンであるので、このプロトンの一部又はすべてがイオン(a1)に置換されて、本発明の太陽電池用イオン捕捉剤(A)が形成される。上記イオン(a1)は、リチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種であるが、Naイオンの良好な捕捉性の観点から、1価のアルカリ金属元素に由来するイオン(リチウムイオン、カリウムイオン、ルビジウムイオン又はセシウムイオン)であることが好ましい。
 本発明の太陽電池用イオン捕捉剤(A)において、置換されているイオン(a1)の量は、好ましくは0.1~6.7meq/g、より好ましくは1.0~6.7meq/gである。尚、Naイオン吸着能の観点から、3.5~6.7meq/gが更に好ましい。
Since the ion exchange group of the α-zirconium phosphate is usually a proton, a part or all of the proton is substituted with the ion (a1) to form the ion trapping agent (A) for solar cell of the present invention. Is done. The ion (a1) is at least one selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion, and calcium ion, but from the viewpoint of good capturing properties of Na + ions, An ion derived from an alkali metal element (lithium ion, potassium ion, rubidium ion or cesium ion) is preferable.
In the ion scavenger (A) for solar cells of the present invention, the amount of the substituted ion (a1) is preferably 0.1 to 6.7 meq / g, more preferably 1.0 to 6.7 meq / g. It is. From the viewpoint of Na + ion adsorption ability, 3.5 to 6.7 meq / g is more preferable.
 上記式(1)におけるxは、Naイオンの捕捉性の観点から、好ましくは0≦x≦0.1、より好ましくは0≦x≦0.02である。また、Hfを含む場合、好ましくは0.005≦x≦0.1、より好ましくは0.005≦x≦0.02である。x>0.2の場合、イオン(a1)によるイオン交換性能は向上するが、放射性の同位体が存在するため、太陽電池の構成部品が電子部品を含む場合、悪影響を及ぼすことがある。 In the above formula (1), x is preferably 0 ≦ x ≦ 0.1, more preferably 0 ≦ x ≦ 0.02, from the viewpoint of Na + ion trapping properties. When Hf is contained, it is preferably 0.005 ≦ x ≦ 0.1, more preferably 0.005 ≦ x ≦ 0.02. In the case of x> 0.2, the ion exchange performance by the ions (a1) is improved, but since radioactive isotopes are present, when the components of the solar cell include electronic components, it may have an adverse effect.
 本発明の太陽電池用イオン捕捉剤(A)を製造する方法は、特に限定されない。例えば、リチウムイオンに置換されたα-リン酸ジルコニウムを製造する場合、水酸化リチウム(LiOH)水溶液にα-リン酸ジルコニウムを添加し、一定時間撹拌した後、ろ過、洗浄及び乾燥する方法とすることができる。LiOH水溶液の濃度は、特に限定されない。高濃度の場合、反応液の塩基性が高くなり、α-リン酸ジルコニウムの一部が溶出することがあるため、1mol/L以下が好ましく、更に好ましくは0.1mol/L以下である。
 カリウムイオンに置換されたα-リン酸ジルコニウムを製造する場合も、上記と同様のイオン交換方法を適用することができる。
The method for producing the ion scavenger (A) for solar cells of the present invention is not particularly limited. For example, when producing α-zirconium phosphate substituted with lithium ions, α-zirconium phosphate is added to a lithium hydroxide (LiOH) aqueous solution, stirred for a certain period of time, filtered, washed and dried. be able to. The concentration of the LiOH aqueous solution is not particularly limited. In the case of a high concentration, the basicity of the reaction solution becomes high, and a part of α-zirconium phosphate may be eluted, so that it is preferably 1 mol / L or less, more preferably 0.1 mol / L or less.
When producing α-zirconium phosphate substituted with potassium ions, the same ion exchange method as described above can be applied.
 マグネシウムイオン又はカルシウムイオンに置換されたα-リン酸ジルコニウムを製造する場合、マグネシウム又はカルシウムの水酸化物が水に溶解し難いので、一旦、カリウム等のアルカリ金属のイオンに置換してから、塩化マグネシウム等の水溶液を用いて置換することができる。また、例えば、酢酸マグネシウム水溶液にα-リン酸ジルコニウムを添加し、同様の操作を行ってもよい。 When α-zirconium phosphate substituted with magnesium ion or calcium ion is produced, magnesium or calcium hydroxide is difficult to dissolve in water. Substitution can be made using an aqueous solution of magnesium or the like. Further, for example, the same operation may be performed by adding α-zirconium phosphate to a magnesium acetate aqueous solution.
1-2.太陽電池用イオン捕捉剤(B)
 本発明の太陽電池用イオン捕捉剤(B)は、上記のように、α-リン酸チタンのイオン(b1)による置換体である。
 上記α-リン酸チタンは、以下の式(2)で示される化合物である。
   TiH(PO・nHO   (2)
(式中、2<t≦2.1であり、sは、3t-s=4を満たす数であり、0≦n≦2である。)
1-2. Ion scavenger for solar cells (B)
As described above, the solar cell ion scavenger (B) of the present invention is a substitution product of α-titanium phosphate ions (b1).
The α-titanium phosphate is a compound represented by the following formula (2).
TiH s (PO 4 ) t · nH 2 O (2)
(In the formula, 2 <t ≦ 2.1, s is a number satisfying 3t−s = 4, and 0 ≦ n ≦ 2.)
 α-リン酸チタンのイオン交換基は、通常、プロトンであるので、このプロトンの一部又はすべてがイオン(b1)に置換されて、本発明の太陽電池用イオン捕捉剤(B)が形成される。上記イオン(b1)は、リチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種であるが、Naイオンの良好な捕捉性の観点から、1価のアルカリ金属元素に由来するイオン(リチウムイオン、カリウムイオン、ルビジウムイオン又はセシウムイオン)であることが好ましい。
 本発明の太陽電池用イオン捕捉剤(B)において、置換されているイオン(b1)の量は、好ましくは0.1~7.0meq/g、より好ましくは1.0~7.0meq/gである。尚、Naイオン吸着能の観点から、3.5~7.0meq/gが更に好ましい。
Since the ion-exchange group of α-titanium phosphate is usually a proton, a part or all of this proton is substituted with the ion (b1) to form the ion-trapping agent (B) for solar cells of the present invention. The The ion (b1) is at least one selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion, and calcium ion, but from the viewpoint of good capturing properties of Na + ions, An ion derived from an alkali metal element (lithium ion, potassium ion, rubidium ion or cesium ion) is preferable.
In the ion scavenger (B) for solar cells of the present invention, the amount of the substituted ion (b1) is preferably 0.1 to 7.0 meq / g, more preferably 1.0 to 7.0 meq / g. It is. From the viewpoint of Na + ion adsorption capacity, 3.5 to 7.0 meq / g is more preferable.
 本発明の太陽電池用イオン捕捉剤(B)を製造する方法は、特に限定されず、太陽電池用イオン捕捉剤(A)の製造方法と同様の方法とすることができる。 The method for producing the ion scavenger for solar cells (B) of the present invention is not particularly limited, and can be the same method as the method for producing the ion scavenger for solar cells (A).
 本発明の太陽電池用イオン捕捉剤は、通常、層状構造を有し、メジアン粒径の上限は、好ましくは5.0μm、より好ましくは3.0μm、更に好ましくは2.0μmであり、下限は、通常、0.2μm、好ましくは0.5μmである。本発明の太陽電池用イオン捕捉剤を適用する構成部材の種類によって、好ましい粒径を選択すればよい。 The ion scavenger for solar cells of the present invention usually has a layered structure, and the upper limit of the median particle size is preferably 5.0 μm, more preferably 3.0 μm, still more preferably 2.0 μm, and the lower limit is The thickness is usually 0.2 μm, preferably 0.5 μm. What is necessary is just to select a preferable particle size by the kind of structural member to which the ion scavenger for solar cells of this invention is applied.
 本発明の太陽電池用イオン捕捉剤の水分含有率は、好ましくは10質量%以下、より好ましくは5質量%以下である。水分含有率が10質量%以下であることで、太陽電池を構成する部材とした場合に、水分が電気分解を起こすことに起因するガスの発生を抑制することができ、電池の不具合を抑制することができる。尚、水分含有率は、カールフィッシャー法にて測定することができる。 The water content of the ion scavenger for solar cells of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less. When the moisture content is 10% by mass or less, in the case of a member constituting a solar cell, it is possible to suppress the generation of gas due to the occurrence of water electrolysis, and to suppress the malfunction of the battery. be able to. The water content can be measured by the Karl Fischer method.
 太陽電池用イオン捕捉剤の水分含有率を10質量%以下とする場合には、特に限定されず、通常、用いられる粉体の乾燥方法を適用することができる。例えば、大気圧又は減圧下で、100℃~300℃で、6~24時間程度の加熱を行う方法が挙げられる。 When the moisture content of the ion scavenger for solar cells is 10% by mass or less, there is no particular limitation, and a commonly used powder drying method can be applied. For example, a method of heating at 100 ° C. to 300 ° C. for about 6 to 24 hours under atmospheric pressure or reduced pressure can be mentioned.
2.太陽電池用封止剤組成物
 本発明の太陽電池用封止剤組成物は、上記本発明の太陽電池用イオン捕捉剤と、樹脂とを含有することを特徴とする。本発明の太陽電池用封止剤組成物は、後述される、架橋剤、架橋助剤、接着性改良剤、紫外線吸収剤、光安定剤、酸化防止剤等の他の成分を含有することができる。
 本発明の太陽電池用封止剤組成物は、例えば、図1に示される太陽電池モジュール10を構成する表面側透明保護部材15及び裏面側保護部材17の間の封止層13の形成に好適である。
2. Solar Cell Sealant Composition The solar cell sealant composition of the present invention contains the above-described solar cell ion scavenger of the present invention and a resin. The solar cell encapsulant composition of the present invention may contain other components such as a crosslinking agent, a crosslinking aid, an adhesion improver, an ultraviolet absorber, a light stabilizer, and an antioxidant, which will be described later. it can.
The sealing composition for solar cells of the present invention is suitable for forming the sealing layer 13 between the front surface side transparent protective member 15 and the back surface side protective member 17 constituting the solar cell module 10 shown in FIG. It is.
 本発明の太陽電池用封止剤組成物に含有される樹脂としては、エチレン・酢酸ビニル共重合樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アイオノマー樹脂;エチレン・メタクリル酸共重合体;エチレン・メタクリル酸エステル共重合体;エチレン・アクリル酸共重合体;エチレン・アクリル酸エステル共重合体;ポリフッ化ビニル樹脂;ポリ塩化ビニル樹脂等が挙げられる。これらのうち、透明性に優れた封止層を形成可能であることから、エチレン・酢酸ビニル共重合樹脂が特に好ましい。 Examples of the resin contained in the solar cell encapsulant composition of the present invention include ethylene / vinyl acetate copolymer resins; polyolefin resins such as polyethylene and polypropylene; ionomer resins; ethylene / methacrylic acid copolymers; ethylene / methacrylic acid. Examples include ester copolymers; ethylene / acrylic acid copolymers; ethylene / acrylic acid ester copolymers; polyvinyl fluoride resins; polyvinyl chloride resins. Among these, an ethylene / vinyl acetate copolymer resin is particularly preferable because a sealing layer having excellent transparency can be formed.
 上記エチレン・酢酸ビニル共重合樹脂は、特に限定されないが、太陽電池モジュールを製造する際の、例えば、真空加熱ラミネーション工程の後、高いゲル分率による高架橋度によって100℃~150℃の耐熱性が円滑に得られることから、酢酸ビニルに由来する構造単位の含有量が好ましくは20~40質量%、より好ましくは25~35質量%、更に好ましくは28~33質量%であるエチレン・酢酸ビニル共重合樹脂が好ましい。
 上記エチレン・酢酸ビニル共重合樹脂のメルトマスフローレート(MFR)は、JIS K 7210に準ずる方法(190℃)において、好ましくは1g~40g/10分、より好ましくは15g~40g/10分である。また、ビカット軟化点は、JIS K 7206に準ずる方法において、好ましくは30℃~40℃である。
The ethylene / vinyl acetate copolymer resin is not particularly limited, but has a heat resistance of 100 ° C. to 150 ° C. due to a high degree of cross-linking due to a high gel fraction after, for example, a vacuum heating lamination process when manufacturing a solar cell module. Since it can be obtained smoothly, an ethylene / vinyl acetate copolymer in which the content of structural units derived from vinyl acetate is preferably 20 to 40% by mass, more preferably 25 to 35% by mass, still more preferably 28 to 33% by mass. Polymerized resins are preferred.
The melt mass flow rate (MFR) of the ethylene / vinyl acetate copolymer resin is preferably 1 g to 40 g / 10 min, more preferably 15 g to 40 g / 10 min in a method (190 ° C.) according to JIS K 7210. The Vicat softening point is preferably 30 ° C. to 40 ° C. in a method according to JIS K 7206.
 本発明の太陽電池用封止剤組成物において、太陽電池用イオン捕捉剤の含有割合は、封止層の透明性及び封止層におけるNaイオンの捕捉性の観点から、上記樹脂の含有量を100質量部とした場合に、好ましくは0.01~1.0質量部、より好ましくは0.05~0.5質量部である。尚、上記太陽電池用イオン捕捉剤のメジアン粒径は、太陽電池の発電効率の観点から、好ましくは0.5~5.0μm、より好ましくは0.7~2.0μmである。 In the encapsulant composition for solar cells of the present invention, the content ratio of the ion scavenger for solar cells is the content of the resin from the viewpoint of the transparency of the encapsulating layer and the ability to capture Na + ions in the encapsulating layer. Is preferably 0.01 to 1.0 part by mass, more preferably 0.05 to 0.5 part by mass. The median particle size of the ion scavenger for solar cells is preferably 0.5 to 5.0 μm, more preferably 0.7 to 2.0 μm, from the viewpoint of power generation efficiency of the solar cell.
 本発明の太陽電池用封止剤組成物は、上記のように、他の成分を含有してもよい。
 架橋剤としては、有機過酸化物、アゾ化合物、錫化合物等を用いることができる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 有機過酸化物としては、ジイソプロピルベンゼンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(ハイドロパーオキシ)ヘキサン等のハイドロパーオキサイド類;ジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-パーオキシ)ヘキシン-3等のジアルキルパーオキサイド類;ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド等のジアシルパーオキサイド類;tert-ブチルパーオキシアセテート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシオクトエート、tert-ブチルパーオキシイソプロピルカーボネート、tert-ブチルパーオキシベンゾエート、ジ-tert-ブチルパーオキシフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3、tert-ブチルパーオキシ-2-エチルヘキシルカーボネート等のパーオキシエステル類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類等が挙げられる。
 アゾ化合物としては、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。
 また、錫化合物としては、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジオクチル錫ジラウレート等が挙げられる。
The sealing agent composition for solar cells of the present invention may contain other components as described above.
As the crosslinking agent, an organic peroxide, an azo compound, a tin compound, or the like can be used. These may be used alone or in combination of two or more.
Examples of organic peroxides include hydroperoxides such as diisopropylbenzene hydroperoxide and 2,5-dimethyl-2,5-di (hydroperoxy) hexane; di-tert-butyl peroxide, tert-butyl cumylper Dialkyl peroxides such as oxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-peroxy) hexyne-3 Oxides; diacyl peroxides such as bis-3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, benzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dichlorobenzoyl peroxide; tert- Butyl peroxyacete Tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxypivalate, tert-butyl peroxy octoate, tert-butyl peroxyisopropyl carbonate, tert-butyl peroxybenzoate, di-tert- Butyl peroxyphthalate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexyne-3, tert-butylperoxy-2 -Peroxyesters such as ethyl hexyl carbonate; ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide.
Examples of the azo compound include azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile).
Examples of the tin compound include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, and dioctyltin dilaurate.
 本発明の太陽電池用封止剤組成物が架橋剤を含有する場合、その含有割合は、上記樹脂の含有量を100質量部とした場合に、好ましくは0.01~2.0質量部、より好ましくは0.05~1.5質量部である。 When the encapsulant composition for solar cells of the present invention contains a crosslinking agent, the content ratio is preferably 0.01 to 2.0 parts by mass when the content of the resin is 100 parts by mass, More preferably, it is 0.05 to 1.5 parts by mass.
 架橋助剤は、架橋剤による架橋反応を促進させるものであり、好ましくは、炭素原子-炭素原子二重結合及びエポキシ基の少なくとも一方を有する多官能単量体、より好ましくは、アリル基、メタクリロイル基、アクリロイル基、ビニル基等を有する多官能単量体であり、具体例としては、ポリアリル化合物、ポリ(メタ)アクリロキシ化合物、エポキシ化合物等が挙げられる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 ポリアリル化合物としては、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート等が挙げられる。
 ポリ(メタ)アクリロキシ化合物としては、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート等が挙げられる。
 また、エポキシ化合物としては、グリシジルアクリレート、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等が挙げられる。
The crosslinking aid promotes a crosslinking reaction by the crosslinking agent, and is preferably a polyfunctional monomer having at least one of a carbon atom-carbon atom double bond and an epoxy group, more preferably an allyl group, methacryloyl. Group, an acryloyl group, a vinyl group and the like, and specific examples include polyallyl compounds, poly (meth) acryloxy compounds, and epoxy compounds. These may be used alone or in combination of two or more.
Examples of the polyallyl compound include triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate and the like.
Examples of the poly (meth) acryloxy compound include trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1 , 9-nonanediol diacrylate and the like.
Epoxy compounds include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, trimethylol. Examples include propane polyglycidyl ether.
 本発明の太陽電池用封止剤組成物が架橋助剤を含有する場合、その含有割合は、上記樹脂の含有量を100質量部とした場合に、好ましくは0.01~3.0質量部、より好ましくは0.05~2.0質量部である。 When the encapsulant composition for solar cells of the present invention contains a crosslinking aid, the content is preferably 0.01 to 3.0 parts by mass when the content of the resin is 100 parts by mass. More preferably, it is 0.05 to 2.0 parts by mass.
 接着性改良剤は、好ましくは、メタクリロイル基、アクリロイル基、ビニル基等の重合性不飽和結合を有する基、又は、アルコキシ基等の加水分解性基を有するシラン化合物であり、従来、公知のシランカップリング剤を用いることができる。
 上記シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等が挙げられる。
The adhesion improver is preferably a silane compound having a polymerizable unsaturated bond such as a methacryloyl group, an acryloyl group, or a vinyl group, or a hydrolyzable group such as an alkoxy group. A coupling agent can be used.
Examples of the silane coupling agent include vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl). Ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyl Examples include triethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-chloropropyltrimethoxysilane.
 本発明の太陽電池用封止剤組成物が接着性改良剤を含有する場合、その含有割合は、上記樹脂の含有量を100質量部とした場合に、好ましくは0.01~3.0質量部である。 When the sealing agent composition for solar cells of the present invention contains an adhesion improver, the content is preferably 0.01 to 3.0 mass when the content of the resin is 100 mass parts. Part.
 紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、サリチル酸エステル系化合物等が挙げられる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 上記紫外線吸収剤としては、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2′-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5-クロロベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3、5-ジメチルフェニル)-5-メトキシベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール、フェニルサリチレート、p-オクチルフェニルサリチレート等が挙げられる。
Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, triazine compounds, salicylic acid ester compounds, and the like. These may be used alone or in combination of two or more.
Examples of the ultraviolet absorber include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxy Benzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2,4- Dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2- (2-hydroxy -5-me Ruphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) ) Benzotriazole, 2- (2-hydroxy-3-methyl-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2 -Hydroxy-3,5-dimethylphenyl) -5-methoxybenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-5 -Tert-butylphenyl) -5-chlorobenzotriazole, 2- 4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- (4,6-diphenyl-1,3,5- And triazin-2-yl) -5- (hexyloxy) phenol, phenyl salicylate, p-octylphenyl salicylate, and the like.
 本発明の太陽電池用封止剤組成物が紫外線吸収剤を含有する場合、その含有割合は、上記樹脂の含有量を100質量部とした場合に、好ましくは0.01~3.0質量部である。 When the encapsulant composition for solar cells of the present invention contains an ultraviolet absorber, the content is preferably 0.01 to 3.0 parts by mass when the content of the resin is 100 parts by mass. It is.
 光安定剤は、光劣化で発生するラジカルを捕捉するものであれば、特に限定されず、ヒンダードアミン系化合物、チオール系化合物、チオエーテル系化合物等を用いることができる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 上記光安定剤としては、ヒンダードアミン系化合物が好ましく、その具体例としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{{2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、N,N′-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられる。
The light stabilizer is not particularly limited as long as it captures radicals generated by photodegradation, and a hindered amine compound, a thiol compound, a thioether compound, or the like can be used. These may be used alone or in combination of two or more.
The light stabilizer is preferably a hindered amine compound, and specific examples thereof include dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate of succinate. , Poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4- Piperidyl) imino} hexamethylene {{2,2,6,6-tetramethyl-4-piperidyl) imino}], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl -N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl- 4-piperidyl) seba Over DOO, 2- (3,5-di-tert.-4-hydroxybenzyl) -2-n-butyl malonic acid bis (1,2,2,6,6-pentamethyl-4-piperidyl) and the like.
 本発明の太陽電池用封止剤組成物が光安定剤を含有する場合、その含有割合は、上記樹脂の含有量を100質量部とした場合に、好ましくは0.01~3.0質量部である。 When the encapsulant composition for solar cells of the present invention contains a light stabilizer, the content is preferably 0.01 to 3.0 parts by mass when the content of the resin is 100 parts by mass. It is.
 酸化防止剤は、太陽光の熱エネルギーに対する熱安定性を付与するものであれば、特に限定されず、モノフェノール系化合物、ビスフェノール系化合物、高分子型フェノール系化合物、硫黄系化合物、燐酸系化合物等を用いることができる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 上記酸化防止剤としては、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニゾール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2′-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2′-メチレン-ビス-(4-エチル-6-tert-ブチルフェノール)、4,4′-チオビス-(3-メチル-6-tert-ブチルフェノール)、4,4′-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェノール)、3,9-ビス〔{1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル}2,4,8,10-テトラオキサスピロ〕5,5-ウンデカン、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-{メチレン-3-(3′,5′-ジ-tert-ブチル-4′-ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3′-ビス-4′-ヒドロキシ-3′-tert-ブチルフェニル)ブチリックアシッド}グルコールエステル、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネート、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4′-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリスジフェニルホスファイト、ジイソデシノレペンタエリスリトールジホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナスレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。
The antioxidant is not particularly limited as long as it provides thermal stability against the heat energy of sunlight. Monophenol compound, bisphenol compound, polymer phenol compound, sulfur compound, phosphoric acid compound Etc. can be used. These may be used alone or in combination of two or more.
Examples of the antioxidant include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, 2,2'-methylene-bis -(4-Methyl-6-tert-butylphenol), 2,2'-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4'-thiobis- (3-methyl-6-tert- Butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [{1,1-dimethyl-2- {β- (3-tert-butyl-4 -Hydroxy-5-methylphenyl) propionyloxy} ethyl} 2,4,8,10-tetraoxaspiro] 5,5-undecane, 1,1,3-tris- (2-methyl 4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis- {methylene -3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate} methane, bis {(3,3'-bis-4'-hydroxy-3'-tert-butylphenyl) Butyric acid} glycol ester, dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiopropionate, triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite, 4,4'- Butylidene-bis- (3-methyl-6-tert-butylphenyl-di-tridec Phosphite, cyclic neopentanetetrayl bis (octadecyl phosphite), trisdiphenyl phosphite, diisodecenorepentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenalene- 10-oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9 , 10-Dihydro-9-oxa-10-phosphaphenanthrene, cyclic neopentanetetraylbis (2,4-di-tert-butylphenyl) phosphite, cyclic neopentanetetraylbis (2,6 -Di-tert-methylphenyl) phosphite, 2,2-methyle Bis (4, 6-tert-butylphenyl) octyl phosphite, and the like.
 本発明の太陽電池用封止剤組成物が酸化防止剤を含有する場合、その含有割合は、上記樹脂の含有量を100質量部とした場合に、好ましくは0.05~3.0質量部である。 When the encapsulant composition for solar cells of the present invention contains an antioxidant, the content ratio is preferably 0.05 to 3.0 parts by mass when the content of the resin is 100 parts by mass. It is.
 本発明の太陽電池用封止剤組成物は、原料成分を混合することにより製造することができるが、太陽電池用イオン捕捉剤、他の成分等が、樹脂を母相として、この母相の中で分散する形態であることが好ましい。特に、架橋剤等、樹脂と架橋構造を形成する成分が配合された場合には、樹脂が未架橋又は半架橋のまま含まれることが好ましい。
 従って、図1における封止層13を形成する場合には、例えば、本発明の太陽電池用封止剤組成物を混練した後、押出機に投入し、Tダイ成形又はカレンダー成形により薄肉状とし、所定のサイズに加工して得られた未架橋又は半架橋の太陽電池モジュール用封止材シートを用いることが好ましい。
The encapsulant composition for solar cells of the present invention can be produced by mixing raw material components, but the ion-trapping agent for solar cells, other components, etc. are used as a matrix for the resin. It is preferable that it is a form disperse | distributing in. In particular, when a component that forms a crosslinked structure with a resin, such as a crosslinking agent, is blended, it is preferable that the resin be included in an uncrosslinked or semicrosslinked state.
Therefore, when forming the sealing layer 13 in FIG. 1, for example, after kneading the solar cell sealing agent composition of the present invention, it is put into an extruder and thinned by T-die molding or calendar molding. It is preferable to use an uncrosslinked or semi-crosslinked solar cell module encapsulant sheet obtained by processing into a predetermined size.
3.太陽電池モジュール
 本発明の太陽電池モジュールは、例えば、図1に示されるように、太陽電池素子11と、表面側透明保護部材15と、裏面側保護部材17と、上記表面側透明保護部材15及び上記裏面側保護部材17の間に、太陽電池素子11が、上記本発明の太陽電池用封止剤組成物を用いて封止(包埋)された封止層13とを備える。太陽電池素子11どうしは、インターコネクタ19により接続されている。尚、図1では、集電電極等を省略している。
3. Solar Cell Module As shown in FIG. 1, for example, the solar cell module of the present invention includes a solar cell element 11, a front surface side transparent protective member 15, a back surface side protective member 17, and the front surface side transparent protective member 15 and Between the said back surface side protection member 17, the solar cell element 11 is provided with the sealing layer 13 sealed (embedded) using the sealing compound composition for solar cells of the said invention. The solar cell elements 11 are connected by an interconnector 19. In FIG. 1, the collecting electrode and the like are omitted.
 太陽電池素子11は、光電効果により受光面に入射した光を電気に変換する機能を有するものであり、シリコン、化合物半導体等を含むことが好ましい。
 封止層13は、好ましくは、架橋剤を含有する太陽電池用封止剤組成物を用いて形成された、架橋樹脂組成物からなる層であり、太陽電池素子11及びインターコネクタ19が、所定の位置に固定されるように、包埋されている。
 表面側透明保護部材15は、通常、耐候性、耐風圧性、耐雹性等に優れた材料からなり、ポリエステル樹脂、ポリカーボネート樹脂等の樹脂又はガラスからなるものとすることができるが、通常、ソーダライムガラス等のガラスからなる。
 裏面側保護部材17は、通常、耐加水分解ポリエチレンテレフタレート樹脂、ポリフッ化ビニル樹脂等の、耐候性に優れた材料からなる。裏面側保護部材17は、封止層13を透過した光を反射する作用を有してもよい。
The solar cell element 11 has a function of converting light incident on the light-receiving surface by photoelectric effect into electricity, and preferably includes silicon, a compound semiconductor, and the like.
The sealing layer 13 is preferably a layer made of a crosslinked resin composition formed using a solar cell sealing agent composition containing a crosslinking agent, and the solar cell element 11 and the interconnector 19 are predetermined. It is embedded so as to be fixed at the position.
The surface-side transparent protective member 15 is usually made of a material excellent in weather resistance, wind pressure resistance, weather resistance and the like, and can be made of a resin such as a polyester resin or a polycarbonate resin, or glass. It consists of glass such as lime glass.
The back-side protection member 17 is usually made of a material having excellent weather resistance, such as hydrolysis-resistant polyethylene terephthalate resin or polyvinyl fluoride resin. The back surface side protection member 17 may have an action of reflecting light transmitted through the sealing layer 13.
 本発明の太陽電池モジュールの製造方法は、特に制限されず、従来、公知の方法を適用することができる。例えば、裏面側保護部材と、架橋剤を含有する太陽電池用封止剤組成物を用いて得られた、未架橋又は半架橋の太陽電池モジュール用封止材シートと、太陽電池素子と、架橋剤を含有する太陽電池用封止剤組成物を用いて得られた、未架橋又は半架橋の太陽電池モジュール用封止材シートと、表面側透明保護部材とを、この順に積層して積層物とした後、この積層物を真空状態で加熱圧着する真空加熱ラミネーションに供する方法とすることができる。この真空加熱ラミネーションにより、2枚の太陽電池モジュール用封止材シートの間に太陽電池素子を埋没させ、架橋樹脂組成物を形成するとともに、これを含む封止層及び裏面側保護部材、並びに、表面側透明保護部材及び封止層、を、それぞれ、接着一体化し、本発明の太陽電池モジュールを製造することができる。 The method for producing the solar cell module of the present invention is not particularly limited, and conventionally known methods can be applied. For example, a non-crosslinked or semi-crosslinked solar cell module encapsulant sheet, a solar cell element, and a crosslink obtained by using a back surface side protective member and a solar cell encapsulant composition containing a crosslinking agent A laminate obtained by laminating an uncrosslinked or semi-crosslinked solar cell module encapsulant sheet and a surface-side transparent protective member in this order, obtained by using a solar cell encapsulant composition containing an agent. After that, the laminate can be subjected to a vacuum heating lamination method in which heat and pressure bonding is performed in a vacuum state. By this vacuum heating lamination, the solar cell element is buried between the two solar cell module encapsulant sheets to form a crosslinked resin composition, and a sealing layer and a back surface side protective member including the same, and The surface-side transparent protective member and the sealing layer can be bonded and integrated, respectively, to produce the solar cell module of the present invention.
 本発明の太陽電池モジュールにおいて、封止層13が特殊なイオン捕捉剤を含有するため、太陽電池の使用中に、封止層13の中に侵入した水分や、加水分解で発生した酸を捕獲するだけでなく、太陽電池素子11の劣化を防止することができ、また、表面側透明保護部材がガラスからなる場合において、ガラスから封止層13に対し、PID(Potential-induced degradation;太陽電池モジュールに高電圧がかかり出力が大幅に低下する現象)の主原因とされるナトリウムイオン(Naイオン)が浸透しても、その拡散を防止することができ、太陽電池モジュール10の出力低下を抑制することができる。 In the solar cell module of the present invention, since the sealing layer 13 contains a special ion scavenger, moisture that has entered the sealing layer 13 and acid generated by hydrolysis are captured during use of the solar cell. In addition, the solar cell element 11 can be prevented from degrading, and when the surface-side transparent protective member is made of glass, PID (Potential-induced degradation; solar cell) is applied to the sealing layer 13 from the glass. Even if sodium ions (Na + ions), which is the main cause of the high voltage applied to the module and the output is permeated, can be prevented from diffusing, the output of the solar cell module 10 can be reduced. Can be suppressed.
 以下、本発明を実施例により具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
1.評価方法
(1)pH測定
 下記(2)でイオン捕捉剤を添加後の水溶液、又は、下記(3)で得られた抽出水のpHを、堀場製作所社製ガラス電極式水素イオン濃度指示計「D-51」(型式名)によって測定した。測定は、JIS Z 8802「pH測定方法」に準拠し、測定温度は25℃である。
1. Evaluation method (1) pH measurement The pH of the aqueous solution after adding the ion scavenger in (2) below or the extracted water obtained in (3) below is a glass electrode type hydrogen ion concentration indicator “Horiba Ltd.” D-51 "(model name). The measurement is based on JIS Z 8802 “pH measurement method”, and the measurement temperature is 25 ° C.
(2)NaCl水溶液中における太陽電池用イオン捕捉剤のNaイオン吸着能
 太陽電池用イオン捕捉剤のNaイオン吸着能を、ICP発光分光分析法によって評価した。具体的な評価方法は、次の通りである。
 まず、水1Lに0.254gNaClを溶解して、Naイオンが100ppmの水溶液を調製した。その水溶液に対し、イオン捕捉剤が1.0質量%の濃度となるように添加し、十分混合した後、静置した。そして、イオン捕捉剤を添加して8時間後のNaイオン濃度をサーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCAP7600 DUO」(型式名)にて測定した。そして、Naイオン捕捉率を下記式により求めた。
 Naイオン捕捉率=((初期濃度(100ppm)-試験後(8時間後)のNaイオン濃度)/初期濃度(100ppm))×100
(2) the Na + ion adsorption capacity of Na + ion adsorption capacity solar cell ion scavenger of ion scavenger for solar cells in the aqueous solution of NaCl, were assessed by ICP emission spectroscopy. The specific evaluation method is as follows.
First, 0.254 g NaCl was dissolved in 1 L of water to prepare an aqueous solution containing 100 ppm of Na + ions. The ion scavenger was added to the aqueous solution so as to have a concentration of 1.0% by mass, sufficiently mixed, and then allowed to stand. Then, the Na + ion concentration 8 hours after adding the ion scavenger was measured with an ICP emission spectrometer “iCAP7600 DUO” (model name) manufactured by Thermo Fisher Scientific. And Na + ion capture | acquisition rate was calculated | required by the following formula.
Na + ion capture rate = ((initial concentration (100 ppm) −Na + ion concentration after test (after 8 hours)) / initial concentration (100 ppm)) × 100
(3)太陽電池用封止剤組成物を用いて形成された架橋樹脂試験片のNaイオン吸着能
 太陽電池用イオン捕捉剤1.0質量部と、三井デュポンポリケミカル社製エチレン・酢酸ビニル共重合樹脂「EV150R」(商品名)100質量部と、アルケマ吉富社製tert-ブチルパーオキシ-2-エチルヘキシルカーボネート「ルペロックスTBEC」(商品名、架橋剤)0.5質量部と、アルケマ吉富社製2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン「ルペロックス101」(商品名、架橋剤)0.5質量部と、Sartomer社製トリメチロールプロパントリメタクリレート「SR350」(商品名、架橋助剤)1.0質量部と、Sartomer社製トリアリルイソシアヌレート「SR533」(商品名、架橋助剤)1.0質量部と、キシダ化学社製塩化ナトリウム0.025質量部とを混合して、太陽電池用封止剤組成物を得た後、名機製作所社製射出成形機「M-50A(II)-DM」(型式名)を用い、成形温度を150℃として、架橋された樹脂試験片(110mm×110mm×2mm)を得た。尚、上記塩化ナトリウムは、実施例及び比較例の間の、Naイオン濃度の測定値の違いを顕著にするために、エチレン・酢酸ビニル共重合樹脂に対するナトリウム量が約100ppmになるようにしたものである。
 次に、この架橋樹脂試験片10gを切削加工して、小片(5mm×5mm×2mm程度)とし、純水50mLとともに100mLのポリ容器に入れ、密栓した。そして、このポリ容器を95℃で20時間静置した。そして、架橋樹脂試験片から純水中に溶出した成分を含む抽出水の分析及びpH測定を行った。Naイオン濃度をICP発光分光分析にて測定した。また、酢酸濃度をイオンクロマトグラフィーで測定した。
(3) Na + ion adsorption capacity of the crosslinked resin test piece formed using the sealing agent composition for solar cells, 1.0 part by mass of the ion scavenger for solar cells, and ethylene / vinyl acetate manufactured by Mitsui DuPont Polychemical Co., Ltd. 100 parts by mass of copolymer resin “EV150R” (trade name), 0.5 parts by mass of tert-butylperoxy-2-ethylhexyl carbonate “Lupelox TBEC” (trade name, cross-linking agent) manufactured by Arkema Yoshitomi, and Arkema Yoshitomi 0.5 parts by mass of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane “Lupelox 101” (trade name, cross-linking agent) manufactured by Sartomer and trimethylolpropane trimethacrylate “SR350” 1.0 part by mass of product name, crosslinking aid) and triallyl isocyanurate “SR533” (product of Sartomer) , Crosslinking aid) 1.0 parts by mass and 0.025 parts by mass of sodium chloride manufactured by Kishida Chemical Co., Ltd. were obtained to obtain a solar cell sealant composition, and then an injection molding machine manufactured by Meiki Seisakusho Co., Ltd. Using “M-50A (II) -DM” (model name) and a molding temperature of 150 ° C., a crosslinked resin test piece (110 mm × 110 mm × 2 mm) was obtained. The sodium chloride was made to have an amount of sodium of about 100 ppm relative to the ethylene / vinyl acetate copolymer resin in order to make the difference in the measured value of Na + ion concentration between the examples and the comparative examples remarkable. Is.
Next, 10 g of this cross-linked resin test piece was cut into small pieces (about 5 mm × 5 mm × 2 mm), put into a 100 mL plastic container together with 50 mL of pure water, and sealed. And this poly container was left still at 95 degreeC for 20 hours. And the analysis and pH measurement of the extraction water containing the component eluted in the pure water from the crosslinked resin test piece were performed. Na + ion concentration was measured by ICP emission spectroscopic analysis. The acetic acid concentration was measured by ion chromatography.
2.イオン捕捉剤の製造及び評価
  実施例1
 純水850mLに、オキシ塩化ジルコニウム8水和物0.272モルを溶解後、シュウ酸2水和物0.788モルを添加して、これを溶解させた。この水溶液を撹拌しながら、リン酸0.57モルを加えた。これを撹拌しながら、103℃で8時間還流した。冷却後、得られた沈殿物をよく水で洗浄した後、150℃で乾燥することにより、リン酸ジルコニウムからなる鱗片状粉末を得た。このリン酸ジルコニウムについて分析した結果、α-リン酸ジルコニウム(H型)(以下、「α-リン酸ジルコニウム(Z1)」という)であることを確認した。
 上記α-リン酸ジルコニウム(Z1)を、フッ酸を添加した硝酸の中で煮沸溶解した後、ICP発光分光分析に供することにより、次の組成式を得た。
   ZrH2.03(PO2.01・0.05H
 また、α-リン酸ジルコニウム(Z1)のメジアン径を、堀場製作所製レーザー回折式粒度分布計「LA-700」(型式名)により測定した結果、0.9μmであった。
2. Production and evaluation of ion scavenger Example 1
After dissolving 0.272 mol of zirconium oxychloride octahydrate in 850 mL of pure water, 0.788 mol of oxalic acid dihydrate was added and dissolved. While stirring this aqueous solution, 0.57 mol of phosphoric acid was added. This was refluxed at 103 ° C. for 8 hours while stirring. After cooling, the resulting precipitate was washed well with water, and then dried at 150 ° C. to obtain a scaly powder composed of zirconium phosphate. As a result of analyzing this zirconium phosphate, it was confirmed that it was α-zirconium phosphate (H type) (hereinafter referred to as “α-zirconium phosphate (Z1)”).
The above α-zirconium phosphate (Z1) was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
ZrH 2.03 (PO 4 ) 2.01 · 0.05H 2 O
Further, the median diameter of α-zirconium phosphate (Z1) was measured by a laser diffraction particle size distribution analyzer “LA-700” (model name) manufactured by Horiba, Ltd. As a result, it was 0.9 μm.
 次に、α-リン酸ジルコニウム(Z1)25gを、0.1N-LiOH水溶液1000mLを撹拌しながら、添加し、これを8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間真空乾燥して、ZrLi1.031.00(PO2.01・0.05HOからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。カールフィッシャー法による水分含有率は0.5%であった。このリチウムイオン置換型αリン酸ジルコニウムは、すべての陽イオン交換容量のうち、4meq/gがリチウムイオンに置換されたものである。以下、「4meq-Li置換型α-リン酸ジルコニウムA1-1」とした。
 次いで、この4meq-Li置換型α-リン酸ジルコニウムA1-1からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Next, 25 g of α-zirconium phosphate (Z1) was added while stirring 1000 mL of a 0.1N-LiOH aqueous solution, and this was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum-dried at 150 ° C. for 20 hours to obtain lithium ion-substituted α-zirconium phosphate composed of ZrLi 1.03 H 1.00 (PO 4 ) 2.01 · 0.05H 2 O. Manufactured. The water content by the Karl Fischer method was 0.5%. This lithium ion-substituted α-zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions. Hereinafter, it was referred to as “4 meq-Li substituted α-zirconium phosphate A1-1”.
Next, various evaluations described above were performed using the ion scavenger for solar cells composed of this 4 meq-Li substituted α-zirconium phosphate A1-1, and the results are shown in Table 1.
  実施例2
 0.1N-LiOH水溶液の使用量を2500mLとした以外は、実施例1と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がリチウムイオンに置換された、ZrLi2.03(PO2.01・0.05HOからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.3%であった。以下、「全Li置換型α-リン酸ジルコニウムA1-2」とした。
 次いで、この全Li置換型α-リン酸ジルコニウムA1-2からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 2
Except that the amount of 0.1N-LiOH aqueous solution used was 2500 mL, the same operation as in Example 1 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with lithium ions. In addition, lithium ion-substituted α-zirconium phosphate composed of ZrLi 2.03 (PO 4 ) 2.01 · 0.05H 2 O was produced. The moisture content was 0.3%. Hereinafter, it was referred to as “all Li-substituted α-zirconium phosphate A1-2”.
Next, using the solar cell ion scavenger composed of all Li-substituted α-zirconium phosphate A1-2, the above-described various evaluations were performed, and the results are shown in Table 1.
  実施例3
 0.1N-LiOH水溶液に代えて、0.1N-KOH水溶液を用いた以外は、実施例1と同様の操作を行い、ZrK1.031.00(PO2.01・0.03HOからなるカリウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.5%であった。このカリウム置換型α-リン酸ジルコニウムは、すべての陽イオン交換容量のうち、4meq/gがリチウムイオンに置換されたものである。以下、「4meq-K置換型α-リン酸ジルコニウムA1-3」とした。
 次いで、この4meq-K置換型α-リン酸ジルコニウムA1-3からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 3
ZrK 1.03 H 1.00 (PO 4 ) 2.01 · 0.0. Was carried out in the same manner as in Example 1 except that a 0.1N—KOH aqueous solution was used instead of the 0.1N—LiOH aqueous solution. A potassium-substituted α-zirconium phosphate composed of 03H 2 O was produced. The moisture content was 0.5%. This potassium-substituted α-zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions. Hereinafter, it was referred to as “4 meq-K substituted α-zirconium phosphate A1-3”.
Next, using the solar cell ion scavenger comprising 4meq-K-substituted α-zirconium phosphate A1-3, the above various evaluations were performed, and the results are shown in Table 1.
  実施例4
 0.1N-KOH水溶液の使用量を2500mLとした以外は、実施例3と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がカリウムイオンに置換された、ZrK2.03(PO2.01からなるカリウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.4%であった。以下、「全K置換型α-リン酸ジルコニウムA1-4」とした。
 次いで、この全K置換型α-リン酸ジルコニウムA1-4からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 4
Except that the amount of 0.1N KOH aqueous solution used was 2500 mL, the same operation as in Example 3 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with potassium ions. In addition, potassium-substituted α-zirconium phosphate composed of ZrK 2.03 (PO 4 ) 2.01 was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all K-substituted α-zirconium phosphate A1-4”.
Next, using the solar cell ion scavenger composed of this all-K-substituted α-zirconium phosphate A1-4, the above-mentioned various evaluations were performed, and the results are shown in Table 1.
  実施例5
 脱イオン水850mLに、Hfの含有量が0.18%であるオキシ塩化ジルコニウム8水和物0.272モルを溶解後、シュウ酸2水和物0.788モルを添加して、これを溶解させた。この水溶液を撹拌しながら、リン酸0.57モルを加えた。これを撹拌しながら、98℃で8時間還流した。冷却後、得られた沈殿物をよく水で洗浄した後、150℃で乾燥することにより、リン酸ジルコニウムからなる鱗片状粉末を得た。このリン酸ジルコニウムについて分析した結果、α-リン酸ジルコニウム(H型)(以下、「α-リン酸ジルコニウム(Z2)」という)であることを確認した。
 上記α-リン酸ジルコニウム(Z2)を、フッ酸を添加した硝酸の中で煮沸溶解した後、ICP発光分光分析に供することにより、次の組成式を得た。
   Zr0.99Hf0.012.03(PO2.01・0.05H
 また、α-リン酸ジルコニウム(Z2)のメジアン径は、0.8μmであった。
Example 5
After dissolving 0.272 mol of zirconium oxychloride octahydrate with Hf content of 0.18% in 850 mL of deionized water, 0.788 mol of oxalic acid dihydrate was added and dissolved. I let you. While stirring this aqueous solution, 0.57 mol of phosphoric acid was added. This was refluxed at 98 ° C. for 8 hours with stirring. After cooling, the resulting precipitate was washed well with water, and then dried at 150 ° C. to obtain a scaly powder composed of zirconium phosphate. As a result of analyzing this zirconium phosphate, it was confirmed that it was α-zirconium phosphate (H type) (hereinafter referred to as “α-zirconium phosphate (Z2)”).
The above α-zirconium phosphate (Z2) was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01 · 0.05H 2 O
The median diameter of α-zirconium phosphate (Z2) was 0.8 μm.
 次に、α-リン酸ジルコニウム(Z2)25gを、0.1N-LiOH水溶液1000mLを撹拌しながら、添加し、これを8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間真空乾燥して、Zr0.99Hf0.01Li1.031.00(PO2.01・0.2HOからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。カールフィッシャー法による水分含有率は0.4%であった。このリチウムイオン置換型αリン酸ジルコニウムは、すべての陽イオン交換容量のうち、4meq/gがリチウムイオンに置換されたものである。以下、「4meq-Li置換型α-リン酸ジルコニウムA2-1」とした。
 次いで、この4meq-Li置換型α-リン酸ジルコニウムA2-1からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Next, 25 g of α-zirconium phosphate (Z2) was added while stirring 1000 mL of a 0.1N-LiOH aqueous solution, and this was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum-dried at 150 ° C. for 20 hours to obtain lithium composed of Zr 0.99 Hf 0.01 Li 1.03 H 1.00 (PO 4 ) 2.01 · 0.2H 2 O. An ion-substituted α-zirconium phosphate was produced. The water content by the Karl Fischer method was 0.4%. This lithium ion-substituted α-zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions. Hereinafter, it was referred to as “4 meq-Li substituted α-zirconium phosphate A2-1”.
Next, various evaluations described above were performed using the ion scavenger for solar cells composed of this 4 meq-Li substituted α-zirconium phosphate A2-1. The results are shown in Table 1.
  実施例6
 0.1N-LiOH水溶液の使用量を2500mLとした以外は、実施例5と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がリチウムイオンに置換された、Zr0.99Hf0.01Li2.03(PO2.01・0.1HOからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.3%であった。以下、「全Li置換型α-リン酸ジルコニウムA2-2」とした。
 次いで、この全Li置換型α-リン酸ジルコニウムA2-2からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 6
Except that the amount of 0.1N-LiOH aqueous solution used was 2500 mL, the same operation as in Example 5 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with lithium ions. Further, lithium ion-substituted α-zirconium phosphate composed of Zr 0.99 Hf 0.01 Li 2.03 (PO 4 ) 2.01 · 0.1H 2 O was produced. The moisture content was 0.3%. Hereinafter, it was referred to as “all Li-substituted α-zirconium phosphate A2-2”.
Next, using the solar cell ion scavenger composed of all Li-substituted α-zirconium phosphate A2-2, the above various evaluations were performed. The results are shown in Table 1.
  実施例7
 0.1N-LiOH水溶液に代えて、0.1N-KOH水溶液を用いた以外は、実施例5と同様の操作を行い、Zr0.99Hf0.011.031.00(PO2.01・0.03HOからなるカリウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.5%であった。このカリウム置換型α-リン酸ジルコニウムは、すべての陽イオン交換容量のうち、4meq/gがリチウムイオンに置換されたものである。以下、「4meq-K置換型α-リン酸ジルコニウムA2-3」とした。
 次いで、この4meq-K置換型α-リン酸ジルコニウムA2-3からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 7
Zr 0.99 Hf 0.01 K 1.03 H 1.00 (PO) was carried out in the same manner as in Example 5 except that a 0.1N-KOH aqueous solution was used instead of the 0.1N-LiOH aqueous solution. 4 ) A potassium-substituted α-zirconium phosphate composed of 2.01 · 0.03H 2 O was produced. The moisture content was 0.5%. This potassium-substituted α-zirconium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions. Hereinafter, it was referred to as “4 meq-K substituted α-zirconium phosphate A2-3”.
Next, various evaluations described above were performed using the ion scavenger for solar cells composed of this 4 meq-K substituted α-zirconium phosphate A2-3, and the results are shown in Table 1.
  実施例8
 0.1N-KOH水溶液の使用量を2500mLとした以外は、実施例7と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がカリウムイオンに置換された、Zr0.99Hf0.012.03(PO2.01からなるカリウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.4%であった。以下、「全K置換型α-リン酸ジルコニウムA2-4」とした。
 次いで、この全K置換型α-リン酸ジルコニウムA2-4からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 8
Except that the amount of 0.1N KOH aqueous solution used was 2500 mL, the same operation as in Example 7 was performed, and all the cation exchange groups (cation exchange capacity: 6.7 meq / g) were replaced with potassium ions. In addition, a potassium-substituted α-zirconium phosphate composed of Zr 0.99 Hf 0.01 K 2.03 (PO 4 ) 2.01 was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all K-substituted α-zirconium phosphate A2-4”.
Next, using the solar cell ion scavenger composed of this all-K-substituted α-zirconium phosphate A2-4, the above various evaluations were performed. The results are shown in Table 1.
  実施例9
 0.1N-LiOH水溶液に代えて、0.1N-RbCO水溶液2500mLを用いた以外は、実施例5と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がルビジウムイオンに置換されたルビジウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.5%であった。以下、「全Rb置換型α-リン酸ジルコニウムA2-5」とした。
 次いで、この全Rb置換型α-リン酸ジルコニウムA2-5からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 9
The same operation as in Example 5 was performed except that 2500 mL of a 0.1 N—Rb 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 6. A rubidium-substituted α-zirconium phosphate having 7 meq / g) substituted with rubidium ions was produced. The moisture content was 0.5%. Hereinafter, it was referred to as “all Rb-substituted α-zirconium phosphate A2-5”.
Next, using the solar cell ion scavenger composed of all Rb-substituted α-zirconium phosphate A2-5, the above various evaluations were performed, and the results are shown in Table 1.
  実施例10
 0.1N-LiOH水溶液に代えて、0.1N-CsCO水溶液2500mLを用いた以外は、実施例5と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がセシウムイオンに置換されたセシウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.4%であった。以下、「全Cs置換型α-リン酸ジルコニウムA2-6」とした。
 次いで、この全Cs置換型α-リン酸ジルコニウムA2-6からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 10
The same operation as in Example 5 was performed except that 2500 mL of a 0.1 N—Cs 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 6. Cesium-substituted α-zirconium phosphate having 7 meq / g) substituted with cesium ions was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all Cs-substituted α-zirconium phosphate A2-6”.
Next, using the solar cell ion scavenger composed of all Cs-substituted α-zirconium phosphate A2-6, the above various evaluations were performed, and the results are shown in Table 1.
  実施例11
 0.1N-LiOH水溶液に代えて、0.1N-(CHCOO)Mg水溶液2500mLを用いた以外は、実施例5と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がマグネシウムイオンに置換されたマグネシウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.5%であった。以下、「全Mg置換型α-リン酸ジルコニウムA2-7」とした。
 次いで、この全Mg置換型α-リン酸ジルコニウムA2-7からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 11
The same procedure as in Example 5 was performed except that 2500 mL of 0.1N- (CH 3 COO) 2 Mg aqueous solution was used instead of the 0.1N-LiOH aqueous solution, and all cation exchange groups (cation exchange capacity) were obtained. : 6.7 meq / g) was substituted with magnesium ions to produce a magnesium-substituted α-zirconium phosphate. The moisture content was 0.5%. Hereinafter, it was referred to as “all Mg-substituted α-zirconium phosphate A2-7”.
Next, using the solar cell ion scavenger composed of this all-Mg-substituted α-zirconium phosphate A2-7, the above various evaluations were performed, and the results are shown in Table 1.
  実施例12
 0.1N-LiOH水溶液に代えて、0.1N-(CHCOO)Ca水溶液2500mLを用いた以外は、実施例5と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がカルシウムイオンに置換されたカルシウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.6%であった。以下、「全Ca置換型α-リン酸ジルコニウムA2-8」とした。
 次いで、この全Ca置換型α-リン酸ジルコニウムA2-8からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 12
All cation exchange groups (cation exchange capacities) were obtained in the same manner as in Example 5 except that 2500 mL of 0.1N— (CH 3 COO) 2 Ca aqueous solution was used instead of the 0.1N—LiOH aqueous solution. : 6.7 meq / g) of calcium-substituted α-zirconium phosphate in which calcium ions were substituted. The moisture content was 0.6%. Hereinafter, it was referred to as “total Ca-substituted α-zirconium phosphate A2-8”.
Next, using the solar cell ion scavenger composed of this all-Ca-substituted α-zirconium phosphate A2-8, the above-mentioned various evaluations were performed, and the results are shown in Table 1.
  実施例13
 脱イオン水400mLに、75%リン酸405gを加え、この水溶液を撹拌しながら、硫酸チタニル(TiO換算含有量:33%)137gを添加した。これを撹拌しながら100℃で48時間還流した。冷却後、得られた沈殿物をよく水で洗浄し、150℃で乾燥することにより、リン酸チタンからなる鱗片状粉末を得た。このリン酸チタンについて分析した結果、α-リン酸チタン(H型)であることを確認した。
 上記α-リン酸チタンを、フッ酸を添加した硝酸の中で煮沸溶解した後、ICP発光分光分析に供することにより、次の組成式を得た。
   TiH2.03(PO2.01・0.1H
 また、α-リン酸チタンのメジアン径を測定した結果、0.7μmであった。
Example 13
405 g of 75% phosphoric acid was added to 400 mL of deionized water, and 137 g of titanyl sulfate (TiO 2 equivalent content: 33%) was added while stirring the aqueous solution. This was refluxed at 100 ° C. for 48 hours with stirring. After cooling, the resulting precipitate was washed well with water and dried at 150 ° C. to obtain a scaly powder composed of titanium phosphate. As a result of analyzing this titanium phosphate, it was confirmed that it was α-titanium phosphate (H type).
The α-titanium phosphate was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
TiH 2.03 (PO 4 ) 2.01 · 0.1H 2 O
The median diameter of α-titanium phosphate was measured and found to be 0.7 μm.
 次に、α-リン酸チタン25gを0.1N-LiOH水溶液1000mLに撹拌しながら、添加し、これを8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間真空乾燥して、TiLi1.031.00(PO2.01・0.2HOからなるリチウムイオン置換型α-リン酸チタンを製造した。水分含有率は0.5%であった。このリチウムイオン置換型α-リン酸チタンは、すべての陽イオン交換容量のうち、4meq/gがリチウムイオンに置換されたものである。以下、「4meq-Li置換型α-リン酸チタンB-1」とした。
 次いで、この4meq-Li置換型α-リン酸チタンB-1からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Next, 25 g of α-titanium phosphate was added to 1000 mL of 0.1N-LiOH aqueous solution while stirring, and this was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum-dried at 150 ° C. for 20 hours to obtain a lithium ion-substituted α-titanium phosphate composed of TiLi 1.03 H 1.00 (PO 4 ) 2.01 · 0.2H 2 O. Manufactured. The moisture content was 0.5%. This lithium ion-substituted α-titanium phosphate is one in which 4 meq / g of all cation exchange capacities is replaced with lithium ions. Hereinafter, it was referred to as “4 meq-Li substituted α-titanium phosphate B-1”.
Next, using the solar cell ion scavenger composed of this 4 meq-Li-substituted α-titanium phosphate B-1, the above-mentioned various evaluations were performed, and the results are shown in Table 1.
  実施例14
 0.1N-LiOH水溶液の使用量を2500mLとした以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がリチウムイオンに置換された、TiLi2.03(PO2.01・0.1HOからなるリチウムイオン置換型α-リン酸チタンを製造した。水分含有率は0.4%であった。以下、「全Li置換型α-リン酸チタンB-2」とした。
 次いで、この全Li置換型α-リン酸チタンB-2からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 14
Except that the amount of 0.1N-LiOH aqueous solution used was 2500 mL, the same operation as in Example 13 was performed to replace all cation exchange groups (cation exchange capacity: 7.0 meq / g) with lithium ions. Further, lithium ion-substituted α-titanium phosphate made of TiLi 2.03 (PO 4 ) 2.01 · 0.1H 2 O was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all Li-substituted α-titanium phosphate B-2”.
Next, using the solar cell ion scavenger composed of all Li-substituted α-titanium phosphate B-2, various evaluations described above were performed, and the results are shown in Table 1.
  実施例15
 0.1N-LiOH水溶液に代えて、0.1N-KOH水溶液を用いた以外は、実施例13と同様の操作を行い、TiK1.031.00(PO2.01・0.05HOからなるカリウムイオン置換型α-リン酸チタンを製造した。水分含有率は0.4%であった。以下、「4meq-K置換型α-リン酸チタンB-3」とした。
 次いで、この4meq-K置換型α-リン酸チタンB-3からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 15
The same operation as in Example 13 was carried out except that a 0.1N-KOH aqueous solution was used instead of the 0.1N-LiOH aqueous solution, and TiK 1.03 H 1.00 (PO 4 ) 2.01 . A potassium ion-substituted α-titanium phosphate composed of 05H 2 O was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “4 meq-K substituted α-titanium phosphate B-3”.
Next, using the solar cell ion scavenger composed of this 4 meq-K substituted α-titanium phosphate B-3, various evaluations described above were carried out, and the results are shown in Table 1.
  実施例16
 0.1N-KOH水溶液の使用量を2500mLとした以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がカリウムイオンに置換された、TiK2.03(PO2.00からなるカリウム置換型α-リン酸チタンを製造した。水分含有率は0.5%であった。以下、「全K置換型α-リン酸チタンB-4」とした。
 次いで、この全K置換型α-リン酸チタンB-4からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 16
Except that the amount of 0.1N KOH aqueous solution used was 2500 mL, the same operation as in Example 13 was performed, and all the cation exchange groups (cation exchange capacity: 7.0 meq / g) were replaced with potassium ions. Furthermore, potassium-substituted α-titanium phosphate composed of TiK 2.03 (PO 4 ) 2.00 was produced. The moisture content was 0.5%. Hereinafter, it was referred to as “all K-substituted α-titanium phosphate B-4”.
Next, various evaluations described above were performed using this solar cell ion scavenger composed of all-K-substituted α-titanium phosphate B-4, and the results are shown in Table 1.
  実施例17
 0.1N-LiOH水溶液に代えて、0.1N-RbCO水溶液2500mLを用いた以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がルビジウムイオンに置換されたルビジウム置換型α-リン酸チタンを製造した。水分含有率は0.4%であった。以下、「全Rb置換型α-リン酸チタンB-5」とした。
 次いで、この全Rb置換型α-リン酸チタンB-5からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 17
The same operation as in Example 13 was performed except that 2500 mL of a 0.1 N—Rb 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 7. A rubidium-substituted α-titanium phosphate having 0 meq / g) substituted with rubidium ions was produced. The moisture content was 0.4%. Hereinafter, it was referred to as “all Rb-substituted α-titanium phosphate B-5”.
Next, using the solar cell ion scavenger composed of this all-Rb-substituted α-titanium phosphate B-5, various evaluations described above were performed, and the results are shown in Table 1.
  実施例18
 0.1N-LiOH水溶液に代えて、0.1N-CsCO水溶液2500mLを用いた以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がセシウムイオンに置換されたセシウム置換型α-リン酸チタンを製造した。水分含有率は0.5%であった。以下、「全Cs置換型α-リン酸チタンB-6」とした。
 次いで、この全Cs置換型α-リン酸チタンB-6からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 18
The same operation as in Example 13 was performed except that 2500 mL of a 0.1 N—Cs 2 CO 3 aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity: 7. A cesium-substituted α-titanium phosphate having 0 meq / g) substituted with cesium ions was produced. The moisture content was 0.5%. Hereinafter, it was referred to as “all Cs-substituted α-titanium phosphate B-6”.
Next, using the solar cell ion scavenger composed of all Cs-substituted α-titanium phosphate B-6, the above various evaluations were performed. The results are shown in Table 1.
  実施例19
 0.1N-LiOH水溶液に代えて、0.1N-(CHCOO)Mg水溶液2500mLを用いた以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がマグネシウムイオンに置換されたマグネシウム置換型α-リン酸チタンを製造した。水分含有率は0.5%であった。以下、「全Mg置換型α-リン酸チタンB-7」とした。
 次いで、この全Mg置換型α-リン酸チタンB-7からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 19
The same operation as in Example 13 was performed except that 2500 mL of 0.1N- (CH 3 COO) 2 Mg aqueous solution was used instead of the 0.1N-LiOH aqueous solution, and all cation exchange groups (cation exchange capacity) were obtained. : 7.0 meq / g) was substituted with magnesium ions to produce magnesium substituted α-titanium phosphate. The moisture content was 0.5%. Hereinafter, it was referred to as “total Mg-substituted α-titanium phosphate B-7”.
Next, various evaluations described above were performed using the ion scavenger for solar cells made of all Mg-substituted α-titanium phosphate B-7, and the results are shown in Table 1.
  実施例20
 0.1N-LiOH水溶液に代えて、0.1N-(CHCOO)Ca水溶液2500mLを用いた以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がカルシウムイオンに置換されたカルシウム置換型α-リン酸チタンを製造した。水分含有率は0.4%であった。以下、「全Ca置換型α-リン酸チタンB-8」とした。
 次いで、この全Ca置換型α-リン酸チタンB-8からなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表1に示した。
Example 20
The same procedure as in Example 13 was performed except that 2500 mL of 0.1 N— (CH 3 COO) 2 Ca aqueous solution was used instead of the 0.1 N—LiOH aqueous solution, and all cation exchange groups (cation exchange capacity) were obtained. : 7.0 meq / g) was substituted with calcium ions to produce calcium substituted α-titanium phosphate. The moisture content was 0.4%. Hereinafter, it was referred to as “total Ca-substituted α-titanium phosphate B-8”.
Next, using the solar cell ion scavenger composed of this all-Ca-substituted α-titanium phosphate B-8, various evaluations described above were performed, and the results are shown in Table 1.
  実施例21
 全Li置換型α-リン酸ジルコニウムA1-2及び全K置換型α-リン酸ジルコニウムA1-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表1に示した。
Example 21
All Li-substituted α-zirconium phosphate A1-2 and all K-substituted α-zirconium phosphate A1-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  実施例22
 全Li置換型α-リン酸ジルコニウムA1-2及び全Li置換型α-リン酸ジルコニウムA2-2を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表1に示した。
Example 22
Total Li-substituted α-zirconium phosphate A1-2 and total Li-substituted α-zirconium phosphate A2-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  実施例23
 全Li置換型α-リン酸ジルコニウムA1-2及び全K置換型α-リン酸ジルコニウムA2-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表1に示した。
Example 23
Total Li-substituted α-zirconium phosphate A1-2 and total K-substituted α-zirconium phosphate A2-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  実施例24
 全Li置換型α-リン酸ジルコニウムA1-2及び全Li置換型α-リン酸チタンB-2を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表1に示した。
Example 24
Total Li-substituted α-zirconium phosphate A1-2 and total Li-substituted α-titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 1.
  実施例25
 全Li置換型α-リン酸ジルコニウムA1-2及び全K置換型α-リン酸チタンB-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 25
All Li-substituted α-zirconium phosphate A1-2 and all K-substituted α-titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例26
 全K置換型α-リン酸ジルコニウムA1-4及び全Li置換型α-リン酸ジルコニウムA2-2を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 26
Total K-substituted α-zirconium phosphate A1-4 and total Li-substituted α-zirconium phosphate A2-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例27
 全K置換型α-リン酸ジルコニウムA1-4及び全K置換型α-リン酸ジルコニウムA2-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 27
Total K-substituted α-zirconium phosphate A1-4 and total K-substituted α-zirconium phosphate A2-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例28
 全K置換型α-リン酸ジルコニウムA1-4及び全Li置換型α-リン酸チタンB-2を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 28
Total K-substituted α-zirconium phosphate A1-4 and total Li-substituted α-titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例29
 全K置換型α-リン酸ジルコニウムA1-4及び全K置換型α-リン酸チタンB-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 29
Total K-substituted α-zirconium phosphate A1-4 and total K-substituted α-titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例30
 全Li置換型α-リン酸ジルコニウムA2-2及び全K置換型α-リン酸ジルコニウムA2-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 30
Total Li-substituted α-zirconium phosphate A2-2 and total K-substituted α-zirconium phosphate A2-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例31
 全Li置換型α-リン酸ジルコニウムA2-2及び全Li置換型α-リン酸チタンB-2を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 31
Total Li-substituted α-zirconium phosphate A2-2 and total Li-substituted α-titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例32
 全Li置換型α-リン酸ジルコニウムA2-2及び全K置換型α-リン酸チタンB-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 32
Total Li-substituted α-zirconium phosphate A2-2 and total K-substituted α-titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例33
 全K置換型α-リン酸ジルコニウムA2-4及び全Li置換型α-リン酸チタンB-2を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 33
Total K-substituted α-zirconium phosphate A2-4 and total Li-substituted α-titanium phosphate B-2 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例34
 全K置換型α-リン酸ジルコニウムA2-4及び全K置換型α-リン酸チタンB-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 34
Total K-substituted α-zirconium phosphate A2-4 and total K-substituted α-titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  実施例35
 全Li置換型α-リン酸チタンB-2及び全K置換型α-リン酸チタンB-4を、質量比1:1で混合して、太陽電池用イオン捕捉剤を得た。そして、上記の各種評価を行い、その結果を表2に示した。
Example 35
Total Li-substituted α-titanium phosphate B-2 and total K-substituted α-titanium phosphate B-4 were mixed at a mass ratio of 1: 1 to obtain an ion scavenger for solar cells. And various said evaluation was performed and the result was shown in Table 2.
  比較例1
 陽イオンに置換されていないα-リン酸ジルコニウム(H型)である、東亞合成社製無機イオン交換体「IXE100」(商品名)をそのまま使用し、各種評価を行った。結果を表2に示した。
Comparative Example 1
Various evaluations were performed using an inorganic ion exchanger “IXE100” (trade name) manufactured by Toagosei Co., Ltd., which is α-zirconium phosphate (H type) not substituted with a cation. The results are shown in Table 2.
  比較例2
 0.1N-LiOH水溶液に代えて、0.1N-NaOH水溶液2500mLを用いた以外は、実施例5と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:6.7meq/g)がナトリウムイオンに置換された、Zr0.99Hf0.01Na2.03(PO2.01・0.05HOからなるナトリウム置換型α-リン酸ジルコニウムを製造した。水分含有率は0.5%であった。以下、「全Na置換型α-リン酸ジルコニウム」とした。
 次いで、この全Na置換型α-リン酸ジルコニウムからなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表2に示した。
Comparative Example 2
All cation exchange groups (cation exchange capacity: 6.7 meq / g) were carried out in the same manner as in Example 5 except that 2500 mL of 0.1N NaOH solution was used instead of 0.1N LiOH solution. Sodium substituted α-zirconium phosphate composed of Zr 0.99 Hf 0.01 Na 2.03 (PO 4 ) 2.01 · 0.05H 2 O, in which) is substituted with sodium ions. The moisture content was 0.5%. Hereinafter, it was referred to as “total Na-substituted α-zirconium phosphate”.
Next, using the solar cell ion scavenger composed of all Na-substituted α-zirconium phosphate, the above various evaluations were performed, and the results are shown in Table 2.
  比較例3
 実施例13で調製されたα-リン酸チタン(H型)をそのまま使用し、各種評価を行った。結果を表2に示した。
Comparative Example 3
Various evaluations were made using the α-titanium phosphate (H-type) prepared in Example 13 as it was. The results are shown in Table 2.
  比較例4
 0.1N-LiOH水溶液に代えて、0.1N-NaOH水溶液2500mLを用いた以外は、実施例13と同様の操作を行い、すべての陽イオン交換基(陽イオン交換容量:7.0meq/g)がナトリウムイオンに置換された、TiNa2.03(PO2.00・0.05HOからなるナトリウム置換型α-リン酸チタンを製造した。水分含有率は0.5%であった。以下、「全Na置換型α-リン酸チタン」とした。
 次いで、この全Na置換型α-リン酸チタンからなる太陽電池用イオン捕捉剤を用いて、上記の各種評価を行い、その結果を表2に示した。
Comparative Example 4
All cation exchange groups (cation exchange capacity: 7.0 meq / g) were carried out in the same manner as in Example 13 except that 2500 mL of a 0.1 N NaOH aqueous solution was used instead of the 0.1 N LiOH aqueous solution. ) Was substituted with sodium ions, and sodium substituted α-titanium phosphate composed of TiNa 2.03 (PO 4 ) 2.00 · 0.05H 2 O was produced. The moisture content was 0.5%. Hereinafter, it was referred to as “total Na-substituted α-titanium phosphate”.
Next, using the solar cell ion scavenger composed of all Na-substituted α-titanium phosphate, the various evaluations described above were performed, and the results are shown in Table 2.
  比較例5
 水澤化学社製Y型ゼオライト「ミズカシーブス Y-520」(商品名)を、150℃で20時間乾燥した後、各種評価を行った。結果を表2に示した。
Comparative Example 5
A Y-type zeolite “Mizuka Sieves Y-520” (trade name) manufactured by Mizusawa Chemical Co., Ltd. was dried at 150 ° C. for 20 hours and then subjected to various evaluations. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から、実施例1~35の太陽電池用イオン捕捉剤は、NaCl水溶液中におけるNaイオンの捕捉率が高く、また、pHの変動が1以内であることが分かる。また、架橋樹脂試験片を純水に浸漬した後の抽出水中においても、実施例1~35の太陽電池用イオン捕捉剤は、Naイオンの高い溶出抑制性能を示した。これらの結果より、本発明のイオン捕捉剤は、太陽電池のPIDの原因と考えられているNaイオンを吸着する一方で、pHの変動がないため、封止樹脂の劣化を促進することなく、太陽電池のPIDを抑制することができる。 From Table 1 and Table 2, it can be seen that the ion scavengers for solar cells of Examples 1 to 35 have a high Na + ion trapping rate in an aqueous NaCl solution and the pH fluctuation is within 1. Also, in the extracted water after the crosslinked resin test piece was immersed in pure water, the ion scavengers for solar cells of Examples 1 to 35 exhibited high elution suppression performance of Na + ions. From these results, the ion scavenger of the present invention adsorbs Na + ions, which are considered to be the cause of solar cell PID, while there is no pH fluctuation, and therefore does not promote deterioration of the sealing resin. The PID of the solar cell can be suppressed.
 本発明の太陽電池用イオン捕捉剤は、太陽電池のPIDの原因となるNaイオンを高選択的に吸着し、Hイオンを放出しにくいので、太陽電池モジュールを構成する、封止層、裏面側保護部材等を形成する部材に含有させることができる。これにより、耐久性に優れた太陽電池を形成することができる。また、銀電極のペースト等にも添加して使用することが可能である。 The ion scavenger for solar cells of the present invention adsorbs Na + ions causing PID of solar cells with high selectivity and does not easily release H + ions. It can be made to contain in the member which forms a back surface side protection member. Thereby, the solar cell excellent in durability can be formed. It can also be used by adding to a silver electrode paste or the like.
10:太陽電池モジュール、11:太陽電池素子、13:封止層、15:表面側透明保護部材、17:裏面側保護部材、19:インターコネクタ 10: Solar cell module, 11: Solar cell element, 13: Sealing layer, 15: Front side transparent protective member, 17: Back side protective member, 19: Interconnector

Claims (8)

  1.  (A)イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオン(a1)に置換されたα-リン酸ジルコニウム、並びに、(B)イオン交換基の少なくとも一部がリチウムイオン、カリウムイオン、セシウムイオン、ルビジウムイオン、マグネシウムイオン及びカルシウムイオンから選ばれた少なくとも1種のイオン(b1)に置換されたα-リン酸チタンの少なくとも一方を含有することを特徴とする太陽電池用イオン捕捉剤。 (A) α-zirconium phosphate in which at least part of the ion exchange group is substituted with at least one ion (a1) selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion; (B) α-phosphoric acid in which at least a part of the ion exchange group is substituted with at least one ion (b1) selected from lithium ion, potassium ion, cesium ion, rubidium ion, magnesium ion and calcium ion An ion scavenger for solar cells, comprising at least one of titanium.
  2.  上記成分(A)は、全イオン交換容量のうち、0.1~6.7meq/gが上記イオン(a1)に置換されたα-リン酸ジルコニウムである請求項1に記載の太陽電池用イオン捕捉剤。 The solar cell ion according to claim 1, wherein the component (A) is α-zirconium phosphate in which 0.1 to 6.7 meq / g of the total ion exchange capacity is substituted with the ion (a1). Scavenger.
  3.  上記イオン(a1)に置換される前のα-リン酸ジルコニウムが、下記式(1)で表される化合物である請求項1又は2に記載の太陽電池用イオン捕捉剤。
       Zr1-xHf(PO・mHO   (1)
    (式中、0≦x≦0.2であり、2<b≦2.1であり、aは、3b-a=4を満たす数であり、0≦m≦2である。)
    The ion scavenger for solar cells according to claim 1 or 2, wherein the α-zirconium phosphate before being substituted with the ion (a1) is a compound represented by the following formula (1).
    Zr 1-x Hf x H a (PO 4) b · mH 2 O (1)
    (In the formula, 0 ≦ x ≦ 0.2, 2 <b ≦ 2.1, a is a number satisfying 3b−a = 4, and 0 ≦ m ≦ 2.)
  4.  上記成分(B)は、全イオン交換容量のうち、0.1~7.0meq/gが上記イオン(b1)に置換されたα-リン酸チタンである請求項1乃至3のいずれか一項に記載の太陽電池用イオン捕捉剤。 4. The component (B) is α-titanium phosphate in which 0.1 to 7.0 meq / g of the total ion exchange capacity is substituted with the ion (b1). The ion-trapping agent for solar cells described in 1.
  5.  上記イオン(b1)に置換される前のα-リン酸チタンが、下記式(2)で表される化合物である請求項1乃至4のいずれか一項に記載の太陽電池用イオン捕捉剤。
       TiH(PO・nHO   (2)
    (式中、2<t≦2.1であり、sは、3t-s=4を満たす数であり、0≦n≦2である。)
    The ion scavenger for solar cells according to any one of claims 1 to 4, wherein the α-titanium phosphate before being substituted with the ion (b1) is a compound represented by the following formula (2).
    TiH s (PO 4 ) t · nH 2 O (2)
    (In the formula, 2 <t ≦ 2.1, s is a number satisfying 3t−s = 4, and 0 ≦ n ≦ 2.)
  6.  請求項1乃至5のいずれか一項に記載の太陽電池用イオン捕捉剤と、樹脂とを含有することを特徴とする太陽電池用封止剤組成物。 A solar cell encapsulant composition comprising the solar cell ion scavenger according to any one of claims 1 to 5 and a resin.
  7.  上記樹脂が、エチレン・酢酸ビニル共重合樹脂を含む請求項6に記載の太陽電池用封止剤組成物。 The solar cell encapsulant composition according to claim 6, wherein the resin contains an ethylene / vinyl acetate copolymer resin.
  8.  太陽電池素子と、表面側透明保護部材と、裏面側保護部材と、上記表面側透明保護部材及び上記裏面側保護部材の間に、上記太陽電池素子が、請求項6又は7に記載の太陽電池用封止剤組成物を用いて封止された封止層と、を備えることを特徴とする太陽電池モジュール。 The solar cell according to claim 6 or 7, wherein the solar cell element is between a solar cell element, a front surface side transparent protective member, a back surface side protective member, the front surface side transparent protective member, and the back surface side protective member. A solar cell module comprising: a sealing layer sealed with a sealing agent composition for use.
PCT/JP2017/008215 2016-04-05 2017-03-02 Ion scavenger for solar cell, solar cell sealant composition containing same, and solar cell module WO2017175524A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018510273A JP6658871B2 (en) 2016-04-05 2017-03-02 Ion scavenger for solar cell, sealant composition for solar cell containing the same, and solar cell module
CN201780018404.5A CN108778991B (en) 2016-04-05 2017-03-02 Ion scavenger for solar cell, solar cell sealing agent composition containing same, and solar cell module
KR1020187029975A KR102311985B1 (en) 2016-04-05 2017-03-02 Ion scavenger for solar cell, encapsulant composition for solar cell comprising same, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076141 2016-04-05
JP2016-076141 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175524A1 true WO2017175524A1 (en) 2017-10-12

Family

ID=60000726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008215 WO2017175524A1 (en) 2016-04-05 2017-03-02 Ion scavenger for solar cell, solar cell sealant composition containing same, and solar cell module

Country Status (5)

Country Link
JP (1) JP6658871B2 (en)
KR (1) KR102311985B1 (en)
CN (1) CN108778991B (en)
TW (1) TWI731941B (en)
WO (1) WO2017175524A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432921A (en) * 2017-12-15 2020-07-17 东亚合成株式会社 Ion scavenger, lithium ion battery separator, and lithium ion secondary battery
CN112437787A (en) * 2018-07-12 2021-03-02 Sabic环球技术有限责任公司 Photovoltaic element and polymer composition for front sheet thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229623A (en) * 2019-06-28 2019-09-13 北京知淘科技有限责任公司 A kind of solar photovoltaic assembly packaging EVA adhesive film and preparation method thereof
EP4328263A1 (en) * 2021-11-10 2024-02-28 LG Chem, Ltd. Crosslinking aid composition for olefin-based copolymer, crosslinking agent composition, and additive for optical device encapsulant composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180551A (en) * 1971-04-08 1979-12-25 Texas A&M University System Modified zirconium phosphates
JPH10192697A (en) * 1997-01-09 1998-07-28 Toagosei Co Ltd Adsorbent for cobalt or manganese ions
JP2015032804A (en) * 2013-08-07 2015-02-16 東レ株式会社 Encapsulant for solar cell, and solar cell module using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077172A (en) 2009-09-29 2011-04-14 Toppan Printing Co Ltd Sealing material sheet and solar battery module
WO2013031788A1 (en) 2011-09-01 2013-03-07 住友化学株式会社 Resin composition, resin pellet, method for manufacturing resin pellet, and solar battery sealant
KR20140072934A (en) * 2012-12-03 2014-06-16 도레이첨단소재 주식회사 Encapsulation composition for a solarcell and preparing process fo the sheet using the same
JP5648169B1 (en) * 2014-01-20 2015-01-07 東洋インキScホールディングス株式会社 Resin composition for solar cell encapsulant and solar cell encapsulant
JP2015159189A (en) * 2014-02-24 2015-09-03 旭化成株式会社 Solar battery resin seal sheet
CN104530994B (en) * 2014-12-30 2016-09-14 苏州度辰新材料有限公司 A kind of anti-PID packaging adhesive film for photovoltaic cell
KR102614833B1 (en) * 2015-06-04 2023-12-15 도아고세이가부시키가이샤 Ion scavenger for lithium ion secondary cell, liquid electrolyte, separator, and lithium ion secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180551A (en) * 1971-04-08 1979-12-25 Texas A&M University System Modified zirconium phosphates
JPH10192697A (en) * 1997-01-09 1998-07-28 Toagosei Co Ltd Adsorbent for cobalt or manganese ions
JP2015032804A (en) * 2013-08-07 2015-02-16 東レ株式会社 Encapsulant for solar cell, and solar cell module using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432921A (en) * 2017-12-15 2020-07-17 东亚合成株式会社 Ion scavenger, lithium ion battery separator, and lithium ion secondary battery
CN112437787A (en) * 2018-07-12 2021-03-02 Sabic环球技术有限责任公司 Photovoltaic element and polymer composition for front sheet thereof
US20210265516A1 (en) * 2018-07-12 2021-08-26 Sabic Global Technologies B.V. Photovoltaic element and polymer composition for front sheet thereof

Also Published As

Publication number Publication date
TW201808796A (en) 2018-03-16
TWI731941B (en) 2021-07-01
JPWO2017175524A1 (en) 2019-02-07
CN108778991A (en) 2018-11-09
KR20180132709A (en) 2018-12-12
CN108778991B (en) 2021-11-16
JP6658871B2 (en) 2020-03-04
KR102311985B1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2017175524A1 (en) Ion scavenger for solar cell, solar cell sealant composition containing same, and solar cell module
JP3267452B2 (en) Photoelectric conversion device and solar cell module
JP5395816B2 (en) Solar cell sealing film and solar cell using the sealing film
EP2537893B1 (en) Sealing film for photovoltaic modules and photovoltaic modules using same
EP2439783B1 (en) Sealing film for solar cell, and solar cell utilizing same
KR101701690B1 (en) Resin composition for solar cell sealing materials, master batch for solar cell sealing materials, and solar cell sealing material
JP2001077390A (en) Solar battery module
WO2013084849A1 (en) Solar cell module
KR101327152B1 (en) Resin composition for solar cell-sealing material, and master batch, solar cell-sealing material and solar cell module which are formed using the same
EP2770541B1 (en) Solar cell sealing film and solar cell using same
CN104744793B (en) Encapsulating material for solar cell resin combination, encapsulating material for solar cell and solar cell module
JP4890752B2 (en) Solar cell module
US20110139218A1 (en) Encapsulant material for photovoltaic modules
JP2001332751A (en) Composition for sealing solar cell and solar cell module using the same
JP4702495B1 (en) Resin composition for solar cell encapsulant
JP2006066761A (en) Solar cell module
JPH0955525A (en) Solar battery module
JP2012019179A (en) Resin composition for solar cell sealing material
JP2016072561A (en) Sealant for solar battery and solar battery module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510273

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029975

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778903

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778903

Country of ref document: EP

Kind code of ref document: A1