WO2017171131A1 - 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법 - Google Patents

가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법 Download PDF

Info

Publication number
WO2017171131A1
WO2017171131A1 PCT/KR2016/004344 KR2016004344W WO2017171131A1 WO 2017171131 A1 WO2017171131 A1 WO 2017171131A1 KR 2016004344 W KR2016004344 W KR 2016004344W WO 2017171131 A1 WO2017171131 A1 WO 2017171131A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
energy
ray
gas electron
electron amplification
Prior art date
Application number
PCT/KR2016/004344
Other languages
English (en)
French (fr)
Inventor
이레나
이순혁
정재훈
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2017171131A1 publication Critical patent/WO2017171131A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]

Definitions

  • the present invention relates to an X-ray imaging system and a method for generating an image. More particularly, the present invention relates to X-ray imaging and X-ray CT imaging of low-energy and high-energy regions simultaneously with one device and one X-ray source.
  • Radiation utilization technology continues to develop remarkably now in various fields such as medical fields such as positron emission tomography, X-ray CT, industrial fields such as various non-destructive inspections, and security fields such as radiation monitors and belonging inspections.
  • the radiographic image detector is an element technology occupying an important position in the radiation use technology, and according to the development of the radiation use technology, higher performance is required for detection sensitivity, position resolution of the incident position of the radiation, or counting rate characteristics. .
  • the particle beam image detection device detects electrons generated by the incident particle beam ionizing gas molecules with a pixel type electrode, and has excellent position resolution and counting characteristics, and can easily enlarge the regret region, and at a low cost. It has the advantage of being able to manufacture.
  • the energy is fixed, so that the sharpness is differently detected according to the X-ray transmittance of the subject.
  • X-ray imaging apparatuses commonly used in hospitals usually obtain images irradiated to the patient simultaneously from low energy to high energy.
  • the sharpness of the image is changed according to the X-ray transmittance of the human tissue.
  • the bone-like part is clearly taken, but the soft part, such as tissue, is high in energy and is transmitted through it, so it is not clearly seen in the resultant image. Therefore, there is a problem that the energy of the X-ray source must be adjusted according to the density of each tissue.
  • two X-ray sources with different energies may be used to synthesize the images, or one source may be used to filter the bones or tissues.
  • Dual energy X-ray detection apparatus and X-ray imaging X-ray imaging system using a multi-gas electron amplification detector according to the present invention has the following problems.
  • the present invention is to provide a dual-energy X-ray imaging system capable of X-ray imaging with two energies using one X-ray source and a method of generating the X-ray image.
  • the present invention can obtain X-ray computer tomography (CT) images, and dual-energy X-ray imaging system and X-ray image capable of clearly distinguishing soft tissues such as soft tissues and bones To provide a creation method.
  • CT computer tomography
  • a first feature of the present invention is to provide an energy filter dual energy X-ray imaging system using a gas electron amplification detector, and includes a fixed frame extending from a central axis to a straight line on both sides, A pivot unit capable of pivoting a central axis; An X-ray source fixedly connected to the bottom of one end of the fixed frame; A low energy X-ray filter unit disposed on the front surface of the X-ray source and blocking the low energy X-rays of any one of the irradiation areas in the X-ray left and right directions; A gas electron amplification detector fixedly connected to the lower end of the other fixed frame end; And an image processor for synthesizing and processing an image detected by the gas electron amplification detector, wherein the image processor is rotated 180 degrees between the first image and the fixed frame generated by photographing an object located below the central axis.
  • a dual energy X-ray image is generated by synthesizing the second image generated by photographing.
  • the gas electron amplification detector may include a GEM chamber into which a reaction gas is introduced; A cathode installed on one side of the chamber in the X-ray irradiation direction; At least one GEM foil spaced apart from the cathode; And an anode disposed adjacent to the GEM foil and connected to a readout circuit, wherein the anode is a lattice-shaped electrode, and one lattice corresponds to one pixel of an image.
  • the low-energy X-ray filter unit is attached to a portion of the front surface of the X-ray source, or is installed spaced apart from the front surface of the X-ray source, the low-energy X-ray filter unit, the metal to block the low energy X-rays Or it is preferable to use a synthetic material, the low-energy X-ray filter unit, a plate-shaped filter extending from the fixed frame to the lower end, the low-energy X-ray irradiated installed on the left or right front near the X-ray source It is desirable to block some and filter.
  • the second feature of the present invention is a method of generating a dual-energy X-ray image of an energy filter method using a gas electron amplification detector, using the above-described X-ray imaging system, (a) X-ray source and gas Generating a first image by irradiating an X-ray to an object located between the electron amplification detectors; (b) generating a second image by irradiating the object with X-rays at a position where the fixed frame is rotated 180 degrees about a central axis; (c) generating a low energy image and a high energy image by synthesizing each of the low energy image and the high energy image of the first image and the second image by the image processor; And (d) the image processing unit synthesizing the low energy image and the high energy image to generate a dual energy X-ray image.
  • the gas electron amplification detector may include a GEM chamber into which a reaction gas is introduced; A cathode installed on one side of the chamber in the X-ray irradiation direction; At least one GEM foil spaced apart from the cathode; And an anode installed adjacent to the GEM foil and connected to a readout circuit.
  • the generated first and second images preferably correspond to one grid of the anode and one pixel of the image, and the steps (a) through to rotating the fixed frame step by step through the rotating unit. It is preferable to further include the step of repeating step (d) to generate a dual energy X-ray CT image by computed tomography.
  • the dual energy X-ray imaging system of the energy filter method using the gas electron amplification detector and the X-ray image generating method thereof have the following effects.
  • the present invention provides a X-ray imaging system capable of obtaining a clear dual-energy X-ray image having a low energy X-ray filter and a rotatable pivot, and a method of generating the X-ray image.
  • the present invention provides a system capable of generating or acquiring a dual energy X-ray image in which a low energy image and a high energy image are clearly distinguished through two image captures of normal image capture and reverse image capture in which left and right images are reversed. And an image generating method.
  • the present invention is to repeat the dual-energy X-ray imaging process while rotating 360 degrees in stages by the rotating unit, the dual-energy X-ray computer tomography (CT) image can be obtained
  • CT computer tomography
  • FIG. 1 is a view showing the configuration of an energy filter dual energy X-ray imaging system using a gas electron amplification detector according to an embodiment of the present invention.
  • FIG. 2 is a flow chart illustrating a method of generating an energy filter dual energy X-ray image using a gas electron amplification detector according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration of a gas electron amplification detector (GEM detector) applied to the dual energy X-ray imaging system according to the embodiment of the present invention.
  • GEM detector gas electron amplification detector
  • FIG. 4 is a schematic diagram of an energy filter dual energy X-ray imaging apparatus using a gas electron amplification detector according to an exemplary embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for generating a dual energy X-ray image according to an embodiment of the present invention.
  • FIG. 6 is a processing diagram of an image generated according to an embodiment of the present invention.
  • FIG. 1 is a view showing the configuration of an energy filter dual energy X-ray imaging system using a gas electron amplification detector 200 according to an embodiment of the present invention
  • Figure 2 is a gas electron according to an embodiment of the present invention 2 is a flowchart illustrating a method of generating an energy filter dual energy X-ray image using the amplification detector 200.
  • the X-ray imaging apparatus includes a rotating frame 300 having a fixed frame 330 extending from the central axis to a straight line on both sides, and capable of rotating the central axis. ;
  • An X-ray source 100 fixedly connected to the lower end of one end of the fixed frame 330;
  • a low-energy X-ray filter unit 150 spaced apart in front of the X-ray source 100 and blocking the low-energy X-rays of any one of the irradiation areas in the X-ray left and right directions;
  • a gas electron amplification detector 200 fixedly connected to the lower end of the other fixed frame 330;
  • an image processor 400 for synthesizing the image detected by the gas electron amplification detector 200, wherein the image processor 400 captures an object positioned below the central axis and the fixed image.
  • An X-ray image may be generated by synthesizing the second image generated by photographing the 330 at a 180-degree rotation position.
  • FIG. 1 is a view showing the configuration of an energy filter dual energy X-ray imaging system using a gas electron amplification detector 200 according to an embodiment of the present invention
  • Figure 2 is a gas electron according to an embodiment of the present invention 2 is a flowchart illustrating a method of generating an energy filter dual energy X-ray image using the amplification detector 200.
  • the X-ray imaging apparatus includes a rotating frame 300 having a fixed frame 330 extending from the central axis to a straight line on both sides, and capable of rotating the central axis. ;
  • An X-ray source 100 fixedly connected to the lower end of one end of the fixed frame 330;
  • a low-energy X-ray filter unit 150 spaced apart in front of the X-ray source 100 and blocking the low-energy X-rays of any one of the irradiation areas in the X-ray left and right directions;
  • a gas electron amplification detector 200 fixedly connected to the lower end of the other fixed frame 330;
  • an image processor 400 for synthesizing the image detected by the gas electron amplification detector 200, wherein the image processor 400 captures an object positioned below the central axis and the fixed image.
  • An X-ray image may be generated by synthesizing the second image generated by photographing the 330 at a 180-degree rotation position.
  • the dual energy X-ray image generating method of the energy filter method uses the above-described X-ray imaging system, and (a) an X-ray source ( Generating a first image by irradiating X-rays to an object located between the 100 and the gas electron amplification detector 200; (b) generating a second image by irradiating the object with X-rays at a position where the fixed frame 330 is rotated 180 degrees about a central axis; (c) the image processor 400 generating a low energy image and a high energy image by synthesizing each of the low energy image and the high energy image of the first image and the second image; And (d) generating an X-ray image by synthesizing the low energy image and the high energy image by the image processor 400.
  • the embodiment of the present invention includes a filter in a portion of the X-ray source 100 and irradiates an X-ray to the object to separate the low-energy and high-energy images through the gas electron amplification detector 200.
  • the first image is acquired, and the fixed frame 330 is rotated 180 degrees through the rotating unit 300 to obtain a second image in which left and right are inverted to synthesize an image for each of low energy and high energy, and again, a low energy image and a high energy.
  • synthesizing the images it is possible to provide an X-ray imaging system and a method for generating the image, which can obtain a clear X-ray full image.
  • the general X-ray detection device has a fixed energy, and thus its sharpness is differently detected according to the X-ray transmittance of the subject.
  • a bone It is difficult for bone and tissue to maintain the same clarity without a separate device in one detector.
  • two X-ray sources 100 having different energies are used to synthesize the images, or one source may be used.
  • an X-ray image capable of acquiring one full X-ray image including two clear energy images by using one X-ray source 100 and an imaging system
  • a photographing system and an X-ray image generating method We propose a photographing system and an X-ray image generating method.
  • the X-ray imaging apparatus includes a pivot 300 that rotates about one axis, and the pivot 300 is centered.
  • a fixed frame 330 extending straight to both sides, and extending from both ends to the lower end of the fixed frame 330 to install an X-ray source 100, a filter and a gas electron amplification detector 200 (GEM detector). do.
  • GEM detector gas electron amplification detector 200
  • a plate-shaped filter capable of blocking high energy X-rays is installed on either of the left side and the right side, so that the X-ray source 100 transmits the X-ray to the object.
  • the image is generated through the gas electron amplification detector 200, the high energy X-ray image filtered by the filter unit 150 and the low energy X-ray image generated without the filter are divided into left and right sides simultaneously.
  • One image may be acquired through the image processor 400.
  • the image processing unit 400 Separates the low energy image and the high energy image from the first image and the second image, respectively, and synthesizes the low energy image of the first image and the low energy image of the second image, and the high energy image of the first image and the high energy of the second image.
  • the image is synthesized to generate a low energy full image and a high energy full image, and the low energy full image and the high energy full image may be synthesized to obtain a dual energy X-ray image.
  • the X-ray imaging system and the image generating method in order to obtain a dual-energy X-ray image of the object, the reverse image of the normal image and the left and right inverted image taking
  • the present invention provides a system and an image generating method for generating or acquiring a dual energy X-ray image in which a low energy image and a high energy image are clearly distinguished through image capturing twice.
  • the image processing apparatus may include a processing unit such as a computer and a display device, and may include an integrated controller configured to integrally control the rotating unit 300 and the gas electron amplification detector 200.
  • a processing unit such as a computer and a display device
  • an integrated controller configured to integrally control the rotating unit 300 and the gas electron amplification detector 200.
  • Such an integrated control unit that is, it is possible to automatically control the driving of the X-ray imaging and the driving of the rotating unit 300 according to the process, step by step while rotating 360 degrees by the control of the driving of the rotating unit 300
  • a dual energy X-ray image may be processed to perform a function of an X-ray computer tomography (CT) imaging system capable of acquiring dual energy X-ray CT images.
  • CT computer tomography
  • the low-energy X-ray filter unit 150 is attached to a part of the front surface of the X-ray source 100 or extends downward from the fixed frame 330 to be installed spaced apart from the front surface of the X-ray source 100. desirable. That is, it is also possible to directly install on the front side of the X-ray source, as shown in Figure 1, it is also possible to be installed spaced apart from the X-ray source by extending the lower end from the fixed frame 330, As a result, the filter unit 150 may be movable to selectively perform X-ray blocking and release.
  • the low energy X-ray filter unit 150 is preferably made of a metal or a synthetic material such as Cu that blocks the low energy X-rays.
  • the left and right inverted images of the left and the right according to the embodiment of the present invention can also be photographed according to the rotation of the 180 degrees, the low-energy X-ray filter unit 150 attached to or spaced apart from the X-ray source It is also possible to acquire a normal photographed image and an inverted image by moving a) by moving or rotating the image from the right to the right or from the right to the left to shoot twice.
  • FIG. 3 is a diagram illustrating a configuration of a gas electron amplification detector 200 (GEM detector) applied to a dual energy X-ray imaging system according to an exemplary embodiment of the present invention.
  • GEM detector gas electron amplification detector 200
  • the gas electron amplification detector 200 includes a GEM chamber 210 into which a reaction gas is introduced; A cathode 230 installed on one side of the chamber in the X-ray irradiation direction; At least one GEM foil 250 spaced apart from the cathode 230; And an anode 270 installed adjacent to the GEM foil 250.
  • a gas electron multiplier or a gas electron amplification detector 200 detects radiation based on charges generated when particles or radiation ionize gas particles (Ar + CO 2, etc.). It is a kind of gas ionization detector.
  • Conventional gas ionization detectors have a low detection performance due to a low rate of ionized charge reaching the cathode, but a gas electron amplification (GEM) detector applied to an embodiment of the present invention has one or more GEM foils ( 250 can be provided to amplify the number of charges, so that the detection performance can be improved.
  • the GEM foil 250 is a flat plate formed by thinly forming a metal layer such as copper on both sides of a thin insulator substrate of several tens to hundreds of micrometers having many holes having a diameter of several tens of micrometers and a gap of several tens to hundreds of micrometers.
  • the insulator substrate may be made of, for example, a Kapton material. Kapton materials are widely used as insulators because of their stable and excellent insulation performance from cryogenic temperatures of -269 ° C to high temperatures of 400 ° C.
  • the configuration is simple, the manufacturing cost can be reduced, and the production of a large detector It is also applicable to large specimens because it is easier than other detectors.
  • the detector may be flexibly manufactured to fit the subject.
  • the anode 270 terminal is composed of two-dimensional lattice-shaped lattice electrodes, and coordinates of one pixel of the image are determined according to two-dimensional x and y coordinates of each electrode, and the area of the grid is determined. It is the size of one pixel in this image. As a result, the total number of grids becomes the resolution of one image.
  • FIG. 4 is a photographing schematic diagram of a dual-energy X-ray imaging system of an energy filter method using a gas electron amplification detector 200 according to an exemplary embodiment of the present invention.
  • a plate-shaped low energy X-ray filter unit 150 is installed between the X-ray source 100 and an object to pass the plate-shaped filter unit 150.
  • the low energy X-rays are blocked to have only high energy X-rays, and the X-rays that do not pass through the plate-shaped filter unit 150 are X-ray peaks of low energy components. Have). Therefore, the X-ray image passing through the object is divided into two regions, a high energy image region and a low energy image region, in the gas electron amplification detector 200 (GEM detector). do.
  • FIG. 5 is a schematic diagram of a method for generating an energy filter dual energy X-ray image using the gas electron amplification detector 200 according to an embodiment of the present invention
  • FIG. 6 is a view illustrating processing of an image generated according to an embodiment of the present invention. It is a schematic diagram.
  • a first image obtained by dividing the low energy and high energy half images of each energy is obtained, and when the image is rotated 180 degrees by the rotating unit 300 and photographed once more, the first image and the left and The second image obtained by dividing the half image for each energy whose right side is inverted is obtained.
  • the low-energy full image and the high-energy full image may be obtained by synthesizing the energy-specific images from the first image and the second image, respectively.
  • each half image is separated and stored in a database.
  • the second image obtained by inverting the left and right sides of the first image is obtained, and the low energy half image and the high energy half image are separated from the second image.
  • the energy-specific images of the first image and the second image may be synthesized to obtain a full image of the low energy image and the high energy image.
  • the obtained low energy image and the high energy image are recombined to finally obtain a dual energy X-ray image having two energy images on one screen.
  • X-ray source 150 filter portion
  • the present invention provides an energy filter-type dual energy X- using a gas electron amplification detector capable of simultaneously acquiring X-ray images and X-ray CT images of low and high energy regions with one device and one X-ray source.
  • the present invention relates to a ray imaging system and a method of generating an X-ray image thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

본 발명은 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템 및 X-선 영상 생성방법에 관한 것으로, 중심축에서 직선상의 양쪽으로 연장되는 고정 프레임을 구비하고, 중심축 회동이 가능한 회동부; 일측 고정 프레임 단부의 하단으로 고정 연결되는 X-선 소스; X-선 소스 전면에 설치되고, X선 좌우 방향의 조사영역 중 어느 하나의 조사영역의 저에너지 X-선을 저지하는 저에너지 X-선 필터부; 타측 고정 프레임 단부의 하단으로 고정 연결되는 가스 전자 증폭 검출기; 및 가스 전자 증폭 검출기에 의해 검출된 영상을 합성하여 처리하는 영상 처리부를 포함하여 구성하되, 영상 처리부가 중심축 하부에 위치한 대상체를 촬영하여 생성된 제1 영상과 고정 프레임을 180도 회동시킨 위치에서 촬영하여 생성된 제2 영상을 합성하여 이중 에너지 X-선 영상을 생성하는 것을 특징으로 한다.

Description

가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템 및 그 X-선 영상 생성방법
본 발명은 X-선 영상 촬영 시스템 및 영상 생성방법에 관한 것으로, 보다 상세하게는 하나의 장치 및 하나의 X-선 소스로 동시에 저에너지 및 고에너지 영역의 X-선 영상 및 X-선 CT 영상을 획득할 수 있는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템 및 그 X-선 영상 생성방법에 관한 것이다.
방사선 이용 기술은 양전자 단층 촬영, X선 CT 등의 의료 분야, 각종 비파괴 검사 등의 공업 분야, 및 방사선 모니터나 소지품 검사 등의 보안 분야 등 다방면에 걸쳐, 현재도 눈부신 발전을 계속하고 있다.
방사선 화상 검출기는, 방사선 이용 기술의 중요한 위치를 차지하는 요소 기술이며, 방사선 이용 기술의 발전에 따라, 검출 감도, 방사선의 입사 위치에 대한 위치 분해능, 또는 계수율 특성에 대해서 보다 고도의 성능이 요구되고 있다.
또한, 방사선 이용 기술의 보급에 따라, 방사선 화상 검출기의 저비용화 및 유감(有感) 영역의 대면적화도 요구되고 있다. 상기 방사선 화상 검출기에 대한 요구에 응하기 위하여, 픽셀형 전극에 의한 가스 증폭을 이용한 입자선 영상 검출장치가 개발되었다. 해당 입자선 영상 검출장치는, 입사 입자선이 가스 분자를 전리하여 생성된 전자를 픽셀형 전극으로 검출하는 것으로, 위치 분해능 및 계수율 특성이 우수하고, 유감 영역을 용이하게 대형화할 수 있으며, 염가로 제작할 수 있다는 이점을 갖는다.
그러나, 일반적인 X-선 검출장치는 에너지가 고정되어 있어서 대상체(subject)의 X선 투과도에 따라서 그 선명도가 다르게 검출된다. 예를 들어, 의료용 X-선 검출장치일 경우 뼈 (bone)와 조직 (tissue)이 한 검출기에서 별도의 장치 없이는 똑같은 선명도를 유지하기 어렵다.
또한, 병원에서 많이 사용하는 X-선 영상 촬영 장치는 대개 낮은 에너지에서 높은 에너지까지 동시에 환자에게 조사된 영상을 얻는다. 이러한 방식은 인체 조직의 X-선의 투과도에 따라서 영상의 선명도가 다르게 된다. 즉, 뼈와 같은 부분은 선명하게 찍히지만, 조직과 같이 연한 부분은 에너지가 높아서 그냥 투과하게 되므로 결과 영상에서 선명하게 보이지가 않는다. 따라서 각 조직의 밀도에 따라서 X-선 소스의 에너지를 조절해야 되는 문제가 있다.
따라서 뼈와 조직을 유사한 선명도를 유지하면서 영상을 촬영하기 위해서는 다른 에너지를 갖는 2개의 X-선 소스를 사용하여 각각 촬영하여 영상을 합성하거나, 하나의 소스를 사용하되, 뼈, 혹은 조직에 맞는 필터(Filter)를 사용해서 한 종류의 물질에만 선명도를 맞춰서 역시 각각 촬영하여 영상을 합성할 수밖에 없는 문제점이 있다.
본 발명에 따른 다중 가스 전자 증폭 검출기를 이용한 이중 에너지 X-선 검출장치 및 X-선 영상 X-선 영상 촬영 시스템은 다음과 같은 해결과제를 가진다.
첫째, 본 발명은 한 개의 X선 소스를 사용해서 두 가지 에너지로 X선 영상 촬영이 가능한 이중 에너지 X-선 영상 촬영 시스템 및 그 X-선 영상 생성방법을 제공하고자 함이다.
둘째, 본 발명은 X-선 컴퓨터 단층(Computer tomography:CT) 영상을 획득할 수 있고, 신체 연조직과 뼈와 같은 경조직의 물질을 선명하게 구별 가능한 이중에너지 X-선 영상 촬영 시스템 및 X-선 영상 생성방법을 제공하고자 함이다.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하고자 하는 본 발명의 제1 특징은, 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템으로, 중심축에서 직선상의 양쪽으로 연장되는 고정 프레임을 구비하고, 중심축 회동이 가능한 회동부; 일측 고정 프레임 단부의 하단으로 고정 연결되는 X-선 소스; X-선 소스 전면에 설치되고, X선 좌우 방향의 조사영역 중 어느 하나의 조사영역의 저에너지 X-선을 저지하는 저에너지 X-선 필터부; 타측 고정 프레임 단부의 하단으로 고정 연결되는 가스 전자 증폭 검출기; 및 가스 전자 증폭 검출기에 의해 검출된 영상을 합성하여 처리하는 영상 처리부를 포함하여 구성하되, 영상 처리부가 중심축 하부에 위치한 대상체를 촬영하여 생성된 제1 영상과 고정 프레임을 180도 회동시킨 위치에서 촬영하여 생성된 제2 영상을 합성하여 이중 에너지 X-선 영상을 생성하는 것이다.
여기서, 상기 가스 전자 증폭 검출기는, 반응 가스가 유입되는 GEM 챔버; 챔버 내부 X-선 조사방향의 일측에 설치되는 캐소드; 캐소드에 이격되어 설치되는 적어도 하나의 GEM 포일; 및 GEM 포일과 인접하여 설치되고, 독출 회로(readout circuit)와 연결되는 애노드를 포함하는 것이 바람직하고, 상기 애노드는, 격자 형태의 전극으로, 격자 하나가 영상의 1 픽셀에 대응되는 것이 바람직하다.
또한, 상기 저에너지 X-선 필터부는, X-선 소스 전면 일부에 부착되거나, X-선 소스 전면과 이격되어 설치되는 것이 바람직하고, 상기 저에너지 X-선 필터부는, 저에너지 X-선을 차단하는 금속 또는 합성 물질을 재질로 하는 것이 바람직하며, 상기 저에너지 X-선 필터부는, 상기 고정 프레임에서 하단으로 연장되는 판형 필터로서, X-선 소스 근접하여 좌측 또는 우측 전면에 설치되어 조사되는 저에너지 X-선 일부를 저지하여 필터링 하는 것이 바람직하다.
그리고, 본 발명의 제2 특징은 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법으로, 상술한 X-선 영상 촬영 시스템을 이용하는 것으로, (a) X-선 소스와 가스 전자 증폭 검출기 사이에 위치한 대상체에 X-선을 조사하여 제1 영상을 생성하는 단계; (b) 중심축을 중심으로 고정 프레임을 180도 회동시킨 위치에서 상기 대상체에 X-선을 조사하여 제2 영상을 생성하는 단계; (c) 영상 처리부가 제1 영상 및 제2 영상의 각 저에너지 영상 및 고에너지 영상별로 합성하여 저에너지 영상 및 고에너지 영상을 생성하는 단계; 및 (d) 영상 처리부가 저에너지 영상 및 고에너지 영상을 합성하여 이중 에너지 X-선 영상을 생성하는 단계를 포함한다.
여기서, 상기 가스 전자 증폭 검출기는, 반응 가스가 유입되는 GEM 챔버; 챔버 내부 X-선 조사방향의 일측에 설치되는 캐소드; 캐소드에 이격되어 설치되는 적어도 하나의 GEM 포일; 및 GEM 포일과 인접하여 설치되고, 독출 회로(readout circuit)와 연결되는 애노드를 포함하여 구성된 것이 바람직하다.
또한, 상기 생성되는 제1 영상 및 제2 영상은, 상기 애노드의 격자 하나와 영상의 1 픽셀에 대응되는 것이 바람직하고, 상기 회동부를 통해 고정 프레임을 단계적으로 회전시키면서, 상기 (a) 단계 내지 (d) 단계를 반복하여 컴퓨터 단층 촬영하여 이중 에너지 X-선 CT 영상을 생성하는 단계를 더 포함하는 것이 바람직하다.
본 발명에 따른 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템 및 그 X-선 영상 생성방법은 다음과 같은 효과를 가진다.
첫째, 본 발명은 저에너지 X-선 필터와 회동 가능 회동부를 구비하여 선명한 이중 에너지 X-선 영상의 획득이 가능한 X-선 영상 촬영 시스템 및 그 X-선 영상 생성방법을 제공한다.
둘째, 본 발명은 정상 촬영과 좌측 및 우측을 반전시켜 촬영하는 반전 영상 촬영의 두번 영상 촬영을 통해 저에너지 영상 및 고에너지 영상이 선명하게 구분되는 이중 에너지 X-선 영상을 생성 또는 획득할 수 있는 시스템 및 영상 생성방법을 제공한다.
셋째, 본 발명은 이중 에너지 X-선 영상 촬영 프로세스를 회동부에 의해 단계적으로 360도 회전시키면서 반복함으로써, 이중 에너지 X-선 컴퓨터 단층(Computer tomography:CT) 영상을 획득할 수 있는 이중에너지 X-선 영상 촬영 시스템 및 X-선 영상 생성방법을 제공한다.
본 발명의 효과는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명이 실시예에 따른 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템의 구성을 나타낸 도면이다.
도 2는 본 발명의 실시예에 따른 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법의 흐름을 나타낸 도면이다.
도 3은 본 발명이 실시예에 따른 이중 에너지 X-선 영상 촬영 시스템에 적용되는 가스 전자 증폭 검출기(GEM detector)의 구성을 예시한 도면이다.
도 4는 본 발명의 실시예에 따른 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템의 촬영 모식도이다.
도 5는 본 발명의 실시예에 따른 이중 에너지 X-선 영상 생성방법의 모식도이다.
도 6은 본 발명의 실시예에 따라 생성된 영상의 처리 모식도이다.
도 1은 본 발명이 실시예에 따른 가스 전자 증폭 검출기(200)를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템의 구성을 나타낸 도면이고, 도 2는 본 발명의 실시예에 따른 가스 전자 증폭 검출기(200)를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법의 흐름을 나타낸 도면이다.
도 1에 나타낸 바와 같이, 본 발명의 실시예에 따른 X-선 영상 촬영 시스템은, 중심축에서 직선상의 양쪽으로 연장되는 고정 프레임(330)을 구비하고, 중심축 회동이 가능한 회동부(300); 일측 고정 프레임(330) 단부의 하단으로 고정 연결되는 X-선 소스(100); X-선 소스(100) 전면에 이격되어 설치되고, X선 좌우 방향의 조사영역 중 어느 하나의 조사영역의 저에너지 X-선을 저지하는 저에너지 X-선 필터부(150); 타측 고정 프레임(330) 단부의 하단으로 고정 연결되는 가스 전자 증폭 검출기(200); 및 가스 전자 증폭 검출기(200)에 의해 검출된 영상을 합성하는 영상 처리부(400)를 포함하여 구성하되, 영상 처리부(400)가 중심축 하부에 위치한 대상체를 촬영하여 생성된 제1 영상과 고정 프레임(330)을 180도 회동시킨 위치에서 촬영하여 생성된 제2 영상을 합성하여 X-선 영상을 생성하는 것을 특징으로 한다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.
본 명세서에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지는 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
본 명세서에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하에서 본 발명의 바람직한 실시예를 도면을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명이 실시예에 따른 가스 전자 증폭 검출기(200)를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템의 구성을 나타낸 도면이고, 도 2는 본 발명의 실시예에 따른 가스 전자 증폭 검출기(200)를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법의 흐름을 나타낸 도면이다.
도 1에 나타낸 바와 같이, 본 발명의 실시예에 따른 X-선 영상 촬영 시스템은, 중심축에서 직선상의 양쪽으로 연장되는 고정 프레임(330)을 구비하고, 중심축 회동이 가능한 회동부(300); 일측 고정 프레임(330) 단부의 하단으로 고정 연결되는 X-선 소스(100); X-선 소스(100) 전면에 이격되어 설치되고, X선 좌우 방향의 조사영역 중 어느 하나의 조사영역의 저에너지 X-선을 저지하는 저에너지 X-선 필터부(150); 타측 고정 프레임(330) 단부의 하단으로 고정 연결되는 가스 전자 증폭 검출기(200); 및 가스 전자 증폭 검출기(200)에 의해 검출된 영상을 합성하는 영상 처리부(400)를 포함하여 구성하되, 영상 처리부(400)가 중심축 하부에 위치한 대상체를 촬영하여 생성된 제1 영상과 고정 프레임(330)을 180도 회동시킨 위치에서 촬영하여 생성된 제2 영상을 합성하여 X-선 영상을 생성하는 것을 특징으로 한다.
그리고, 도 2에 나타낸 바와 같이, 본 발명의 실시예에 따른 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법은, 상술한 X-선 영상 촬영 시스템을 이용하는 것으로, (a) X-선 소스(100)와 가스 전자 증폭 검출기(200) 사이에 위치한 대상체에 X-선을 조사하여 제1 영상을 생성하는 단계; (b) 중심축을 중심으로 고정 프레임(330)을 180도 회동시킨 위치에서 상기 대상체에 X-선을 조사하여 제2 영상을 생성하는 단계; (c) 영상 처리부(400)가 제1 영상 및 제2 영상의 각 저에너지 영상 및 고에너지 영상 별로 합성하여 저에너지 영상 및 고에너지 영상을 생성하는 단계; 및 (d) 영상 처리부(400)가 저에너지 영상 및 고에너지 영상을 합성하여 X-선 영상을 생성하는 단계를 포함하여 구성된다.
이와 같이, 본 발명의 실시예는 X-선 소스(100)에 일부 영역에 필터를 구비하고, 대상체에 X-선을 조사하여 가스 전자 증폭 검출기(200)를 통해 저에너지 및 고에너지 영상으로 구분된 제1 영상을 획득하고, 다시 회동부(300)를 통해 고정 프레임(330)을 180도 회전시켜 좌우가 반전된 제2 영상을 획득하여 저에너지 및 고에너지 별로 영상을 합성하고 다시 저에너지 영상 및 고에너지 영상을 합성함으로써, 선명한 X-선 풀(full) 영상을 획득할 수 있는 X-선 영상 촬영 시스템 및 그 영상 생성방법을 제공하게 된다.
상술한 바와 같이, 일반적인 X-선 검출장치는 에너지가 고정되어 있어서 검출 대상체(subject)의 X-선 투과도에 따라서 그 선명도가 다르게 검출되는데, 예를 들어, 의료용 X-선 검출장치일 경우 뼈 (bone)와 조직 (tissue)이 한 검출장치에서 별도의 장치 없이는 똑같은 선명도를 유지하기 어렵다.
따라서 뼈와 조직을 유사한 선명도를 유지하면서 영상을 촬영하기 위해서는 다른 에너지를 갖는 2개의 X-선 소스(100)를 사용하여 각각 촬영하여 영상을 합성하거나, 하나의 소스를 사용하되, 뼈, 혹은 조직에 맞는 필터(Filter)를 사용해서 한 종류의 물질에만 선명도를 맞춰서 역시 각각 촬영하여 영상을 합성할 수밖에 없다.
이에 본 발명의 실시예에서는 하나의 X-선 소스(100)(source) 및 촬영 시스템을 이용하여 선명한 두 가지 에너지 영상이 포함된 하나의 풀 X-선 촬영 영상을 획득할 수 있는 X-선 영상 촬영 시스템 및 X-선 영상 생성방법을 제안한다.
보다 구체적으로, 도 1에 나타낸 바와 같이, 본 발명의 실시예에 따른 X-선 영상 촬영 시스템은, 하나의 축을 중심으로 회동하는 회동부(300)를 구비하는데, 회동부(300)는 중심에서 양쪽으로 직선 연장되는 고정 프레임(330)을 구비하고, 고정 프레임(330) 양쪽 단부에서 하단으로 각각 연장되어 X-선 소스(100), 필터 및 가스 전자 증폭 검출기(200)(GEM detector)가 설치된다.
X-선 소스(100) 전면에는 좌측 및 우측 중 어느 한쪽에 고에너지(high energy) X-선을 저지할 수 있는 판형 필터가 설치됨으로써, X-선 소스(100)가 X-선을 대상체에 조사하여 가스 전자 증폭 검출기(200)를 통해 영상이 생성되는 경우 필터부(150)에 의해 필터링된 고에너지 X-선 영상과 필터 없이 생성된 저에너지 X-선 영상이 동시에 좌측 및 우측으로 구분된 제1 영상을 영상 처리부(400)를 통해 획득할 수 있게 된다.
그리고 나서, 회동부(300)에 의해 고정 프레임(330)을 180도로 회동시켜 X-선을 촬영하게 되면, 좌측 및 우측이 서로 반전된 제2 영상을 획득할 수 있게 되고, 영상 처리부(400)에서 제1 영상 및 제2 영상 각각 저에너지 영상 및 고에너지 영상별로 분리하고, 제1 영상의 저에너지 영상과 제2 영상의 저에너지 영상을 합성하고, 제1 영상의 고에너지 영상과 제2 영상의 고에너지 영상을 합성하여 저에너지 풀 영상 및 고에너지 풀영상 생성하게 되고, 다시 저에너지 풀 영상과 고에너지 풀(full) 영상을 합성하여 이중 에너지 X-선 영상을 획득할 수 있게 된다.
이처럼, 본 발명의 실시예에 따른 X-선 영상 촬영 시스템 및 영상 생성방법은, 대상체에 대한 이중 에너지 X-선 영상을 획득하기 위해, 정상 촬영과 좌측 및 우측을 반전시켜 촬영하는 반전 영상 촬영의 두번 영상 촬영을 통해 저에너지 영상 및 고에너지 영상이 선명하게 구분되는 이중 에너지 X-선 영상을 생성 또는 획득할 수 있는 시스템 및 영상 생성방법을 제공한다.
여기서, 영상 처리장치는 컴퓨터 등의 연산처리 장치 및 디스플레이 장치를 구비하고, 회동부(300) 및 가스 전자 증폭 검출기(200)를 통합 제어하는 통합제어부를 포함하여 구성될 수 있다. 이와 같은 통합제어부에 의해 즉 X-선 촬영의 구동 및 회동부(300)의 구동을 프로세스에 따라 자동으로 제어가 가능하게 되고, 회동부(300) 구동의 제어에 의해 360도 회전시키면서 단계적으로 상술한 이중 에너지 X-선 영상을 촬영 프로세스를 진행하여 이중 에너지 X-선 CT 영상을 획득할 수 있는 X-선 컴퓨터 단층(Computer tomography:CT) 촬영 시스템의 기능도 수행할 수 있게 된다.
또한, 저에너지 X-선 필터부(150)는, X-선 소스(100) 전면 일부에 부착되거나, 고정 프레임(330)에서 하단으로 연장시켜 X-선 소스(100) 전면과 이격되어 설치되는 것이 바람직하다. 즉, 직접적으로 X-선 소스의 전면 일측에 고정하여 설치하는 것도 가능하고, 도 1에 나타낸 바와 같이, 고정 프레임(330)에서 하단 연장시켜 X-선 소스와 이격되어 설치되는 것도 가능하며, 필요에 따라 필터부(150)는 이동이 가능하도록 하여 X-선 차단 및 해제를 선택적으로 수행할 수 있도록 하는 것이 바람직하다. 더하여, 저에너지 X-선 필터부(150)는, 저에너지 X-선을 차단하는 Cu 등의 금속 또는 합성 물질을 재질로 하는 것이 바람직하다.
또한, 이와 같은 좌측 및 우측의 반전 영상은 본 발명의 실시예에 따라 회동부의 180도 회전에 따라 촬영하는 것도 가능하고, X-선 소스에 부착되거나 이격되어 설치된 저에너지 X-선 필터부(150)를 이동 또는 회전에 의해 촤즉에서 우측으로 이동시키거나 우측에서 좌측으로 이동시켜 두번 촬영함으로써, 정상 촬영 영상과 반전 영상을 확득하는 것도 가능하게 된다.
도 3은 본 발명이 실시예에 따른 이중 에너지 X-선 영상 촬영 시스템에 적용되는 가스 전자 증폭 검출기(200)(GEM detector)의 구성을 예시한 도면이다.
도 3에 나타낸 바와 같이, 가스 전자 증폭 검출기(200)는 상기 가스 전자 증폭 검출기(200)는 반응 가스가 유입되는 GEM 챔버(210); 챔버 내부 X-선 조사방향의 일측에 설치되는 캐소드(230); 캐소드(230)에 이격되어 설치되는 적어도 하나의 GEM 포일(250); 및 GEM 포일(250)과 인접하여 설치되는 애노드(270)를 포함하여 구성된다.
여기서, 가스 전자 증폭기(Gas Electron Multiplier) 또는 가스 전자 증폭 검출기(200)(GEM detector)는 입자 또는 방사선이 가스 입자(Ar+CO2 등)를 전리시킬 때에 발생하는 전하에 기초하여 방사선을 검출하는 가스이온화 검출기의 일종이다. 기존의 가스 이온화 검출기는 전리된 전하가 음극까지 도달하는 비율이 낮아 검출 성능이 좋지 않았지만, 본 발명의 실시예에 적용되는 가스 전자 증폭(GEM) 검출기는 GEM 챔버(210) 내에 하나 이상의 GEM 포일(250)(foil)을 구비하여 전하의 개수를 증폭시킬 수 있기 때문에 검출 성능이 향상시킬 수 있다.
또한, GEM 포일(250)은 수십 ㎛의 직경 및 수십~수백 ㎛의 간격을 가지는 수많은 구멍들이 뚫린 수십~수백 ㎛의 얇은 절연체 기판의 양면에 예를 들어 구리와 같은 금속층을 얇게 형성한 평판이다. 절연체 기판은 예를 들어 캡톤(Kapton) 소재로 구현될 수 있다. 캡톤 소재는 -269℃의 극저온부터 400℃의 고온까지 안정적이고 절연 성능이 뛰어나기 때문에 절연체로서 널리 사용된다.
또한, GEM 포일(250)의 두 금속층에 서로 다른 크기의 전압이 각각 인가되면 캐소드(230) 전극과 애노드(270) 전극 사이의 전기장이 구멍 사이로 밀집하면서 구멍 내에 강한 전기장이 형성되는데, X-선 등의 방사선에 의해 가스 입자로부터 유리된 표류 전자(drift electron)가 음극(캐소드(230))과 GEM 포일(250) 사이의 전기장에 의해 가속되어 구멍으로 접근하였다가 갑자기 고밀도의 전기장을 만나면서 가스 입자들로부터 대량의 전자들이 유리되는 전자 사태(Electron Avalanche)를 일으킨다. 이러한 전자 증폭 현상에 의해 전자들의 개수가 급증하므로 애노드(270)와 연결되는 독출 회로(Readout circuit)에서 전기적으로 검출하기가 용이해진다. 복수의 GEM 포일(250) 들을 나란히 배치하면 전자들이 독출 회로(Readout circuit)까지 도달하기 전에 전자 증폭 현상을 여러 차례 일으킬 수 있는 장점이 있다.
이와 같이 본 발명의 실시예에 따른 이중 에너지 X-선 영상 촬영 시스템에 가스 전자 증폭 검출기(200)(GEM detector)를 사용함으로써, 구성이 간단하여 제조단가를 낮출 수 있고, 대형 검출기로의 제작도 기타 다른 검출기에 비해 용이하다는 점에서 대형 검사체에 적용도 가능하다. 그리고, 동물과 같은 자유로이 움직이지 못하는 대상체(subject)에 있어서 대상체에 맞게 검출기를 굴곡있게 제작할 수도 있다는 큰 장점이 있다.
그리고, 도 3에 나타낸 바와 같이, 애노드(270) 단자는 2차원 격자 형태의 격자 전극으로 구성되어 있으며, 각 전극의 2차원 x, y 좌표에 따라서 영상의 1 pixel의 좌표가 결정되고 격자의 면적이 영상에서의 1 픽셀(pixel)의 크기가 된다. 결과적으로 전체 격자의 개수가 한 영상의 해상도(resolution)가 된다.
도 4는 본 발명의 실시예에 따른 가스 전자 증폭 검출기(200)를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템의 촬영 모식도이다.
도 4에 나타낸 바와 같이, X-선 소스(100)와 대상체(object) 사이에 판형(plate)의 저에너지 X-선 필터부(150) 설치하여, 판형 필터부(150)를 통과한 X-선이 저에너지(low energy) X-선을 차단하여 고에너지(high energy) X-선만 가지게 되고, 판형 필터부(150)를 거치지 않은 X-선은 저에너지(low energy) 성분의 X-선 피크(peak)를 가지게 된다. 따라서 대상체(object)를 통과한 X-선 영상은 가스 전자 증폭 검출기(200)(GEM detector) 영역에 고에너지(high energy) 영상 영역과 저에너지(low energy) 영상 영역의 2개의 영역으로 구분되어 나타나게 된다.
도 5는 본 발명의 실시예에 따른 가스 전자 증폭 검출기(200)를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법의 모식도이고, 도 6은 본 발명의 실시예에 따라 생성된 영상의 처리 모식도이다.
도 5에 나타낸 바와 같이, 각 에너지 별 저에너지 및 고에너지 반쪽 영상이 구분된 제1 영상을 얻게 되고, 회동부(300)에 의해 180도 회전시켜 한 번 더 촬영하게 되면, 제1 영상과 좌측 및 우측이 반전된 각 에너지 별로 반쪽 영상이 구분된 제2 영상을 획득하게 된다. 그리고 상술한 제1 영상 및 제2 영상으로부터 각각 에너지별 영상을 합성하여 저에너지 풀 영상 및 고에너지 풀 영상을 획득할 수 있게 된다.
보다 구체적으로, 도 6에 나타낸 바와 같이, 본 발명의 실시예에 따른 X-선 촬영 시스템 및 영상 생성방법을 이용하여 영상 처리과정을 살펴보면, 회동부(300)의 0도에서 촬영하는 정상촬영에서 고에너지 반쪽영상과 저에너지 반쪽영상으로 이루어진 제1 영상의 생성과 함께, 각각의 반쪽영상을 분리하여 각각 데이터베이스에 저장한다.
그리고 나서, 회동부(300)에 의해 180도로 회동시켜 촬영하게 되면, 제1 영상에서 좌측 및 우측이 반전된 제2 영상을 획득하게 되는데, 제2 영상에서 저에너지 반쪽영상과 고에너지 반쪽 영상을 분리시키고 각각 데이터 베이스에 저장한 후, 제1 영상 및 제2 영상의 각각 에너지 별 영상을 합성하여 저에너지 영상 및 고에너지 영상의 풀 영상을 획득할 수 있게 된다. 그리고, 획득한 저에너지 영상 및 고에너지 영상을 다시 합성하여 최종적으로 한 화면에 두 개의 에너지 영상을 갖는 이중 에너지 X-선 영상을 얻을 수 있게 된다.
또한, 본 발명의 또 다른 실시예로서, 각각 180도 회전하여 두 번 촬영하여 상술한 이중 에너지 X-선 영상을 획득할 수 있게 되는데, 이러한 이중 에너지 X-선 영상 촬영 프로세스를 회동부(300)에 의해 단계적으로 360도 회전시키면서 반복함으로써, 이중 에너지 X-선 컴퓨터 단층(Computer tomography: CT) 영상을 얻는 것도 가능하다.
본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
100: X-선 소스 150: 필터부
200: 가스 전자 증폭 검출기 300: 회동부
330: 고정 프레임 400: 영상 처리부
본 발명은 하나의 장치 및 하나의 X-선 소스로 동시에 저에너지 및 고에너지 영역의 X-선 영상 및 X-선 CT 영상을 획득할 수 있는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템 및 그 X-선 영상 생성방법에 관한 것으로 산업상 이용 가능성이 있다.

Claims (10)

  1. 중심축에서 직선상의 양쪽으로 연장되는 고정 프레임을 구비하고, 중심축 회동이 가능한 회동부;
    일측 고정 프레임 단부의 하단으로 고정 연결되는 X-선 소스;
    X-선 소스 전면에 설치되고, X선 좌우 방향의 조사영역 중 어느 하나의 조사영역의 저에너지 X-선을 저지하는 저에너지 X-선 필터부;
    타측 고정 프레임 단부의 하단으로 고정 연결되는 가스 전자 증폭 검출기; 및
    가스 전자 증폭 검출기에 의해 검출된 영상을 합성하여 처리하는 영상 처리부를 포함하여 구성하되,
    영상 처리부가 중심축 하부에 위치한 대상체를 촬영하여 생성된 제1 영상과 고정 프레임을 180도 회동시킨 위치에서 촬영하여 생성된 제2 영상을 합성하여 이중 에너지 X-선 영상을 생성하는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템.
  2. 청구항 1에 있어서,
    상기 가스 전자 증폭 검출기는
    반응 가스가 유입되는 GEM 챔버;
    챔버 내부 X-선 조사방향의 일측에 설치되는 캐소드;
    캐소드에 이격되어 설치되는 적어도 하나의 GEM 포일; 및
    GEM 포일과 인접하여 설치되고, 독출 회로(readout circuit)와 연결되는 애노드를 포함하는 것을 특징으로 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템.
  3. 청구항 2에 있어서,
    상기 애노드는,
    격자 형태의 전극으로, 격자 하나가 영상의 1 픽셀에 대응되는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템.
  4. 청구항 1에 있어서,
    상기 저에너지 X-선 필터부는,
    X-선 소스 전면 일부에 부착되거나, X-선 소스 전면과 이격되어 설치되는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템.
  5. 청구항 1에 있어서,
    상기 저에너지 X-선 필터부는, 저에너지 X-선을 차단하는 금속 또는 합성 물질을 재질로 하는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템.
  6. 청구항 1에 있어서,
    상기 저에너지 X-선 필터부는,
    상기 고정 프레임에서 하단으로 연장되는 판형 필터로서, X-선 소스 근접하여 좌측 또는 우측 전면에 설치되어 조사되는 저에너지 X-선 일부를 저지하여 필터링 하는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 촬영 시스템.
  7. 청구항 1의 X-선 영상 촬영 시스템을 이용하는 것으로,
    (a) X-선 소스와 가스 전자 증폭 검출기 사이에 위치한 대상체에 X-선을 조사하여 제1 영상을 생성하는 단계;
    (b) 중심축을 중심으로 고정 프레임을 180도 회동시킨 위치에서 상기 대상체에 X-선을 조사하여 제2 영상을 생성하는 단계;
    (c) 영상 처리부가 제1 영상 및 제2 영상의 각 저에너지 영상 및 고에너지 영상별로 합성하여 저에너지 영상 및 고에너지 영상을 생성하는 단계; 및
    (d) 영상 처리부가 저에너지 영상 및 고에너지 영상을 합성하여 이중 에너지 X-선 영상을 생성하는 단계를 포함하는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법.
  8. 청구항 7에 있어서,
    상기 가스 전자 증폭 검출기는
    반응 가스가 유입되는 GEM 챔버;
    챔버 내부 X-선 조사방향의 일측에 설치되는 캐소드;
    캐소드에 이격되어 설치되는 적어도 하나의 GEM 포일; 및
    GEM 포일과 인접하여 설치되고, 독출 회로(readout circuit)와 연결되는 애노드를 포함하여 구성된 것을 특징으로 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법.
  9. 청구항 8에 있어서,
    상기 생성되는 제1 영상 및 제2 영상은,
    상기 애노드의 격자 하나와 영상의 1 픽셀에 대응되는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법.
  10. 청구항 7에 있어서,
    상기 회동부를 통해 고정 프레임을 단계적으로 회전시키면서, 상기 (a) 단계 내지 (d) 단계를 반복하여 컴퓨터 단층 촬영하여 이중 에너지 X-선 CT 영상을 생성하는 단계를 더 포함하는 것을 특징으로 하는 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 X-선 영상 생성방법.
PCT/KR2016/004344 2016-03-31 2016-04-26 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법 WO2017171131A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0039148 2016-03-31
KR1020160039148A KR101742432B1 (ko) 2016-03-31 2016-03-31 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법

Publications (1)

Publication Number Publication Date
WO2017171131A1 true WO2017171131A1 (ko) 2017-10-05

Family

ID=59052348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004344 WO2017171131A1 (ko) 2016-03-31 2016-04-26 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법

Country Status (2)

Country Link
KR (1) KR101742432B1 (ko)
WO (1) WO2017171131A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071506B1 (en) * 2020-04-28 2021-07-27 Wisconsin Alumni Research Foundation X-ray imaging device providing enhanced spatial resolution by energy encoding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155668A (ja) * 1999-11-30 2001-06-08 Toshiba Corp X線画像検出器
JP2009206057A (ja) * 2008-02-29 2009-09-10 Scienergy Co Ltd ガス電子増幅器及びこれを使用した放射線検出器
JP2011007759A (ja) * 2009-06-29 2011-01-13 Scienergy Co Ltd 低エネルギーx線画像形成装置
KR20120004435A (ko) * 2009-04-01 2012-01-12 가부시끼가이샤 도꾸야마 방사선 화상 검출기
KR20150077415A (ko) * 2012-09-26 2015-07-07 눅테크 컴퍼니 리미티드 Ct 시스템 및 ct 시스템에 사용되는 탐측장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155668A (ja) * 1999-11-30 2001-06-08 Toshiba Corp X線画像検出器
JP2009206057A (ja) * 2008-02-29 2009-09-10 Scienergy Co Ltd ガス電子増幅器及びこれを使用した放射線検出器
KR20120004435A (ko) * 2009-04-01 2012-01-12 가부시끼가이샤 도꾸야마 방사선 화상 검출기
JP2011007759A (ja) * 2009-06-29 2011-01-13 Scienergy Co Ltd 低エネルギーx線画像形成装置
KR20150077415A (ko) * 2012-09-26 2015-07-07 눅테크 컴퍼니 리미티드 Ct 시스템 및 ct 시스템에 사용되는 탐측장치

Also Published As

Publication number Publication date
KR101742432B1 (ko) 2017-05-31

Similar Documents

Publication Publication Date Title
US6316773B1 (en) Multi-density and multi-atomic number detector media with gas electron multiplier for imaging applications
CN1299541C (zh) 平面束x射线照相术方法和装置以及辐射探测器
US6823044B2 (en) System for collecting multiple x-ray image exposures of a sample using a sparse configuration
JPH1082863A (ja) 高解像度放射線結像装置
CN104414676B (zh) X射线探测器和方法
Borkowski et al. Proportional counter photon camera
US4129783A (en) High speed computerized tomography imaging system
WO2017171131A1 (ko) 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법
WO2017171130A1 (ko) 다중 가스 전자 증폭 검출기를 이용한 이중 에너지 x-선 검출장치 및 x-선 영상 x-선 영상 촬영 시스템
CA2419869A1 (en) Multi-density and multi-atomic number detector media with gas electron multiplier for imaging applications
JP2023516986A (ja) 放射線検出システム
JP2002221500A (ja) 高エネルギーx線イメージング装置およびその方法
Bueno et al. High-resolution digital radiography and three-dimensional computed tomography
WO2020022664A1 (ko) 이중 에너지 x선 촬영 장치
Després et al. Evaluation of a full-scale gas microstrip detector for low-dose X-ray imaging
RU2407437C2 (ru) Способ регистрации рентгеновского изображения объекта в различных диапазонах спектра рентгеновского излучения
Brunbauer et al. The planispherical chamber: A parallax-free gaseous X-ray detector for imaging applications
JP6665470B2 (ja) 放射線検出装置及びコントローラ
CN201066388Y (zh) 光电池数字平行板探测器
JPS6032243A (ja) 放射線検出器
US11137506B2 (en) Positron tomography device using micropattern detector
Östling New efficient detector for radiation therapy imaging using Gas Electron Multipliers
Li The gas electron multiplier (GEM): a new detector for scanned projection radiography.
RU2247410C2 (ru) Широкодиапазонный детектор рентгеновского излучения
Budtz-Jørgensen et al. Application of microstrip proportional counters at the Danish Space Research Institute

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897152

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897152

Country of ref document: EP

Kind code of ref document: A1