WO2017173733A1 - 无人飞行器 - Google Patents

无人飞行器 Download PDF

Info

Publication number
WO2017173733A1
WO2017173733A1 PCT/CN2016/086311 CN2016086311W WO2017173733A1 WO 2017173733 A1 WO2017173733 A1 WO 2017173733A1 CN 2016086311 W CN2016086311 W CN 2016086311W WO 2017173733 A1 WO2017173733 A1 WO 2017173733A1
Authority
WO
WIPO (PCT)
Prior art keywords
body portion
arm
unmanned aerial
aerial vehicle
uav
Prior art date
Application number
PCT/CN2016/086311
Other languages
English (en)
French (fr)
Inventor
高鹏
钟海青
Original Assignee
高鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高鹏 filed Critical 高鹏
Publication of WO2017173733A1 publication Critical patent/WO2017173733A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/38Constructions adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C17/00Aircraft stabilisation not otherwise provided for

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to a novel structure of an unmanned aerial vehicle.
  • the Quadrotor is a multi-rotor aircraft.
  • the four propellers of the quadcopter are simple mechanisms for direct motor connection.
  • the cross-shaped layout allows the aircraft to adjust its own attitude by changing the motor speed to obtain the force of the rotating body.
  • MEMS control technology thanks to the development of MEMS control technology, the stable four-axis aircraft has received extensive attention and the application prospects are considerable.
  • the layout because of its inherent complexity, there are great restrictions on the layout.
  • the flight structure of the more mature UAV R&D companies in the domestic market is the same, and the fuselage is parallel to the ground. And it is extremely inconvenient in terms of packaging and carrying.
  • the technical problem to be solved by the present invention is that the unmanned aerial vehicle has a monotonous posture, is inconvenient to carry, and is unstable in flight.
  • an unmanned flight includes: an upper body portion, a middle portion, and a lower body portion;
  • the upper body portion includes: at least one arm, each arm is provided with at least one paddle, and each of the blades is connected to the arm by a corresponding motor;
  • the intermediate portion includes a shock absorbing assembly
  • the lower body portion includes: a casing, and the casing is provided with a motor connection control component, and the control component is configured to control the motor to drive the corresponding blade rotation.
  • the plane in which the arm is in the deployed state is perpendicular to the fuselage of the UAV.
  • a folding mechanism is disposed at an end of the arm away from the blade.
  • the arm is folded toward the intermediate portion and the lower body portion by the folding mechanism.
  • the arm is parallel to the fuselage of the UAV in a folded state.
  • the upper body portion further includes a top cover and a mounting seat that can be fastened, and the arm is mounted on the mounting seat and the top cover by a folding mechanism between.
  • the inside of the upper body portion is further provided with a GPS module.
  • each arm is provided, and one arm is disposed on each arm.
  • the shock absorbing assembly includes at least one shock absorbing ball.
  • the lower body portion further includes a battery assembly.
  • control assembly and the battery assembly are vertically discharged inside the casing.
  • a pan/tilt is connected to a lower portion of the casing.
  • each side of the casing adopts a smooth curved transition connection.
  • the unmanned aerial vehicle of the embodiment of the invention is a new type of unmanned aerial vehicle layout, which breaks the conventional flight attitude of the unmanned aerial vehicle. Among them, the vibration generated by the upper body part can be greatly weakened or even zero through the shock absorbing component of the middle part, thereby making the flight more balanced.
  • the arm can be folded parallel to the body by the folding mechanism, which can make the drone more compact and convenient for packaging and carrying.
  • each side of the casing adopts a smooth curved transitional connection, which can reduce the wind resistance generated during flight and increase the stability of the flight.
  • the use of the unmanned aerial vehicle of the embodiment of the present invention is advantageous for making the unmanned aerial vehicle more widely used.
  • FIG. 1 is a perspective view showing a three-dimensional deployment structure of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view showing an exploded structure of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view showing a folded state of an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a shock absorbing ball of an unmanned aerial vehicle according to another embodiment of the present invention.
  • the unmanned aerial vehicle (also referred to as an unmanned aerial vehicle, a drone, etc.) mainly includes: an upper body portion 1, a middle portion 2 and a lower body portion 3;
  • the upper body portion 1 comprises: at least one arm 11, each arm 11 being provided with at least one paddle 13, each of which is connected to the machine by a corresponding motor 15. On the arm 11;
  • the intermediate portion 2 includes a shock absorbing assembly 21;
  • the lower body portion 3 includes a casing 31.
  • the casing 31 is provided with a control assembly 33 connected to the motor 15, and the control assembly 33 is configured to control the motor 15 to drive the corresponding blade 13 to rotate.
  • the plane in which the arm is in the deployed state is perpendicular to the fuselage of the UAV.
  • the plane in which the arm is in the deployed state is substantially parallel to the ground plane.
  • the plane in which the arm is in the unfolded state is preferably a plane determined by several points on the arm of the same distance from the central axis of the drone, or may be determined by other methods, for example.
  • the body of the drone may refer to the lower body portion, or may include the upper body portion (the casing other than the arm), the middle portion, and the lower body portion, or the central axis of the drone may be considered as the fuselage.
  • the plane in which the arm is in the deployed state is substantially perpendicular to the central axis of the UAV.
  • the UAV of the present embodiment is divided into upper and lower parts, so that the components for flying (such as the wing), the blades, and the like are located above the other components, and in the unfolded state of the arm,
  • the flying attitude of the human aircraft is that the arm is substantially perpendicular to the fuselage, breaking the parallel layout of the conventional unmanned aerial vehicle, which is visually more novel and durable.
  • the vibration generated by the upper body portion 1 during flight can be greatly weakened or even zeroed by the shock absorbing assembly 21 of the intermediate portion 2, thereby making the flight more balanced.
  • FIG. 3 is a schematic structural view showing a folded state of an unmanned aerial vehicle according to another embodiment of the present invention. As shown in FIG. 2 and FIG. 3, in one possible implementation, a folding mechanism 17 is disposed at an end of the arm 11 away from the blade 13.
  • the arm 11 is folded toward the intermediate portion 2 and the lower body portion 3 by the folding mechanism 17.
  • the arm 11 is parallel to the fuselage of the UAV in a folded state.
  • the arm in the case where the body is vertically facing downward, the arm can be considered to be substantially perpendicular to the ground plane in the folded state.
  • Vertical or parallel as used in this embodiment is not limited to absolute vertical or parallel in the physical sense, but refers to substantially vertical or parallel within the identifiable range of the naked eye. That is to say, the angle between the plane in which the arm 11 is in the unfolded state and the fuselage of the UAV may not be 90 degrees, but slightly larger or smaller than 90 degrees; the arm 11 is in a folded state with no one. The angle of the aircraft may also be less than 0 degrees and slightly greater or less than 0 degrees.
  • the arm 11 can be folded parallel to the body by the folding mechanism 17, which makes the drone more compact and convenient. Packed and carried.
  • the arm 11 is folded away from the intermediate portion 2 and the lower body portion 3 by the folding mechanism 17, It is also possible to make the arm 11 parallel to the body and to narrow the width of the drone, but with respect to the folding mode of Fig. 3, the folded-back manner is adopted, and the folded length is long.
  • the upper body portion 11 further includes a top cover 19 and a mounting seat 16 that can be fastened, and each of the arm 11 is mounted on the mounting seat by a folding mechanism 17. 16 is between the top cover 19.
  • the interior of the upper body portion 1 is also provided with a GPS module 18.
  • the GPS module 18 is mainly used for GPS positioning of an unmanned aerial vehicle and its subject.
  • top cover 19 and the mounting seat 16 are fastened to have a certain space between the two, and the folding mechanism 17, the GPS module 18, the connecting line and other auxiliary components can be enclosed in the space, so that the appearance of the drone It looks neat and can protect the internal components.
  • the UAV may be a quadcopter, and the quadcopter may include four arms 11 , and each of the arms 11 is provided with a paddle 13 .
  • Each of the blades 13 is connected to the arm 11 by a motor 15, and the wire connected to the motor 15 can extend downward from the center position of the upper body portion 1 to the lower body portion 3, and is connected to the control unit 33, thereby controlling The assembly 33 controls the direction of rotation and speed of each motor and the like.
  • the shock absorbing assembly 21 includes at least one shock absorbing ball 211.
  • Each of the shock absorbing balls 211 is installed between the upper body portion 1 and the lower body portion 3.
  • An exemplary mounting manner is that the lower edge of the mounting seat 16 of the upper body portion 1 is provided with a stepped structure, and the upper edge of the casing 31 of the lower body portion 3 is provided with a stepped structure, by which the mounting seat 16 is The lower surface of the casing 31 and the upper surface of the casing 31 have a concave shape to block and mount each of the shock absorbing balls 211 between the mount 16 and the casing 31.
  • a concave curved surface may be provided at a corresponding mounting position of each of the shock absorbing balls to mount and block the offset of the shock absorbing balls 211.
  • the damping ball may be a sphere, an elliptical sphere, or other shapes similar to the sphere, or even other irregular shapes, as long as the shock absorption effect can be achieved. Just fine.
  • each side of the casing 31 adopts a smooth curved transitional connection.
  • the casing 31 may include, but is not limited to, four sides, and the connection position of each two adjacent sides is a smooth curved transition, which can reduce the wind resistance generated during flight and increase the stability of flight.
  • the lower body portion 3 further includes a battery assembly 35.
  • the battery assembly 35 includes, but is not limited to, a rechargeable battery, a dry battery, and the like.
  • control assembly 33 and the battery assembly 35 are preferably vertically discharged inside the casing 31.
  • the flight control main board (example of the control component 33) and the battery inside the fuselage adopt vertical discharge, which is beneficial to reduce the overall size of the fuselage, and is vertically downward, and it is easy to find the center of gravity of the aircraft.
  • the lower body portion 3 further includes a load such as a pan/tilt head 37, and the pan/tilt head 37 may be used to install a device such as a camera.
  • the aircraft arm and the fuselage can have a substantially vertical structure during flight, and have a more stable and novel flight attitude. Moreover, by setting the folding mechanism, it is more convenient to carry the unmanned aerial vehicle.
  • the unmanned aerial vehicle of the embodiment of the invention is a new type of unmanned aerial vehicle layout, which breaks the conventional flight attitude of the unmanned aerial vehicle. Among them, the vibration generated by the upper body part can be greatly weakened or even zero through the shock absorbing component of the middle part, thereby making the flight more balanced.
  • the arm can be folded parallel to the body by the folding mechanism, which can make the drone more compact and convenient for packaging and carrying.
  • each side of the casing adopts a smooth curved transitional connection, which can reduce the wind resistance generated during flight and increase the stability of the flight.
  • the use of the unmanned aerial vehicle of the embodiment of the present invention is advantageous for making the unmanned aerial vehicle more widely used.

Abstract

一种无人飞行器,包括:上身部分(1)、中间部分(2)和下身部分(3);上身部分(1)包括:至少一个机臂(11),每个机臂上设置有至少一个桨叶(13),每个所述桨叶通过对应的电机(15)连接到所述机臂上;中间部分包括减震组件(21);下身部分包括:机壳(31),所述机壳内设置有与所述电机连接的控制组件(33),所述控制组件用于控制所述电机带动对应的桨叶旋转。该无人飞行器采用全新无人机布局方式,而且中间部分的减震组件可以大大减弱上身部分产生的震动,从而使得飞行更加平衡。

Description

无人飞行器
交叉引用
本申请主张2016年4月8日提交的中国专利申请号为201610218132.0的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及无人飞行器技术领域,尤其涉及一种新型结构的无人飞行器。
背景技术
四轴飞行器(Quadrotor)是一种多旋翼飞行器。四轴飞行器的四个螺旋桨都是电机直连的简单机构,十字形的布局允许飞行器通过改变电机转速获得旋转机身的力,从而调整自身姿态。近年来得益于微机电控制技术的发展,稳定的四轴飞行器得到了广泛的关注,应用前景十分可观。但因为它固有的复杂性,在布局上有很大的限制,致使目前国内市面上比较成熟的无人机研发公司采用的飞行结构布届是千篇一律,飞行时机身都是平行于地面的姿态,并且在包装携带方面也是极为不便。
发明内容
技术问题
有鉴于此,本发明要解决的技术问题是,无人飞行器姿态布局单调,携带不便,飞行不稳等问题。
解决方案
为了解决上述技术问题,根据本发明的一实施例,提供了一种无人飞行 器,包括:上身部分、中间部分和下身部分;
所述上身部分包括:至少一个机臂,每个机臂上设置有至少一个桨叶,每个所述桨叶通过对应的电机连接到所述机臂上;
所述中间部分包括减震组件;
所述下身部分包括:机壳,所述机壳内设置有与所述电机连接控制组件,所述控制组件用于控制所述电机带动对应的桨叶旋转。
对于上述无人飞行器,在一种可能的实现方式中,所述机臂在展开状态下所处的平面与所述无人飞行器的机身垂直。
对于上述无人飞行器,在一种可能的实现方式中,所述机臂上远离所述桨叶的一端设置有折叠机构。
对于上述无人飞行器,在一种可能的实现方式中,所述机臂通过所述折叠机构朝向所述中间部分和所述下身部分折叠。
对于上述无人飞行器,在一种可能的实现方式中,所述机臂在折叠状态下与所述无人飞行器的机身平行。
对于上述无人飞行器,在一种可能的实现方式中,所述上身部分还包括能够扣合的顶盖和安装座,各所述机臂通过折叠机构安装在所述安装座与所述顶盖之间。
对于上述无人飞行器,在一种可能的实现方式中,所述上身部分的内部还设置有GPS模块。
对于上述无人飞行器,在一种可能的实现方式中,包括四个机臂,每个机臂上设置有一个桨叶。
对于上述无人飞行器,在一种可能的实现方式中,所述减震组件包括至少一个减震球。
对于上述无人飞行器,在一种可能的实现方式中,所述下身部分还包括电池组件。
对于上述无人飞行器,在一种可能的实现方式中,所述控制组件与所述电池组件竖直排放在所述机壳内部。
对于上述无人飞行器,在一种可能的实现方式中,所述机壳的下部连接有云台。
对于上述无人飞行器,在一种可能的实现方式中,机壳的各个侧面采用圆滑曲面过渡连接。
有益效果
本发明实施例的无人飞行器是一种全新无人机布局方式,打破了无人飞行器的常规飞行姿态。其中,上身部分产生的震动通过中间部分的减震组件可以大大的减弱甚至为零,从而使得飞行更加平衡。
进一步地,机臂通过折叠机构可折叠至与机身平行,能够使无人机更加小巧,方便包装和携带。
进一步地,机壳的各个侧面采用圆滑曲面过渡连接,可以减小飞行时产生的风阻,增加飞行的稳定性。
因此,采用本发明实施例的无人飞行器,有利于使无人飞行器更加广泛的应用。
根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
图1示出根据本发明一实施例的无人飞行器的立体展开结构示意图;
图2示出根据本发明一实施例的无人飞行器的爆炸立体结构示意图;
图3示出为本发明另一实施例的无人飞行器的折叠状态结构示意图;
图4示出为本发明另一实施例的无人飞行器的减震球的结构示意图。
具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
图1示出根据本发明一实施例的无人飞行器的立体展开结构示意图。如图1所示,该无人飞行器(也可以称为无人驾驶飞行器、无人机等)主要包括:上身部分1、中间部分2和下身部分3;
图2示出根据本发明一实施例的无人飞行器的爆炸立体结构示意图。如图2所示,所述上身部分1包括:至少一个机臂11,每个机臂11上设置有至少一个桨叶13,每个所述桨叶13通过对应的电机15连接到所述机臂11上;
所述中间部分2包括减震组件21;
所述下身部分3包括:机壳31,所述机壳31内设置有与所述电机15连接控制组件33,所述控制组件33用于控制所述电机15带动对应的桨叶13旋转。
优选地,机臂在展开状态下所处的平面与所述无人飞行器的机身垂直。例如,在机身竖直朝下的情况下,可以认为机臂在展开状态下所处的平面与地平面大致平行。其中,机臂在展开状态下所处的平面优选为由各机臂上与无人机中心轴距离相同的几个点确定的平面,也可以采用其他方式确定,例 如通过桨叶位置确定等。此外,无人机的机身可以是指下身部分,也可以是指包括上身部分(除了机臂之外的壳体)、中间部分以及下身部分,或者将无人机的中心轴线认为是机身。例如,可以认为机臂在展开状态下所处的平面与无人飞行器的中心轴线是大致垂直的。
本实施例的无人飞行器分为上中下几个部分,使得机臂(也可以称为机翼)、桨叶等用于飞行的组件位于其他组件的上方,在机臂展开状态下,无人飞行器的飞行姿态是机臂与机身大致垂直的,打破了常规无人飞行器的平行布局,视觉上更加新颖,耐看。
并且,在飞行时上身部分1产生的震动通过中间部分2的减震组件21可以大大的减弱甚至为零,从而使得飞行更加平衡。
图3示出为本发明另一实施例的无人飞行器的折叠状态结构示意图。如图2和图3所示,在一种可能的实现方式中,所述机臂11上远离所述桨叶13的一端设置有折叠机构17。
优选地,所述机臂11通过所述折叠机构17朝向所述中间部分2和所述下身部分3折叠。
优选地,所述机臂11在折叠状态下与所述无人飞行器的机身平行。例如,在机身竖直朝下的情况下,可以认为机臂在折叠状态下与地平面大致垂直。
本实施例所说的垂直或平行,并不限定为物理意义上的绝对的垂直或平行,而是指在肉眼可辨识范围内的大致垂直或平行。也即是说,机臂11在展开状态下所处的平面与无人飞行器的机身的夹角也可以不是90度,而稍微大于或小于90度;机臂11在折叠状态下与无人飞行器的夹角也可以不是0度,而稍微大于或小于0度。
具体而言,与图1所示的展开状态相比,在无需飞行时,如图3所示,机臂11通过折叠机构17可折叠至与机身平行,能够使无人机更加小巧,方便包装和携带。当然,机臂11通过折叠机构17背离中间部分2和下身部分3折叠, 也能够使得机臂11与机身平行,并且使得无人机的宽度变窄,但相对于图3的折叠方式来说,采用背离的折叠方式,折叠后的长度较长。
在一种可能的实现方式中,如图2所示,所述上身部分11还包括能够扣合的顶盖19和安装座16,各所述机臂11通过折叠机构17安装在所述安装座16与所述顶盖19之间。
在一种可能的实现方式中,所述上身部分1的内部还设置有GPS模块18。GPS模块18主要用于对无人飞行器以及其拍摄对象等进行GPS定位。
其中,顶盖19和安装座16扣合后二者之间具有一定的空间,折叠机构17、GPS模块18、连接线以及其他辅助的元件,可以包围在空间内,以使得无人机的外观看起来整洁,并能够起到保护各内部元件的作用。
在一种可能的实现方式中,如图1所示,所述无人飞行器可以为四轴飞行器,四轴飞行器可以包括四个机臂11,每个机臂11上设置有一个桨叶13。每个桨叶13通过一个电机15连接到机臂11上,并且与电机15连接的导线可以从上身部分1的中心位置向下延伸一直到下身部分3,并与控制组件33连接,从而通过控制组件33来控制各电机的旋转方向和速度等。
在一种可能的实现方式中,如图4所示,所述减震组件21包括至少一个减震球211。各减震球211被安装在上身部分1和下身部分3之间。一种示例性的安装方式为,上身部分1的安装座16的下面边缘设置有台阶结构,下身部分3的机壳31的上面边缘设置有台阶结构,通过这两个台阶结构使得安装座16的下面以及机壳31的上面呈凹形状,从而将各减震球211阻挡并安装在安装座16与机壳31之间。此外,也可以在每个减震球对应的安装位置设置凹形曲面,以安装并阻挡减震球211的偏移。需要说明的是,本发明实施例并不限定减震球的数量和形状,减震球可以为球体、椭圆球体或者与球体类似的其他形状,甚至是其他不规则形状,只要能够实现减震作用即可。
在一种可能的实现方式中,所述机壳31的各个侧面采用圆滑曲面过渡连 接。如图1所示,机壳31可以包括但不限于4各侧面,每两个相邻的侧面的连接位置为圆滑曲面过渡,可以减小飞行时产生的风阻,增加飞行的稳定性。
在一种可能的实现方式中,所述下身部分3还包括电池组件35。电池组件35包括但不限于充电电池、干电池等。
在一种可能的实现方式中,所述控制组件33与所述电池组件35优选为竖直排放在所述机壳31内部。其中,机身内部的飞控主板(控制组件33的示例)、电池等零件采用竖直排放,有利于减小机身的整体尺寸,并且竖直朝下,容易找到飞行器重心。
在一种可能的实现方式中,所述下身部分3还包括云台37等负载,例如云台37可以用于安装摄像机等设备。
本发明实施例的无人飞行器,在飞行时,机臂与机身能够呈大致垂直的结构,具有更加稳定、新颖的飞行姿态。并且,通过设置折叠机构,使得无人飞行器携带保存更加方便。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
实用性
本发明实施例的无人飞行器是一种全新无人机布局方式,打破了无人飞行器的常规飞行姿态。其中,上身部分产生的震动通过中间部分的减震组件可以大大的减弱甚至为零,从而使得飞行更加平衡。
进一步地,机臂通过折叠机构可折叠至与机身平行,能够使无人机更加小巧,方便包装和携带。
进一步地,机壳的各个侧面采用圆滑曲面过渡连接,可以减小飞行时产生的风阻,增加飞行的稳定性。
因此,采用本发明实施例的无人飞行器,有利于使无人飞行器更加广泛的应用。

Claims (13)

  1. 一种无人飞行器,其特征在于,包括:上身部分、中间部分和下身部分;
    所述上身部分包括:至少一个机臂,每个机臂上设置有至少一个桨叶,每个所述桨叶通过对应的电机连接到所述机臂上;
    所述中间部分包括减震组件;
    所述下身部分包括:机壳,所述机壳内设置有与所述电机连接控制组件,所述控制组件用于控制所述电机带动对应的桨叶旋转。
  2. 根据权利要求1所述的无人飞行器,其特征在于,所述机臂在展开状态下所处的平面与所述无人飞行器的机身垂直。
  3. 根据权利要求1所述的无人飞行器,其特征在于,所述机臂上远离所述桨叶的一端设置有折叠机构。
  4. 根据权利要求3所述的无人飞行器,其特征在于,所述机臂通过所述折叠机构朝向所述中间部分和所述下身部分折叠。
  5. 根据权利要求3所述的无人飞行器,其特征在于,所述机臂在折叠状态下与所述无人飞行器的机身平行。
  6. 根据权利要求2所述的无人飞行器,其特征在于,所述上身部分还包括能够扣合的顶盖和安装座,各所述机臂通过折叠机构安装在所述安装座与所述顶盖之间。
  7. 根据权利要求1至6中任一项所述的无人飞行器,其特征在于,所述上身部分的内部还设置有GPS模块。
  8. 根据权利要求1至6中任一项所述的无人飞行器,其特征在于,包括四个机臂,每个机臂上设置有一个桨叶。
  9. 根据权利要求1至6中任一项所述的无人飞行器,其特征在于,所述减震组件包括至少一个减震球。
  10. 根据权利要求1至6中任一项所述的无人飞行器,其特征在于,所述 下身部分还包括电池组件。
  11. 根据权利要求10所述的无人飞行器,其特征在于,所述控制组件与所述电池组件竖直排放在所述机壳内部。
  12. 根据权利要求1至6中任一项所述的无人飞行器,其特征在于,所述机壳的下部连接有云台。
  13. 根据权利要求1至6中任一项所述的无人飞行器,其特征在于,所述机壳的各个侧面采用圆滑曲面过渡连接。
PCT/CN2016/086311 2016-04-08 2016-06-17 无人飞行器 WO2017173733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610218132.0 2016-04-08
CN201610218132.0A CN105691589B (zh) 2016-04-08 2016-04-08 无人飞行器

Publications (1)

Publication Number Publication Date
WO2017173733A1 true WO2017173733A1 (zh) 2017-10-12

Family

ID=56219488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086311 WO2017173733A1 (zh) 2016-04-08 2016-06-17 无人飞行器

Country Status (2)

Country Link
CN (1) CN105691589B (zh)
WO (1) WO2017173733A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968727B1 (ko) * 2017-11-24 2019-04-12 주식회사 위즈윙 무인 비행체
CN112224417A (zh) * 2020-09-22 2021-01-15 南京航空航天大学 一种装备模块化嵌入式起落装置的飞行器及其应用方法
CN113879524A (zh) * 2020-07-02 2022-01-04 海鹰航空通用装备有限责任公司 一种旋翼飞行器和控制方法
CN114132492A (zh) * 2020-09-03 2022-03-04 苏州臻迪智能科技有限公司 一种智能设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106005413A (zh) * 2016-07-22 2016-10-12 珠海银通农业科技有限公司 多元化折叠式无人机
CN106240807B (zh) * 2016-07-28 2018-08-28 上海航天控制技术研究所 一种集光电探测一体化的无人机
CN106184794A (zh) * 2016-08-30 2016-12-07 成都汇丁科技有限公司 一种用于航拍的无人机
CN106376208B (zh) * 2016-11-29 2021-12-03 北京博瑞空间科技发展有限公司 具有机架加强结构的无人机
CN107226209B (zh) * 2017-06-05 2023-12-01 歌尔科技有限公司 一种无人机单元及一种组合式无人机
CN107585306A (zh) * 2017-09-30 2018-01-16 深圳市道通智能航空技术有限公司 一种无人飞行器
WO2019084815A1 (zh) * 2017-10-31 2019-05-09 深圳市大疆创新科技有限公司 无人机
CN109279017B (zh) * 2018-11-16 2022-04-19 华东理工大学 一种纳型可折叠查证无人机
CN112224411B (zh) * 2020-10-30 2021-10-22 北京特种机械研究所 一种微小型无人机
CN114775479A (zh) * 2022-05-12 2022-07-22 江苏尤特斯新技术有限公司 一种警用无人机式智能警示路锥

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104386249A (zh) * 2014-11-17 2015-03-04 马鞍山市靓马航空科技有限公司 一种快速测绘多旋翼无人机及其测绘方法
CN204750563U (zh) * 2015-06-18 2015-11-11 陈克朋 一种折叠式农用植保无人机
CN204776013U (zh) * 2015-06-04 2015-11-18 东莞中寰智能航空科技有限公司 一种六轴无人机
CN204998749U (zh) * 2015-09-24 2016-01-27 向曼 可折叠机架
CN205131646U (zh) * 2015-11-16 2016-04-06 湖南云顶智能科技有限公司 一种大载重无人机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2888144C (en) * 2012-10-19 2021-06-01 Aeryon Labs Inc. Hovering unmanned aerial vehicle
CN204527625U (zh) * 2015-02-13 2015-08-05 湖北大秀天域科技发展有限公司 多功能单兵无人机
CN105000163B (zh) * 2015-08-23 2017-12-08 代一泓 一种向下折叠式多旋翼无人飞行器
CN105366048B (zh) * 2015-11-30 2018-12-11 易瓦特科技股份公司 多旋翼无人飞行设备
CN205574258U (zh) * 2016-04-08 2016-09-14 北京博瑞爱飞科技发展有限公司 无人飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104386249A (zh) * 2014-11-17 2015-03-04 马鞍山市靓马航空科技有限公司 一种快速测绘多旋翼无人机及其测绘方法
CN204776013U (zh) * 2015-06-04 2015-11-18 东莞中寰智能航空科技有限公司 一种六轴无人机
CN204750563U (zh) * 2015-06-18 2015-11-11 陈克朋 一种折叠式农用植保无人机
CN204998749U (zh) * 2015-09-24 2016-01-27 向曼 可折叠机架
CN205131646U (zh) * 2015-11-16 2016-04-06 湖南云顶智能科技有限公司 一种大载重无人机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968727B1 (ko) * 2017-11-24 2019-04-12 주식회사 위즈윙 무인 비행체
CN113879524A (zh) * 2020-07-02 2022-01-04 海鹰航空通用装备有限责任公司 一种旋翼飞行器和控制方法
CN114132492A (zh) * 2020-09-03 2022-03-04 苏州臻迪智能科技有限公司 一种智能设备
CN112224417A (zh) * 2020-09-22 2021-01-15 南京航空航天大学 一种装备模块化嵌入式起落装置的飞行器及其应用方法

Also Published As

Publication number Publication date
CN105691589A (zh) 2016-06-22
CN105691589B (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2017173733A1 (zh) 无人飞行器
US10710718B2 (en) Personal flight vehicle
US11912404B2 (en) Vertical takeoff and landing aircraft
EP3464061B1 (en) Propeller-hub assembly with folding blades for vtol aircraft
CN106081084B (zh) 一种便携式可折叠球形无人机
CN108698682B (zh) 无人飞行器及其机架、套件、组装方法、以及操作方法
JP2005280412A (ja) リング状の翼構造を有する航空機
CN206954498U (zh) 一种垂直起降无人机升降式起落架
CN205574258U (zh) 无人飞行器
CN205721377U (zh) 一种多旋翼飞行器
CN106428527A (zh) 一种螺旋桨双轴矢量伺服变向装置及垂直起降固定翼无人机
JP7244084B2 (ja) 電子部品及び当該電子部品を取り付けた飛行体
RU127039U1 (ru) Аэробайк
CN213735541U (zh) 一种扑翼飞行器
CN108583867A (zh) 一种扭矩自平衡三涵道风扇仿生飞行器
JP2023108065A (ja) 有人飛行体
CN208134626U (zh) 一种一轴碟形飞行器
CN207328807U (zh) 一种仿生球形结构无人机
CN106927033B (zh) 一种立式共轴双旋翼飞行器
CN109987221B (zh) 一种无人机
CN207748013U (zh) 一种单轴飞行器
CN206926819U (zh) 一种带翼桨的无人机的连接结构
CN112340022A (zh) 双旋翼无人机
WO2018070867A1 (en) Aerial vehicle with angularly displaced propulsion units
CN210364377U (zh) 一种非常规偏航无人驾驶飞行器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897666

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897666

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16897666

Country of ref document: EP

Kind code of ref document: A1