WO2017170964A1 - 医療用カルシウム系金属ガラス合金成形体及びその製造方法 - Google Patents

医療用カルシウム系金属ガラス合金成形体及びその製造方法 Download PDF

Info

Publication number
WO2017170964A1
WO2017170964A1 PCT/JP2017/013469 JP2017013469W WO2017170964A1 WO 2017170964 A1 WO2017170964 A1 WO 2017170964A1 JP 2017013469 W JP2017013469 W JP 2017013469W WO 2017170964 A1 WO2017170964 A1 WO 2017170964A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass alloy
calcium
metallic glass
molded body
medical
Prior art date
Application number
PCT/JP2017/013469
Other languages
English (en)
French (fr)
Inventor
弘恭 金高
国強 謝
朝 高田
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2018509486A priority Critical patent/JP6902796B2/ja
Priority to US16/089,267 priority patent/US11066733B2/en
Publication of WO2017170964A1 publication Critical patent/WO2017170964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/026Ceramic or ceramic-like structures, e.g. glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous

Definitions

  • the present invention relates to a calcium-based metallic glass alloy molded body having bioabsorbability and a method for producing the same.
  • medical biomaterials such as intraluminal stents, fracture fixation plates, and sutures used to treat intraluminal strictures such as blood vessels and esophagus are required to have the property of being absorbed by the living body after treatment. ing. If it is not absorbed by the living body, re-operation is necessary to remove the material after treatment, which causes problems of invasive risk and secondary infection risk.
  • Non-Patent Document 1 describes that magnesium having bioabsorbability among metal materials has been studied as a medical material.
  • magnesium has a high activity and has a problem that its decomposition rate in vivo is too high. For this reason, it is known that when magnesium is used as a raw material as a plate, a large amount of gas is generated subcutaneously to form a cavity.
  • polymer materials such as polylactic acid cannot be substituted for metal materials such as titanium because they have low mechanical strength and are inferior in workability (see Non-Patent Document 3, etc.).
  • metal materials such as titanium
  • it is absorbable in vivo as compared with other alternative materials, and there is no need for re-operation for removing the material after the treatment as described above.
  • polymer materials such as polylactic acid are considered to be promising biomaterials, and clinical trials have actually progressed and applied to bone fragment fixation plates, bone screws, absorbable stents, and the like.
  • Atsuko Yamamoto “Medical application of magnesium alloy”, Light Metal, 58 (11), 2008, pp. 570-576 M
  • the present invention is a medical calcium that has moderate bioabsorbability, has mechanical strength equal to or higher than that of a metal material, can be molded in a complicated manner, and can be applied to a member having a large area and thickness. It is an object of the present invention to provide a green metal glass alloy molded body and a method for producing the same.
  • the inventors of the present invention gradually absorbed the living body immediately after implantation in the body, and finally decomposed in the body to obtain a mechanical strength equivalent to that of the metal material. And a medical calcium-based metallic glass alloy molded body having hardness and a method for producing the same.
  • the medical calcium-based metallic glass alloy molded body is manufactured.
  • the calcium-based metallic glass alloy produced according to the present invention When used as a raw material for medical biomaterials, it has the same mechanical strength and hardness as metal materials, so that it is possible to mold medical materials with complex shapes. In addition, it can be applied to a member that is under pressure on the structure and the embedding position of the biomaterial, and the usable range of the calcium-based metallic glass alloy biomaterial is expanded. In addition, immediately after implantation, it is gradually absorbed into the body and eventually decomposes in the body, eliminating the need for post-treatment removal surgery and controlling the degradation rate immediately after implantation. It becomes possible. Furthermore, the method for producing a calcium-based metallic glass alloy molded body according to the present invention can be applied to bulk production, and can be applied to a biomaterial having a large size.
  • the apparatus and conceptual diagram which produce the calcium-type metallic glass alloy powder by the gas atomization method are shown.
  • the apparatus and conceptual diagram which produce the calcium-type metallic glass alloy powder by the mechanical alloying method are shown.
  • the conceptual diagram of the apparatus used for a discharge plasma sintering method is shown.
  • the temperature and pressurizing process at the time of producing a metallic glass alloy compact by the discharge plasma sintering method are shown.
  • Ca 45 Mg 25 shows a Zn 30 mixed metal powder and X-ray diffraction spectrum of the Ca 45 Mg 25 Zn 30 metallic glass alloy powder produced by mechanical alloying (X-ray diffraction pattern).
  • An X-ray diffraction spectrum (X-ray diffraction pattern) of a Ca 65 Mg 15 Zn 20 alloy produced by a casting method is shown.
  • Ca 65 Mg 15 Zn 20 metallic glass alloy powder produced by gas atomization an X-ray diffraction spectrum (X-ray diffraction pattern).
  • a discharge by a plasma sintering method of Ca 65 Mg 15 Zn 20 amorphous alloy molded body produced in the sintering temperature 120 ° C. X-ray diffraction spectrum (X Line diffraction pattern).
  • An X-ray diffraction spectrum (X-ray diffraction pattern) of a sample in which 5 volume% of Fe crystal particles are dispersed after producing a Ca 65 Mg 15 Zn 20 metallic glass alloy powder by the gas atomization method is shown. After producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by gas atomization method, 5 volume% of Fe crystal particles are dispersed, and X-ray diffraction spectrum (X-ray diffraction) of a metal glass alloy compact produced by discharge plasma sintering method Pattern).
  • An X-ray diffraction spectrum (X-ray diffraction pattern) of a sample in which 10 volume% of Fe crystal particles are dispersed after producing a Ca 65 Mg 15 Zn 20 metallic glass alloy powder by the gas atomization method is shown. After producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by the gas atomization method, 10 volume% of Fe crystal particles are dispersed, and the X-ray diffraction spectrum (X-ray diffraction) of the metal glass alloy compact produced by the discharge plasma sintering method Pattern).
  • An X-ray diffraction spectrum (X-ray diffraction pattern) of a sample in which Fe crystal particles are dispersed by 15% by volume after producing a Ca 65 Mg 15 Zn 20 metallic glass alloy powder by the gas atomization method is shown. After producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by the gas atomization method, 15 volume% of Fe crystal particles are dispersed, and the X-ray diffraction spectrum (X-ray diffraction spectrum) of the metal glass alloy compact produced by the discharge plasma sintering method Pattern).
  • An X-ray diffraction spectrum (X-ray diffraction pattern) of a sample in which 20 volume% of Fe crystal particles are dispersed after producing a Ca 65 Mg 15 Zn 20 metallic glass alloy powder by the gas atomization method is shown. After producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by the gas atomization method, 20 volume% of Fe crystal particles are dispersed, and the X-ray diffraction spectrum (X-ray diffraction spectrum) of the metal glass alloy compact produced by the discharge plasma sintering method Pattern).
  • the compression test results Indicates. It shows the compression test results for Ca 65 Mg 15 Zn 20 alloy was prepared by casting method. The results of a compression test of a metal glass alloy molded body prepared by a discharge plasma sintering method in which 5 volume% of Fe crystal particles are dispersed after producing a Ca 65 Mg 15 Zn 20 metal glass alloy powder by the gas atomizing method are shown.
  • the results of a compression test of a metal glass alloy compact produced by a discharge plasma sintering method after producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by a gas atomizing method and then dispersing 10% by volume of Fe crystal particles are shown.
  • the results of a compression test of a metal glass alloy molded body prepared by a discharge plasma sintering method after producing 15 volume% of Fe crystal particles after producing a Ca 65 Mg 15 Zn 20 metal glass alloy powder by the gas atomizing method are shown.
  • the results of a compression test of a metal glass alloy compact produced by a discharge plasma sintering method after producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by a gas atomizing method and then dispersing 20% by volume of Fe crystal particles are shown.
  • the compression test result of a pure titanium sample is shown.
  • the pseudo body fluid immersion test result (mass change with time) of a Ca 65 Mg 15 Zn 20 metal glass alloy compact is shown.
  • the pseudo body fluid immersion test results (photos before and after immersion) of the Ca 65 Mg 15 Zn 20 metal glass alloy molded body are shown.
  • the pseudo body fluid immersion test result (the time-dependent change in mass reduction rate, the initial stage of decomposition) of a Ca 65 Mg 15 Zn 20 metal glass alloy compact is shown.
  • a sample in which metal powder is mixed is referred to as “mixed metal powder”, a sample in which the mixed metal powder is alloyed into metal glass is referred to as “metal glass alloy powder”, and a sample in which the metal glass alloy powder is sintered is referred to as “A sintered body of a “metal glass alloy”, a metal glass alloy powder is referred to as a “metal glass alloy compact”, and a biomaterial obtained by machining the metal glass alloy compact is referred to as a “metal glass alloy biomaterial”.
  • metallic glass refers to an amorphous alloy obtained by rapidly cooling from a liquid state and exhibiting glass transition. Even if the mixed metal powder is alloyed, it may or may not have the properties of metallic glass depending on the alloying conditions.
  • the medical calcium-based metallic glass alloy molded body of the present invention is composed of a calcium-based metallic glass alloy mainly composed of calcium, and the shortest distance from all parts of the surface of the molded body is 5 mm inside the molded body. It is characterized by including a region beyond.
  • the medical calcium-based metallic glass alloy molded body according to the present invention includes a step of mixing a metal powder containing calcium powder, a step of alloying the mixed metal powder, and the alloyed mixed metal powder. And a step of sintering.
  • the calcium powder and the metal powder may be industrial, synthetic reagent, agricultural, food, medical, etc., but are selected from the viewpoints of purity and impurities contained depending on the intended use of the alloy to be produced. .
  • the particle size is preferably 50 to 200 mesh which can be easily processed in the alloying process by solid phase reaction utilizing mechanical energy.
  • the mixed metal powder of the present invention can contain other metals such as magnesium and zinc in addition to calcium. Moreover, you may add trace amount of metal powder which is usually added to the material which uses the alloy to manufacture to the said calcium powder, the said magnesium powder, and the said zinc powder.
  • the calcium powder and the other metal powder are mixed at a mass ratio corresponding to the molar ratio of each component constituting the metal glass alloy powder to be produced.
  • the mass ratio is from 100 to 100 at. %, And the total amount of the metal powder is 100 at. If the amount does not exceed%, an alloy is theoretically produced.
  • the shape of the medical calcium-based metallic glass alloy molded body of the present invention may be any shape other than a solid shape such as a columnar shape, a prismatic shape, a spherical shape, a rod shape, a plate shape, or a cone shape.
  • the said molded object has the property of a metallic glass alloy, even if it is thin or thick.
  • the molded body has a shape in which the shortest distance from all parts of the surface of the molded body exceeds 5 mm, or 6 mm or more, or 7.5 mm or more. It is possible to take That is, it can be said that the molded article of the present invention has the properties of metallic glass even if the thickness exceeds 10 mm, 12 mm or more, or 15 mm or more.
  • the medical calcium-based metallic glass alloy molded body is machined into any biomaterial shape such as a predetermined bone shape, screw shape, implant material shape, covering material shape, fixing plate shape, etc. (Cutting, grinding, polishing, etc.) and can be used as a medical calcium-based metallic glass alloy biomaterial.
  • the step of alloying the mixed metal powder may employ a gas atomizing method, a casting method, a mechanical alloying method, or a method combining the casting method and the mechanical alloying method.
  • a method using a mechanical alloying method after treatment by a gas atomizing method, a mechanical alloying method, or a casting method is effective.
  • a high-purity single metal is mixed so as to have a composition of a metal glass alloy, and melted in an inert gas such as Ar purified to a high purity to produce a master ingot.
  • a metal glass alloy powder is producible by remelting a master ingot under reduced pressure and etching with a high pressure Ar gas, injecting from a nozzle.
  • FIG. 2 shows an appearance of the mechanical alloying device, a photograph of the container, and a conceptual diagram inside the container.
  • the particles of the metal glass alloy powder produced by the mechanical alloying method must have homogeneity. This is because a homogeneous calcium-based metallic glass alloy compact can be produced by subjecting the homogeneous alloy powder to the subsequent sintering step. Therefore, the alloying conditions in the mechanical alloying method are set so that the metal glass alloy powder after mechanical alloying is 150 ⁇ m or less. Specifically, the rotational speed is set to 250 to 650 rpm, the solid phase reaction time is set to 0.5 to 45 hours, and the sample / ball mass ratio is set to 1/100 to 1/1.
  • the atmosphere in the container may be replaced with Ar gas or the like.
  • the casting method is not particularly limited, and a known method can be applied.
  • an alloy ingot of mixed metal powder can be produced by a copper mold casting method using a high frequency melting furnace, a high frequency induction heating device, a BN crucible, and a copper mold.
  • the ingot produced by the casting method depends on the production conditions, it has been confirmed that although it is an alloy, it does not easily have the properties of metallic glass.
  • the method of using the mechanical alloying method in combination with the casting method is to finely chop an alloy ingot obtained by the above casting method with a nipper or the like and apply the mechanical alloying method to obtain a metallic glass alloy powder.
  • the sample alloyed by each of the above methods is a metal glass alloy powder having the properties of metal glass is determined using an X-ray diffraction (XRD) apparatus (X-ray diffraction). This can be confirmed by measuring a diffraction pattern.
  • the measurement conditions of the X-ray diffractometer are an X-ray diffraction spectrum (X-ray diffraction pattern) showing the X-ray diffraction intensity (arbitrary scale) with respect to twice (2 ⁇ ) the incident angle ( ⁇ ) of the X-ray to the sample. It is set as follows.
  • the diffraction peak of the mixed metal appears, but when the alloying progresses and the glass has the properties of metal glass, the diffraction peak becomes broad and disappears.
  • the alloying state of the mixed metal powder is confirmed using such a pattern change of the X-ray diffraction spectrum.
  • the powder shape and particle size of the alloyed sample can be confirmed with a scanning electron microscope (SEM) photograph or the like.
  • the step of sintering the alloyed mixed metal powder is not particularly limited as long as the properties of the metallic glass can be maintained.
  • Powder metallurgy methods such as reaction sintering, atmospheric pressure sintering, It is selected according to the purpose from a pressure sintering method, a re-sintering method, a sintering method using plasma, or the like.
  • the pressure sintering method is a method in which a powder sample is sintered while being pressed, the sample can be densified, and includes a hot press method, a gas pressure sintering method, a hot isostatic pressing method, and the like.
  • the hot press method is a pressure sintering method that adopts a uniaxial pressing method in which a powder sample is generally filled in a cylindrical mold and compressed with a pair of upper and lower punches.
  • the sintering method using plasma includes a thermal plasma sintering method and a discharge plasma sintering method, and is selected according to the purpose.
  • Spark plasma sintering is a method of sintering a sample by mechanical pressurization and pulse current heating.
  • the sample is sintered by passing a pulse current of an average current of several thousand amperes through the sample.
  • This is a sintering method that can sinter at a low temperature in a short time because the pulse current flows to the powder particle contact part in the powder sample and heat is concentrated on the contact part to promote neck formation between the powder particles.
  • FIG. 3 shows an outline of an apparatus used for the spark plasma sintering method.
  • the sintered body produced by the discharge plasma sintering method that is, the metal glass alloy formed body in the present invention has mechanical properties and strength suitable for the intended use of the material, has homogeneity, and is fine before and after sintering. It is necessary that there is little change in the structure, that is, the metallic glass does not crystallize. Therefore, the sintering condition in the spark plasma sintering method is that the sintered metal glass alloy molded body has mechanical characteristics and strength suitable for the intended use of the material, has homogeneity, and before and after sintering. It is set so that the change in the fine structure is reduced.
  • the pressure is set to 10 to 800 MPa
  • the holding time after reaching the sintering temperature is 0 to 20 minutes
  • the sintering temperature is 85 to 145 ° C., and the like.
  • An example of the temperature and pressure process is shown in FIG.
  • the setting of the sintering temperature is important, and it is preferable to select a temperature as high as possible without exceeding the temperature at which crystallization occurs.
  • the homogeneity of the sintered body is also confirmed with a scanning electron microscope (SEM) photo, an X-ray diffraction (XRD) apparatus, or the like.
  • the metal glass alloy formed body exhibits glass transition as a metal glass.
  • an iron between a step of alloying the mixed metal powder containing the calcium powder and a step of sintering the alloyed mixed metal powder
  • a step of dispersing the Fe) crystal particles in the metal glass alloy powder may be further included.
  • the Fe glass particles are mixed with the metal glass alloy powder in an amount of 5 to 30% by volume, more preferably 5 to 25% by volume to produce an Fe dispersed metal glass alloy powder.
  • the method for mixing the metal glass powder and the Fe crystal particles is not particularly limited as long as the Fe crystal particles can be uniformly dispersed.
  • the purpose of dispersing the Fe crystal particles is to improve the mechanical strength of the calcium-based metallic glass alloy formed body of the present invention and to control the decomposition rate in vivo. Therefore, if the Fe crystal particle content is less than 5% by volume, the mechanical strength cannot be improved and the decomposition rate is not sufficiently controlled.
  • the Fe crystal particles have a particle diameter of 2 to 200 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 3 to 5 ⁇ m, from the viewpoint of uniform dispersion in the metal glass alloy powder.
  • the calcium-based metallic glass alloy molded body produced by the method for producing a medical calcium-based metallic glass alloy molded body of the present invention is characterized in that the compressive strength is 300 MPa or more, preferably 320 MPa or more as mechanical properties.
  • Compressive strength as a mechanical property is evaluated by measuring the yield point in a compression test.
  • the yield point is obtained by compressing a square columnar sample in the height direction and measuring the strain (%) relative to the compressive stress (MPa).
  • MPa compressive stress
  • the calcium-based metallic glass alloy molded body produced by the method for producing a medical calcium-based metallic glass alloy molded body of the present invention is characterized by having a Vickers hardness of 120 HV or higher, preferably 160 HV or higher.
  • the hardness of the calcium-based metallic glass alloy molded body is measured by a hardness test method for metals.
  • Hardness testing methods for metals include Brinell hardness (BHN), Vickers hardness (VHN), Rockwell hardness, etc. These hardness testing methods include steel balls, diamond pyramids or conical indenters. Is pressed against the surface of the sintered body (alloy) and the amount of deformation is measured.
  • the test method of Vickers hardness (VHN; Vickers Hardness) is defined by the JIS method (JIS Z 2244, JIS B 7725), and a diamond pyramid indenter is pushed into the surface of a sample (test piece) and the test force is applied. After releasing, it measures the diagonal length of the indentation remaining on the surface.
  • the calcium-based metallic glass alloy molded body produced by the method for producing a medical calcium-based metallic glass alloy molded body according to the present invention has a decomposition rate of 90% by mass or more after 3 days of immersion in an SBF (pseudo body fluid) immersion test. , Preferably 93% by mass or more.
  • the decomposition rate of the calcium-based metallic glass alloy molded body in the pseudo body fluid is measured by an SBF (pseudo body fluid) immersion test or the like.
  • the SBF immersion test for measuring the decomposition rate after immersion for 0 to 6 days is performed by cutting a calcium-based metal glass alloy molded body molded with a mold having a diameter of 15 mm and immersing it in SBF. Is used to determine the rate of degradation by measuring the mass loss of each day. What is counted as the mass of the calcium-based metallic glass alloy molded body in the SBF immersion test is all solids other than those remaining as solids after the sample collapse, that is, those dissolved in SBF as ions.
  • composition of SBF was NaCl: 8.035 g, NaHCO 3 : 0.355 g, KCl: 0.225 g, K 2 HPO 4 .3H 2 O: 0.231 g, MgCl 2 .6H 2 O: 0.311 g, 0M HCl: 39 ml, CaCl 2 : 0.292 g, NaSO 4 : 0.072 g, Tris: 6.118 g.
  • the calcium-based metal glass alloy molded body produced by the method for producing a medical calcium-based metal glass alloy molded body of the present invention has a decomposition rate of 30% by mass after 5 hours of immersion in an SBF (pseudo body fluid) immersion test. It is characterized by the following.
  • the decomposition rate of the calcium-based metallic glass alloy molded body in the pseudo body fluid is measured by an SBF (pseudo body fluid) immersion test or the like.
  • SBF immersion test for measuring the decomposition rate after immersion for 0 to 6 hours, a calcium-based metallic glass alloy molded body formed with a mold having a diameter of 15 mm is cut with a cutting machine, suspended in a SBF with a string, and immersed.
  • the decomposition rate is determined by measuring the mass loss of the calcium-based metallic glass alloy compact every hour.
  • SBF immersion test only the solid matter suspended on the string when the string is pulled up is counted as the mass of the calcium-based metallic glass alloy molded body. For example, the sample collapses and falls into the SBF. The minutes are not counted.
  • Table 1 shows an outline of the produced Examples 1 to 12 and Comparative Examples 1 to 11.
  • Ca 45 Mg 25 Zn 30 mixed metal powder was alloyed with a mechanical alloying device (manufactured by Lecce Co., Ltd., planetary ball PM100 type). The rotation speed of the container was 250 rpm, and the solid phase reaction time was 15 hours. Further, the Ca 45 Mg 25 Zn 30 mixed metal powder not subjected to alloying described in Comparative Example 1 was used for comparison.
  • FIG. 5 shows X-ray diffraction patterns of Ca 45 Mg 25 Zn 30 mixed metal powder (Comparative Example 1) and Ca 45 Mg 25 Zn 30 metal glass alloy powder (Example 1) prepared by mechanical alloying.
  • As the X-ray diffractometer Ultimate III manufactured by Rigaku Corporation was used. It was confirmed that the Ca 45 Mg 25 Zn 30 mixed metal powder which was alloyed by the mechanical alloying method was a metal glass alloy powder having the properties of metal glass.
  • FIG. 6 shows a scanning electron micrograph of Ca 45 Mg 25 Zn 30 metal glass alloy powder (Example 1) produced by the mechanical alloying method described in Example 1. From FIG. 6, it was confirmed that the metallic glass alloy powder had a homogeneous shape.
  • the step of alloying the mixed metal powder of the present invention is a method in which the mechanical alloying method is used in combination with the casting method
  • the alloyed sample is a metal glass alloy powder having the properties of metal glass.
  • Ca 45 Mg 25 Zn 30 mixed metal powder was first alloyed by a copper mold casting method.
  • a BN crucible is used in a high-frequency melting furnace and a high-frequency induction heating device, melted at 20A in a vacuum and Ar gas atmosphere, heated at 30A for 5 minutes, and mixed with Ca 45 Mg 25 Zn 30 mixed metal powder.
  • After melting at high frequency it was cast into a copper mold with a diameter of 15 mm to produce an ingot with a diameter of 15 mm / length of 30 to 40 mm.
  • the produced ingot was chopped and ball milled by a mechanical alloying method to produce a Ca 45 Mg 25 Zn 30 metal glass alloy powder.
  • the mass ratio of the stainless steel ball for ball mill and the ingot was 10: 1, the rotation speed of the container was 250 rpm, and the solid phase reaction time was 15 hours. Further, the Ca 55 Mg 30 Zn 15 mixed metal powder described in Example 11 of Table 1 was also cast and ingots were produced in the same manner as in Example 2, and Ca 55 Mg 30 Zn 15 metal glass was obtained by mechanical alloying. Alloy powder was prepared. However, the solid phase reaction time in the mechanical alloying method was 30 hours. Further, the Ca 55 Mg 10 Zn 35 mixed metal powder described in Example 12 of Table 1 was cast as in Example 2 to produce an ingot, and the Ca 55 Mg 10 Zn 35 metal glass was mechanically alloyed. Alloy powder was prepared. The solid phase reaction time in the mechanical alloying method was 15 hours, the same as in Example 2.
  • FIG. 7A shows an X-ray diffraction pattern of Ca 45 Mg 25 Zn 30 metal glass alloy powder (Example 2) produced by mechanical alloying after ingot production by casting. It was confirmed that the Ca 45 Mg 25 Zn 30 mixed metal powder that had been alloyed by a method using the mechanical alloying method in combination with the casting method was a metal glass alloy powder having the properties of metal glass.
  • FIG. 7B shows an X-ray diffraction pattern of Ca 55 Mg 30 Zn 15 metal glass alloy powder (Example 11) produced by mechanical alloying after ingot production by casting. It was confirmed that the Ca 55 Mg 30 Zn 15 mixed metal powder that was alloyed by a mechanical alloying method in combination with the casting method was a metallic glass alloy powder having the properties of metallic glass.
  • FIG. 7C shows an X-ray diffraction pattern of Ca 55 Mg 10 Zn 35 metal glass alloy powder (Example 12) produced by mechanical alloying after ingot production by casting. It was confirmed that the Ca 55 Mg 10 Zn 35 mixed metal powder that had been alloyed by the mechanical alloying method in combination with the casting method was a metal glass alloy powder having the properties of metal glass. From Examples 2, 11 and 12, it was found that even a calcium-based mixed metal powder having a different metal composition was a metal glass alloy powder having the properties of metal glass.
  • Ca 65 Mg 15 Zn 20 mixed metal powder was alloyed by a copper mold casting method.
  • a BN crucible is used in a high-frequency melting furnace and a high-frequency induction heating device, melted at 20A in a vacuum and Ar gas atmosphere, heated at 30A for 5 minutes, and mixed with Ca 65 Mg 15 Zn 20 mixed metal powder. After melting at high frequency, it was cast into a copper mold with a diameter of 15 mm to produce an ingot with a diameter of 15 mm / length of 30 to 40 mm.
  • FIG. 8 shows an X-ray diffraction pattern of a Ca 65 Mg 15 Zn 20 alloy (ingot, Comparative Example 2) produced by a casting method. It was confirmed that the Ca 65 Mg 15 Zn 20 mixed metal powder that was alloyed by the casting method did not have the properties of metallic glass.
  • the step of sintering the alloyed mixed metal powder (metal glass alloy powder) of the present invention is a discharge plasma sintering method, it is confirmed whether or not the metal glass alloy compact is crystallized depending on the sintering temperature. Therefore, the following experiment was conducted.
  • a gas atomizer manufactured by Makabe Giken Co., Ltd., small gas atomizer apparatus model number VF-RQP200
  • the temperature was set to about 650 K and the Ar gas injection pressure was set to about 8 MPa.
  • the spark plasma sintering method uses a spark plasma sintering apparatus (SPS-3.20MK-IV manufactured by SPS Shintex Co., Ltd.), and a pressure of 600 MPa is applied to a Ca 65 Mg 15 Zn 20 metal glass alloy powder of 53 ⁇ m or less.
  • the holding time after reaching the sintering temperature was 10 minutes, and the sintering temperature was set to 120 to 160 ° C.
  • FIGS. 9A to 9F show Ca 65 Mg 15 Zn 20 metal glass alloy powder before sintering (Comparative Example 3) and Ca 65 Mg 15 Zn 20 metal glass alloy compacts at each sintering temperature (Examples 3 to 5 and comparison).
  • the X-ray diffraction patterns of Examples 4 to 5) are shown.
  • the glass had the properties of metallic glass up to a sintering temperature of 140 ° C.
  • a peak indicating crystallization of the metallic glass was confirmed when the sintering temperature was 150 ° C. or higher. Therefore, it was found that the optimum sintering temperature in the production of the calcium-based metallic glass alloy molded body of the present invention is 140 ° C.
  • Example 6 to 9 As described in Examples 6 to 9 and Comparative Examples 6 to 9 in Table 1, after producing Ca 65 Mg 15 Zn 20 metal glass alloy powder by the gas atomization method, 5 to 20 Fe crystal particles having a particle size of 3 to 5 ⁇ m were prepared. Samples that were dispersed at a volume percentage and were sintered at a sintering temperature of 140 ° C. (Examples 6 to 9) were prepared before sintering (Comparative Examples 6 to 9).
  • the sintering temperature is 120 to 160 ° C. by the discharge plasma sintering method.
  • a Ca 65 Mg 15 Zn 20 metallic glass alloy compact was produced.
  • a pressure of 600 MPa, a holding time of 10 minutes after reaching the sintering temperature, and a sintering temperature of 120 to 160 ° C. are set for a Ca 65 Mg 15 Zn 20 metallic glass alloy powder of 53 ⁇ m or less. It was done.
  • a sample obtained by alloying Ca 65 Mg 15 Zn 20 mixed metal powder described in Comparative Example 2 in Table 1 with a copper mold casting method was used.
  • the compression test for the sample of Comparative Example 10 is the same for the sample size of 1.48 mm in diameter and 3.78 mm in height using the above general-purpose mechanical tester (manufactured by Shimadzu Corporation, high-temperature vacuum tensile / compression tester AG50VF). Went to.
  • FIG. 11A to 11E show the compression test results.
  • Table 2 shows the compression strength of each sample based on the compression test results.
  • Comparative Example 2 it was found that the sintered sample of Ca 65 Mg 15 Zn 20 alloy powder produced by the casting method in the alloying process had only a lower compressive strength (118 MPa).
  • titanium which is a mechanical strength Merckmar, had a compressive strength of 436 MPa, as shown in Comparative Example 10.
  • the compressive strength of the Ca 65 Mg 15 Zn 20 alloy (Comparative Example 2) manufactured by the casting method is 118 MPa, which is extremely insufficient as the mechanical strength of the medical material, whereas the Ca 65 Mg 15 Zn 20 alloy is manufactured according to the present invention.
  • the compressive strength of the Ca 65 Mg 15 Zn 20 metal glass alloy molded body shows that it is very close to the mechanical strength of titanium.
  • the compressive strength of polylactic acid, which is currently being developed as a biomaterial is about 74 MPa (see Non-Patent Document 3, etc.).
  • the compression test for the sample of Comparative Example 10 is the same for the sample size of 1.48 mm in diameter and 3.78 mm in height using the above general-purpose mechanical tester (manufactured by Shimadzu Corporation, high-temperature vacuum tensile / compression tester AG50VF). Went to.
  • FIGS. 13A to 13D (Examples 6 to 9) and FIG. 14 (Comparative Example 10) show the compression test results.
  • Table 3 shows the compression strength of each sample based on the compression test results.
  • Example 5 in Table 2 sample without dispersion of Fe crystal particles
  • Example 6 to 9 in Table 3 by compressing Fe crystal particles, the compressive strength is increased and the mechanical strength is increased. It can be seen that it has improved.
  • the Fe crystal particle-dispersed Ca 65 Mg 15 Zn 20 metal glass alloy molded body (Examples 6 to 9) manufactured according to the present invention has Fe crystal particles manufactured by the manufacturing method of the present invention because of its compressive strength. It shows that the mechanical strength of titanium is closer to that of a metal glass alloy molded body in which is not dispersed.
  • the Vickers hardness test was performed on the medical calcium-based metallic glass alloy molded body produced by the production method of the present invention as follows.
  • the medical calcium-based metallic glass alloy molded body produced by the present invention is significantly harder than Merckmar titanium.
  • SBF immersion test-1- About the medical calcium type metal glass alloy molded object manufactured with the manufacturing method of this invention, the SBF immersion test was done as follows.
  • a Ca 65 Mg 15 Zn 20 metal glass alloy molded body was produced by the discharge plasma sintering method.
  • a Ca 65 Mg 15 Zn 20 metallic glass alloy powder having a particle size of 53 to 150 ⁇ m is subjected to a pressure of 600 MPa, a holding time of 10 minutes after reaching the sintering temperature, and a sintering temperature of 95 ° C.
  • the Ca 65 Mg 15 Zn 20 metal glass alloy molded body of Example 10 that was molded and cut with a 15 mm diameter mold was immersed in SBF (pseudo body fluid) having the above-described composition under the condition of 37 ° C.
  • the decomposition rate is calculated by measuring the mass reduction of the alloy compact.
  • FIG. 15 and Table 5 show changes over time in the mass reduction of the Ca 65 Mg 15 Zn 20 metallic glass alloy compact of Example 10.
  • FIG. 16 shows photographs of the Ca 65 Mg 15 Zn 20 metal glass alloy molded body of Example 9 before and after immersion in SBF. It was found that almost all of the metallic glass alloy compact was melted on the sixth day of immersion.
  • SBF immersion test-2- About the medical calcium type metal glass alloy molded object manufactured with the manufacturing method of this invention, the SBF immersion test was done as follows.
  • Example 5 of Table 1 after making a Ca 65 Mg 15 Zn 20 metallic glass alloy powder in the gas atomizing method to produce the Ca 65 Mg 15 Zn 20 amorphous alloy molded body by a discharge plasma sintering method.
  • the spark plasma sintering method was set to the conditions of a pressing force of 600 MPa, a holding time of 10 minutes after reaching the sintering temperature, and a sintering temperature of 140 ° C. for a Ca 65 Mg 15 Zn 20 metal glass alloy powder of 53 ⁇ m or less.
  • a Ca 65 Mg 15 Zn 20 alloy was prepared by a copper mold casting method as described in Comparative Example 11 of Table 1.
  • Example 5 The SBF immersion test was performed on the samples of Example 5 and Comparative Example 11. A sample formed with a die having a diameter of 15 mm and cut with a cutting machine was immersed in a SBF with a string suspended at 37 ° C., and the mass reduction of the calcium-based metallic glass alloy compact was measured every hour. To determine the decomposition rate.
  • FIG. 17 and Table 6 show the change over time in the mass reduction rate of the SBF immersion test for the Ca 65 Mg 15 Zn 20 metallic glass alloy molded body of Example 5 and the Ca 65 Mg 15 Zn 20 cast alloy of Comparative Example 11.
  • the mass reduction after 3 hours of immersion was 24% with respect to the start of immersion, and the mass reduction after 6 hours of immersion was 33% with respect to the start of immersion.
  • the mass reduction at 3 hours after immersion was 51% with respect to the start of immersion, and the mass reduction at 6 hours after immersion was 70% with respect to the start of immersion. That is, it was found that the metal glass alloy molded body produced by the production method of the present invention gradually absorbs as compared with the cast alloy.
  • the Vickers hardness test (Table 4), it can be confirmed that the Vickers hardness is not 120 HV or higher, and it is found that the Vickers hardness test is not suitable for the medical calcium-based metallic glass alloy molded body of the present invention.
  • the Ca 65 Mg 15 Zn 20 metallic glass alloy molded body of Example 5 has the properties of metallic glass from the X-ray diffraction spectrum (FIG. 9D), and a compressive strength higher than 300 MPa from the compression test result (FIG. 11C).
  • the Vickers hardness is 120 HV or more, and it is found that the Vickers hardness is suitable for the medical calcium-based metallic glass alloy molded body of the present invention. That is, the diameter of the cylindrical metal glass alloy molded body is 15 mm or more, that is, a large lump including an area in which the shortest distance from all parts of the surface of the molded body is 7.5 mm or more. It can be seen that the casting method is not suitable for metallic glass alloy biomaterials. The result of this study is consistent with the fact that when the thickness of the sample described in Non-Patent Documents 4 to 6 exceeds 10 mm, the casting method is not suitable as a metallic glass alloy biomaterial.
  • the manufacturing method of the present invention can provide a medical calcium-based metallic glass alloy biomaterial that can be applied to a wide range of uses and has bioabsorbability and mechanical strength.
  • the medical calcium-based metallic glass alloy biomaterial has the same mechanical strength and hardness as the metal material, it is possible to form a medical material having a complicated shape, and the structure of the biomaterial and the implantation position It can also be applied to members that are under pressure.
  • the medical calcium-based metallic glass alloy biomaterial is gradually absorbed into the body immediately after being implanted into the body, and eventually decomposes in the body, eliminating the need for removal surgery after treatment. In addition, it is possible to control the decomposition rate immediately after implantation.
  • a new medical calcium-based metallic glass alloy molded body can be used to design alloys for various medical devices regardless of size, such as stents, bone fragment fixing plates, fixing screws, dental membranes, etc. Therefore, it can be expected to be applied in various medical fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

生体吸収性を備え、金属材料と同等もしくはそれ以上の機械的強度を備え、複雑な成形が可能であり、かつ、広い用途に応用可能な医療用カルシウム系金属ガラス合金成形体の製造方法を提供することを課題とする。カルシウム粉末を含む金属粉末を混合し、その混合粉末を合金化し、合金化した混合金属粉末を焼結することにより、医療用カルシウム系金属ガラス合金成形体を製造する。

Description

医療用カルシウム系金属ガラス合金成形体及びその製造方法
 本発明は、生体吸収性を有するカルシウム系金属ガラス合金成形体及びその製造方法に関する。
 高齢化社会を迎え、医療現場では生体にやさしく安全な医療用生体材料の開発が求められている。なかでも、血管や食道などの管腔内狭窄部の治療に用いる管腔内ステントや骨折固定プレート、縫合糸などの医療用生体材料は、治療後に生体に吸収される性質を有することが求められている。生体に吸収されない場合には、治療後に該材料を撤去する再手術が必要となり、侵襲リスクや二次感染リスクの問題が生じるためである。
 生体吸収性を有する医療材料の原料としては、従来よりさまざまな物質が検討されている。
 たとえば非特許文献1には、金属材料のうち生体吸収性を有するマグネシウムについて、医療用材料としての検討がなされたことが記載されている。
 しかし、マグネシウムは活性が高く、生体内での分解速度が速すぎるという問題がある。このため、マグネシウムそのものを原料としプレートとして使用した場合、皮下に大量のガスが発生し空腔を形成してしまうことが知られている。
 また、鉄については、純鉄製のステントが作製され、ウサギ血管内への埋入実験結果が報告されている(非特許文献1、2参照)。しかし、鉄は生体内での分解速度が遅すぎるという問題がある。このため、医療用材料として生体内に埋入された鉄は、治療後も体内に異物として残っている期間が長く、該材料が腐食し周辺で炎症が起きることも指摘されている。
 さらに、ポリ乳酸などの高分子材料は、機械的強度が低く加工性にも劣るため、チタンなどの金属材料の代替にはなりえないことが知られている(非特許文献3等参照)。ただ、そのような性質であっても、他の代替材料と比較すれば生体内で吸収性を有し、上述したような治療後に該材料を撤去する再手術の必要がない。このため、ポリ乳酸などの高分子材料は有望な生体材料と考えられ、実際臨床試験が進み、骨片固定用プレート、骨ねじ、吸収性ステントなどに応用されている。
 これらに対して、近年、上述した問題を同時に解決し得る材料として、カルシウム系金属ガラス合金が注目を集めている。しかしながら、従来の鋳造法により製造されたカルシウム系金属ガラス合金は、サイズが大きくなると結晶化してしまうため、10mm以下の厚さでなければ金属ガラスの性質を有さないことが知られている(非特許文献4~6参照)。つまり、大きなサイズが要求されるカルシウム系金属ガラス合金の医療用材料に適した製造方法は未だ確立されておらず、医療用カルシウム系金属ガラス合金材料及びその製造方法の早期開発が望まれている。
山本玲子:"マグネシウム合金の医療応用",軽金属,58(11),2008,pp.570-576 M Peuster,et al,:Heart,86,2001,pp.563-569 上野晃、山本広志、斉藤英一郎、上田芳久:"ハイサイクル・高耐衝撃性のポリ乳酸樹脂成形材料",パナソニック電工技法,Vol.59 No.1,pp.55-59 Y.B.Wang,et al,:Biodegradable CaMgZn bulk metallic glass for potential skeletal application,Acta Biomaterialia 7 (2011),pp.3196-3208 J.D.Cao,et al,:Ca-Mg-Zn bulk metallic glasses as bioresorbable metals,Acta Biomaterialia 8 (2012),pp.2375-2383 W.Jiao,et al,:Zinc-based bulk metallic glasses,Journal of Non-Crystalline Solids 356 (2010),pp.1867-1870
 本発明は、適度な生体吸収性を備え、金属材料と同等もしくはそれ以上の機械的強度を備え、複雑な成形が可能であり、かつ、面積や厚みが大きな部材にも応用可能な医療用カルシウム系金属ガラス合金成形体及びその製造方法を提供することを課題とする。
 本発明者らは、上記事情に鑑みて鋭意検討した結果、体内に埋入直後には生体吸収が徐々に行われ、かつ、最終的には体内で分解し、金属材料と同等の機械的強度及び硬さを備えた医療用カルシウム系金属ガラス合金成形体及びその製造方法を見出した。
 すなわち、カルシウム粉末を含む金属粉末を混合し、その混合粉末を合金化し、合金化した混合金属粉末を焼結することにより、上記医療用カルシウム系金属ガラス合金成形体は製造される。
 また、カルシウム粉末を含む金属粉末を混合し、その混合粉末を合金化し、合金化した混合金属粉末に鉄結晶粒子を分散し、鉄結晶粒子を分散した合金化混合金属粉末を焼結することにより、上記医療用カルシウム系金属ガラス合金成形体は製造される。
 本発明により製造されたカルシウム系金属ガラス合金を医療用生体材料の原料とした場合、金属材料と同等の機械的強度及び硬さを備えるため、複雑な形状の医療用材料の成形が可能であり、生体材料の構造や埋入位置の上で圧力のかかる部材へも応用可能となり、カルシウム系金属ガラス合金生体材料の使用可能な範囲が広がる。また、体内に埋入直後には生体吸収が徐々に行われ、かつ、最終的には体内で分解するため、治療後の撤去手術が不要となるばかりか、埋入直後の分解速度の制御も可能となる。さらに、本発明のカルシウム系金属ガラス合金成形体の製造方法はバルク生産も対応可能であり、サイズの大きな生体材料にも応用できる。
ガスアトマイズ法によるカルシウム系金属ガラス合金粉末を作製する装置及び概念図を示す。 メカニカルアロイング法によるカルシウム系金属ガラス合金粉末を作製する装置及び概念図を示す。 放電プラズマ焼結法に使用される装置の概念図を示す。 放電プラズマ焼結法による金属ガラス合金成形体作製時の温度と加圧力プロセスを示す。 Ca45Mg25Zn30混合金属粉末及びメカニカルアロイング法で作製したCa45Mg25Zn30金属ガラス合金粉末のX線回折スペクトル(X線回折パターン)を示す。 メカニカルアロイング法で作製したCa45Mg25Zn30金属ガラス合金粉末の走査型電子顕微鏡(SEM;Scanning Electron Microscope)写真を示す。 鋳造法でインゴット作製後にメカニカルアロイング法で作製したCa45Mg25Zn30金属ガラス合金粉末のX線回折スペクトル(X線回折パターン)を示す。 鋳造法でインゴット作製後にメカニカルアロイング法で作製したCa55Mg30Zn15金属ガラス合金粉末のX線回折スペクトル(X線回折パターン)を示す。 鋳造法でインゴット作製後にメカニカルアロイング法で作製したCa55Mg10Zn35金属ガラス合金粉末のX線回折スペクトル(X線回折パターン)を示す。 鋳造法で作製したCa65Mg15Zn20合金のX線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法で作製したCa65Mg15Zn20金属ガラス合金粉末の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度120℃で作製したCa65Mg15Zn20金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度130℃で作製したCa65Mg15Zn20金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度140℃で作製したCa65Mg15Zn20金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度150℃で作製したCa65Mg15Zn20金属ガラス合金粉末の焼結試料の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度160℃で作製したCa65Mg15Zn20金属ガラス合金粉末の焼結試料の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を5体積%分散させた試料の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を5体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を10体積%分散させた試料の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を10体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を15体積%分散させた試料の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を15体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を20体積%分散させた試料の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を20体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、X線回折スペクトル(X線回折パターン)を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度120℃で作製したCa65Mg15Zn20金属ガラス合金成形体の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度130℃で作製したCa65Mg15Zn20金属ガラス合金成形体の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度140℃で作製したCa65Mg15Zn20金属ガラス合金成形体の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度150℃で作製したCa65Mg15Zn20金属ガラス合金粉末の焼結試料の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度160℃で作製したCa65Mg15Zn20金属ガラス合金粉末の焼結試料の、圧縮試験結果を示す。 鋳造法で作製したCa65Mg15Zn20合金の圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を5体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を10体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を15体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、圧縮試験結果を示す。 ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を20体積%分散させ、放電プラズマ焼結法で作製した金属ガラス合金成形体の、圧縮試験結果を示す。 純チタン試料の圧縮試験結果を示す。 Ca65Mg15Zn20金属ガラス合金成形体の疑似体液浸漬試験結果(質量の経時変化)を示す。 Ca65Mg15Zn20金属ガラス合金成形体の疑似体液浸漬試験結果(浸漬前後の写真)を示す。 Ca65Mg15Zn20金属ガラス合金成形体の疑似体液浸漬試験結果(質量減少率の経時変化、分解初期)を示す。
 発明を実施するための形態の説明に先立ち、使用タームを明確にしておく。本明細書において、金属粉末を混合した試料を「混合金属粉末」、混合金属粉末を合金化して金属ガラスになった試料を「金属ガラス合金粉末」、金属ガラス合金粉末を焼結した試料を「金属ガラス合金」、金属ガラス合金粉末の焼結体を「金属ガラス合金成形体」、金属ガラス合金成形体を機械加工して切り出した生体材料を「金属ガラス合金生体材料」という。
 また、金属ガラスとは、液体状態から急速に冷却することによって得られ非晶質合金のうち、ガラス遷移を示すものをいう。混合金属粉末を合金化しても、合金化条件により金属ガラスの性質を有する場合と有さない場合がある。
 本発明の医療用カルシウム系金属ガラス合金成形体は、カルシウムを主成分とするカルシウム系金属ガラス合金からなり、前記成形体の内部に前記成形体の表面の全ての部分からの最短距離が5mmを超える領域を含むことを特徴とする。
 また、本発明の医療用カルシウム系金属ガラス合金成形体の製造方法は、カルシウム粉末を含む金属粉末を混合する工程と、前記混合した金属粉末を合金化する工程と、前記合金化した混合金属粉末を焼結する工程とを含むものである。
 前記カルシウム粉末及び前記金属粉末は、工業用、合成試薬用、農業用、食品用、医療用等いずれであってもよいが、製造する合金の使用目的により純度や含有不純物の観点から選択される。生体吸収性を有する医療用生体材料に使用する場合は、特に生体安全性を確保するため、医療用の純度99%以上のものを選択することが好ましい。また粒子サイズは、機械的エネルギーを利用した固相反応により合金化する工程で処理しやすい50~200meshであることが好ましい。
 本発明の混合金属粉末には、カルシウムに、他の金属、たとえばマグネシウムや亜鉛を含有することができる。
 また、前記カルシウム粉末、前記マグネシウム粉末、前記亜鉛粉末に、製造する合金を使用する材料に通常添加するような金属粉末を微量添加してもよい。
 前記カルシウム粉末と前記他の金属粉末は、作製する金属ガラス合金粉末を構成する各成分のモル比に対応するような質量比で混合される。
 質量比は、前記カルシウム粉末がゼロを超える量から100at.%を下回る量であり、前記金属粉末の合計が粉末全量の合計100at.%を超えない量であれば理論的には合金が作製されることとなる。しかしながら、生体吸収性や材料加工性の観点からCaxMgyZnz金属ガラス合金にあっては、x=40~70at.%、y=0~30at.%、z=0~35at.%の範囲であることが好ましい。この範囲を超えると、金属ガラスの性質を有さない場合があることが確認されている。
 本発明の医療用カルシウム系金属ガラス合金成形体の形状は、円柱状、角柱状、球状、棒状、板状、錐状等の塊状の他、任意の形状であってよい。
 前記成形体は、厚さに特に制限はなく、薄くても厚くても金属ガラス合金の性質を有する。このため、前記成形体は、前記成形体の内部に前記成形体の表面の全ての部分からの最短距離が5mmを超える、もしくは6mm以上、あるいは7.5mm以上となる領域を含むような、形状を取ることが可能である。すなわち、本発明の成形体は、厚みが10mmを超える、もしくは12mm以上、あるいは15mm以上となるようなものであっても、金属ガラスの性質を有するということができる。
 前記医療用カルシウム系金属ガラス合金成形体は、所定の骨の形状、スクリューの形状の他、埋入材の形状、被覆材の形状、固定板の形状等の任意の生体材料の形状に機械加工(切削加工、研削加工、研磨加工など)され、医療用カルシウム系金属ガラス合金生体材料として使用できる。
 前記混合した金属粉末を合金化する工程は、ガスアトマイズ法、鋳造法、メカニカルアロイング法等、或いは、鋳造法とメカニカルアロイング法を組み合わせる方法を採用することが可能である。前記混合した金属粉末を合金化して金属ガラスを生成させるためには、ガスアトマイズ法、メカニカルアロイング法、鋳造法で処理後にメカニカルアロイング法を併用する方法が有効である。
 ガスアトマイズ法は、高純度の単体金属を金属ガラス合金の組成となるように混合し、高純度に精製されたAr等の不活性ガス中で溶融し、マスターインゴットを作製する。そして、マスターインゴットを減圧下で再溶融し、ノズルから射出しつつ高圧Arガスによりエッチングすることで、金属ガラス合金粉末を作製することができる。
 ガスアトマイズ法は、メカニカルアロイング法と比較して、金属ガラス合金粉末を一度で大量に作製することができることが利点の一つである。図1にガスアトマイズ装置の概要を示す。
 メカニカルアロイング法は、複数の金属粉末をボールの入った容器に入れ、容器ごと回転させて激しくかき混ぜるものである。かき混ぜられた容器内の複数の金属粉末は、原子レベルでの固相反応により合金化する。
 図2にメカニカルアロイング装置の外観、容器の写真、及び容器内の概念図を示す。
 メカニカルアロイング法で作製した金属ガラス合金粉末の粒子は、均質性を有することが必要である。均質である合金粉末を次の焼結工程に供することにより、均質なカルシウム系金属ガラス合金成形体を製造することができるからである。そのため、該メカニカルアロイング法における合金化条件は、メカニカルアロイング後の金属ガラス合金粉末が150μm以下になるように設定される。
 具体的には、回転速度250~650rpm、固相反応時間0.5~45時間、試料/ボールの質量比1/100~1/1等に設定される。容器内雰囲気をArガス等で置換してもよい。
 鋳造法としては、特に限定されることなく、公知の方法を適用することができる。たとえば、高周波溶解炉、高周波誘導加熱装置、BNるつぼ、及び、銅鋳型を使用する銅鋳型鋳造法により、混合金属粉末の合金インゴットを作製することができる。
 なお、鋳造法で作製されたインゴットは、作製条件によるものの、合金ではあるが金属ガラスの性質は有しにくいことが確認されている。
 鋳造法にメカニカルアロイング法を併用する方法は、上記鋳造法により得られた合金インゴットをニッパー等で細かく刻み、上記メカニカルアロイング法に適用して金属ガラス合金粉末を得るものである。
 上記各方法で合金化した試料が、金属ガラスの性質を有する金属ガラス合金粉末となっているか否かは、X線回折(XRD;X-ray Diffraction)装置を用いてX線回折スペクトル(X線回折パターン)を測定することで確認できる。
 X線回折装置の測定条件は、X線の試料への入射角(θ)の2倍(2θ)に対するX線回折強度(任意目盛)を示すX線回折スペクトル(X線回折パターン)が得られるように設定される。合金化工程の前には混合した金属単体の回折ピークが現れるが、合金化が進み金属ガラスの性質を有するようになると、回折ピークはブロードとなり消滅していく。このようなX線回折スペクトルのパターン変化を利用し、混合金属粉末の合金化状態を確認する。
 また、合金化した試料の粉末形状や粒子サイズは、走査型電子顕微鏡(SEM;Scanning Electron Microscope)写真等で確認できる。
 前記合金化した混合金属粉末を焼結する工程は、金属ガラスの性質を維持することができる限り特に制限されることはなく、粉末冶金法、たとえば反応焼結法、常圧焼結法、加圧焼結法、再焼結法、プラズマを利用する焼結法等から目的によって選択される。
 加圧焼結法は、粉末試料を加圧しながら焼結する方法であり、試料を緻密化することができ、ホットプレス法、ガス圧焼結法、熱間静水圧焼結法等がある。ホットプレス(hot press)法は、一般に円筒形状の型に粉末試料を充填し、上下一対のパンチで圧縮する一軸加圧方式をとる加圧焼結法である。
 プラズマを利用する焼結法は、熱プラズマ焼結法、放電プラズマ焼結法等があり、目的によって選択される。
 放電プラズマ焼結法(SPS;Spark Plasma Sintering)は、機械的な加圧とパルス通電加熱によって試料を焼結する方法である。一般的には数千アンペアの平均電流のパルス電流を試料に通電させることで、試料は焼結される。パルス電流は粉末試料内の粉体粒子接触部に流れ、該接触部に発熱が集中し粉体粒子間のネック形成が促進されるため、低温かつ短時間で焼結可能な焼結法である。
 図3に放電プラズマ焼結法に使用される装置の概要を示す。
 前記放電プラズマ焼結法で作製した焼結体、すなわち本発明における金属ガラス合金成形体は、材料の使用目的に合う機械的特性や強度を有すること、均質性を有すること、焼結前後で微細構造に変化が少ないこと、すなわち金属ガラスが結晶化しないこと等が必要である。そのため、該放電プラズマ焼結法における焼結条件は、焼結後の金属ガラス合金成形体が、材料の使用目的に合う機械的特性や強度を有し、均質性を有し、焼結前後で微細構造に変化が少なくなるように設定される。
 具体的には、加圧力10~800MPa、焼結温度到達後の保持時間0~20分、焼結温度85~145℃等に設定される。温度と加圧力プロセスの例を図4に示す。
 なかでも本発明においては焼結温度の設定が重要であり、結晶化が起きる温度を超えず、かつ、なるべく高い温度を選択することが好ましい。
 前記焼結体、すなわち本発明における金属ガラス合金成形体の均質性等も、走査型電子顕微鏡(SEM;Scanning Electron Microscope)写真やX線回折(XRD;X-ray Diffraction)装置等で確認する。
 また、前記金属ガラス合金成形体が金属ガラスとしてガラス遷移を示すこと等は、X線回折(XRD;X-ray Diffraction)装置等で確認できる。
 本発明の医療用カルシウム系金属ガラス合金成形体の製造方法は、前記カルシウム粉末を含む混合金属粉末を合金化する工程と、前記合金化した混合金属粉末を焼結する工程の間に、鉄(Fe)結晶粒子を金属ガラス合金粉末中に分散させる工程をさらに含めることができる。
 Fe結晶粒子を分散させる工程は、金属ガラス合金粉末にFe結晶粒子を5~30体積%、より好ましくは5~25体積%混合し、Fe分散金属ガラス合金粉末を作製するものである。金属ガラス粉末とFe結晶粒子とを混合する方法は、Fe結晶粒子を均一に分散させることができる限り特に制限されることはない。
 Fe結晶粒子を分散させる目的は、本発明のカルシウム系金属ガラス合金成形体の機械的強度を向上させ、かつ、生体内における分解速度の制御を可能にするためである。よって、Fe結晶粒子が5体積%より少ないと、機械的強度の向上や分解速度の制御が十分でなく、また30体積%を超えると、機械的強度は向上するもののカルシウム系金属ガラス合金成形体の有する生体吸収性を低下させてしまう。
 Fe結晶粒子としては、金属ガラス合金粉末中に均一に分散させる観点から、粒径が2~200μm、なかでも2~50μmのものが好ましく、3~5μmのものがより好ましい。
 本発明の医療用カルシウム系金属ガラス合金成形体の製造方法で製造されるカルシウム系金属ガラス合金成形体は、機械的特性として圧縮強度が300MPa以上、好ましくは320MPa以上であることを特徴とする。
 前記機械的特性としての圧縮強度は、圧縮試験で降伏点を測定等して評価する。降伏点は、四角柱形状の試料を高さ方向に圧縮し、圧縮応力(MPa)に対する歪み(%)の測定を行うことによって得られる。一般的な合金や金属は、圧縮応力をゼロから増加させると歪みも大きくなるが、降伏点に達した後に歪みは大きくなっても応力が降下する現象が起きる。この現象を利用して、応力―歪み線図から降伏点を割り出す。
 本発明の医療用カルシウム系金属ガラス合金成形体の製造方法で製造されカルシウム系金属ガラス合金成形体は、ビッカース硬さが120HV以上、好ましくは160HV以上であることを特徴とする。
 前記カルシウム系金属ガラス合金成形体の硬さは、金属用の硬さ試験法等で測定する。金属用の硬さ試験法には、ブリネル硬さ(BHN)、ビッカース硬さ(VHN)、ロックウェル硬さ等があり、これらの硬さ試験法は、鋼球やダイヤモンドの角錐或いは円錐の圧子を焼結体(合金)の表面に押付けてその変形量を測定するものである。
 ビッカース硬さ(VHN;Vickers Hardness)の試験方法は、JIS法(JIS Z 2244、JIS B 7725)に規定され、正四角錐のダイヤモンド圧子を,試料(試験片)の表面に押し込み,その試験力を解除した後,表面に残ったくぼみの対角線長さを測定するものである。
 本発明の医療用カルシウム系金属ガラス合金成形体の製造方法で製造されるカルシウム系金属ガラス合金成形体は、SBF(疑似体液)浸漬試験において、3日間の浸漬での分解率が90質量%以上、好ましくは93質量%以上であることを特徴とする。
 前記カルシウム系金属ガラス合金成形体の疑似体液内での分解率は、SBF(疑似体液)浸漬試験等で測定する。
 0~6日間の浸漬での分解率を測定するSBF浸漬試験は、直径15mmの型で成形されたカルシウム系金属ガラス合金成形体を切削してSBFに浸漬し、該カルシウム系金属ガラス合金成形体の質量減少を日単位で測定して分解率を割り出すものである。該SBF浸漬試験で該カルシウム系金属ガラス合金成形体の質量としてカウントされるのは、サンプル崩壊後も固形物として残っているもの、すなわちイオンとしてSBFに溶解したもの以外の固形物全てである。
 SBFの組成は、NaCl:8.035g、NaHCO3:0.355g、KCl:0.225g、K2HPO4・3H2O:0.231g、MgCl2・6H2O:0.311g、1.0M HCl:39ml、CaCl2:0.292g、NaSO4:0.072g、Tris:6.118gである。
 さらに本発明の医療用カルシウム系金属ガラス合金成形体の製造方法で製造されるカルシウム系金属ガラス合金成形体は、SBF(疑似体液)浸漬試験において、5時間の浸漬での分解率が30質量%以下であることを特徴とする。
 前記カルシウム系金属ガラス合金成形体の疑似体液内での分解率は、SBF(疑似体液)浸漬試験等で測定する。
 0~6時間の浸漬での分解率を測定するSBF浸漬試験は、直径15mmの型で成形されたカルシウム系金属ガラス合金成形体を切断機で切断しSBF中に紐で吊るして浸漬し、該カルシウム系金属ガラス合金成形体の質量減少を一時間ごとに測定して分解率を割り出すものである。該SBF浸漬試験で該カルシウム系金属ガラス合金成形体の質量としてカウントされるのは、紐を引き上げた際に紐に吊るされている固形物のみであり、たとえばサンプルが崩壊してSBF中に落ちた分はカウントされていない。
 以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 作製した実施例1~12及び比較例1~11の概要を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (メカニカルアロイング法での金属ガラス生成確認)
 本発明の混合金属粉末を合金化する工程がメカニカルアロイング法である場合に、合金化後の試料は金属ガラスの性質を有する金属ガラス合金粉末となっていることを確認するため、以下の実験を行った。
 表1の実施例1に記載のとおり、Ca45Mg25Zn30混合金属粉末を、メカニカルアロイング装置(株式会社レッチェ製、遊星型ボールPM100型)にて合金化処理を行った。容器の回転速度は250rpm、固相反応時間は15時間であった。
 また、比較例1に記載の合金化を行わないCa45Mg25Zn30混合金属粉末を、比較のために用いた。
 図5に、Ca45Mg25Zn30混合金属粉末(比較例1)及びメカニカルアロイング法で作製したCa45Mg25Zn30金属ガラス合金粉末(実施例1)のX線回折パターンを示した。X線回折装置は、株式会社リガク製UltimaIIIを使用した。メカニカルアロイング法で合金化処理を行ったCa45Mg25Zn30混合金属粉末は、金属ガラスの性質を有する金属ガラス合金粉末となっていることが確認できた。
 また、図6に、実施例1に記載のメカニカルアロイング法で作製したCa45Mg25Zn30金属ガラス合金粉末(実施例1)の走査型電子顕微鏡写真を示す。図6より、該金属ガラス合金粉末は均質な形状を有することが確認された。
 (鋳造法にメカニカルアロイング法を併用する方法での金属ガラス生成確認)
 本発明の混合金属粉末を合金化する工程が鋳造法にメカニカルアロイング法を併用する方法である場合に、合金化後の試料は金属ガラスの性質を有する金属ガラス合金粉末となっていることを確認するため、以下の実験を行った。
 表1の実施例2に記載のとおり、Ca45Mg25Zn30混合金属粉末を、まず銅鋳型鋳造法で合金化した。銅鋳型鋳造法では、高周波溶解炉及び高周波誘導加熱装置にて、BNるつぼを使用し、真空とArガス雰囲気下、20Aで溶解後、30Aで5分間加熱しCa45Mg25Zn30混合金属粉末を高周波溶解後、直径15mmの銅鋳型に鋳造し、直径15mm/長さ30~40mmのインゴットを作製した。
 次に、メカニカルアロイング法で、作製した上記インゴットを刻んでボールミリングし、Ca45Mg25Zn30金属ガラス合金粉末を作製した。ボールミル用ステンレスボールとインゴットの質量比は10:1とし、容器の回転速度は250rpm、固相反応時間は15時間であった。
 また、表1の実施例11に記載のCa55Mg30Zn15混合金属粉末も、実施例2と同様に、鋳造し、インゴットを作製し、メカニカルアロイング法でCa55Mg30Zn15金属ガラス合金粉末を作製した。ただし、メカニカルアロイング法での固相反応時間は30時間であった。
 さらに、表1の実施例12に記載のCa55Mg10Zn35混合金属粉末も、実施例2と同様に、鋳造し、インゴットを作製し、メカニカルアロイング法でCa55Mg10Zn35金属ガラス合金粉末を作製した。メカニカルアロイング法での固相反応時間は、実施例2と同じ15時間であった。
 図7Aに、鋳造法でインゴット作製後にメカニカルアロイング法で作製したCa45Mg25Zn30金属ガラス合金粉末(実施例2)のX線回折パターンを示す。鋳造法にメカニカルアロイング法を併用する方法で合金化処理を行ったCa45Mg25Zn30混合金属粉末は、金属ガラスの性質を有する金属ガラス合金粉末となっていることが確認できた。
 図7Bに、鋳造法でインゴット作製後にメカニカルアロイング法で作製したCa55Mg30Zn15金属ガラス合金粉末(実施例11)のX線回折パターンを示す。鋳造法にメカニカルアロイング法を併用する方法で合金化処理を行ったCa55Mg30Zn15混合金属粉末は、金属ガラスの性質を有する金属ガラス合金粉末となっていることが確認できた。
 図7Cに、鋳造法でインゴット作製後にメカニカルアロイング法で作製したCa55Mg10Zn35金属ガラス合金粉末(実施例12)のX線回折パターンを示す。鋳造法にメカニカルアロイング法を併用する方法で合金化処理を行ったCa55Mg10Zn35混合金属粉末は、金属ガラスの性質を有する金属ガラス合金粉末となっていることが確認できた。
 実施例2、11及び12より、金属組成の異なるカルシウム系混合金属粉末であっても、金属ガラスの性質を有する金属ガラス合金粉末となることが分かった。
 (鋳造法での金属ガラス生成有無の確認)
 本発明の混合金属粉末を合金化する工程が鋳造法である場合に、合金化後の試料は金属ガラスの性質を有する金属ガラス合金粉末となっているか否かを確認するため、以下の実験を行った。
 表1の比較例2に記載のとおり、Ca65Mg15Zn20混合金属粉末を、銅鋳型鋳造法で合金化した。銅鋳型鋳造法では、高周波溶解炉及び高周波誘導加熱装置にて、BNるつぼを使用し、真空とArガス雰囲気下、20Aで溶解後、30Aで5分間加熱しCa65Mg15Zn20混合金属粉末を高周波溶解後、直径15mmの銅鋳型に鋳造し、直径15mm/長さ30~40mmのインゴットを作製した。
 図8に、鋳造法で作製したCa65Mg15Zn20合金(インゴット、比較例2)のX線回折パターン示す。鋳造法で合金化処理を行ったCa65Mg15Zn20混合金属粉末は、金属ガラスの性質を有さないことが確認できた。
 (焼結温度による金属ガラスの結晶化の確認)
 本発明の合金化した混合金属粉末(金属ガラス合金粉末)を焼結する工程が放電プラズマ焼結法である場合に、焼結温度によって金属ガラス合金成形体が結晶化しているか否かを確認するため、以下の実験を行った。
 表1の実施例3~5及び比較例4~5に記載のとおり、ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法によりCa65Mg15Zn20金属ガラス合金成形体を作製した。ガスアトマイズ法は、ガスアトマイザー(株式会社真壁技研製、小型ガスアトマイズ装置型番VF-RQP200)を用い、温度約650K、Arガス噴射圧力約8MPaの条件に設定された。放電プラズマ焼結法は、放電プラズマ焼結装置(SPSシンテックス株式会社製SPS-3.20MK-IV)を用い、53μm以下のCa65Mg15Zn20金属ガラス合金粉末に対して、加圧力600MPa、焼結温度到達後の保持時間10分、焼結温度120~160℃の条件に設定された。
 図9A~Fに、焼結前のCa65Mg15Zn20金属ガラス合金粉末(比較例3)及び焼結温度ごとのCa65Mg15Zn20金属ガラス合金成形体(実施例3~5及び比較例4~5)のX線回折パターンを示す。
 焼結温度が140℃までは金属ガラスの性質を有したままであることが認められたが、焼結温度が150℃以上になると金属ガラスの結晶化を示すピークが確認された。よって、本発明のカルシウム系金属ガラス合金成形体製造における焼結温度は、140℃が最適であることが分かった。
 (Fe結晶粒子分散型Ca65Mg15Zn20金属ガラス合金成形体の作製試験-1-)
 本発明の合金化する工程と、合金化した混合金属粉末を焼結する工程の間に、Fe結晶粒子を分散させる工程を加えた場合に、カルシウム系金属ガラス合金成形体の金属ガラスとしての性質に影響を与えるか否かを確認するため、以下の実験を行った。
 表1の実施例6~9及び比較例6~9に記載のとおり、ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、粒径が3~5μmのFe結晶粒子を5~20体積%分散させ、焼結前の試料(比較例6~9)及び焼結温度140℃で焼結した試料(実施例6~9)を作製した。
 図10A~Hに、Fe結晶粒子5~20体積%を分散させた、Fe結晶粒子分散型Ca65Mg15Zn20金属ガラス合金粉末の焼結前後のX線回折パターンを示す(A:比較例6、B:実施例6、C:比較例7、D:実施例7、E:比較例8、F:実施例8、G:比較例9、H:実施例9)。
 Fe結晶粒子分散型Ca65Mg15Zn20金属ガラス合金粉末の焼結前後で、いずれの体積分率で分散したものであっても、カルシウム系金属ガラス合金成形体の金属ガラスとしての性質には変化がほとんどないことが分かった。
 (焼結温度による金属ガラス合金成形体の圧縮強度)
 本発明の合金化した混合金属粉末(金属ガラス合金粉末)を焼結する工程が放電プラズマ焼結法である場合に、焼結温度による金属ガラス合金成形体の圧縮強度を測定するため、以下の実験を行った。
 表1の実施例3~5及び比較例4~5に記載のとおり、ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法により焼結温度120~160℃でCa65Mg15Zn20金属ガラス合金成形体を作製した。放電プラズマ焼結法は、53μm以下のCa65Mg15Zn20金属ガラス合金粉末に対して、加圧力600MPa、焼結温度到達後の保持時間10分、焼結温度120~160℃の条件に設定された。
 比較試料として、表1の比較例2に記載のCa65Mg15Zn20混合金属粉末を銅鋳型鋳造法で合金化した試料を用いた。
 比較のため、表1の比較例10に記載の、純チタン試料を用いた。
 実施例3~5及び比較例2、4~5の試料についての圧縮試験は、幅2mm、厚み2mm、高さ4mmの四角柱形状の測定片を作製し、汎用機械式テスト機(島津製作所製、高温真空引張・圧縮試験機AG50VF)を用い、一軸加圧下で5×10-4mm/sの初期歪み速度に対応する一定のクロスヘッド速度で、圧縮強度と歪みとの関係を測定することで行った。
 比較例10の試料についての圧縮試験は、直径1.48mm、高さ3.78mmの試料サイズについて、上記汎用機械式テスト機(島津製作所製、高温真空引張・圧縮試験機AG50VF)を用いて同様に行った。
 図11A~E(実施例3~5、比較例4~5)、図12(比較例2)、図14(比較例10)に、圧縮試験結果を示す。
 圧縮試験結果に基づき、各試料の圧縮強度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の実施例3~5が示すように、放電プラズマ焼結法における焼結温度を120~140℃に設定して製造されたCa65Mg15Zn20金属ガラス合金粉末の焼結試料は、320MPa以上の圧縮強度を有することが分かった。
 一方、比較例4が示すように、放電プラズマ焼結法における焼結温度を150℃にして製造されたCa65Mg15Zn20金属ガラス合金粉末の焼結試料は、300MPaより低い圧縮強度しか有さないことが分かった。
 また、比較例2が示すように、合金化工程が鋳造法で製造されたCa65Mg15Zn20合金粉末の焼結試料は、さらに低い圧縮強度(118MPa)しか有さないことが分かった。
 なお、生体吸収医療材料の開発において、機械的強度のメルクマールとされるチタンは、比較例10が示すように、圧縮強度が436MPaであった。
 つまり、鋳造法で製造されるCa65Mg15Zn20合金(比較例2)の圧縮強度が118MPaと医療用材料の機械的強度として極めて不十分であったのに対し、本発明で製造されるCa65Mg15Zn20金属ガラス合金成形体(実施例3~5)の圧縮強度は、チタンの機械的強度にかなり近づいたものであることを示している。
 なお、現在生体材料として開発が進められているポリ乳酸の圧縮強度は、74MPa程度である(非特許文献3等参照)。
 (Fe結晶粒子分散型Ca65Mg15Zn20金属ガラス合金成形体の作製試験-2-)
 本発明の合金化する工程と、合金化した混合金属粉末を焼結する工程の間に、Fe結晶粒子を分散させる工程を加えた場合の圧縮強度を確認するため、以下の実験を行った。
 表1の実施例6~9に記載のとおり、ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、Fe結晶粒子を5~20体積%分散させ、焼結温度140℃で焼結した試料(実施例6~9)を作製した。
 比較のため、表1の比較例10に記載の、純チタン試料を用いた。
 実施例6~9の試料についての圧縮試験は、幅2mm、厚み2mm、高さ4mmの四角柱形状の測定片を作製し、汎用機械式テスト機(島津製作所製、高温真空引張・圧縮試験機AG50VF)を用い、一軸加圧下で5×10-4mm/sの初期歪み速度に対応する一定のクロスヘッド速度で、圧縮強度と歪みとの関係を測定することで行った。
 比較例10の試料についての圧縮試験は、直径1.48mm、高さ3.78mmの試料サイズについて、上記汎用機械式テスト機(島津製作所製、高温真空引張・圧縮試験機AG50VF)を用いて同様に行った。
 図13A~D(実施例6~9)、図14(比較例10)に、圧縮試験結果を示す。
 圧縮試験結果に基づき、各試料の圧縮強度を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表2の実施例5(Fe結晶粒子の分散がない試料)と比較し、表3の実施例6~9が示すように、Fe結晶粒子を分散させることにより圧縮強度が上がり、機械的強度が向上していることが分かる。
 また、本発明で製造されるFe結晶粒子分散型Ca65Mg15Zn20金属ガラス合金成形体(実施例6~9)は、その圧縮強度から、本発明の製造方法で製造されるFe結晶粒子が分散されていない金属ガラス合金成形体に比べ、チタンの機械的強度にさらに近づいたものであることを示している。
 (ビッカース硬さ試験)
 本発明の製造方法で製造される医療用カルシウム系金属ガラス合金成形体について、以下のとおりビッカース硬さ試験を行った。
 表1の実施例3~5、比較例4、5、2、10に記載の試料についての硬さ測定には、株式会社ミツトヨ製Micro WiZhard HM-211型微小硬さ試験機を用いた。
 ビッカース硬さ試験の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4で示されるように、本発明で製造される医療用カルシウム系金属ガラス合金成形体は、メルクマールのチタンに比べて、有意に硬いことが分かる。
 (SBF浸漬試験-1-)
 本発明の製造方法で製造される医療用カルシウム系金属ガラス合金成形体について、以下のとおりSBF浸漬試験を行った。
 表1の実施例10に記載のとおり、ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法によりCa65Mg15Zn20金属ガラス合金成形体を作製した。放電プラズマ焼結法は、粒径53~150μmのCa65Mg15Zn20金属ガラス合金粉末に対して、加圧力600MPa、焼結温度到達後の保持時間10分、焼結温度95℃の条件に設定された
 直径15mmの型で成形され、切削された実施例10のCa65Mg15Zn20金属ガラス合金成形体は、37℃の条件下、前述した組成のSBF(疑似体液)に浸漬され、該金属ガラス合金成形体の質量減少を測定することにより、分解率を算出する。
 図15及び表5に実施例10のCa65Mg15Zn20金属ガラス合金成形体の質量減少の経時変化を示す。
Figure JPOXMLDOC01-appb-T000005
 図15及び表5に示すように、SBF浸漬試験において、浸漬開始時の質量に対し、浸漬3日目には90%以上の質量減少が見られた。
 また、図16に実施例9のCa65Mg15Zn20金属ガラス合金成形体のSBF浸漬前後の写真を示す。浸漬6日目には該金属ガラス合金成形体はほぼ全て溶けていることが分かった。
 (SBF浸漬試験-2-)
  本発明の製造方法で製造される医療用カルシウム系金属ガラス合金成形体について、以下のとおりSBF浸漬試験を行った。
 表1の実施例5に記載のとおり、ガスアトマイズ法でCa65Mg15Zn20金属ガラス合金粉末を作製後、放電プラズマ焼結法によりCa65Mg15Zn20金属ガラス合金成形体を作製した。放電プラズマ焼結法は、53μm以下のCa65Mg15Zn20金属ガラス合金粉末に対して、加圧力600MPa、焼結温度到達後の保持時間10分、焼結温度140℃の条件に設定された
 比較試料として、表1の比較例11に記載のとおり、銅鋳型鋳造法でCa65Mg15Zn20合金を作製した。
 実施例5及び比較例11の試料について、SBF浸漬試験を行った。直径15mmの型で成形され切断機で切削された試料を、37℃の条件下、SBF中に紐で吊るして浸漬し、該カルシウム系金属ガラス合金成形体の質量減少を一時間ごとに測定して分解率を割り出した。
 図17及び表6に実施例5のCa65Mg15Zn20金属ガラス合金成形体及び比較例11のCa65Mg15Zn20鋳造合金について、SBF浸漬試験の質量減少率の経時変化を示す。
Figure JPOXMLDOC01-appb-T000006
 Ca65Mg15Zn20金属ガラス合金成形体(実施例5)は、浸漬後3時間における質量減少が浸漬開始時に対し24%、浸漬後6時間における質量減少が浸漬開始時に対し33%であった。一方、Ca65Mg15Zn20鋳造合金(比較例11)は、浸漬後3時間における質量減少が浸漬開始時に対し51%、浸漬後6時間における質量減少が浸漬開始時に対し70%であった。
 つまり、本発明の製造方法で製造される金属ガラス合金成形体は、鋳造合金に比べ、吸収が徐々に起こることが分かった。
 (金属ガラス合金成形体の厚みと合金化工程に関する検討)
 同じ金属組成Ca65Mg15Zn20であり、同じ試料直径15mm、同じ試料長さ40mmであるが、鋳造法で作製したCa65Mg15Zn20合金(インゴット、比較例2)と、ガスアトマイズ法及び放電プラズマ焼結法で作製したCa65Mg15Zn20金属ガラス合金成形体(実施例5)の結果を比較し、金属ガラス合金成形体の厚みに関して検討を行った。
 比較例2のCa65Mg15Zn20合金は、X線回折スペクトル(図8)から金属ガラスの性質を有していないこと、圧縮試験結果(図12)から300MPaより低い圧縮強度しか有さないこと、ビッカース硬さ試験の結果(表4)からビッカース硬さが120HV以上でないことが確認でき、本発明の医療用カルシウム系金属ガラス合金成形体に適さないことが分かる。
 一方、実施例5のCa65Mg15Zn20金属ガラス合金成形体は、X線回折スペクトル(図9D)から金属ガラスの性質を有すること、圧縮試験結果(図11C)から300MPaより高い圧縮強度を有すること、ビッカース硬さ試験の結果(表4)からビッカース硬さが120HV以上であることが確認でき、本発明の医療用カルシウム系金属ガラス合金成形体に適することが分かる。
 すなわち、円柱状の金属ガラス合金成形体の直径が15mm以上、すなわち、成形体の内部に成形体の表面の全ての部分からの最短距離が7.5mm以上となる領域を含むような大きな塊であると、鋳造法では金属ガラス合金生体材料に適さないことが分かる。本検討結果は、非特許文献4~6に記載の試料の厚みが10mmを超えると、鋳造法では金属ガラス合金生体材料として適さないことと整合するものである。
 本発明の製造方法により、生体吸収性と機械的強度を備えた、広い用途に応用可能な医療用カルシウム系金属ガラス合金生体材料を提供することできる。
 該医療用カルシウム系金属ガラス合金生体材料は、金属材料と同等の機械的強度及び硬さを備えるため、複雑な形状の医療用材料の成形が可能であり、生体材料の構造や埋入位置の上で圧力のかかる部材へも応用可能となる。
 また、該医療用カルシウム系金属ガラス合金生体材料は、体内に埋入直後には生体吸収が徐々に行われ、かつ、最終的には体内で分解するため、治療後の撤去手術が不要となるばかりか、埋入直後の分解速度の制御も可能となる。
 本発明を利用すれば、新規医療用カルシウム系金属ガラス合金成形体による、ステント、骨片固定用プレート、固定用ネジ、歯科用メンブレン等、サイズに関わらず各種医療機器に対応した合金設計が可能となり、さまざまな医療分野への応用が期待できる。

Claims (17)

  1.  医療用カルシウム系金属ガラス合金成形体であって、
     前記成形体は、カルシウムを主成分とするカルシウム系金属ガラス合金からなり、
     前記成形体は、前記成形体の内部に前記成形体の表面の全ての部分からの最短距離が5mmを超える領域を含む、
    医療用カルシウム系金属ガラス合金成形体。
  2.  前記カルシウム系金属ガラス合金は、さらにマグネシウム及び亜鉛を含む、請求項1に記載の医療用カルシウム系金属ガラス合金成形体。
  3.  前記カルシウム系金属ガラス合金中の前記カルシウムの組成は40at.%以上70at.%以下であり、前記マグネシウムの組成は30at.%以下であり、前記亜鉛の組成は35at.%以下である、請求項2に記載の医療用カルシウム系金属ガラス合金成形体。
  4.  前記成形体は、Fe結晶粒子を5~30体積%さらに含む、請求項1に記載の医療用カルシウム系金属ガラス合金成形体。
  5.  圧縮強度が300MPa以上であることを特徴とする、請求項1に記載の医療用カルシウム系金属ガラス合金成形体。
  6.  ビッカース硬さが120HV以上であることを特徴とする、請求項1に記載の医療用カルシウム系金属ガラス合金成形体。
  7.  疑似体液浸漬試験において、3日間の浸漬での分解率が90質量%以上であることを特徴とする、請求項1に記載の医療用カルシウム系金属ガラス合金成形体。
  8.  疑似体液浸漬試験において、5時間の浸漬での分解率が30質量%以下であることを特徴とする、請求項1に記載の医療用カルシウム系金属ガラス合金成形体。
  9.  請求項1~8のいずれか1項に記載の医療用カルシウム系金属ガラス合金成形体から構成される、医療用カルシウム系金属ガラス合金生体材料。
  10.  カルシウム粉末を含む金属粉末を混合する工程と、
     前記混合した金属粉末を合金化する工程と、
     前記合金化した混合金属粉末を焼結する工程と
    を含む、医療用カルシウム系金属ガラス合金成形体の製造方法。
  11.  前記合金化する工程が、ガスアトマイズ法である、請求項10に記載の医療用カルシウム系金属ガラス合金成形体の製造方法。
  12.  前記合金化する工程が、メカニカルアロイング法である、請求項10に記載の医療用カルシウム系金属ガラス合金成形体の製造方法。
  13.  前記合金化する工程が、
     前記混合した金属粉末から鋳造法によりインゴットを得る工程と、
     前記インゴットをメカニカルアロイング法により合金化する工程と、
    を含む、請求項10に記載の医療用カルシウム系金属ガラス合金成形体の製造方法。
  14.  前記焼結する工程が、放電プラズマ焼結法である、請求項10に記載の医療用カルシウム系金属ガラス合金成形体の製造方法。
  15.  前記放電プラズマ焼結法が、加圧力10~800MPa、焼結温度到達後の保持時間0~20分、焼結温度85~145℃の条件であることを特徴とする、請求項14に記載の医療用カルシウム系金属ガラス合金成形体の製造方法。
  16.  前記合金化する工程と前記合金化した混合金属粉末を焼結する工程の間に、鉄結晶粒子を分散させる工程をさらに含む、請求項10に記載の医療用カルシウム系金属ガラス合金成形体の製造方法。
  17.  請求項1に記載の医療用カルシウム系金属ガラス合金成形体を機械加工する工程を含む、医療用カルシウム系金属ガラス合金生体材料の製造方法。
PCT/JP2017/013469 2016-03-31 2017-03-30 医療用カルシウム系金属ガラス合金成形体及びその製造方法 WO2017170964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018509486A JP6902796B2 (ja) 2016-03-31 2017-03-30 医療用カルシウム系金属ガラス合金成形体及びその製造方法
US16/089,267 US11066733B2 (en) 2016-03-31 2017-03-30 Calcium-based metallic glass alloy molded body for medical use and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071145 2016-03-31
JP2016071145 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170964A1 true WO2017170964A1 (ja) 2017-10-05

Family

ID=59964763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013469 WO2017170964A1 (ja) 2016-03-31 2017-03-30 医療用カルシウム系金属ガラス合金成形体及びその製造方法

Country Status (3)

Country Link
US (1) US11066733B2 (ja)
JP (1) JP6902796B2 (ja)
WO (1) WO2017170964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311706A (zh) * 2018-02-07 2018-07-24 海宁瑞兴材料科技有限公司 一种用于生产铜粉的雾化设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961992A (zh) * 2020-08-06 2020-11-20 哈尔滨工业大学(深圳) Mg-Zn-Ca/Fe生物医用金属玻璃复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766829A (zh) * 2011-05-03 2012-11-07 中国科学院物理研究所 生物医用可控降解CaZn基非晶合金
JP2015096474A (ja) * 2013-11-15 2015-05-21 株式会社宮本樹脂工業 マグネシウムを含む金属ガラスを用いた医療用インプラント材料、及びマグネシウムを含む金属ガラスを用いた医療用インプラント材料並びに医療用インプラント製品の製造方法
JP2016194095A (ja) * 2015-03-31 2016-11-17 国立大学法人東北大学 マグネシウム・鉄合金の製造方法、マグネシウム・鉄合金及びそれを用いた生体医療材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574144B2 (ja) * 2009-04-24 2014-08-20 国立大学法人東北大学 金属ガラス複合構造物及び金属ガラス複合構造物の製造方法
JP6076358B2 (ja) * 2011-10-21 2017-02-08 アップル インコーポレイテッド 加圧流体形成を用いたバルク金属ガラスシート接合

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766829A (zh) * 2011-05-03 2012-11-07 中国科学院物理研究所 生物医用可控降解CaZn基非晶合金
JP2015096474A (ja) * 2013-11-15 2015-05-21 株式会社宮本樹脂工業 マグネシウムを含む金属ガラスを用いた医療用インプラント材料、及びマグネシウムを含む金属ガラスを用いた医療用インプラント材料並びに医療用インプラント製品の製造方法
JP2016194095A (ja) * 2015-03-31 2016-11-17 国立大学法人東北大学 マグネシウム・鉄合金の製造方法、マグネシウム・鉄合金及びそれを用いた生体医療材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, HAIFEI ET AL.: "Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications", MATERIALS AND DESIGN, vol. 67, 6 November 2014 (2014-11-06), pages 9 - 19 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311706A (zh) * 2018-02-07 2018-07-24 海宁瑞兴材料科技有限公司 一种用于生产铜粉的雾化设备

Also Published As

Publication number Publication date
US20190024223A1 (en) 2019-01-24
JP6902796B2 (ja) 2021-07-14
JPWO2017170964A1 (ja) 2019-02-21
US11066733B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
Rao et al. Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method
Shuai et al. Selective laser melted Fe-Mn bone scaffold: microstructure, corrosion behavior and cell response
Attar et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies
Chu et al. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis
Wen et al. Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications
Chu et al. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique
JP6916479B2 (ja) マグネシウム・鉄合金の製造方法、マグネシウム・鉄合金及びそれを用いた生体医療材料
Gain et al. Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders
Kumar et al. Statistical modelling of mechanical properties and bio-corrosion behaviour of Mg3Zn1Ca15Nb fabricated using microwave sintering
Dubey et al. Synthesis and evaluation of magnesium/co-precipitated hydroxyapatite based composite for biomedical application
WO2012124661A1 (ja) 高強度・低弾性に優れるチタン-マグネシウム材料
Kowalski et al. The effects of hydroxyapatite addition on the properties of the mechanically alloyed and sintered Mg-RE-Zr alloy
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
Farrahnoor et al. Effects of hydroxyapatite addition on the bioactivity of Ti-Nb alloy matrix composite fabricated via powder metallurgy process
WO2017170964A1 (ja) 医療用カルシウム系金属ガラス合金成形体及びその製造方法
He et al. Mechanical and corrosion properties of Ti-35Nb-7Zr-xHA composites fabricated by spark plasma sintering
Arunkumar et al. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis
He et al. Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti–Nb–Zr–CPP Composites Fabricated by Spark Plasma Sintering
Kim et al. Shape memory characteristics of Ti–Ni–Mo alloys sintered by sparks plasma sintering
Montufar et al. Spark plasma sintering of load-bearing iron–carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications
Mahraz et al. Sol–gel grown MgO-ZnO-tricalcium-phosphate nanobioceramics: Evaluation of mechanical and degradation attributes
Handayani et al. Multi-walled carbon nanotubes reinforced-based magnesium metal matrix composites prepared by powder metallurgy
CN106924816B (zh) 生物可降解镁基金属陶瓷复合材料及其制备方法和应用
Lesz et al. Synthesis of Mg-based alloys with a rare-earth element addition by mechanical alloying
JP2023504678A (ja) 生分解性マグネシウム合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775497

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775497

Country of ref document: EP

Kind code of ref document: A1