WO2017171389A2 - 방열 카트리지 및 이를 이용한 전기자동차용 전지팩 - Google Patents

방열 카트리지 및 이를 이용한 전기자동차용 전지팩 Download PDF

Info

Publication number
WO2017171389A2
WO2017171389A2 PCT/KR2017/003398 KR2017003398W WO2017171389A2 WO 2017171389 A2 WO2017171389 A2 WO 2017171389A2 KR 2017003398 W KR2017003398 W KR 2017003398W WO 2017171389 A2 WO2017171389 A2 WO 2017171389A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
batteries
frame
cartridge
Prior art date
Application number
PCT/KR2017/003398
Other languages
English (en)
French (fr)
Other versions
WO2017171389A3 (ko
Inventor
황승재
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160037556A external-priority patent/KR20170113904A/ko
Priority claimed from KR1020160037559A external-priority patent/KR20170113905A/ko
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to EP17775813.3A priority Critical patent/EP3442075A4/en
Priority to US16/086,918 priority patent/US11177518B2/en
Priority to CN201780020716.XA priority patent/CN108886185B/zh
Publication of WO2017171389A2 publication Critical patent/WO2017171389A2/ko
Publication of WO2017171389A3 publication Critical patent/WO2017171389A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat dissipation cartridge, and more particularly, a heat dissipation cartridge capable of reducing manufacturing costs, improving heat dissipation characteristics, obtaining uniform heat dissipation performance, and excellent rigidity and preventing deformation. It relates to a battery pack for an electric vehicle used.
  • a secondary battery As the thin energy storage device, a secondary battery is used, and the use of a lithium secondary battery capable of driving high energy density and high output among secondary batteries is increasing.
  • Lithium secondary battery is made of a pouch-type battery to achieve a thin structure, the pouch-type battery has the advantage of obtaining a high capacity battery in a small area by connecting a large number.
  • Korean Patent Laid-Open Publication No. 2009-0107443 is a heat dissipation plate inserted between layers of battery cells, and is composed of a composite sheet in which a matrix resin is filled with a thermally conductive filler, and carbon fibers inserted into the composite sheet.
  • a heat dissipation plate for a battery cell module wherein the fibers are inserted to extend from the inside of the composite sheet to the edge of the heat dissipation plate.
  • the heat dissipation plate of the prior art is inserted between layers between the battery cells when stacking batteries, the thickness of the laminated module is thickened as the thickness of the heat dissipation plate is added, so that a large number of batteries cannot be stacked in the same area, thereby reducing the capacity. There is a problem.
  • the prior art has the disadvantage that the manufacturing cost is further increased by the number of added heat radiation plate.
  • the present invention has been made in view of the above, the object is to reduce the manufacturing cost, improve the heat dissipation characteristics, obtain a uniform heat dissipation performance, excellent rigidity and heat dissipation that can prevent deformation To provide a cartridge and a battery pack for an electric vehicle using the same.
  • Another object of the present invention is to provide a heat dissipation cartridge and a battery pack for an electric vehicle using the same that can realize a high capacity by stacking a large number of batteries in the same area.
  • Still another object of the present invention is to provide a heat dissipation cartridge capable of efficiently dissipating heat generated from a battery, and a battery pack for an electric vehicle using the same.
  • a heat dissipation cartridge is a frame structure which is formed of heat dissipation plastic and can accommodate a pair of batteries, the frame structure comprising: a receiving through hole provided in a central area; And a seating part formed on a sidewall of the accommodation through hole to seat the pair of batteries.
  • the frame structure includes a heat dissipation plastic frame having a seating portion surrounding a receiving through-hole accommodating the pair of batteries and arranged at both ends in a longitudinal direction thereof; And an aluminum frame integrated into an outer side of the seating part along a length direction of the heat dissipation plastic frame.
  • the aluminum frame may further include an oxide film layer made of alumina (Al 2 O 3 ) formed by anodizing the surface of the aluminum frame to maintain insulation, and irregularities may be formed on the surface of the oxide film layer.
  • oxide film layer made of alumina (Al 2 O 3 ) formed by anodizing the surface of the aluminum frame to maintain insulation, and irregularities may be formed on the surface of the oxide film layer.
  • the heat dissipation plastic frame may further include an insulating plastic plate inserted into the heat dissipation plastic frame, and the pair of batteries may be pouch type batteries, and electrode terminals of the pouch type battery may be mounted on the insulating plastic plate to be assembled. .
  • the heat dissipation plastic frame and the insert-molded heat dissipation metal plate may be further included in order to quickly dissipate heat generated from the battery.
  • the heat dissipation metal plate may be insert molded in a heat dissipation plastic frame region proximate the seating portion.
  • One side of the heat dissipating metal plate may be exposed to the outside to be in contact with a heat exchanger such as a cooling module to quickly transfer heat therein to the heat exchanger, thereby improving heat dissipation characteristics.
  • a heat exchanger such as a cooling module to quickly transfer heat therein to the heat exchanger, thereby improving heat dissipation characteristics.
  • it may further include a TIM (Thermal Interface Material) injected into the mounting portion of the heat dissipation plastic frame, the TIM may be coupled to the coupling groove formed in the mounting portion.
  • a TIM Thermal Interface Material
  • the seating portion may be a protrusion protruding from the side wall of the accommodation through hole so as to horizontally divide the side wall of the accommodation through hole.
  • the heat dissipating plastic may be a moldable resin in which an insulating heat dissipating filler is dispersed, and a depth of the receiving through hole may be substantially equal to or greater than a thickness of the pair of batteries.
  • the heat dissipation cartridge according to an embodiment of the present invention is made of heat dissipation plastic and has a seating portion surrounding a receiving through-hole for accommodating a pair of batteries, the heat dissipation plastic frame arranged at both ends in the longitudinal direction; And a pair of aluminum frames integrated on the outside of the seating portion along the longitudinal direction of the heat dissipating plastic frame.
  • the battery pack for an electric vehicle may be implemented by stacking a plurality of heat dissipation cartridges described above.
  • the present invention by inserting a low-cost aluminum frame by injection molding a heat-dissipating plastic frame to implement a heat dissipation cartridge, it is possible to significantly lower the manufacturing cost, improve heat dissipation characteristics, excellent rigidity and prevent deformation have.
  • a pair of batteries can be mounted in the receiving through-hole of the heat dissipation cartridge having a thickness substantially equal to the thickness of the pair of batteries. Since it can be built in, the battery pack can be made slim, thin and high in capacity.
  • a pair of batteries mounted on the heat dissipation cartridge is in contact with or close to the seating portion protruding from the side wall of the receiving through-hole, so that heat generated by the battery can be quickly dissipated through the seating portion.
  • a TIM Thermal Interface Material
  • heat generated from the battery can be quickly released to the outside through the mounting portion and the metal plate.
  • FIG. 1 is a plan view of a heat radiation cartridge according to a first embodiment of the present invention
  • FIG. 2 is a plan view of a battery mounted state in a heat radiation cartridge according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a state in which a pair of batteries are mounted in a heat radiation cartridge according to a first embodiment of the present invention
  • FIG. 4 is a conceptual perspective view of a battery pack for an electric vehicle according to the present invention.
  • FIG. 5 is a partial cross-sectional view showing a state where a metal plate is formed in a heat radiation cartridge according to a first embodiment of the present invention
  • 6A and 6B are partial cross-sectional views of a state in which a TIM is coupled to a seating portion of a heat radiation cartridge according to a first embodiment of the present invention
  • FIG. 7 is a plan view of a heat radiation cartridge according to a second embodiment of the present invention.
  • FIG. 8 is a plan view of the battery is mounted on the heat radiation cartridge according to a second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a pair of batteries mounted on a heat radiation cartridge according to a second embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view of an oxide film layer formed on an aluminum frame applied to a heat radiation cartridge according to a second embodiment of the present invention.
  • FIG. 11 is a conceptual perspective view of a battery pack for an electric vehicle according to a second embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional view showing a state where a metal plate is formed in a heat radiation cartridge according to a second embodiment of the present invention.
  • FIGS. 13A and 13B are partial cross-sectional views of a state in which a TIM is coupled to a seating portion of a heat radiation cartridge according to a second embodiment of the present invention
  • FIG. 14 is a partial plan view illustrating a state in which an insulating plastic is formed on a heat dissipating plastic frame of a heat dissipating plastic according to a second embodiment of the present invention.
  • the heat dissipation cartridge 300 includes a frame structure 100 that is injection molded into a heat dissipation plastic to accommodate a pair of batteries, and the frame structure 100
  • the receiving through-hole 110 is provided in the central area; And a seating part 120 formed on a sidewall of the accommodation through hole 110 to seat the pair of batteries.
  • the seating part 120 is a protrusion protruding from the side wall of the accommodation through hole 110 so as to horizontally divide the side wall of the accommodation through hole 110, the accommodation through hole through the top and bottom of the frame structure 100.
  • a pair of batteries may be inserted into 110 to be seated.
  • the seating unit 120 may be formed along the sidewall of the accommodation through hole 110, and may be formed in a plurality of areas of the sidewall of the accommodation through hole 110.
  • the battery is a thin energy storage device is preferably a pouch type battery that is electrochemically charged and discharged with high energy density and high power drive.
  • the pouch type battery is manufactured by sealing two electrodes, a separator, and an electrolyte in a pouch.
  • Heat dissipation plastics include non-insulating moldable resins in which electrically conductive heat dissipating fillers made of graphene and carbon are dispersed, and insulating moldable resins insulating insulating heat dissipating fillers such as BN, AlN, MgO, Al 2 O 3 , and SiO 2 .
  • an insulation heat dissipation plastic using an insulation heat dissipation filler is used, which can be defined as injection molding in a mold, and heat dissipation transferred by the heat dissipation filler, and insulation by heat insulation filler and resin Has
  • the heat dissipation cartridge 300 containing the heat dissipation filler can dissipate heat generated by charging and discharging of the battery.
  • the heat exchanger cools the heat transferred to the heat dissipation cartridge 300.
  • the heat exchanger may use any possible heat exchanger capable of lowering the temperature of the heat dissipation cartridge 300 such as an air-cooled heat exchanger such as a cooling fan and a water-cooled heat exchanger using cooling water.
  • the battery is mounted on the heat dissipation cartridge 300, so that heat generated from the battery can be efficiently dissipated.
  • the heat dissipation cartridge 300 receives the first battery 201 from the upper portion of the frame structure 100 by the mounting portion 120 and receives the first battery 201 in the divided region of the accommodation through hole 110.
  • the battery (not shown) is mounted to the seating part 120 at the bottom of the frame structure 100 to be accommodated in the remaining partitions of the accommodation through hole 110.
  • the electrode terminals of the first and second batteries 201 are not positioned inside the receiving through hole 110 and are in close contact with the frame structure 100. That is, as illustrated in FIG. 2, the electrode terminals 201a and 201b of the first battery 201 are in close contact with the frame structure 100 of the heat dissipation cartridge.
  • the edge area of the pouch battery has a greater heat generation than the inner area.
  • the edges of the first and second batteries 201 are provided.
  • the mounting portion 120 of the frame structure 100 is interposed between the regions.
  • FIG. 3 is a cross-sectional view taken along the line a-a 'of FIG. 2 to describe a state in which a pair of batteries is mounted in the heat dissipation cartridge according to the first embodiment of the present invention.
  • the heat dissipation cartridge 300 is assembled with the first and second batteries 201 and 202 accommodated in the receiving through-hole 110 of the frame structure 100.
  • the receiving through-hole 110 of the heat dissipation cartridge 300 is divided into two regions due to the seating portion 120 positioned between the edges of the first and second batteries 201 and 202, and the two regions are divided into two regions.
  • the first and second batteries 201 and 202 are accommodated, respectively, to obtain a smooth assembly alignment.
  • the heat dissipation cartridge 300 is designed to incorporate two batteries, that is, the first and second batteries 201 and 202 in the receiving through hole 110.
  • the depth D of the accommodation through hole 110 of the heat dissipation cartridge 300 may be substantially the same as or slightly greater than the thickness t1 + t2 of the two batteries 201.
  • the battery 201 does not protrude to the laminated surface of the heat dissipation cartridge 300.
  • Heat dissipation cartridge 300 can be implemented as a battery pack 510 for electric vehicles by stacking a plurality, as shown in FIG.
  • a pair of batteries 201 are mounted on the heat dissipation cartridge 300, and a plurality of heat dissipation cartridges 300 are stacked to assemble the battery pack 510 for an electric vehicle, thereby stacking the stacked battery thicknesses (that is, FIG.
  • the thickness t of the heat dissipation cartridge 300 of 4 may be substantially the same as that of the battery pack 510 for the electric vehicle.
  • the battery pack 510 for the electric vehicle of the present invention is slim and light, and has the advantage of obtaining a high capacity battery pack 510.
  • 149 heat dissipation fins or a heat dissipation plate are required between the batteries. It cannot be made thinner and battery capacity can not be assembled as much as 149 heat dissipation fins or heat dissipation plates in the battery pack.
  • the heat dissipation cartridge 300 may insert mold the heat dissipation metal plate 150 having high thermal conductivity into the frame structure 100 of the heat dissipation cartridge.
  • the heat dissipation metal plate 150 may be insert molded in the region of the frame structure 100 adjacent to the seating part 120.
  • the heat dissipation metal plate 150 faces the mounting portion 120 protruding from an area of the frame structure 100 corresponding to the mounting portion 120, that is, the side wall of the receiving through-hole of the frame structure 100. Insert molded in the region of the frame structure 100, the heat dissipation metal plate 150 can quickly discharge the heat generated from the battery to the outside through the mounting portion 120 and the heat dissipation metal plate 150.
  • the heat dissipation metal plate 150 may be made of aluminum (Al) or an alloy material thereof having excellent thermal conductivity and low cost.
  • the seating unit 120 of the frame structure 100 is located between the edge regions of the battery to dissipate heat generated from the battery, and the heat dissipation metal plate 150 is disposed from the seating unit 120. It is preferred that the insert molding be in the closest position.
  • one surface of the insert molded heat dissipation metal plate 150 is exposed to the outside to contact the heat dissipation module.
  • the heat dissipation metal plate 150 is positioned on the frame structure 100 under the seating unit 120, and the heat transferred from the battery to the seating unit 120 is rapidly transferred through the heat dissipation metal plate 150. It can be transferred to the heat exchanger 170 of the heat dissipation module.
  • the thermal interface material (TIM) 130 may be inserted injection molded so as to surround the seating portion 120 of the frame structure 100.
  • the coupling groove 121 may be formed in the seating part 120, and the TIM 130 may be coupled to the coupling groove 121.
  • the contact thermal resistance is reduced, and the air layer between the pair of batteries is reduced, thereby dissipating heat to an external heat exchanger. I can do it smoothly.
  • the type of TIM 130 is various, such as a heat dissipation grease, a heat dissipation sheet, a metal plate, and a heat conductive adhesive.
  • the heat dissipation cartridge 600 according to the second embodiment of the present invention can increase the mounting efficiency of a plurality of batteries to mount a large number of batteries in the same area, and is manufactured by insert molding an aluminum frame on an injection structure of heat dissipating plastic. It is realized by the innovative combination of cartridge structure and material to reduce the unit cost.
  • the heat dissipation cartridge 600 is formed on the side wall of the receiving through hole 610 and the receiving through hole 610 formed in the center area to accommodate a pair of batteries It is made of a frame structure including a seating portion (601a, 602a) for mounting a pair of batteries, the frame structure is characterized in that the molded aluminum heat-resistant plastic and the aluminum frame 602 is insert injection molding.
  • the frame structure has a seating portion (601a, 602a) surrounding the receiving through-hole 610 in which the pair of batteries are accommodated, the heat dissipation plastic frame (601) arranged in both ends in the longitudinal direction; And a pair of aluminum frames 602 integrated outside the seating portion 602a along the longitudinal direction of the heat dissipating plastic frame 601.
  • the battery has a rectangular shape, and thus the receiving through hole 610 and the seating portions 601a and 602a also have a rectangular shape.
  • the rectangular seating portions 601a and 602a are disposed along the longitudinal direction of the pair of first seating portions 601a and the receiving through holes 610, which are disposed to face each other in the longitudinal direction of the accommodation through holes 610. And a pair of second seating portions 602a connecting both ends of the first seating portion 601a.
  • the frame structure is also a rectangular rectangular frame structure, and the length L1 of the aluminum frame 602 is longer than the length L2 of the heat dissipation plastic frame 601.
  • the frame structure of the heat dissipation cartridge 600 is manufactured by injection molding with expensive heat dissipating plastic, the manufacturing cost may be high and marketability may be lowered.
  • the heat dissipation plastic frame is inserted by inserting a low-cost aluminum frame 602.
  • the heat dissipation cartridge 600 by injection molding only with heat dissipation plastic
  • the heat dissipation plastic which is the resin in which the heat dissipation filler is dispersed
  • the heavier heat dissipation filler does not have better flowability than the resin, and thus the heat dissipation cartridge 600.
  • the heat dissipation filler may be concentrated in a localized region so that uniform heat dissipation efficiency may not be obtained.
  • the short length frame area in the heat dissipation cartridge 600 is injection molded into the heat dissipating plastic to implement the heat dissipation plastic frame 601, and the relatively long length frame area is inserted into the aluminum frame 602, Since the injection molded size is reduced, the heat dissipation plastic frame 601 may have more uniform heat dissipation characteristics.
  • the aluminum frame 602 may have better heat conduction characteristics than the heat dissipation plastic frame 601, thereby improving heat dissipation characteristics of the heat dissipation cartridge 600.
  • the aluminum frame 602 is inserted into the heat-resistant plastic frame 601 by injection molding the frame structure By manufacturing the, it is excellent in rigidity and can prevent the occurrence of deformation, such as distortion by the external force.
  • the heat dissipation cartridge 600 is composed of a heat dissipation plastic frame 601 and an aluminum frame 602 and has a rectangular rectangular frame structure in which an accommodating through hole 610 is provided, the heat dissipation plastic frame 601 and the aluminum frame 602 are each It has a side wall of the accommodating through hole 610, and first and second seating portions 601a and 602a are formed in the side wall.
  • the seating portions 601a and 602a are protrusions protruding from the sidewalls of the accommodation through holes 610 so as to horizontally divide the sidewalls of the accommodation through holes 610 and receive the through holes through the upper and lower portions of the frame structure.
  • a pair of batteries may be inserted into 610.
  • the seating portions 601a and 602a may be formed along the sidewalls of the accommodation through hole 610, and may be formed in a plurality of areas of the sidewalls of the accommodation through hole 610.
  • the battery is preferably a pouch type battery as in the first embodiment, and the heat dissipating plastic may be a non-insulating moldable resin in which the electrically conductive heat dissipating filler is dispersed and an insulating moldable resin in which the insulating heat dissipating filler is dispersed.
  • the heat dissipation plastic dissipates heat transferred by the insulated heat dissipation filler, and has insulation by the insulated heat dissipation filler and resin.
  • the heat dissipation cartridge 600 containing the heat dissipation filler can dissipate heat generated by charging and discharging of the battery.
  • the heat exchanger cools the heat transferred to the heat dissipation cartridge 600.
  • the heat exchanger may use any possible heat exchanger capable of lowering the temperature of the heat dissipation cartridge 600 such as an air-cooled heat exchanger such as a cooling fan and a water-cooled heat exchanger using cooling water.
  • the heat dissipation cartridge 600 seats the first battery 201 on the upper part of the frame structure with the seating portions 601a and 602a to the divided area of the receiving through hole 610.
  • the second battery (not shown) may be seated in the lower parts of the frame structure to the seating portions 601a and 602a to be received in the remaining partitions of the receiving through hole 610.
  • the electrode terminals of the first and second batteries 201 are in close contact with each other on the frame structure without being located inside the receiving through hole 610. That is, as illustrated in FIG. 8, the electrode terminals 201a and 201b of the first battery 201 are in close contact with each other on the heat dissipation plastic frame 601 of the heat dissipation cartridge 600.
  • the seating portions 601a and 602a are formed in the heat dissipation plastic frame 610 and the aluminum frame 602, respectively.
  • the edge area of the pouch battery has a greater heat generation than the inner area.
  • the edges of the first and second batteries 201 are provided.
  • the seating portions 601a and 602a of the frame structure are interposed between the regions.
  • FIG. 9 is a cross-sectional view taken along line b-b 'of FIG. 8 to describe a state in which a pair of batteries is mounted in a heat radiation cartridge according to a second embodiment of the present invention.
  • the heat dissipation cartridge 600 is assembled with the first and second batteries 201 and 202 accommodated in the receiving through hole 610 of the frame structure.
  • the receiving through-hole 610 of the heat dissipation cartridge 600 is divided into two regions due to the seating portion 120 positioned between the edges of the first and second batteries 201 and 202, and the two regions are divided into two regions.
  • the first and second batteries 201 and 202 are accommodated, respectively, to obtain a smooth assembly alignment.
  • 9 shows a seating portion 601a formed in the heat dissipation plastic frame 601.
  • the heat dissipation cartridge 600 is designed to incorporate two batteries, that is, the first and second batteries 201 and 202 in the receiving through hole 610.
  • the depth D of the accommodation through hole 610 of the heat dissipation cartridge 600 may be substantially the same as or slightly greater than the thickness t1 + t2 of the two batteries 201.
  • the battery 201 does not protrude to the laminated surface of the heat dissipation cartridge 600.
  • FIG. 10 is a partial cross-sectional view of an oxide film layer formed on an aluminum frame applied to a heat radiation cartridge according to a second embodiment of the present invention.
  • the aluminum frame 602 may be anodized to form an oxide film layer 603 made of alumina (Al 2 O 3 ) on the surface of the aluminum frame 602.
  • the aluminum frame 602 when voltage is applied to the aluminum frame 602 in the electrolyte, the aluminum frame 602 may be anodized to form an oxide film layer 603 of alumina.
  • the oxide film layer 603 of alumina can increase the radiation coefficient that radiates heat well and has insulation characteristics.
  • the electrolyte may be an acidic electrolyte or an alkaline electrolyte, but an acidic electrolyte is preferably used.
  • an acidic electrolyte sulfuric acid, oxalic acid, phosphoric acid or a mixture thereof may be used.
  • the thickness of the oxide film layer 603 that requires insulation can be adjusted by adjusting the anodization time and the current density.
  • a plurality of heat dissipation cartridges 600 may be stacked and implemented as a battery pack 510 for an electric vehicle.
  • the battery 201 is mounted on the heat dissipation cartridge 600, and a plurality of heat dissipation cartridges 600 are assembled by assembling the battery pack 510 for the electric vehicle, thereby stacking the stacked battery thicknesses (ie, FIG.
  • the thickness t of the heat dissipation cartridge 600 is substantially the same as the thickness of a pair of batteries), and the battery pack 510 for the electric vehicle is manufactured to be slim and thin, and the battery pack for the high capacity electric vehicle 510 ) Has the advantage.
  • the heat dissipation cartridge 600 according to the second embodiment of the present invention like the heat dissipation cartridge 300 according to the first embodiment of the present invention shown in FIG. 5, rapidly dissipates heat generated from the battery to the outside.
  • the heat dissipation metal plate may further include a heat dissipation metal insert inserted into the heat dissipation plastic frame 601 region facing the seating portion 161a protruding from the sidewall of the receiving through-hole of the heat dissipation plastic frame 601.
  • the heat dissipation metal plate 150 having high thermal conductivity may be insert molded into the heat dissipation plastic frame 601 of the heat dissipation cartridge.
  • the heat dissipation metal plate 150 is preferably insert molded in the heat dissipation plastic frame 601 region adjacent to the mounting portion (161a).
  • the heat dissipation metal plate 150 is a mounting part 161a protruding from an area of a heat dissipation plastic frame 601 corresponding to the mounting part 161a, that is, a sidewall of the receiving through hole of the heat dissipation plastic frame 601. Insert molded in the heat dissipation plastic frame 601 region facing the heat dissipation, the heat dissipation metal plate 150 can quickly discharge the heat generated from the battery to the outside through the mounting portion 161a and the metal plate 150.
  • the heat dissipation metal plate 150 may be implemented with an aluminum material having excellent thermal conductivity and low cost.
  • the seating portion 161a of the heat dissipation plastic frame 601 of the heat dissipation cartridge is located between the edge regions of the battery to dissipate heat generated from the battery, and the heat dissipation metal plate 150 is mounted on the seating portion 161a. It is preferred that the insert molding be in the position nearest to the from.
  • one surface of the insert molded heat dissipation metal plate 150 is exposed to the outside to contact the heat dissipation module.
  • the heat dissipation metal plate 150 is positioned on the heat dissipation plastic frame 601 under the seating part 161 a, and heat is rapidly exchanged by the heat dissipation metal plate 150 from the battery to the seating part 161 a. It may be delivered to the group (170).
  • a thermal interface material (TIM) 130 may be inserted into the seating portion 161a of the heat dissipation plastic frame 601 of the heat dissipation cartridge.
  • the coupling groove 121 may be formed in the seating portion 161 a, and the TIM 130 may be coupled to the coupling groove 121.
  • the contact thermal resistance is reduced, and the air layer between the pair of batteries is reduced, thereby facilitating heat dissipation by an external heat exchanger.
  • the type of TIM 130 is various, such as a heat dissipation grease, a heat dissipation sheet, a metal plate, and a heat conductive adhesive.
  • FIG. 14 is a partial plan view illustrating a state in which an insulating plastic is formed on a heat dissipating plastic frame of a heat dissipating plastic according to a second embodiment of the present invention.
  • the electrode terminals 201a and 201b of the pouch type battery are mounted on the heat dissipation plastic frame 601 and assembled.
  • the insulating plastic plate 605 may be inserted into the region where the electrode terminals 201a and 201b of the pouch-type battery are placed, thereby injection molding the heat-dissipating plastic frame 601.
  • the electrode terminals 201a and 201b of the pouch-type battery are mounted on and in contact with the insulating plastic plate 605.
  • the present invention can be applied to a heat dissipation cartridge and a battery pack which can reduce manufacturing costs, improve heat dissipation characteristics, obtain uniform heat dissipation performance, and have excellent rigidity and prevent deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 방열 카트리지 및 이를 이용한 전기자동차용 전지팩에 관한 것으로, 방열 카트리지는 한쌍의 배터리를 수용할 수 있도록 중앙 영역에 형성된 수용 관통홀 및 상기 수용 관통홀의 측벽에 형성되어 상기 한쌍의 배터리를 안착시키는 안착부를 포함하는 프레임 구조체로 이루어지고, 상기 프레임 구조체는 방열 플라스틱으로 성형되고 알루미늄 프레임이 인서트 사출성형된 것을 특징으로 한다.

Description

방열 카트리지 및 이를 이용한 전기자동차용 전지팩
본 발명은 방열 카트리지에 관한 것으로, 더욱 상세하게는, 제조단가를 감소시키고, 방열 특성을 향상시키고, 균일한 방열 성능을 얻을 수 있고, 강성이 우수하고 변형 발생을 방지할 수 있는 방열 카트리지 및 이를 이용한 전기자동차용 전지팩에 관한 것이다.
최근, 전기자동차, 휴대용 전화기, 노트북, 디지털 카메라 등 박형의 에너지 저장장치의 수요 또한 급격히 증가되고 있다.
이와 같은 박형의 에너지 저장장치는 이차전지가 사용되고 있으며, 이차전지 중에서 고에너지밀도와 고출력 구동이 가능한 리튬이차전지의 사용이 증가되고 있다.
리튬이차전지는 파우치 형태의 배터리로 제작되어 박형의 구조를 달성하고 있고, 파우치 형태의 배터리는 다수를 연결하여 작은 면적에 고용량 전지를 얻을 수 있는 잇점이 있다.
여기서, 파우치 형태의 배터리를 다수를 연결하는 경우 용량은 증가하지만 각각의 배터리가 충방전될 때 발생된 열이 작은 면적에 집중되어 안정적으로 장시간 구동하는데 어려움이 있다.
현재, 파우치 형태의 배터리의 열을 외부로 추출하는 기술 개발이 필요한 실정이다.
한국 공개특허공보 제2009-0107443호는 배터리 셀들 사이에 층간 삽입되는 방열 플레이트로서, 매트릭스 수지에 열전도성 필러가 충전되어 이루어진 복합재 시트와, 복합재 시트의 내부에 삽입된 탄소섬유들로 구성되고, 탄소섬유들이 복합재 시트의 내부에서 방열 플레이트의 가장자리부로 연장되도록 삽입된 것을 특징으로 하는 배터리 셀 모듈용 방열 플레이트가 개시되어 있다.
선행기술의 방열 플레이트는 배터리 셀들 사이에 층간에 삽입되어 배터리를 적층하는 경우 방열 플레이트의 두께가 추가된 만큼 적층된 모듈의 두께가 두꺼워져 동일면적에 많은 수의 배터리를 적층할 수 없어 용량이 감소되는 문제점이 있다.
또한, 선행기술은 추가된 방열 플레이트의 개수만큼 제조 경비가 더 증가되는 단점이 있다.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 그 목적은 제조단가를 감소시키고, 방열 특성을 향상시키고, 균일한 방열 성능을 얻을 수 있고, 강성이 우수하고 변형 발생을 방지할 수 있는 방열 카트리지 및 이를 이용한 전기자동차용 전지팩을 제공하는 데 있다.
본 발명의 다른 목적은 동일면적에 많은 수의 배터리를 적층 조립하여 고용량을 구현할 수 있는 방열 카트리지 및 이를 이용한 전기자동차용 전지팩을 제공하는데 있다.
본 발명의 또 다른 목적은 배터리에서 발생된 열을 효율적으로 방열할 수 있는 방열 카트리지 및 이를 이용한 전기자동차용 전지팩을 제공하는데 있다.
상술된 목적을 달성하기 위한, 본 발명의 일 실시예에 의한 방열 카트리지는, 방열 플라스틱으로 성형되어 한쌍의 배터리를 수용할 수 있는 프레임 구조체이며, 상기 프레임 구조체는 중앙 영역에 마련된 수용 관통홀; 및 상기 수용 관통홀의 측벽에 형성되어 상기 한쌍의 배터리를 안착시키는 안착부;를 포함하는 것을 특징으로 한다.
상기 프레임 구조체는 상기 한쌍의 배터리가 수용되는 수용 관통홀을 둘러싸는 안착부를 가지며, 길이방향으로 양단부에 배열된 방열 플라스틱 프레임; 및 상기 방열 플라스틱 프레임의 길이방향을 따라 안착부의 외측에 일체화된 알루미늄 프레임;을 포함할 수 있다.
여기서, 상기 알루미늄 프레임이 절연성을 유지하기 위하여 상기 알루미늄 프레임의 표면이 양극산화되어 형성된 알루미나(Al2O3)로 이루어진 산화 피막층을 더 포함할 수 있고, 상기 산화 피막층의 표면에 요철이 형성될 수 있다.
또한, 상기 방열 플라스틱 프레임에 인서트 사출된 절연성 플라스틱판을 더 포함할 수 있고, 상기 한쌍의 배터리는 파우치형 배터리이고, 상기 파우치형 배터리의 전극단자가 상기 절연성 플라스틱판 상에 올려져 조립될 수 있다.
또, 배터리에서 발생된 열을 신속하게 방출하기 위하여, 상기 방열 플라스틱 프레임과 인서트 몰딩된 방열 금속판을 더 포함할 수 있다.
이때, 상기 방열 금속판은 상기 안착부에 근접된 방열 플라스틱 프레임 영역에 인서트 몰딩될 수 있다.
이러한 방열 금속판은 한면이 외부로 노출되어 냉각모듈과 같은 열교환기와 접촉하여 내부의 열을 신속하게 열교환기로 전달하여 방열특성을 높일 수 있다.
게다가, 상기 방열 플라스틱 프레임의 안착부에 인서트 사출된 TIM(Thermal Interface Material)을 더 포함할 수 있으며, 상기 안착부에 형성된 결합홈에 TIM이 결합될 수 있다.
더불어, 상기 안착부는 상기 수용 관통홀의 측벽을 수평 이분할하도록 상기 수용 관통홀의 측벽으로부터 돌출된 돌기일 수 있다.
그리고, 상기 방열 플라스틱은 절연성 방열 필러를 분산시킨 성형가능한 수지일 수 있으며, 상기 수용 관통홀의 깊이는 상기 한쌍의 배터리의 두께와 실질적으로 동일하거나 또는 클 수 있다.
본 발명의 일 실시예에 의한 방열 카트리지는 방열 플라스틱으로 이루어지며 한쌍의 배터리가 수용되는 수용 관통홀을 둘러싸는 안착부를 가지며, 길이방향으로 양단부에 배열된 방열 플라스틱 프레임; 및 상기 방열 플라스틱 프레임의 길이방향을 따라 안착부의 외측에 일체화된 한쌍의 알루미늄 프레임;을 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 의한 전기자동차용 전지팩은, 상술된 방열 카트리지가 다수 적층되어 구현될 수 있다.
본 발명에 의하면, 저가인 알루미늄 프레임을 인서트하여 방열 플라스틱 프레임을 사출성형하여 방열 카트리지를 구현함으로써, 제조단가를 획기적으로 낮출 수 있으며, 방열 특성을 향상시키고, 강성이 우수하고 변형 발생을 방지할 수 있다.
본 발명에 의하면, 방열 카트리지의 짧은 프레임 영역을 방열 플라스틱으로 사출성형하고 상대적으로 긴 프레임 영역을 알루미늄 프레임으로 인서트함으로써, 균일한 방열 특성을 가질 수 있는 효과가 있다.
본 발명에 의하면, 한쌍의 배터리 두께와 실질적으로 동일한 두께를 가지는 방열 카트리지의 수용 관통홀에 한쌍의 배터리를 장착할 수 있으므로, 다수의 방열 카트리지가 적층된 전지팩에 동일면적 대비 많은 수의 배터리를 내장할 수 있어 전지팩의 슬림화, 경박화 및 고용량화가 가능한 잇점이 있다.
본 발명에 의하면, 방열 카트리지에 장착된 한쌍의 배터리가 수용 관통홀의 측벽에 돌출된 안착부에 접촉 또는 근접되어 구동에 의해 배터리에서 발생된 열을 안착부를 통하여 신속하게 방열할 수 있는 장점이 있다.
본 발명에 의하면, 방열 플라스틱 프레임의 안착부에 TIM(Thermal Interface Material)을 인서트 사출 또는 결합하여 접촉 열저항을 감소시켜 열방출을 원활할 수 있는 효과가 있다.
본 발명에 의하면, 안착부에 근접된 방열 플라스틱 프레임 영역에 열전도도가 높은 금속판을 인서트 몰딩하여 배터리에서 발생된 열을 안착부 및 금속판을 통하여 신속하게 외부로 방출할 수 있다.
도 1은 본 발명의 제1실시예에 따른 방열 카트리지의 평면도,
도 2는 본 발명의 제1실시예에 따른 방열 카트리지에 배터리가 장착된 상태의 평면도,
도 3은 본 발명의 제1실시예에 따른 방열 카트리지에 한쌍의 배터리가 장착된 상태의 단면도,
도 4는 본 발명에 따른 전기자동차용 전지팩의 개념적인 사시도,
도 5는 본 발명의 제1실시예에 따른 방열 카트리지에 금속판이 형성된 상태를 도시한 일부 단면도,
도 6a 및 도 6b는 본 발명의 제1실시예에 따른 방열 카트리지의 안착부에 TIM이 결합된 상태의 일부 단면도,
도 7은 본 발명의 제2실시예에 따른 방열 카트리지의 평면도,
도 8은 본 발명의 제2실시예에 따른 방열 카트리지에 배터리가 장착된 상태의 평면도,
도 9는 본 발명의 제2실시예에 따른 방열 카트리지에 한쌍의 배터리가 장착된 상태의 단면도,
도 10은 본 발명의 제2실시예에 따른 방열 카트리지에 적용된 알루미늄 프레임에 산화 피막층이 형성된 상태의 일부 단면도,
도 11은 본 발명의 제2실시예에 따른 전기자동차용 전지팩의 개념적인 사시도,
도 12는 본 발명의 제2실시예에 따른 방열 카트리지에 금속판이 형성된 상태를 도시한 일부 단면도,
도 13a 및 도 13b는 본 발명의 제2실시예에 따른 방열 카트리지의 안착부에 TIM이 결합된 상태의 일부 단면도,
도 14는 본 발명의 제2실시예에 따른 방열 플라스틱의 방열 플라스틱 프레임에 절연성 플라스틱이 형성된 상태를 도시한 일부 평면도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시를 위한 구체적인 내용을 설명하도록 한다.
도 1을 참고하면, 본 발명의 제1실시예에 따른 방열 카트리지(300)는 방열 플라스틱으로 사출 성형되어 한쌍의 배터리를 수용할 수 있는 프레임 구조체(100)를 포함하며, 상기 프레임 구조체(100)는 중앙 영역에 마련된 수용 관통홀(110); 및 상기 수용 관통홀(110)의 측벽에 형성되어 상기 한쌍의 배터리를 안착시키는 안착부(120);를 포함한다.
여기서, 안착부(120)는 수용 관통홀(110)의 측벽을 수평 이분할하도록 상기 수용 관통홀(110)의 측벽으로부터 돌출된 돌기로, 프레임 구조체(100)의 상부 및 하부를 통하여 수용 관통홀(110)에 한쌍의 배터리를 삽입시켜 안착시킬 수 있다.
이 안착부(120)는 수용 관통홀(110)의 측벽을 따라 형성되는 것이 바람직하며, 경우에 따라 수용 관통홀(110)의 측벽의 다수의 영역에 분리된 형태로 형성될 수 있다.
배터리는 박형의 에너지 저장장치로 고에너지밀도와 고출력 구동이 가능한 전기화학적으로 충방전되는 파우치형 배터리가 바람직하고, 이 파우치형 배터리는 두 전극과 세퍼레이터, 전해질을 파우치에 넣고 실링하여 제조된다.
방열 플라스틱은 그래핀, 카본 등의 소재로 이루어진 전기 전도성 방열 필러를 분산시킨 비절연 성형가능한 수지와 BN, AlN, MgO, Al2O3, SiO2 등 절연성 방열 필러를 분산시킨 절연 성형가능한 수지가 사용되는데, 일반적으로는 절연성 방열필러를 사용한 절연 방열 플라스틱이 사용되고, 이를 금형에서 사출성형이 가능한 것으로 정의될 수 있고, 절연 방열 필러에 의해 전달된 열을 방열하고, 절연 방열 필러와 수지에 의해 절연성을 가진다.
그러므로, 방열 필러를 함유하고 있는 방열 카트리지(300)는 배터리의 충방전으로 발생된 열을 방열할 수 있다. 이때, 방열 카트리지(300)에 전달된 열을 열교환기가 냉각시킨다. 열교환기는 냉각팬과 같은 공랭식 열교환기, 냉각수를 이용한 수랭식 열교환기 등 방열 카트리지(300)의 온도를 낮출 수 있는 가능한 모든 열교환기를 사용할 수 있다.
따라서, 본 발명에서는 배터리를 방열 카트리지(300)에 장착하여 배터리에서 발생된 열을 효율적으로 방열할 수 있는 장점이 있다.
도 2를 참고하면, 방열 카트리지(300)는 프레임 구조체(100)의 상부에서 안착부(120)로 제1 배터리(201)를 안착시켜 수용 관통홀(110)의 분할영역에 수용하고, 제2 배터리(미도시)는 프레임 구조체(100)의 하부에서 안착부(120)로 안착시켜 수용 관통홀(110)의 나머지 분할영역에 수용한다.
이때, 제1 및 제2 배터리(201)의 전극단자는 수용 관통홀(110) 내부에 위치되지 않고 프레임 구조체(100) 상에 밀착된다. 즉, 도 2와 같이, 방열 카트리지의 프레임 구조체(100) 상에 제1 배터리(201)의 전극단자(201a,201b)가 밀착되어 있다.
한편, 제1 및 제2 배터리(201)를 파우치 형태의 배터리로 사용하는 경우, 파우치 배터리는 가장자리 영역이 내측 영역보다 발열이 크다.
따라서, 본 발명에서는 제1 및 제2 배터리(201)의 충방전시 발생된 열을 제1 및 제2 배터리(201)의 가장자리 영역에서 방열하기 위하여, 제1 및 제2 배터리(201)의 가장자리 영역 사이에 프레임 구조체(100)의 안착부(120)가 개재되는 구조적인 특징이 있다.
도 3은 본 발명의 제1실시예에 따른 방열 카트리지에 한쌍의 배터리가 장착된 상태를 설명하기 위하여, 도 2의 a-a'선을 따라 절개한 단면도이다.
즉, 방열 카트리지(300)는 프레임 구조체(100)의 수용 관통홀(110)에 제1 및 제2 배터리(201,202)가 수용되어 조립된다.
그러므로, 제1 및 제2 배터리(201,202) 가장자리 사이에 위치된 안착부(120)로 인하여 방열 카트리지(300)의 수용 관통홀(110)은 2개의 영역으로 분할되고, 분할된 2개의 영역에 제1 및 제2 배터리(201,202)가 각각 수용되어 원활한 조립정렬을 얻을 수 있다.
여기서, 방열 카트리지(300)는 2개의 배터리, 즉 제1 및 제2 배터리(201,202)를 수용 관통홀(110)에 내장하도록 설계된다. 이때, 방열 카트리지(300)의 수용 관통홀(110)의 깊이(D)는 2개의 배터리(201)의 두께(t1+t2)와 실질적으로 동일하거나 다소 클 수 있다.
그러므로, 방열 카트리지(300)의 적층면으로 배터리(201)가 돌출되지 않는다.
본 발명의 제1실시예에 따른 방열 카트리지(300)는 도 4와 같이, 다수 적층하여 전기자동차용 전지팩(510)으로 구현할 수 있다.
따라서, 본 발명에서는 방열 카트리지(300)에 한쌍의 배터리(201)를 장착하고, 방열 카트리지(300)를 다수 적층하여 전기자동차용 전지팩(510)을 조립함으로써, 적층된 배터리 두께(즉, 도 4의 방열 카트리지(300)의 두께(t)는 한쌍의 배터리 두께와 실질적으로 동일함)와 거의 동일한 전기자동차용 전지팩(510)이 제작될 수 있다. 그 결과 본 발명의 전기자동차용 전지팩(510)은 슬림하고 경박화되며, 고용량의 전지팩(510)을 얻을 수 있는 잇점이 있다.
예컨대, 전기자동차용 전지팩에 150개의 배터리가 장착되는 경우, 배터리 사이에 알루미늄핀과 같은 방열핀 또는 선행기술의 방열 플레이트를 개재하여 전지팩을 구현하면 149개의 방열핀 또는 방열 플레이트가 필요하여 전지팩을 경박화할 수 없고, 전지팩에서 149개의 방열핀 또는 방열 플레이트만큼 배터리를 조립할 수 없어 전지용량이 감소된다.
도 5를 참고하면, 본 발명의 제1실시예에 따른 방열 카트리지(300)는 열전도도가 높은 방열 금속판(150)을 방열 카트리지의 프레임 구조체(100)에 인서트 몰딩할 수 있다.
이때, 방열 금속판(150)은 안착부(120)에 근접된 프레임 구조체(100) 영역에 인서트 몰딩되는 것이 바람직하다. 더 세부적으로 설명하면, 방열 금속판(150)은 안착부(120)에 대응되는 프레임 구조체(100) 영역 즉, 프레임 구조체(100)의 수용 관통홀 측벽으로부터 돌출되어 구현된 안착부(120)와 대향하는 프레임 구조체(100) 영역에 인서트 몰딩되어, 방열 금속판(150)은 배터리에서 발생된 열을 안착부(120) 및 방열 금속판(150)을 통하여 신속하게 외부로 방출할 수 있다.
방열 금속판(150)은 열전도도가 우수하고 가격이 저렴한 알루미늄(Al) 또는 그의 합금 소재로 구현하는 것이 바람직하다.
상술된 바와 같이, 방열 카트리지에서 프레임 구조체(100)의 안착부(120)는 배터리의 가장자리 영역 사이에 위치되어 배터리에서 발생된 열을 방열하는 바, 방열 금속판(150)은 안착부(120)로부터 가장 근접된 위치에 인서트 몰딩되는 것이 바람직하다.
이 경우, 인서트 몰딩된 방열 금속판(150)의 일면이 외부로 노출되어 방열모듈과 접촉하게 된다.
즉, 도 5와 같이, 안착부(120) 하부의 프레임 구조체(100)에 방열 금속판(150)을 위치시키고, 배터리에서 안착부(120)로 전달된 열을 방열 금속판(150)을 통하여 신속하게 방열모듈의 열교환기(170)로 전달할 수 있다.
또한, 도 6a와 같이, 본 발명에 따른 방열 카트리지는 프레임 구조체(100)의 안착부(120)를 둘러싸도록 TIM(Thermal Interface Material)(130)이 인서트 사출될 수 있다.
그리고, 도 6b에 도시된 바와 같이, 안착부(120)에 결합홈(121)을 형성하고, 이 결합홈(121)에 TIM(130)을 결합시킬 수 있다.
상기와 같이 안착부(120)에 TIM(130)이 인서트 사출되어 있거나 결합홈(121)에 결합되어 있으면, 접촉 열저항이 감소되고, 한쌍의 배터리 사이의 공기층이 줄어들어 외부의 열교환기로 열방출을 원활하게 할 수 있다.
TIM(130)의 종류는 방열그리스, 방열시트, 금속판, 열전도성 접착제 등 다양하다.
본 발명의 제2실시예에 따른 방열 카트리지(600)는 다수의 배터리의 장착 효율을 증가시켜 동일면적에 많은 수의 배터리를 장착할 수 있고, 방열 플라스틱의 사출 구조체에 알루미늄 프레임을 인서트 몰딩하여 제조 단가를 감소시킬 수 있도록 획기적인 카트리지 구조 및 소재의 결합으로 구현된다.
즉, 도 7을 참고하면, 본 발명에 따른 방열 카트리지(600)는 한쌍의 배터리를 수용할 수 있도록 중앙 영역에 형성된 수용 관통홀(610) 및 상기 수용 관통홀(610)의 측벽에 형성되어 상기 한쌍의 배터리를 안착시키는 안착부(601a,602a)를 포함하는 프레임 구조체로 이루어지고, 상기 프레임 구조체는 방열 플라스틱으로 성형되고 알루미늄 프레임(602)이 인서트 사출성형된 것을 특징으로 한다.
상기 프레임 구조체는 상기 한쌍의 배터리가 수용되는 수용 관통홀(610)을 둘러싸는 안착부(601a,602a)를 가지며, 길이방향으로 양단부에 배열된 방열 플라스틱 프레임(601); 및 상기 방열 플라스틱 프레임(601)의 길이방향을 따라 안착부(602a)의 외측에 일체화된 한쌍의 알루미늄 프레임(602);을 포함하고 있다.
상기 배터리는 예를 들어, 장방형으로 이루어진 것이고, 이에 따라 수용 관통홀(610)과 안착부(601a,602a)도 장방형으로 이루어져 있다.
장방형 안착부(601a,602a)는 수용 관통홀(610)의 종방향으로 대향하여 배치된 한쌍의 제1안착부(601a)와, 수용 관통홀(610)의 길이방향을 따라 배치되어 한쌍의 제1안착부(601a)의 양단부를 연결하는 한쌍의 제2안착부(602a)를 포함한다.
여기서, 프레임 구조체도 장방형 사각 프레임 구조이며, 알루미늄 프레임(602)의 길이(L1)가 방열 플라스틱 프레임(601)의 길이(L2)보다 길다.
즉, 방열 카트리지(600)의 프레임 구조체는 고가인 방열 플라스틱으로 사출 성형하여 제조하게 되면 제조단가가 높아 시장성이 저하될 수 있으므로, 본 발명에서는 저가인 알루미늄 프레임(602)을 인서트하여 방열 플라스틱 프레임(601)을 사출성형하여 방열 카트리지(600)를 구현함으로써, 제조단가를 획기적으로 낮출 수 있다.
또한, 방열 플라스틱으로만 사출성형하여 방열 카트리지(600)를 제조하는 경우, 방열 필러가 분산된 수지인 방열 플라스틱이 금형으로 주입시 무거운 방열 필러는 수지보다 흐름성이 좋지 않아, 방열 카트리지(600) 내에 방열 필러가 국부적인 영역에 집중될 수 있어 균일한 방열 효율을 얻을 수 없는 단점이 있다.
그러므로, 본 발명에서는 방열 카트리지(600)에서 짧은 길이의 프레임 영역은 방열 플라스틱으로 사출성형하여 방열 플라스틱 프레임(601)을 구현하고, 상대적으로 긴 길이의 프레임 영역은 알루미늄 프레임(602)을 인서트함으로써, 사출성형되는 크기가 감소되어 방열 플라스틱 프레임(601)은 보다 균일한 방열 특성을 가질 수 있다.
아울러, 알루미늄 프레임(602)은 방열 플라스틱 프레임(601)보다 열전도 특성이 월등이 우수하여 방열 카트리지(600)의 방열 특성을 향상시킬 수 있다.
더불어, 방열 플라스틱으로 사출성형한 단독의 방열 플라스틱 프레임(601)으로 프레임 구조체를 구현하는 것보다, 본 발명과 같이, 알루미늄 프레임(602)이 인서트하여 방열 플라스틱 프레임(601)을 사출성형하여 프레임 구조체를 제작하면, 강성이 우수하고 외력에 의한 뒤틀림과 같은 변형 발생을 방지할 수 있다.
방열 카트리지(600)는 방열 플라스틱 프레임(601)과 알루미늄 프레임(602)으로 이루어져 내측에 수용 관통홀(610)이 마련된 장방형 사각 프레임 구조이므로, 방열 플라스틱 프레임(601)과 알루미늄 프레임(602) 각각은 수용 관통홀(610)의 측벽을 가지고 있고, 이 측벽에 제1 및 제2 안착부(601a,602a)가 형성되어 있다.
여기서, 안착부(601a,602a)는 수용 관통홀(610)의 측벽을 수평 이분할하도록 상기 수용 관통홀(610)의 측벽으로부터 돌출된 돌기로, 프레임 구조체의 상부 및 하부를 통하여 수용 관통홀(610)에 한쌍의 배터리를 삽입시켜 안착시킬 수 있다.
이 안착부(601a,602a)는 수용 관통홀(610)의 측벽을 따라 형성되는 것이 바람직하며, 경우에 따라 수용 관통홀(610)의 측벽의 다수의 영역에 분리된 형태로 형성될 수 있다.
배터리는 제1실시예와 동일하게 파우치형 배터리가 바람직하고, 방열 플라스틱은 전기 전도성 방열 필러를 분산시킨 비절연 성형가능한 수지와 절연성 방열 필러를 분산시킨 절연 성형가능한 수지가 사용될 수 있다. 방열 플라스틱은 절연 방열 필러에 의해 전달된 열을 방열하고, 절연 방열 필러와 수지에 의해 절연성을 가진다.
그러므로, 방열 필러를 함유하고 있는 방열 카트리지(600)는 배터리의 충방전으로 발생된 열을 방열할 수 있다. 이때, 방열 카트리지(600)에 전달된 열을 열교환기가 냉각시킨다. 열교환기는 냉각팬과 같은 공랭식 열교환기, 냉각수를 이용한 수랭식 열교환기 등 방열 카트리지(600)의 온도를 낮출 수 있는 가능한 모든 열교환기를 사용할 수 있다.
따라서, 본 발명에서는 배터리를 방열 카트리지(600)에 장착하여 배터리에서 발생된 열을 효율적으로 방열할 수 있는 장점이 있다.
도 8을 참고하면, 제2실시예에 따른 방열 카트리지(600)는 프레임 구조체의 상부에서 안착부(601a,602a)로 제1 배터리(201)를 안착시켜 수용 관통홀(610)의 분할영역에 수용하고, 제2 배터리(미도시)는 프레임 구조체의 하부에서 안착부(601a,602a)로 안착시켜 수용 관통홀(610)의 나머지 분할영역에 수용한다.
이때, 제1 및 제2 배터리(201)의 전극단자는 수용 관통홀(610) 내부에 위치되지 않고 프레임 구조체 상에 밀착된다. 즉, 도 8과 같이, 방열 카트리지(600)의 방열 플라스틱 프레임(601) 상에 제1 배터리(201)의 전극단자(201a,201b)가 밀착되어 있다.
안착부(601a,602a)는 방열 플라스틱 프레임(610) 및 알루미늄 프레임(602) 각각에 형성되어 있다.
한편, 제1 및 제2 배터리(201)를 파우치 형태의 배터리로 사용하는 경우, 파우치 배터리는 가장자리 영역이 내측 영역보다 발열이 크다.
따라서, 본 발명에서는 제1 및 제2 배터리(201)의 충방전시 발생된 열을 제1 및 제2 배터리(201)의 가장자리 영역에서 방열하기 위하여, 제1 및 제2 배터리(201)의 가장자리 영역 사이에 프레임 구조체의 안착부(601a,602a)가 개재되는 구조적인 특징이 있다.
도 9는 본 발명의 제2실시예에 따른 방열 카트리지에 한쌍의 배터리가 장착된 상태를 설명하기 위하여, 도 8의 b-b'선을 따라 절개한 단면도이다.
즉, 방열 카트리지(600)는 프레임 구조체의 수용 관통홀(610)에 제1 및 제2 배터리(201,202)가 수용되어 조립된다.
그러므로, 제1 및 제2 배터리(201,202) 가장자리 사이에 위치된 안착부(120)로 인하여 방열 카트리지(600)의 수용 관통홀(610)은 2개의 영역으로 분할되고, 분할된 2개의 영역에 제1 및 제2 배터리(201,202)가 각각 수용되어 원활한 조립정렬을 얻을 수 있다. 도 9에는 방열 플라스틱 프레임(601)에 형성된 안착부(601a)가 도시되어 있다.
여기서, 방열 카트리지(600)는 2개의 배터리, 즉 제1 및 제2 배터리(201,202)를 수용 관통홀(610)에 내장하도록 설계된다. 이때, 방열 카트리지(600)의 수용 관통홀(610)의 깊이(D)는 2개의 배터리(201)의 두께(t1+t2)와 실질적으로 동일하거나 다소 클 수 있다.
그러므로, 방열 카트리지(600)의 적층면으로 배터리(201)가 돌출되지 않는다.
도 10은 본 발명의 제2실시예에 따른 방열 카트리지에 적용된 알루미늄 프레임에 산화 피막층이 형성된 상태의 일부 단면도이다.
도 10을 참고하면, 본 발명에서는 알루미늄 프레임(602)을 양극 산화하여 알루미늄 프레임(602)의 표면에 알루미나(Al2O3)로 이루어진 산화 피막층(603)을 형성할 수 있다.
즉, 알루미늄 프레임(602)을 전해액 속에서 전압을 인가하면 알루미늄 프레임(602)이 양극 산화되어 알루미나의 산화 피막층(603)을 형성할 수 있다.
이때, 알루미나의 산화 피막층(603)은 열을 잘 방사하는 방사 계수를 높일 수 있고 절연특성을 가지게 된다.
전해액은 산성 전해액이나 알칼리성 전해액을 사용할 수 있지만 산성 전해액이 사용되는 것이 바람직하다. 산성 전해액으로서는 황산, 옥살산, 인산 또는 이들의 혼합물이 사용될 수 있다. 또한 양극산화 시간과 전류밀도를 조정하여 절연이 필요한 산화 피막층(603)의 두께를 조정할 수 있다.
도 11과 같이, 본 발명의 제2실시예에 따른 방열 카트리지(600)는 다수 적층하여 전기자동차용 전지팩(510)으로 구현할 수 있다.
따라서, 본 발명에서는 방열 카트리지(600)에 배터리(201)를 장착하고, 전기자동차용 전지팩(510)을 방열 카트리지(600)를 다수 적층하여 조립함으로써, 적층된 배터리 두께(즉, 도 5의 방열 카트리지(600)의 두께(t)는 한쌍의 배터리 두께와 실질적으로 동일함)와 거의 동일한 전기자동차용 전지팩(510)이 제작되어 슬림하고 경박화되며, 고용량의 전기자동차용 전지팩(510)을 얻을 수 있는 잇점이 있다.
본 발명의 제2실시예에 따른 방열 카트리지(600)는, 도 5에 도시된 본 발명의 제1실시예에 따른 방열 카트리지(300)와 동일하게, 배터리에서 발생된 열을 신속하게 외부로 방출하도록 방열 플라스틱 프레임(601)의 수용 관통홀 측벽으로부터 돌출되어 구현된 안착부(161a)와 대향하는 방열 플라스틱 프레임(601) 영역에 인서트 몰딩되는 방열 금속판을 더 포함할 수 있다.
도 12를 참고하면, 본 발명의 제2실시예에도 열전도도가 높은 방열 금속판(150)을 방열 카트리지의 방열 플라스틱 프레임(601)에 인서트 몰딩할 수 있다.
이때, 방열 금속판(150)은 안착부(161a)에 근접된 방열 플라스틱 프레임(601) 영역에 인서트 몰딩되는 것이 바람직하다. 더 세부적으로 설명하면, 방열 금속판(150)은 안착부(161a)에 대응되는 방열 플라스틱 프레임(601) 영역 즉, 방열 플라스틱 프레임(601)의 수용 관통홀 측벽으로부터 돌출되어 구현된 안착부(161a)와 대향하는 방열 플라스틱 프레임(601) 영역에 인서트 몰딩되어, 방열 금속판(150)은 배터리에서 발생된 열을 안착부(161a) 및 금속판(150)을 통하여 신속하게 외부로 방출할 수 있다.
방열 금속판(150)은 열전도도가 우수하고 가격이 저렴한 알루미늄 소재로 구현하는 것이 바람직하다.
상술된 바와 같이, 방열 카트리지의 방열 플라스틱 프레임(601)의 안착부(161a)는 배터리의 가장자리 영역 사이에 위치되어 배터리에서 발생된 열을 방열하는 바, 방열 금속판(150)은 안착부(161a)로부터 가장 근접된 위치에 인서트 몰딩되는 것이 바람직하다.
또한, 인서트 몰딩된 방열 금속판(150)의 일면이 외부로 노출되어 방열 모듈과 접촉하게 된다.
즉, 도 12와 같이, 안착부(161a) 하부의 방열 플라스틱 프레임(601)에 방열 금속판(150)을 위치시키고, 배터리에서 안착부(161a)로 전달된 열을 방열 금속판(150)에서 신속히 열교환기(170)로 전달할 수 있다.
또한, 본 발명의 제2실시예에도 도 13a와 같이, 방열 카트리지의 방열 플라스틱 프레임(601)의 안착부(161a)에는 TIM(Thermal Interface Material)(130)이 인서트 사출될 수 있다.
그리고, 도 13b에 도시된 바와 같이, 안착부(161a)에 결합홈(121)을 형성하고, 이 결합홈(121)에 TIM(130)을 결합시킬 수 있다.
이러한 안착부(161a)에 TIM(130)이 인서트 사출되어 있거나 결합홈에 결합되어 있으면, 접촉 열저항이 감소되고, 한쌍의 배터리 사이의 공기층이 줄어들어 외부의 열교환기로 열방출을 원활하게 할 수 있다.
TIM(130)의 종류는 방열그리스, 방열시트, 금속판, 열전도성 접착제 등 다양하다.
도 14는 본 발명의 제2실시예에 따른 방열 플라스틱의 방열 플라스틱 프레임에 절연성 플라스틱이 형성된 상태를 도시한 일부 평면도이다.
도 14를 참고하면, 방열 플라스틱 프레임(601) 상에 파우치형 배터리의 전극단자(201a,201b)가 올려져 조립된다.
그러므로, 본 발명에서는 파우치형 배터리의 전극단자(201a,201b)가 올려지는 영역에 절연성 플라스틱판(605)을 인서트하여 방열 플라스틱 프레임(601)을 사출성형할 수 있다.
즉, 파우치형 배터리의 전극단자(201a,201b)는 절연성 플라스틱판(605)에 올려져 접촉된다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 제조단가를 감소시키고, 방열 특성을 향상시키고, 균일한 방열 성능을 얻을 수 있고, 강성이 우수하고 변형 발생을 방지할 수 있는 방열 카트리지와 전지팩에 적용될 수 있다.

Claims (17)

  1. 방열 플라스틱으로 성형되어 한쌍의 배터리를 수용할 수 있는 프레임 구조체이며,
    상기 프레임 구조체는
    중앙 영역에 마련된 수용 관통홀; 및
    상기 수용 관통홀의 측벽에 형성되어 상기 한쌍의 배터리를 안착시키는 안착부;를 포함하는 것을 특징으로 하는 방열 카트리지.
  2. 제1항에 있어서,
    상기 프레임 구조체는
    상기 한쌍의 배터리가 수용되는 수용 관통홀을 둘러싸는 안착부를 가지며, 길이방향으로 양단부에 배열된 방열 플라스틱 프레임; 및
    상기 방열 플라스틱 프레임의 길이방향을 따라 안착부의 외측에 일체화된 알루미늄 프레임;을 포함하는 것을 특징으로 하는 방열 카트리지.
  3. 제2항에 있어서,
    상기 알루미늄 프레임의 표면이 양극산화되어 형성된 알루미나(Al2O3)로 이루어진 산화 피막층을 더 포함하는 것을 특징으로 하는 방열 카트리지.
  4. 제3항에 있어서,
    상기 산화 피막층의 표면에 요철이 형성되어 있는 것을 특징으로 하는 방열 카트리지.
  5. 제2항에 있어서,
    상기 방열 플라스틱 프레임에 인서트 사출된 절연성 플라스틱판을 더 포함하고,
    상기 한쌍의 배터리는 파우치형 배터리이고, 상기 파우치형 배터리의 전극단자가 상기 절연성 플라스틱판 상에 올려져 조립되는 것을 특징으로 하는 방열 카트리지.
  6. 제2항에 있어서,
    상기 방열 플라스틱 프레임에 인서트 몰딩된 방열 금속판을 더 포함하는 것을 특징으로 하는 방열 카트리지.
  7. 제6항에 있어서,
    상기 방열 금속판은 상기 안착부에 근접된 방열 플라스틱 프레임 영역에 인서트 몰딩된 것을 특징으로 하는 방열 카트리지.
  8. 제2항에 있어서,
    상기 방열 플라스틱 프레임의 안착부에 인서트 사출된 TIM(Thermal Interface Material)을 더 포함하는 것을 특징으로 하는 방열 카트리지.
  9. 제2항에 있어서,
    상기 방열 플라스틱 프레임의 안착부에 결합홈이 형성되어 있고, 상기 결합홈에 TIM이 결합되어 있는 것을 특징으로 하는 방열 카트리지.
  10. 제1항에 있어서,
    상기 안착부는 상기 수용 관통홀의 측벽을 수평 이분할하도록 상기 수용 관통홀의 측벽으로부터 돌출된 돌기인 것을 특징으로 하는 방열 카트리지.
  11. 제1항에 있어서,
    상기 방열 플라스틱은 절연성 방열 필러를 분산시킨 성형가능한 수지인 것을 특징으로 하는 방열 카트리지.
  12. 제1항에 있어서,
    상기 수용 관통홀의 깊이는 상기 한쌍의 배터리의 두께와 실질적으로 동일하거나 또는 큰 것을 특징으로 하는 방열 카트리지.
  13. 제6항에 있어서,
    상기 방열 금속판의 일면은 외부로 노출되어 방열 모듈에 접촉되는 것을 특징으로 하는 방열 카트리지.
  14. 제1항에 있어서,
    상기 안착부는 상기 한쌍의 배터리 사이에 위치되는 것을 특징으로 하는 방열 카트리지.
  15. 제1항에 있어서,
    상기 안착부에 근접된 프레임 구조체 영역에 인서트 몰딩된 방열 금속판을 더 포함하는 것을 특징으로 하는 방열 카트리지.
  16. 방열 플라스틱으로 이루어지며 한쌍의 배터리가 수용되는 수용 관통홀을 둘러싸는 안착부를 가지며, 길이방향으로 양단부에 배열된 방열 플라스틱 프레임; 및
    상기 방열 플라스틱 프레임의 길이방향을 따라 안착부의 외측에 일체화된 한쌍의 알루미늄 프레임;을 포함하는 것을 특징으로 하는 방열 카트리지.
  17. 제1항 내지 제16항 중 어느 한 항의 방열 카트리지가 다수 적층되어 구현된 전기자동차용 전지팩.
PCT/KR2017/003398 2016-03-29 2017-03-29 방열 카트리지 및 이를 이용한 전기자동차용 전지팩 WO2017171389A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17775813.3A EP3442075A4 (en) 2016-03-29 2017-03-29 CARTRIDGE FOR HEAT EXTRACTION AND BATTERY PACK FOR ELECTRIC VEHICLE THEREOF
US16/086,918 US11177518B2 (en) 2016-03-29 2017-03-29 Heat-radiating cartridge, and battery pack for electric vehicle using same
CN201780020716.XA CN108886185B (zh) 2016-03-29 2017-03-29 散热盒及利用其的电动汽车用电池组

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0037556 2016-03-29
KR10-2016-0037559 2016-03-29
KR1020160037556A KR20170113904A (ko) 2016-03-29 2016-03-29 방열 카트리지 및 이를 이용한 전기자동차용 전지팩
KR1020160037559A KR20170113905A (ko) 2016-03-29 2016-03-29 방열 카트리지 및 이를 이용한 전기자동차용 전지팩

Publications (2)

Publication Number Publication Date
WO2017171389A2 true WO2017171389A2 (ko) 2017-10-05
WO2017171389A3 WO2017171389A3 (ko) 2018-08-02

Family

ID=59966229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003398 WO2017171389A2 (ko) 2016-03-29 2017-03-29 방열 카트리지 및 이를 이용한 전기자동차용 전지팩

Country Status (4)

Country Link
US (1) US11177518B2 (ko)
EP (1) EP3442075A4 (ko)
CN (1) CN108886185B (ko)
WO (1) WO2017171389A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256103B1 (ko) * 2018-09-12 2021-05-25 주식회사 엘지에너지솔루션 배터리 모듈 및 이를 포함하는 배터리 팩
KR102378527B1 (ko) 2018-12-05 2022-03-23 주식회사 엘지에너지솔루션 전지 모듈 및 그 제조 방법
CN114243150B (zh) * 2021-11-05 2024-04-26 佛山市实达科技有限公司 一种锂离子蓄电池组

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107443A (ko) 2008-04-08 2009-10-13 쏘씨에떼 드 베이뀔르 엘렉트리끄 가요성의 발전 소자와 상기 발전 소자들의 기계적, 열적 조절 시스템을 포함하는 전기 배터리

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998845B1 (ko) * 2007-11-09 2010-12-08 주식회사 엘지화학 방열특성의 전지모듈, 열교환 부재 및 이를 이용하는 중대형 전지팩
JP5540070B2 (ja) * 2009-04-01 2014-07-02 エルジー・ケム・リミテッド 電池モジュール及び電池パック
KR101106373B1 (ko) * 2009-11-19 2012-01-18 에스비리모티브 주식회사 배터리 팩
KR101431717B1 (ko) * 2012-02-06 2014-08-26 주식회사 엘지화학 신규한 구조의 버스 바
WO2013168856A1 (ko) * 2012-05-08 2013-11-14 주식회사 엘지화학 높은 효율성의 냉각 구조를 포함하는 전지모듈
KR101392799B1 (ko) * 2012-06-07 2014-05-14 주식회사 엘지화학 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
KR101729213B1 (ko) 2013-10-23 2017-04-21 주식회사 엘지화학 진동 특성이 향상된 배터리 모듈 및 이에 적용되는 프레임 카트리지 조립체
KR101739301B1 (ko) * 2013-12-10 2017-05-24 삼성에스디아이 주식회사 배터리 모듈
KR101785538B1 (ko) * 2014-07-31 2017-10-17 주식회사 엘지화학 배터리 모듈
KR101769109B1 (ko) 2014-09-04 2017-08-17 주식회사 엘지화학 이차 전지용 카트리지를 포함하는 배터리 팩

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107443A (ko) 2008-04-08 2009-10-13 쏘씨에떼 드 베이뀔르 엘렉트리끄 가요성의 발전 소자와 상기 발전 소자들의 기계적, 열적 조절 시스템을 포함하는 전기 배터리

Also Published As

Publication number Publication date
CN108886185B (zh) 2022-11-15
EP3442075A2 (en) 2019-02-13
CN108886185A (zh) 2018-11-23
EP3442075A4 (en) 2019-10-30
US11177518B2 (en) 2021-11-16
US20190109353A1 (en) 2019-04-11
WO2017171389A3 (ko) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2017171383A1 (ko) 방열 모듈 및 이를 이용한 전기자동차용 전지팩
WO2018106026A1 (ko) 이차 전지 모듈
WO2019107717A1 (ko) 방열 플레이트를 구비한 배터리 모듈
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2016159549A2 (ko) 배터리 모듈
WO2017052194A1 (ko) 서로 다른 두께를 가진 쿨링 핀들의 배열을 포함하는 전지 모듈
WO2017104878A1 (ko) 배터리 팩
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2019027150A1 (ko) 배터리 셀용 카트리지 및 이를 포함하는 배터리 모듈
WO2011034324A2 (ko) 온도 센서가 장착된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2011034325A2 (ko) 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
WO2017104877A1 (ko) 배터리 모듈
WO2014014303A1 (ko) 전지모듈 어셈블리
WO2010114317A2 (ko) 우수한 방열 특성의 전지모듈 및 중대형 전지팩
WO2019004553A1 (ko) 배터리 모듈
WO2018008799A1 (ko) 이차 전지용 카트리지 및 이를 포함하는 배터리 모듈
WO2020050551A1 (ko) 방열 플레이트가 구비된 이차전지 팩
WO2017171389A2 (ko) 방열 카트리지 및 이를 이용한 전기자동차용 전지팩
WO2022014966A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2020111665A1 (ko) 파우치형 배터리 카트리지 및 이를 포함하는 파우치형 배터리 팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021251624A1 (ko) 배터리 모듈 및 그의 제조방법
WO2017209423A1 (ko) 방열 카트리지 및 이를 이용한 전기자동차용 전지팩

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775813

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775813

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2017775813

Country of ref document: EP

Effective date: 20181029