WO2017171109A1 - 액상 조제유 조성물 및 제조방법 - Google Patents

액상 조제유 조성물 및 제조방법 Download PDF

Info

Publication number
WO2017171109A1
WO2017171109A1 PCT/KR2016/003206 KR2016003206W WO2017171109A1 WO 2017171109 A1 WO2017171109 A1 WO 2017171109A1 KR 2016003206 W KR2016003206 W KR 2016003206W WO 2017171109 A1 WO2017171109 A1 WO 2017171109A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
pressure
less
liquid
crude oil
Prior art date
Application number
PCT/KR2016/003206
Other languages
English (en)
French (fr)
Inventor
김승수
박상기
최윤식
최창일
Original Assignee
주식회사 엘지생활건강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지생활건강 filed Critical 주식회사 엘지생활건강
Priority to PCT/KR2016/003206 priority Critical patent/WO2017171109A1/ko
Publication of WO2017171109A1 publication Critical patent/WO2017171109A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/02Preservation of milk or milk preparations by heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/15Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins

Definitions

  • the present invention relates to a liquid crude oil composition and a method for preparing the same, and more particularly, to a liquid crude oil composition excellent in production efficiency, phase stability, time stability, and microbial safety through emulsification and dispersion stabilization, preheating, homogeneous, and sterilization processes. It relates to a manufacturing method.
  • formula milk powder commonly called powdered milk powder, which is commonly distributed on the market, it is designed to be similar to breast milk when dissolved in liquid form for lactation, and spray-dried through various formulations, concentrations, sterilization or sterilization processes. It is prepared in the form of a powder.
  • concentration solubility, dispersibility, temperature, etc.
  • the formulation of powdered milk powder has a problem that the loss of nutrients due to heat treatment such as spray drying is concerned.
  • the thickening process before the preparation of the formula generally involves a number of process steps such as compounding, preheating, homogenizing, sterilizing, or sterilizing, and is known as an efficient method in terms of time and cost reduction. .
  • process steps such as compounding, preheating, homogenizing, sterilizing, or sterilizing, and is known as an efficient method in terms of time and cost reduction.
  • problems such as deterioration in phase stability, off-flavor, or gelling are extremely difficult to apply.
  • whey protein ingredient which is a nutritional ingredient that is inevitably used in dairy products, is rich in the major amino acids that make up muscles, which not only helps muscles, but also promotes breast milk because its content is higher in milk than milk. In formulated milk, it must be included in high content.
  • whey protein raw materials are three-dimensional conformational forms formed by intermolecular ions and disulfide bonds by numerous free amino and carboxyl groups. Alternatively, complex instability such as precipitation may occur, which may cause side effects such as loss of original properties and functions.
  • the main cause of protein denaturation in dairy products is known as heating, but mechanical physical forces such as agitation and high pressure may also be a factor of protein denaturation. According to these physical and chemical factors, the concentration step in the manufacturing process should be suppressed as much as possible the crosslinking tendency in the heat treatment conditions due to the high level of protein, a significant difficulty in the process and the use of raw materials to solve this problem.
  • Emulsions which are usually one of the characteristics of the formula, refer to a colloidal solution in which two liquids are dispersed in the disperse phase. These emulsions may lead to separation of the fat layer when the phase is unstable, but when the emulsion or dispersion phase is unstable, it causes non-uniformity of the dispersed particles and easily aggregates, which adversely affects the precipitation of proteins. You fail to achieve your purpose. In this case, an appropriate emulsifier and a technique of preventing reaggregation of the dispersed particles are very important.
  • Emulsification in dairy products is a different pattern from general emulsification.
  • emulsifiers are used as a secondary role, emulsifiers are very important because they are instantaneously arranged in the oil-water interface to lower the interfacial tension.
  • commonly used emulsifiers are low molecular and amphiphilic, arranged at the interface between oil and water phases, contributing to the unity and phase stabilization of fat globules, but if the proper content is not applied, desorption or excessively high emulsifier content may adversely affect phase stability. Can be.
  • One of the important stabilization factors in the manufacturing process is the miniaturization and homogenization of the particles through homogenization. Fineness and homogenization of particles by proper homogenization minimizes agglomeration between particles that occur over time, and exhibits the effect of delaying the agglomeration between particles for a considerable time compared to relatively large and uneven particles, resulting in remarkable agglomeration, separation, and precipitation. Is improved. However, the fine and uniform particles formed through homogenization are delayed in the aggregation, separation, or precipitation phenomenon compared to the crude oil composition which is not, but may also cause problems due to reaggregation under conditions of circulation and time of various temperatures. Therefore, it is very important to select the appropriate emulsification, dispersion stabilizer, and protein that not only finely and homogenize the particles with optimized step-by-step homogeneous conditions but also prevent reaggregation during distribution.
  • the proper design of heat treatment conditions such as sterilization and sterilization for such liquid preparation oil products can reduce the degeneration of proteins and other dairy ingredients by heating to maintain microbial safety and phase stability, and to prevent odor, discoloration and taste. It is an essential element to maintain.
  • the existing domestic and overseas liquid preparation oils are produced through excessive heat treatment of the retort method, causing phase instability or partially causing problems such as taste, odor, or discoloration. In order to avoid this phenomenon, it is also found that the product is not provided with proper nutrition to consumers by lowering the content of protein raw material, which is an essential factor.
  • Producing a high quality liquid preparation oil as described above has many difficulties such as emulsification, dispersion stability, homogenization, and sterilization, and it is necessary to develop a method for solving such problems in producing liquid preparation oil at once.
  • the problem to be solved by the present invention is to provide a liquid preparation composition and a method for producing a liquid having excellent production efficiency, phase stability, stability over time, and microbial safety.
  • Liquid preparation oil prepared by the above method has high production efficiency, uniform particle and no phase separation and precipitation according to emulsification and dispersion stabilization. It was found to be excellent to complete the present invention.
  • the present invention (s1) to the dissolved fats and oils by adding lecithin, glycerin fatty acid esters, or a mixture thereof, and then added to water and stirred; (s2) adding and stirring any one or more selected from the group consisting of milks, milk powders, and proteins to the product of step (s1); (s3) homogenizing the product of step (s2); And (s4) provides a method for producing a concentrated formula for preparing a liquid crude oil comprising the step of sterilizing the product of step (s3) and provides a concentrated formulation for preparing a liquid crude oil prepared by the above method.
  • the concentrated formulation in the form of a semi-finished product is about 120 or more but less than 400% by weight (concentration), preferably 150 to 350% by weight (concentration), based on a solid preparation as a finished liquid preparation.
  • the concentrate may be at a level of 200 to 300% by weight (concentration).
  • concentration concentration
  • the concentrated formulation is less than 120% by weight (concentration)
  • the production efficiency is reduced, and when it is 400% by weight (concentration) or more, there is a high possibility that the quality stability such as protein denaturation, microorganisms, or precipitation generation is sharply lowered.
  • glycerin fatty acid esters are used as the emulsifier, and the glycerin fatty acid esters are compounds in which fatty acids and glycerin or polyglycerol are esterified or derivatives thereof.
  • the glycerin fatty acid esters are glycerin fatty acid esters, glycerin acetic acid fatty acid esters, glycerin lactic acid fatty acid esters, glycerin citric acid fatty acid esters, glycerin zucchini acid fatty acid esters, glycerin diacetyl tartrate fatty acid esters, glycerin acetate esters, polyglycerol fatty acid esters, and It may include any one or more selected from the group consisting of polyglycerol condensed ricinoleic acid ester.
  • Glycerin fatty acid esters in the above production method is a weight ratio of 1/25 to less than 1/1 (glycerin fatty acid esters / oils and fats) weight ratio, preferably 1/15 to 1/5 (glycerine fatty acid esters / oils and fats) weight ratio to the fat or oil weight May be included.
  • the emulsifier is less than 1/25 (glycerin fatty acid ester / oil) weight ratio, it is difficult for the low molecular weight and amphiphilic emulsifier to be effectively adsorbed to the oil-in-water interface of the liquid formula, and more than 1/1 (glycerin fatty acid ester / oil) weight ratio Excessive adsorption results in an adverse effect on phase stability.
  • the lecithin used in the present invention is a natural emulsifier, but also has a nutritional meaning of phospholipids, but structurally, the choline in the head has hydrophilic characteristics, and the fatty acid in the body has an oil affinity, which is an amphiphilic stabilizer having surfactant properties.
  • lecithin since lecithin has a cationic property on the hydrophilic part, it can effectively perform dispersion stabilization of the composition by preventing aggregation between particles by adsorbing with casein micelle negative charge, which is a characteristic of dairy products.
  • lecithin is used for dispersion and emulsion stabilization purposes, the lecithin is 0.005 or more and less than 1.5% by weight, preferably 0.007 to 1.3% by weight, more preferably 0.01 to 1% by weight relative to the total weight of the liquid crude oil composition May be included in proportions.
  • the lecithin is less than 0.005% by weight, the effect is extremely minimal, and when it is 1.5% by weight or more, it is difficult to apply due to the change in the color and taste of the contents due to the unique color of lecithin.
  • the weight ratio of the lecithin and glycerin fatty acid esters is 9: 1 to 1: 9, preferably 8: 2 to 2: 8, more preferably 7: 3 to 3: 7, most preferably 6 It may be included in the weight ratio of 4: 4 to 4: 6 (lecithin: glycerin fatty acid esters).
  • lecithin and glycerin fatty acid esters are included in the above weight ratio range, the emulsion and dispersion stabilization effects of the liquid crude oil of the present invention are remarkably excellent.
  • the preparation method of the present invention may further include a preheating step to increase the homogeneous effect, to reduce the risk of coagulation of milk casein during the sterilization process, and to inactivate the microorganisms.
  • the preparation method may further include a step of preheating the product of step (s2) to 50 ° C to 80 ° C, preferably 55 ° C to 75 ° C before step (s3).
  • preheating temperatures below 50 ° C. particle refinement and homogenization are very poor due to homogeneous effects, and above 80 ° C. can lead to phase instability due to protein denaturation.
  • the homogenization of the concentrated blend is greatly influenced on the phase stabilization depending on the treatment method.
  • the ratio of the first pressure and the second pressure of the homogenizer is considered in order to realize particle refinement and uniformity.
  • the primary pressure passes through the valve and the seat, increasing in speed and decreasing in pressure, so that high velocity fluids create turbulence, which in turn hinders homogenization efficiency and stable dispersed phase construction.
  • the secondary pressure valve applies a reverse pressure to the direction of the primary pressure, causing a decrease in the homogeneous effect by the cavitation phenomenon caused by the primary pressure.
  • the step (s4) may be performed at a ratio of the second pressure to the first pressure of the homogenizer in the range of 5% to 30%, preferably 8% to 25%.
  • the ratio of the first pressure to the second pressure is less than 5%, the homogenization efficiency is lowered by the cavitation phenomenon, and when the ratio of the second pressure to the second pressure is less than 30%, the particle size becomes smaller and the uniformity is adversely affected due to the excess of the second pressure.
  • the homogeneous pressure may be performed at 150 to 500 bar, preferably 200 to 400 bar.
  • the concentrated formulation contains a large amount of carbohydrates, fats, and proteins, and is a highly nutritious composition that is easy to grow microorganisms when stored at room temperature for a long time.
  • the concentrated blend contains a large amount of carbohydrates, fats, and proteins, and is a highly nutritious composition that is easy to grow microorganisms when stored at room temperature for a long time.
  • the sterilization process was carried out by intermediate heat treatment in the manufacturing and storage of the concentrated formulation solution, thereby maintaining microbiological safety for at least 48 hours.
  • the sterilization process as described above, it was possible to obtain the effect of inhibiting the growth of microorganisms and reducing protein denaturation during the storage of the concentrated formulation to improve productivity.
  • the sterilization step of (s4) may be sterilized for 5 seconds to 60 seconds at a temperature of 60 ° C. or more and less than 100 ° C., preferably at 70 ° C. to 90 ° C. for 10 to 30 seconds. Can be sterilized. If the sterilization process is less than 60 °C sterilization effect is insignificant, if more than 100 °C the microbial safety is increased, but the degree of precipitation due to thermal denaturation increases. In addition, even if the sterilization time is more than 60 seconds, the phase stability is lowered due to continuous heat damage.
  • the concentration of the blend during the manufacturing process may be 90% or more of the ratio of the particle size less than 10mm.
  • concentration of the mixture after the sterilization step (s4) may be 90% or more of the ratio of the particle size less than 1mm.
  • the fat or oil is used for supplying saturated fats, unsaturated fats, and essential fatty acids as a fat source for infants. More specifically, the fat or oil may be used by mixing one or more selected from the group consisting of soybean oil, canola oil, palm olein oil, palm oil, palm kernels, sunflower oil, brown rice oil, corn oil, and refined common oil.
  • the milks, milk powders, and proteins are ingredients used in various nutrient sources including proteins in liquid preparations.
  • the milk may be used by mixing one or more of sterilized milk (sea milk), sterile milk, low fat milk, nonfat milk, fortified milk, goat milk, or goat oil.
  • the milk powder may be used by mixing one or more of skim milk powder, whole milk powder, sweetened milk powder, mixed milk powder, and the like.
  • the proteins include milk-derived milk, including milk protein, concentrated milk protein, separated milk protein, whey protein, desalted whey protein, whey protein isolate, whey protein isolate, goat milk protein, and goat whey protein; Vegetable proteins (such as soy protein); And meat-derived protein (chicken protein, etc.) may be used one or more selected from the group consisting of.
  • fat-soluble vitamins may be added as a nutrient component of liquid formulated milk.
  • step (s1) at least one selected from the group of fat-soluble vitamins consisting of vitamins A, E, D, and K may be used. It may be added additionally.
  • the present invention (s1) diluting the concentrated formula for preparing the liquid crude oil in water; (s2) homogenizing the product of step (s1); And (s3) provides a method for preparing a liquid crude oil composition comprising the step of sterilizing the product of step (s2) and a liquid crude oil composition prepared through the production method.
  • step (s1) further comprising the step of preheating the product of step (s1) to 50 ° C. to 80 ° C. before step (s2) to increase the homogeneous effect, reduce the risk of coagulation of milk casein, and fire of microorganisms. Preferred for activation.
  • (S3) sterilization in the preparation method of the liquid crude oil composition may be carried out by ultra high temperature (UHT), which improves stability over time by completely killing all microorganisms by short and powerful heating. It is a process for preserving liquid products so that lactation is not impaired even during use. It has less protein denaturation, off-flavor, or discoloration than the conventional retort method, and taste or color is better than the retort method.
  • the ultra-high short time sterilization conditions may be carried out in 120 to 150 °C 1 to 60 seconds, preferably from 125 to 140 °C 5 to 50 seconds.
  • the ultra-high temperature short time sterilization is less than 120 °C or less than 1 second, the microbial killing effect is insignificant, and when it is more than 150 °C or more than 60 seconds, precipitates are generated due to thermal denaturation or worsening of phase stability due to thermal damage.
  • the method for preparing the liquid crude oil composition may further add vitamins, minerals, or mixtures thereof in step (s1).
  • the mineral plays an important role in stabilization of the preparation liquid during the manufacturing process as well as nutrient supply.
  • the mineral is one or more selected from the group consisting of calcium carbonate, potassium monophosphate, potassium diphosphate, potassium chloride, magnesium diphosphate, sodium hydrogencarbonate, zinc oxide, ferric pyrophosphate, manganese sulfate, potassium iodide, and the like.
  • the above can be mixed and used.
  • potassium phosphate potassium diphosphate is most preferred because it also plays the role of pH buffering of the preparation.
  • vitamins may be used as one or more selected from the group consisting of vitamins B1, B2, B6, B12, C, pantothenic acid, niacin, folic acid, and biotin as water-soluble vitamins. .
  • the liquid crude oil composition prepared by the preparation method of the present invention has a particle size of less than 0.8 mm in the final finished product step is 90% or more, and preferably has a pH of 6 to 8.
  • the present invention is (s1) glycerin fatty acid ester in a weight ratio of 0.005 or more to less than 1.5% by weight of the lecithin and 1/25 or more (glycerol fatty acid esters / fats and oils) weight ratio to the total weight of the liquid crude oil composition in dissolved fats and oils Adding and dissolving the same, followed by stirring in water; (s2) adding and stirring any one or more selected from the group consisting of milks, milk powders, and proteins to the product of step (s1); (s3) homogenizing the ratio of the second pressure to the first pressure of the homogenizer to 5% to 30% of the product of step (s2) at a pressure of 150 to 500 bar; And (s4) preparing the concentrated blend by a method of preparing a concentrated blend for preparing liquid crude oil comprising sterilizing the product of the step (s3) at a temperature of 60 ° C. or more and less than 100 ° C. for 5 seconds to less than 60 seconds.
  • step (s5) diluting the concentrated mixture with water and adding vitamins and minerals;
  • step (s6) homogenizing the ratio of the second pressure to the first pressure of the homogenizer to 5% to 30% at a pressure of 150 to 500 bar of the product of step (s5);
  • step (s7) provides a method for preparing a liquid crude oil composition comprising the step of ultra high temperature (UHT) for 1 to 60 seconds to 120 to 150 °C the product of step (s6).
  • UHT ultra high temperature
  • the liquid crude oil composition prepared by the above production method is most excellent in production efficiency, phase stability, time stability, and microbial safety.
  • the present invention provides a liquid preparation oil product filled with the liquid preparation oil composition in a plastic container having a fastening portion capable of directly fastening a feeding nipple.
  • the fastening portion may be a spiral fastening portion may be used, a configuration that can be easily fastened to each other by turning the nipple or plastic container may be used.
  • the liquid preparation oil product has an advantage that the consumer can conveniently feed the nipple and the baby bottle without the need for a separate feeding bottle.
  • the container may be a plastic container or glass bottle made of various materials such as HDPE, LDPE, PET, PP, PE, or PC, but the glass bottle is preferably filled using a plastic container because there is a risk of being broken.
  • the method for preparing a liquid crude oil composition according to the present invention has a process for preparing a concentrated blended solution as a semi-finished product, and is excellent in production efficiency by reducing the utility, time, etc. required compared to a process for batch-packing a finished product diluted from the beginning.
  • liquid crude oil composition according to the present invention has excellent phase stability and stability over time according to emulsification and dispersion stabilization, and excellent microbial safety through ultra high temperature and short time sterilization treatment (UHT).
  • UHT ultra high temperature and short time sterilization treatment
  • liquid preparation oil product according to the present invention is easy to feed by using a plastic container of the nipple and direct fastening method.
  • a liquid crude oil composition was prepared based on the concentration ratio and process change shown in Table 1 below. In the manufacturing method, it is divided into two stages. First, the semi-condensation concentration manufacturing process is carried out by quantitatively adding fat-soluble vitamins, emulsifiers and lecithin to fats that are completely dissolved at high temperature, completely dissolving them by high temperature stirring, and then gradually adding them to purified water at about 70 ° C. Stirring was started with a homomixer. After stirring for a certain time while maintaining the temperature at about 40 °C while adding the milk while stirring, after a certain time was prepared by adding and stirring whey protein powder, skim milk powder, pH adjuster, lactose, dextrin. The prepared semi-finished concentrate was preheated and subjected to homogenization, followed by sterilization treatment at 85 ° C. for 20 seconds using a UHT machine.
  • the final product processing process is completed by mixing and stirring water, water-soluble vitamins and minerals in the semi-finished concentrate, and preheating and homogeneous process in the same way as the semi-finished product concentration processing process.
  • Short time sterilization treatment UHT was completed.
  • Tables 2 and 3 show examples and phase stability results accordingly, respectively.
  • the stability of the phase stability results such as precipitation and phase separation at a certain ratio of the glycerin fatty acid esters relative to the fats and oils, and the stability was more improved when used in combination with lecithin.
  • the phase stability showed an excellent tendency, but changes in color and taste, etc. were not appropriate.
  • CFU / ml Initial Microbial Count
  • CFU / ml Microbial water after 24 hours
  • Sedimentation degree One 70 5 13000 42000 ⁇ 2 80 5 8000 31000 ⁇ 3 90 5 4100 7000 ⁇ 4 100 5 1000 1500 ⁇ 5 70 15 7600 9000 ⁇ 6 80 15 7300 7800 ⁇ 7 90 15 1000 1400 ⁇ 8 100 15 800 1300 ⁇ 9 70 30 7000 9000 ⁇ 10 80 30 6300 7000 ⁇ 11 90 30 900 900 ⁇ 12 100 30 600 700 X 13 70 60 3000 8000 ⁇ 14 80 60 2000 4700 X 15 90 60 800 800 X 16 100 60 300 500 X
  • the production efficiency of the final finished product according to the concentration of semi-finished products is considered to be excellent ( ⁇ ), good ( ⁇ ), and normal ( ⁇ ) if the production efficiency is the best, taking into account the product production time, cost, and quantity per hour. Low levels were evaluated by marking them as poor (X).
  • the contents of room temperature were filtered through 120 meshes according to the same time period, and the remaining amount of precipitate remaining was measured and filled in numerically.
  • the amount of precipitation remaining in the 120 mesh is the smallest, very good ( ⁇ ), if the good level ( ⁇ ), the general commercial product level ( ⁇ ), poor (X) was evaluated by marking.
  • the contents of the room temperature according to the same time period were visually observed to measure and fill in the phase separation height separated from the upper layer or the lower layer.
  • the least separation is very good ( ⁇ )
  • if it is a good level ( ⁇ )
  • Standard agar medium was prepared and samples were taken aseptically to mix with standard agar medium in sterile Petri dishes. After coagulation of the medium, the cells were incubated at 35 ° C. to 37 ° C. for 24 to 48 hours, and the number of colonies generated was calculated. In the present invention, the number of microorganisms was evaluated in CFU / ml, and after the sterilization of the semi-finished concentrate for storage of the concentrate, the excellent level ( ⁇ ), good level ( ⁇ ), moderate level ( ⁇ ), low Levels were assessed as bad (X).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Abstract

본 발명은 생산 효율, 상 안정성, 경시 안정성, 및 미생물 안전성이 우수한 액상 조제유 조성물 및 이의 제조방법에 관한 것이다. 본 발명에 따른 액상 조제유 조성물의 제조방법은 농축 배합액을 반제품으로 제조하는 공정을 가짐으로써, 초기부터 희석된 완제품으로 일괄 제조하는 공정에 비해 필요한 유틸리티, 시간 등을 저감하여 생산 효율이 우수하다. 또한 본 발명에 따른 액상 조제유 조성물은 유화 및 분산 안정화에 따라 상 안정성 및 경시 안정성이 우수하며, 초고온단시간멸균처리(UHT) 등을 통하여 미생물 안전성이 우수하다. 또한 본 발명에 따른 액상 조제유 제품은 젖꼭지와 직접 체결 방식의 플라스틱 용기를 사용함으로써 수유가 간편하다.

Description

액상 조제유 조성물 및 제조방법
본 발명은 액상 조제유 조성물 및 이의 제조방법에 관한 것으로, 보다 구체적으로 유화 및 분산 안정화와 예열, 균질, 및 살균 공정을 통해 생산 효율, 상 안정성, 경시 안정성, 및 미생물 안전성이 우수한 액상 조제유 조성물 및 이의 제조방법에 관한 것이다.
통상적으로 시중에 유통되는 분말형태의 분유라고 하는 조제분유의 경우, 수유를 위하여 액상으로 용해하였을 때 모유의 성분과 유사하도록 영양성분을 설계하고 여러가지 배합과 농축화, 살균 또는 멸균공정을 거쳐 분무 건조하여 분말의 형태로 제조된다. 하지만 조제분유의 수유 시 소비자의 실사용 방법에 따라 농도, 용해성, 분산성, 온도 등의 차이로 인해 실제 수유되는 조유 농도와의 차이가 필연적으로 발생한다. 또한, 원래의 목적인 모유의 적절한 영양성분과 일정한 조유 농도의 구현이라는 측면에도 실질적으로 차이가 발생하는 문제점이 있었다. 또한 분말 형태의 분유로 제형화하는 것은 분무 건조 등 열처리로 인한 영양성분의 소실이 우려된다는 문제점이 있었다.
또한 상기 문제를 해결하기 위해 일정한 조유 농도를 가지는 액상 타입의 조제유 제조에 있어서도 우유, 단백질, 비타민, 미네랄 등의 복합적인 원료의 배합, 균질, 다수의 가열처리 공정 등으로 인한 유화, 분산의 불안정성, 단백질 변성 등으로 인한 상 분리, 또는 침전 발생 등으로 인해 유통기간 내에 안심하고 수유할 수 있는 수준에는 도달하지 못하였다. 또한 다수의 배합, 균질, 열처리 단계에 따른 제품 수율 저조로 가공비 증가 등의 문제가 발생하여 제조비용 상승의 부담을 상당 부분 소비자에게 전가하는 문제점이 있었다.
조제유를 제조하기 전의 농축화 공정(농축 배합액 제조 공정)은 일반적으로 배합, 예열, 균질, 살균, 또는 멸균 등의 다수의 공정 과정을 포함하며, 시간 단축 및 비용 절감 측면에서 효율적인 방법으로 알려져 있다. 그러나 유제품의 고유 특성상 상 안정성의 저하, 이취, 또는 겔링(gelling) 등의 문제를 극심하게 발생시키기 때문에 실제 적용하기는 어려웠다.
특히 유제품에서 필연적으로 사용되는 영양 성분인 유청단백원료의 경우, 근육을 구성하는 주요 아미노산 등이 풍부하여 근육 생성에 도움을 줄 뿐만 아니라, 우유에 비해 모유 내에 그 함량이 상대적으로 높아 모유화를 추구하는 조제우유에 있어서는 반드시 고함량으로 포함되어야 하는 성분이다. 그러나 유청단백원료는 안정화적인 측면에서 보면 수많은 유리 아미노, 카르복실 그룹들에 의한 분자간 이온 및 디설파이드 결합 등에 의해 복합적으로 형성된 3차원의 입체 구조 형태로써, 여러 물리적, 화학적 작용에 의해 형태 변화, 응고, 또는 침전 등의 복합적인 불안정성이 나타나 원래의 특성과 작용 등이 상실되는 부작용이 발생할 수 있다.
일반적인 유제품에서의 단백질 변성의 주된 요인은 가열로 알려져 있으나 그 외에도 교반, 고압 등의 기계적인 물리력도 단백질 변성의 요인으로 나타날 수 있다. 이러한 물리적, 화학적 요인에 따라 제조공정 중의 농축화 단계에서는 높은 함량 수준의 단백질로 인해 열처리 조건에 있어서 가교되는 경향을 최대한 억제하여야 하며, 이를 해결하기 위해 공정 및 원료 사용에 있어서도 상당한 어려움이 따르게 된다.
액상 조제유의 경우, 유화, 분산, 용해 공정의 복합형태로써 적절한 유화제의 선택, 분산 입자의 미세화, 및 입자 표면의 코팅으로 인한 재응집 지연은 안정성 향상에 매우 중요한 인자이다. 통상적으로 조제유의 특징 중 하나인 에멀젼은 두 가지 상, 즉 분산매인 액체에 녹지 않는 다른 액체가 분산상으로 분산되어 있는 콜로이드 용액을 말한다. 이러한 에멀젼은 상이 불안정할 경우 지방층의 분리를 가져오기도 하지만, 유화 또는 분산상이 불안정할 경우 분산입자의 불균일성을 유발하여 응집이 쉬워져서 단백질의 침전량에도 악영향을 미쳐, 일정한 조유 농도의 구현이라는 액상 조제유의 본연의 목적을 달성하지 못하게 된다. 이 경우 적절한 유화제 및 분산 입자의 재응집 방지 기술이 매우 중요하다.
유제품에서의 유화는 일반적인 유화와는 다른 패턴으로 단백질에 의한 안정화가 주된 특성이다. 유화제의 경우 보조 역할로 사용되고 있지만 유화제는 유수계면에 순간적으로 배열되어 계면장력을 저하시키므로 매우 중요하다. 특히 통상적으로 사용되는 유화제는 저분자 및 양친매성으로 유상과 수상의 계면에 배열되어 지방구의 합일 및 상 안정화에 기여하나, 적정 함량을 적용하지 않으면 탈리되거나 지나치게 많은 유화제 함량은 오히려 상안정성에 악영향을 나타낼 수 있다.
제조공정에서 중요한 안정화 요인 중 하나로는 균질화(homogenization)를 통한 입자의 미세화 및 균일화를 들 수 있다. 적절한 균질화에 의한 입자의 미세화와 균일화는 경시에 따라 발생하는 입자 사이의 응집을 최소화하여 상대적으로 크고 불균일한 입자에 비해, 입자간의 응집을 상당 시간 지연시키는 효과를 나타내어 응집, 분리, 침전 현상이 현저하게 개선된다. 하지만 균질화를 통해서 형성된 미세화되고 균일한 입자는 그렇지 못한 조제유 조성물에 비해 응집, 분리, 또는 침전 현상이 지연되기는 하지만, 시간 및 다양한 온도의 유통 및 경시조건에서 재응집되어 문제가 발생되기도 한다. 따라서 최적화된 단계별 균질 조건으로 입자를 적절하게 미세화, 균일화할 뿐 아니라 유통과정 중 재응집이 되지 않도록 하는 적절한 유화, 분산 안정화제, 단백질의 선택은 매우 중요하다.
또한 이러한 액상 조제유 제품에 대해서 살균, 멸균 등의 열처리 조건을 적절하게 설계하는 것은 가열에 의한 단백질 및 기타 유원료의 변성 등을 저감시켜 미생물 안전성 및 상 안정성을 유지하고, 이취, 변색, 맛 등을 유지시키기 위한 필수적인 요소이다. 기존 시판되고 있는 국내외 액상조제유의 경우 대부분 레토르트 방식의 과도한 열처리 과정을 통하여 제조되는 방식으로 상 불안정성을 야기하거나 맛, 이취, 또는 변색 등의 문제를 부분적으로 발생시킨다. 이러한 현상을 회피하기 위해 필수요소인 단백질 원료의 함량을 낮추어 제품화하여 소비자에게 적절한 영양을 공급하지 못하는 사례도 발견된다.
상기와 같이 양질의 액상 조제유를 생산하는 것은 유화, 분산 안정성, 균질화, 및 살균 등의 많은 난제를 가지고 있으며, 액상 조제유를 생산하는데 있어서 이러한 문제점을 한번에 해결할 수 있는 방법의 개발이 필요한 실정이다.
본 발명이 해결하고자 하는 과제는 생산 효율, 상 안정성, 경시 안정성, 및 미생물 안전성이 우수한 액상 조제유 조성물 및 그 제조방법을 제공하는 것이다.
본 발명의 발명자들은 상기 기술적 과제를 달성하기 위해 예의 노력한 결과, 액상 조제유 제조 시, 유지에 특정 유화제 및 우유류, 단백질류 등을 첨가 및 혼합하고 비교적 온순한 조건에서 예열, 균질, 및 살균 공정을 실시하여 단백질 열변성이 저감되고 미생물 안전성이 확보된 농축 배합액을 미리 제조하였다. 그 다음 상기 농축 배합액을 물에 희석한 후 다시 예열, 균질, 및 초고온 단시간 멸균처리(UHT)를 하여 액상 조제유를 제조하였다.
상기와 같은 방법으로 제조된 액상 조제유는 생산 효율이 높으며, 유화 및 분산 안정화에 따라 입자가 균일하고 상분리 및 침전이 없어 상 안정성 및 경시 안정성이 현저하게 우수하며, 효과적인 살균 공정으로 인해 미생물 안전성이 현저하게 우수한 것을 발견하여 본 발명을 완성하였다.
본 발명은 (s1) 용해된 유지에 레시틴, 글리세린지방산에스테르류, 또는 이들의 혼합물을 첨가하여 용해한 후 물에 투입하여 교반하는 단계; (s2) (s1) 단계의 생성물에 우유류, 분유류, 및 단백질류로 이루어진 군에서 선택된 어느 하나 이상을 첨가 후 교반하는 단계; (s3) (s2) 단계의 생성물을 균질화하는 단계; 및 (s4) (s3) 단계의 생성물을 살균하는 단계를 포함하는 액상 조제유 제조용 농축 배합액의 제조방법 및 상기 제조방법으로 제조된 액상 조제유 제조용 농축 배합액을 제공한다.
본 발명의 제조방법에 있어서, 상기 반제품 형태의 농축 배합액은 고형분 기준으로 완제품인 액상 조제유 대비 약 120 이상 400 미만 중량%(농축도), 바람직하게는 150 내지 350 중량%(농축도), 더욱 바람직하게는 200 내지 300 중량%(농축도) 수준의 농축물일 수 있다. 상기 농축 배합액이 120 중량%(농축도) 미만일 경우 생산 효율성이 감소하고, 400 중량%(농축도) 이상일 경우에는 단백질 변성, 미생물, 또는 침전 발생 등의 품질 안정성이 급격히 저하될 우려가 크다.
본 발명에서 농축 배합액 조성물을 제조하는데 있어서, 상기 유화제로 글리세린지방산에스테르류가 사용되며, 상기 글리세린지방산에스테르류는 지방산과 글리세린 또는 폴리글리세린이 에스테르화된 화합물 또는 이의 유도체이다. 보다 구체적으로 상기 글리세린지방산에스테르류는 글리세린지방산에스테르, 글리세린초산지방산에스테르, 글리세린젖산지방산에스테르, 글리세린구연산지방산에스테르, 글리세린호박산지방산에스테르, 글리세린디아세틸주석산지방산에스테르, 글리세린초산에스테르, 폴리글리세린지방산에스테르, 및 폴리글리세린축합리시놀레인산에스테르 등으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
상기 제조방법에서 글리세린지방산에스테르류는 유지 중량 대비 1/25 이상 1/1 미만(글리세린지방산에스테르류/유지) 중량비, 바람직하게는 1/15 내지 1/5(글리세린지방산에스테르류/유지) 중량비로 포함될 수 있다. 상기 유화제가 1/25(글리세린지방산에스테르류/유지) 중량비 미만일 경우 저분자 및 양친매성인 유화제가 액상 조제유의 유수계면에 효과적으로 흡착되기가 어려우며, 1/1(글리세린지방산에스테르류/유지) 중량비 이상일 경우 과도한 흡착으로 상 안정성에 오히려 악영향을 나타낸다.
본 발명에서 사용되는 레시틴은 천연 유화제로써 인지질의 영양적인 의미도 있지만, 구조적으로는 헤드부분의 콜린은 친수성 특징을 가지고 몸체 부분의 지방산은 오일 친화력이 있으므로 계면활성제 성질을 가진 양친매성 안정화제이다. 또한 레시틴은 친수부에 양이온성을 가지고 있으므로 유제품의 특징인 카제인 마이셀 음전하와 흡착하여 입자 사이의 응집을 방지함으로써 조성물의 분산 안정화 역할을 효과적으로 수행할 수 있다.
본 발명에 있어서 레시틴은 분산, 유화 안정화 목적으로 사용되며, 상기 레시틴은 액상 조제유 조성물의 총 중량 대비 0.005 이상 1.5 미만 중량%, 바람직하게는 0.007 내지 1.3 중량%, 더욱 바람직하게는 0.01 내지 1 중량% 비율로 포함될 수 있다. 상기 레시틴이 0.005 중량% 미만에서는 효과가 극히 미미하게 나타나며, 1.5 중량% 이상일 경우에는 레시틴 특유의 진한 색상으로 인한 내용물 색상 변화 및 맛의 변화로 적용하기 어려운 문제점이 발생한다.
본 발명에 있어서 상기 레시틴 및 글리세린지방산에스테르류의 중량비는 9:1 내지 1:9, 바람직하게는 8:2 내지 2:8, 더욱 바람직하게는 7:3 내지 3:7, 가장 바람직하게는 6:4 내지 4:6(레시틴:글리세린지방산에스테르류)의 중량비로 포함될 수 있다. 레시틴 및 글리세린지방산에스테르류가 상기 중량비 범위 내로 포함되는 경우에는 본 발명의 액상 조제유의 유화 및 분산 안정화 효과가 현저하게 우수하다.
본 발명의 제조방법은 균질 효과의 증대, 살균 공정 중의 우유 카제인의 응고 위험 저감, 및 미생물의 불활성화를 위해 예열 단계를 추가적으로 포함할 수 있다. 구체적으로 상기 제조방법은 (s3) 단계 전에 (s2) 단계의 생성물을 50℃ 내지 80℃, 바람직하게는 55℃ 내지 75℃로 예열하는 단계를 추가적으로 포함할 수 있다. 50℃ 미만의 예열 온도에서는 균질 효과로 인한 입자 미세화 및 균일화 효과가 매우 저조하게 나타나며, 80℃ 초과일 경우 단백질 변성으로 인한 상 불안정성을 야기할 수 있다.
본 발명에 있어서, 상기 농축 배합액의 균질화는 처리 방법에 따라 상 안정화에 미치는 영향이 크게 달라진다. 본 발명에서는 입자 미세화 및 균일화를 구현하기 위해 균질기의 제1압과 제2압의 비율을 고려하였다. 일반적으로 균질화 조건에서 1차압은 밸브와 시트를 통과하면서 속도는 증가하고 압력은 감소하여, 빠른 속도의 유체는 난류를 형성하고 결과적으로 균질화 효율과 안정한 분산상 구성에 방해가 된다. 또한 2차압의 밸브는 이러한 1차압의 방향에 역압을 가하여 1차압에 의한 공동화(cavitation) 현상에 의하여 균질 효과의 저하를 야기시킨다. 따라서 본 발명의 제조방법에서 상기 (s4) 단계는 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%, 바람직하게는 8% 내지 25%로 수행할 수 있다. 제1압 대비 제2압의 비율이 5% 미만이면 공동화 현상에 의해 균질화 효율이 저하되며, 30% 초과이면 제2차압인 역압의 과다로 인하여 입도 미세화 및 균일성에 악영향을 나타낸다.
또한 본 발명에 있어서 균질 압력 수준을 설정하는 것은 중요한 요소이며, 일반적으로 균질압이 높을수록 입자는 미세화되지만 유체에 비해 지나치게 높은 균질압을 설정할 경우 오히려 표면적이 작아진 입자들에 의해서 강력한 응집(strong aggregation)이 발생할 수 있다. 따라서 본 발명에 있어서 균질압은 150 내지 500 bar, 바람직하게는 200 내지 400 bar로 수행될 수 있다.
본 발명에 있어서 상기 농축 배합액은 다량의 탄수화물, 지방, 단백질을 함유하여, 상온에서 장시간 보관 시 미생물의 번식이 쉬운 고영양의 조성물이다. 이에 첨가되는 원료에 따라 차이는 존재하지만 농축 배합액에는 일반적인 유제품처럼 다량의 미생물이 존재하며, 냉장 온도에서 생존하는 내냉성균과 고온의 열처리에도 사멸하지 않는 내열성균이 존재한다.
본 발명에서는 농축 배합액의 제조 과정 중 이를 제조하고 보관하는 단계에서 중간 열처리를 통한 살균 공정을 실시하였으며, 이를 통해 48시간 이상 미생물학적 안전성이 유지되었다. 상기와 같은 살균 공정을 통하여 생산성 효율화를 위해 농축 배합액의 보관 중 미생물의 성장 억제, 단백질 변성 저감 등의 효과를 얻을 수 있었으며 완제품 제조 후에도 미생물 안전성 및 상 안정성이 확보되었다.
본 발명의 제조방법에서 상기 (s4)의 살균 단계는 60℃ 이상 100℃ 미만의 온도로 5초 이상 60초 미만 동안 살균 처리될 수 있으며, 바람직하게는 70℃ 내지 90℃로 10 내지 30초 동안 살균 처리될 수 있다. 살균 공정이 60℃ 미만일 경우에는 살균 효과가 미미하며, 100℃ 이상일 경우에는 미생물 안전성은 증가되나 열 변성으로 인해 침전 정도가 증가한다. 또한 살균시간이 60초 이상인 경우에도 지속적인 열 손상으로 인해 상 안정성이 저하된다.
상기 제조 공정 중의 농축 배합액은 10mm 미만 입자크기의 비율이 90% 이상일 수 있다. 바람직하게는 상기 (s4) 살균 단계 이후의 농축 배합액은 1mm 미만 입자크기의 비율이 90% 이상일 수 있다. 상기와 같은 균질, 살균 공정을 거친 농축 배합액은 입자가 미세화됨으로써 액상 조제유 조성물의 분산 안정성이 우수해져 응집, 분리, 또는 침전이 상당히 개선된다.
본 발명에 있어서 상기 유지는 영유아를 위한 지방 공급원으로 포화지방, 불포화 지방, 및 필수지방산의 공급을 위하여 사용된다. 보다 구체적으로 상기 유지는 대두유, 카놀라유, 팜올레인유, 야자유, 팜핵류, 해바라기유, 현미유, 옥수수유, 및 정제가공유지 등으로 이루어진 군에서 선택되는 1종 또는 그 이상이 혼합되어 사용될 수 있다.
본 발명에 있어서 상기 우유류, 분유류, 및 단백질류는 액상 조제유에서 단백질을 비롯한 다양한 영양 성분 공급원으로 사용되는 성분이다. 상기 우유류는 살균유(시유), 멸균유, 저지방우유, 무지방우유, 강화우유, 산양유, 또는 염소유 등을 1종 또는 그 이상을 혼합 사용할 수 있다. 상기 분유류는 탈지분유, 전지분유, 가당분유, 또는 혼합분유 등을 1종 또는 그 이상을 혼합 사용할 수 있다. 상기 단백질류는 우유단백, 농축우유단백, 분리우유단백, 유청단백, 탈염유청단백, 농축유청단백, 분리유청단백, 산양유단백, 및 산양유청단백 등을 포함하는 우유 유래 단백질; 식물성 단백(대두단백 등); 및 육류 유래 단백(닭고기 단백 등) 등으로 이루어진 군에서 선택되는 1종 또는 그 이상을 혼합 사용할 수 있다.
상기 농축 배합액 제조방법에는 액상 조제우유의 영양성분으로 지용성 비타민이 첨가될 수 있으며, 구체적으로 (s1) 단계에서 비타민 A, E, D, 및 K 등으로 이루어진 지용성 비타민 군으로부터 선택된 1종 이상이 추가적으로 첨가될 수 있다.
본 발명은 (s1) 상기 액상 조제유 제조용 농축 배합액을 물에 희석하는 단계; (s2) (s1) 단계의 생성물을 균질화하는 단계; 및 (s3) (s2) 단계의 생성물을 멸균처리하는 단계를 포함하는 액상 조제유 조성물의 제조방법 및 상기 제조방법을 통해 제조된 액상 조제유 조성물을 제공한다.
상기 액상 조제유 조성물의 제조방법에서 (s2) 단계 전에 (s1) 단계의 생성물을 50℃ 내지 80℃로 예열하는 단계를 추가적으로 포함하는 것이 균질 효과의 증대, 우유 카제인의 응고 위험 저감, 및 미생물의 불활성화를 위해 바람직하다.
상기 액상 조제유 조성물의 제조방법에서 (s2) 균질화 단계는 상기 농축 배합물의 제조방법과 마찬가지로, (s1) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%, 바람직하게는 8% 내지 25%로 균질화를 수행할 수 있다.
상기 액상 조제유 조성물의 제조방법에서 (s3) 멸균처리는 초고온단시간멸균처리(Ultra high temperature, UHT)로 수행될 수 있으며, 이는 짧고 강력한 가열에 의해 모든 미생물을 완전히 사멸시킴으로써 경시 안정성을 향상시켜, 장기간 사용 시에도 수유성이 저해되지 않도록 액상 제품을 보존하기 위한 공정이다. 이는 기존의 레토르트 방식에 비해 단백질 변성, 이취, 또는 변색 등이 적고, 맛 또는 색상 등이 레토르트 방식에 비해 양호하다. 상기 초고온단시간멸균처리 조건은 120℃ 내지 150℃로 1 내지 60초, 바람직하게는 125℃ 내지 140℃로 5 내지 50초로 수행할 수 있다. 상기 초고온단시간멸균처리가 120℃ 미만 또는 1초 미만일 경우에는 미생물 사멸 효과가 미미하며, 150℃ 초과 또는 60초 초과일 경우에는 열변성으로 인해 침전물이 생기거나 열 손상으로 인해 상 안정성이 나빠진다.
상기 액상 조제유 조성물의 제조방법은 (s1) 단계에서 비타민, 미네랄, 또는 이들의 혼합물을 추가적으로 첨가할 수 있다.
본 발명에 있어서 미네랄은 영양공급뿐만 아니라 제조공정 중 조제액의 안정화에도 중요한 역할을 한다. 구체적으로 상기 미네랄은 탄산칼슘, 제일인산칼륨, 제이인산칼륨, 염화칼륨, 제이인산마그네슘, 탄산수소나트륨, 산화아연, 피로인산제이철, 황산망간, 및 요오드칼륨 등으로 이루어진 군에서 선택되는 1종 또는 그 이상을 혼합하여 사용할 수 있다. 이러한 미네랄의 사용에 의하여 단백질의 열처리에 의한 변성 및 응고를 방지할 수 있고, 특히 제일인산칼륨, 제이인산칼륨은 조제액의 pH 버퍼링 역할도 수행하여 가장 바람직하다.
상기 액상 조제유 조성물의 제조방법에서 비타민은 수용성 비타민으로써 비타민 B1, B2, B6, B12, C, 판토텐산, 나이아신, 엽산, 및 비오틴 등으로 이루어진 군에서 선택되는 1종 또는 그 이상을 혼합하여 사용할 수 있다.
본 발명의 제조방법으로 제조된 액상 조제유 조성물은 최종 완제품 단계에서 0.8mm 미만의 입자크기의 비율이 90% 이상이며, pH가 6 내지 8인 것이 바람직하다.
본 발명은 (s1) 용해된 유지에 액상 조제유 조성물의 총 중량 대비 0.005 이상 1.5 미만 중량%의 레시틴 및 유지 중량 대비 1/25 이상 1/1 미만(글리세린지방산에스테르류/유지) 중량비의 글리세린지방산에스테르류를 첨가하여 용해한 후 물에 투입하여 교반하는 단계; (s2) (s1) 단계의 생성물에 우유류, 분유류, 및 단백질류로 이루어진 군에서 선택된 어느 하나 이상을 첨가 후 교반하는 단계; (s3) (s2) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%로 균질화하는 단계; 및 (s4) (s3) 단계의 생성물을 60℃ 이상 100℃ 미만의 온도로 5초 이상 60초 미만 동안 살균하는 단계를 포함하는 액상 조제유 제조용 농축 배합액의 제조방법으로 농축 배합액을 제조 후,
(s5) 상기 농축 배합액을 물에 희석하고 비타민 및 미네랄을 첨가하는 단계; (s6) (s5) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%로 균질화하는 단계; 및 (s7) (s6) 단계의 생성물을 120℃ 내지 150℃로 1 내지 60초 동안 초고온단시간멸균처리(Ultra High Temperature, UHT)하는 단계를 포함하는 액상 조제유 조성물의 제조방법을 제공한다.
상기와 같은 제조방법으로 제조된 액상 조제유 조성물은 생산 효율, 상 안정성, 경시 안정성, 및 미생물 안전성이 가장 우수하다.
본 발명은 수유용 젖꼭지를 직접 체결할 수 있는 체결부가 있는 플라스틱 용기에 상기 액상 조제유 조성물이 충진된 액상 조제유 제품을 제공한다. 바람직하게는 상기 체결부는 나선형 체결부가 사용될 수 있으며, 젖꼭지 또는 플라스틱 용기를 돌려서 이들을 서로 용이하게 체결할 수 있는 구성이 사용될 수 있다. 상기 액상 조제유 제품은 젖꼭지와 직접 체결 방식의 플라스틱 용기를 사용함으로써 소비자가 별도의 수유용 젖병이 필요 없이 편리하게 수유할 수 있는 장점이 있다.
상기 용기는 HDPE, LDPE, PET, PP, PE, 또는 PC 등의 다양한 재질의 플라스틱 용기 또는 유리병을 사용할 수 있으나, 유리병은 깨질 위험이 있기 때문에 플라스틱 용기를 사용하여 충진하는 것이 바람직하다.
본 발명에 따른 액상 조제유 조성물의 제조방법은 농축 배합액을 반제품으로 제조하는 공정을 가짐으로써, 초기부터 희석된 완제품으로 일괄 제조하는 공정에 비해 필요한 유틸리티, 시간 등을 저감하여 생산 효율이 우수하다.
또한 본 발명에 따른 액상 조제유 조성물은 유화 및 분산 안정화에 따라 상 안정성 및 경시 안정성이 우수하며, 초고온단시간멸균처리(UHT) 등을 통하여 미생물 안전성이 우수하다.
또한 본 발명에 따른 액상 조제유 제품은 젖꼭지와 직접 체결 방식의 플라스틱 용기를 사용함으로써 수유가 간편하다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실험예 1: 완제품 대비 반제품의 농축 비율에 따른 생산효율, 침전량, 및 상분리 평가
하기 표 1에 나타난 농축도 비율 및 공정변화에 기초해 액상 조제유 조성물을 제조하였다. 제조방법에 있어서는 2 단계로 나누어 지는데, 먼저 반제품 농축화 제조공정은 고온에서 완전히 용해된 유지에 지용성 비타민과 유화제, 레시틴 등을 정량 투입하고 고온 교반하여 완전히 용해한 후, 약 70℃의 정제수에 서서히 투입하면서 호모믹서로 교반을 시작하였다. 일정 시간 교반 후 온도를 약 40℃ 수준으로 유지하면서 교반하면서 우유를 투입하고, 일정 시간 후 유청단백분말류, 탈지분유, pH조절제, 유당, 덱스트린 등을 투입 교반하여 제조하였다. 제조된 반제품 농축액은 예열을 진행하고 균질을 거쳐 UHT 기기를 이용하여 85℃에서 20초 동안 살균 처리를 진행하였다.
반제품을 제조하고 이후의 완제품 처리 공정은 반제품 농축액에, 물, 수용성 비타민, 미네랄류 등을 혼합하고 교반하여 배합을 완료하고 반제품 농축 처리 공정과 동일하게 예열, 균질 과정을 거쳐 135℃에서 30초 동안 초고온단시간멸균처리(UHT)를 진행하여 완결하였다.
실시예 최종완제품 대비 반제품의농축도 비율(%) 생산효율 침전량 상분리
1 100 X
2 120
3 150
4 200
5 250
6 300
7 400 X X
8 450 X X
9 500 X X
표 1 에서 농축도에 따른 생산효율 및 침전량, 상분리의 항목에서 농축도가 높아지면 생산수율은 증가되지만, 상안정성 부분은 악화되는 경향을 나타내었다. 즉 실시예 9의 경우 농축도가 상승함에 따라 생산수율은 상승하지만, 안정성 부분에서는 저조하게 나타나고 실시예 3,4,5의 경우 비교적 생산수율 및 안정성 부분에서도 양호하게 나타났다. 본 발명에서는 이러한 이유로 생산수율과 안정성을 고려하는 농축배율을 선정하였다.
실험예 2: 유화제 및 레시틴 첨가에 따른 침전정도 및 상분리 평가
상기 실험예 1과 동일한 방법으로, 하기 표 2에 나타난 조성비에 따라 농축조제 우유액을 제조하여, 침전정도 및 상분리를 평가하였다.
농축조제우유액 조성 실시예
1 2 3 4 5 6 7 8
식용혼합유지 5 5 5 5 5 5 5 5
비타민혼합 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
글리세린지방산에스테르 - 0.2 0.5 1 5 0.5 0.5 0.5
레시틴 0.01 0.5 1.5
살균유 20 20 20 20 20 20 20 20
유청단백분말 2 2 2 2 2 2 2 2
탈지분유 4 4 4 4 4 4 4 4
덱스트린 및 유당 10 10 10 10 10 10 10 10
정제수 To 100 중량%
실시예
1 2 3 4 5 6 7 8
침전정도 X
상분리 X
상기 표 2와 표 3에 각각 실시예와 이에 따른 상 안정성결과를 나타내었다. 본 발명에서 언급한 바와 같이, 유지 대비 글리세린지방산에스테르류의 일정비율에서 침전, 상분리 등 상 안정성 결과가 확연히 개선되는 효과를 확인하였으며, 레시틴과 혼합하여 사용할 경우 안정성이 보다 개선됨을 확인할 수 있었다. 다만, 레시틴의 경우 실시예 8과 같이 일정비율 이상 시에 나타난 바와 같이 상 안정성은 우수한 경향을 나타냈지만, 색상 및 맛의 변화 등이 평가되어 적절하지 못하였다.
실험예 3: 반제품 농축액의 살균온도 및 살균시간에 따른 미생물 수 및 침전정도 평가
상기 실험예 1에 나타난 방법으로 농축액을 제조 시, 하기 표 4에 나타낸 것처럼 살균온도 및 살균시간을 변화시킬 때, 그에 따른 미생물수 및 침전정도를 평가하였다.
실시예 반제품 농축액 살균온도(℃) 살균시간(초) 초기 미생물수(CFU/ml) 24시간 후 미생물수(CFU/ml) 침전정도
1 70 5 13000 42000
2 80 5 8000 31000
3 90 5 4100 7000
4 100 5 1000 1500
5 70 15 7600 9000
6 80 15 7300 7800
7 90 15 1000 1400
8 100 15 800 1300
9 70 30 7000 9000
10 80 30 6300 7000
11 90 30 900 900
12 100 30 600 700 X
13 70 60 3000 8000
14 80 60 2000 4700 X
15 90 60 800 800 X
16 100 60 300 500 X
상기 표 4에 나타난 바와 같이 농축 반제품을 제조하는데 있어서 살균온도가 높을수록 미생물의 안전성은 증가되지만, 열 변성으로 인해 침전정도는 증가하는 경향을 나타내었다. 또한 살균시간을 증가하는 경우에도 지속적인 열손상으로 인해 상 안정성이 저하되는 특징을 나타내었다. 낮은 온도, ?F은 시간에서의 살균처리의 경우 상안정성은 증가하지만 미생물 안전성은 비교적 저조하게 나타나, 본 발명에서는 이와 같은 이유로 농축 반제품의 최적 살균온도 및 시간을 선정하였다.
실험예 4: 균질화 단계에서 1차, 2차 압력비율에 따른 침전 및 상분리 평가
상기 실험예 1에 나타난 방법으로 농축 반제품을 제조 시, 1차, 2차 압력비율의 변화에 따른 침전 및 상분리 현상을 평가하여 하기 표 5에 나타내었다.
실시예 농축 반제품의 균질압(bar) 1차,2차 압비율 침전 상분리
1 200 5
2 200 10
3 200 13
4 200 17
5 200 20
6 200 27
7 200 30
8 200 40
상기 표 5에 나타난 바와 같이 농축반제품의 1, 2차 균질압 비율에 대한 실험을 실시하였으며 전반적으로 동일 내용물을 평가한 결과, 침전과 상분리가 유사한 경향성을 나타내었다. 상기의 실시예에서 나타난 바와 같이 실시예 3, 4의 경우 가장 우수한 효과를 나타내었다.
하기는 상기 실험예 1~4의 평가 방법에 있어서, 생산효율, 침전정도, 상분리정도, 입자크기 및 균일도, 및 미생물 균 측정방법에 대하여 구체적인 평가 기준을 나타내었다.
<생산효율 평가>
반제품 농축도에 따른 최종 완제품의 생산효율은 제품 생산 시간, 비용, 시간당 물량 등을 고려하여, 생산효율이 가장 우수한 경우, 매우 우수(◎), 양호한 수준이면(○), 일반 수준이면 보통(△), 저조한 수준은 불량(X)으로 표기하여 평가하였다.
<침전 정도>
제품을 제조 후 동일한 경시 기간에 따른 상온의 내용물을 120메쉬에 거른 후 남는 침전 잔류량을 측정하여 수치로 기입하였다. 120메쉬에 남는 침전량이 가장 적은 경우 매우 우수(◎), 양호한 수준이면(○), 일반 시판제품수준의 보통(△), 불량(X)으로 표기하여 평가하였다.
<상분리 정도>
제품을 제조 후 동일한 경시 기간에 따른 상온의 내용물을 육안 관찰하여 상층부 또는 하층부로부터 분리되는 상 분리 높이를 측정하여 기입하였다. 가장 분리가 적은 경우 매우 우수(◎), 양호한 수준이면(○), 일반 시판제품수준의 보통(△), 불량(X)으로 표기하여 평가하였다.
<미생물 균 측정 방법>
표준한천배지를 준비하고 시료를 무균적으로 채취하여 멸균된 페트리디쉬 에서 표준한천배지와 고르게 섞이도록 하였다. 배지를 응고시킨 후 35℃ 내지 37℃ 에서 24시간 내지 48시간 배양하고 생성된 집락수를 계산하였다. 본 발명에서는 미생물의 수를 CFU/ml로 평가하였으며, 농축액의 저장을 위한 반제품 농축액의 살균 후 평가 시 매우 우수한 수준을(◎), 양호한 수준을(○), 보통의 수준을(△), 저조한 수준을 불량(X)으로 평가하였다.

Claims (18)

  1. (s1) 용해된 유지에 레시틴, 글리세린지방산에스테르류, 또는 이들의 혼합물을 첨가하여 용해한 후 물에 투입하여 교반하는 단계;
    (s2) (s1) 단계의 생성물에 우유류, 분유류, 및 단백질류로 이루어진 군에서 선택된 어느 하나 이상을 첨가 후 교반하는 단계;
    (s3) (s2) 단계의 생성물을 균질화하는 단계; 및
    (s4) (s3) 단계의 생성물을 살균하는 단계
    를 포함하는 액상 조제유 제조용 농축 배합액의 제조방법.
  2. 제1항에 있어서, 상기 농축 배합액은 고형분 기준으로 액상 조제유 조성물의 중량 대비 120 이상 400 미만 중량%(농축도)인 것을 특징으로 하는 제조방법.
  3. 제1항에 있어서, 상기 글리세린지방산에스테르류는 유지 중량 대비 1/25 이상 1/1 미만(글리세린지방산에스테르류/유지)의 중량비인 것을 특징으로 하는 제조방법.
  4. 제1항에 있어서, 상기 레시틴은 액상 조제유 조성물의 총 중량 대비 0.005 이상 1.5 미만 중량%인 것을 특징으로 하는 제조방법.
  5. 제1항에 있어서, 상기 (s1) 단계의 혼합물에서 레시틴 및 글리세린지방산에스테르류의 중량비는 9:1 내지 1:9(레시틴: 글리세린지방산에스테르류)인 것을 특징으로 하는 제조방법.
  6. 제1항에 있어서, 상기 (s3) 단계 전에 (s2) 단계의 생성물을 50℃ 내지 80℃로 예열하는 단계를 추가적으로 포함하는 것을 특징으로 하는 제조방법.
  7. 제1항에 있어서, 상기 (s3) 단계는 (s2) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%로 균질화하는 것을 특징으로 하는 제조방법.
  8. 제1항에 있어서, 상기 (s4) 단계는 60℃ 이상 100℃ 미만의 온도에서 5초 이상 60초 미만 동안 살균하는 것을 특징으로 하는 제조방법.
  9. 제1항 내지 제8항 중 어느 한 항의 제조방법에 따라 제조된 액상 조제유 제조용 농축 배합액.
  10. (s1) 제9항의 농축 배합액을 물에 희석하는 단계;
    (s2) (s1) 단계의 생성물을 균질화하는 단계; 및
    (s3) (s2) 단계의 생성물을 멸균처리 하는 단계
    를 포함하는 액상 조제유 조성물의 제조방법.
  11. 제10항에 있어서, 상기 (s2) 단계 전에 (s1) 단계의 생성물을 50℃ 내지 80℃로 예열하는 단계를 추가적으로 포함하는 것을 특징으로 하는 제조방법.
  12. 제10항에 있어서, 상기 (s2) 단계는 (s1) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%로 균질화하는 것을 특징으로 하는 제조방법.
  13. 제10항에 있어서, 상기 (s3) 단계는 120℃ 내지 150℃로 1 내지 60초 동안 초고온단시간멸균처리(UHT)하는 것을 특징으로 하는 제조방법.
  14. 제10항에 있어서, 상기 (s1) 단계는 비타민, 미네랄, 또는 이들의 혼합물을 추가적으로 첨가하는 것을 특징으로 하는 제조방법.
  15. 제10항 내지 제14항 중 어느 한 항의 제조방법에 따라 제조된 액상 조제유 조성물.
  16. 제15항에 있어서, 상기 조제유 조성물은 0.8 mm 이하의 입자크기의 비율이 90% 이상인 것을 특징으로 하는 액상 조제유 조성물.
  17. (s1) 용해된 유지에 액상 조제유 조성물의 총 중량 대비 0.005 이상 1.5 미만 중량%의 레시틴 및 유지 중량 대비 1/25 이상 1/1 미만(글리세린지방산에스테르류/유지) 중량비의 글리세린지방산에스테르류를 첨가하여 용해한 후 물에 투입하여 교반하는 단계;
    (s2) (s1) 단계의 생성물에 우유류, 분유류, 및 단백질류로 이루어진 군에서 선택된 어느 하나 이상을 첨가 후 교반하는 단계;
    (s3) (s2) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%로 균질화하는 단계; 및
    (s4) (s3) 단계의 생성물을 60℃ 이상 100℃ 미만의 온도로 5초 이상 60초 미만 동안 살균하는 단계
    를 포함하는 액상 조제유 제조용 농축 배합액의 제조방법으로 농축 배합액을 제조 후,
    (s5) 상기 농축 배합액을 물에 희석하고 비타민 및 미네랄을 첨가하는 단계;
    (s6) (s5) 단계의 생성물을 150 내지 500 bar의 압력으로 균질기의 제1압 대비 제2압의 비율을 5% 내지 30%로 균질화하는 단계; 및
    (s7) (s6) 단계의 생성물을 120℃ 내지 150℃로 1 내지 60초 동안 초고온단시간멸균처리(Ultra High Temperature, UHT)하는 단계
    를 포함하는 액상 조제유 조성물의 제조방법.
  18. 수유용 젖꼭지를 직접 체결할 수 있는 체결부가 있는 플라스틱 용기에 제15항의 액상 조제유 조성물이 충진된 액상 조제유 제품.
PCT/KR2016/003206 2016-03-29 2016-03-29 액상 조제유 조성물 및 제조방법 WO2017171109A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/003206 WO2017171109A1 (ko) 2016-03-29 2016-03-29 액상 조제유 조성물 및 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/003206 WO2017171109A1 (ko) 2016-03-29 2016-03-29 액상 조제유 조성물 및 제조방법

Publications (1)

Publication Number Publication Date
WO2017171109A1 true WO2017171109A1 (ko) 2017-10-05

Family

ID=59965934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003206 WO2017171109A1 (ko) 2016-03-29 2016-03-29 액상 조제유 조성물 및 제조방법

Country Status (1)

Country Link
WO (1) WO2017171109A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084868A (ja) * 1996-09-12 1998-04-07 Nisshin Flour Milling Co Ltd 代用乳組成物およびその製造方法
JP2003189799A (ja) * 2001-12-27 2003-07-08 Meiji Shiryo Kk 家畜用代用乳の製造方法
KR200385096Y1 (ko) * 2004-12-03 2005-05-25 최혜숙 음료수 용기
JP2006262816A (ja) * 2005-03-25 2006-10-05 Meiji Milk Prod Co Ltd 濃縮乳の製造方法及び濃縮乳
CN101642167B (zh) * 2008-08-07 2012-05-30 内蒙古伊利实业集团股份有限公司 含有亚油酸和亚麻酸的液态乳制品及其制备方法
KR20160074255A (ko) * 2014-12-18 2016-06-28 주식회사 엘지생활건강 액상 조제유 조성물 및 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084868A (ja) * 1996-09-12 1998-04-07 Nisshin Flour Milling Co Ltd 代用乳組成物およびその製造方法
JP2003189799A (ja) * 2001-12-27 2003-07-08 Meiji Shiryo Kk 家畜用代用乳の製造方法
KR200385096Y1 (ko) * 2004-12-03 2005-05-25 최혜숙 음료수 용기
JP2006262816A (ja) * 2005-03-25 2006-10-05 Meiji Milk Prod Co Ltd 濃縮乳の製造方法及び濃縮乳
CN101642167B (zh) * 2008-08-07 2012-05-30 内蒙古伊利实业集团股份有限公司 含有亚油酸和亚麻酸的液态乳制品及其制备方法
KR20160074255A (ko) * 2014-12-18 2016-06-28 주식회사 엘지생활건강 액상 조제유 조성물 및 제조방법

Similar Documents

Publication Publication Date Title
KR100553508B1 (ko) 영양학적으로균형적인유제품
CN106106753A (zh) 一种富含多种乳磷脂的婴儿配方乳粉
EP2124585B1 (en) Method of manufacturing an edible product comprising fruit,omega-3 polyunsaturated fatty acids and iron
CN110786388A (zh) 一种促进儿童身高发育的奶粉及其制备方法
US20140212540A1 (en) Composition with fat gradient
CN101511206B (zh) 用于液体营养组合物的稳定剂系统
CN111248266A (zh) 一种高蛋白巴氏杀菌饮用型酸奶的制备
KR101639676B1 (ko) 액상 조제유 조성물 및 제조방법
TWI364260B (en) Nutritional formula comprising l-(+) lactic acid, its preparation method, and uses of l-(+) lactic acid therein
JP2009297017A (ja) 濃厚乳及び濃厚乳用乳化剤
KR101981606B1 (ko) 액상 조제유 조성물 및 제조방법
WO2017171109A1 (ko) 액상 조제유 조성물 및 제조방법
CN106387090A (zh) 一种纯羊高脂脱盐乳清粉及其制作方法
KR20160114387A (ko) 미네랄 안정성을 개선한 액상 조제유 조성물
KR20190084937A (ko) 액상 조제유 조성물 및 제조방법
WO2017030330A1 (ko) 산양유를 함유한 액상 조제유 조성물
KR102050578B1 (ko) 산양유를 함유한 액상 조제유 조성물
KR20170085475A (ko) 액상 조제유 조성물 및 제조방법
KR101640890B1 (ko) 산양유를 함유한 액상 조제유 조성물
JPH0394660A (ja) 粉末栄養組成物
KR20180002317A (ko) 액상 조제유 조성물 및 제조방법
EP2124584B1 (en) Method of manufacturing a cultured edible product comprising omega-3 polyunsaturated fatty acids and iron
KR101863165B1 (ko) 영양성분의 침전이 억제된 조제우유의 제조방법
CN104705400A (zh) 一种脂肪替代型酸牛奶加工工艺
KR102536585B1 (ko) 액상 조제유 조성물

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897130

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16897130

Country of ref document: EP

Kind code of ref document: A1