WO2017170838A1 - Light condensing device for infrared sensor, and method for manufacturing same - Google Patents

Light condensing device for infrared sensor, and method for manufacturing same Download PDF

Info

Publication number
WO2017170838A1
WO2017170838A1 PCT/JP2017/013186 JP2017013186W WO2017170838A1 WO 2017170838 A1 WO2017170838 A1 WO 2017170838A1 JP 2017013186 W JP2017013186 W JP 2017013186W WO 2017170838 A1 WO2017170838 A1 WO 2017170838A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared sensor
infrared
peripheral surface
synthetic resin
end opening
Prior art date
Application number
PCT/JP2017/013186
Other languages
French (fr)
Japanese (ja)
Inventor
柏木 一浩
健太 過能
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016069909A external-priority patent/JP5996139B1/en
Application filed by 興和株式会社 filed Critical 興和株式会社
Publication of WO2017170838A1 publication Critical patent/WO2017170838A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors

Definitions

  • the present invention relates to a condensing device for an infrared sensor that guides infrared rays radiated from an object to be measured to an infrared sensor.
  • Patent Document 1 discloses an infrared thermometer including a waveguide.
  • a waveguide is a condensing device that guides infrared rays emitted from a human body to an infrared sensor.
  • the inner peripheral surface of the waveguide disclosed in the document 1 is mirror-finished and has an inner diameter from the first opening (front end opening) toward the second opening (rear end opening). The shape converges to decrease.
  • the waveguide having a mirror-finished inner peripheral surface and a reduced diameter has an advantage that the infrared rays emitted from the measurement target can be efficiently guided to the infrared sensor.
  • condensation may occur on the inner peripheral surface of the waveguide and the infrared incident window of the infrared sensor. If dew condensation occurs on the inner peripheral surface of the waveguide, the infrared light taken from the tip is diffusely reflected, and the amount of infrared light guided to the infrared sensor is reduced. Further, when condensation occurs in the infrared incident window, the infrared rays are similarly irregularly reflected at the dew condensation portion, and the amount of incident infrared light into the sensor is reduced. Due to these factors, an error occurs in the temperature of the measurement object measured by the infrared sensor. As described above, in the combination of an infrared sensor and a light collecting device such as a waveguide, an error may occur in the detection accuracy of the infrared sensor due to the occurrence of condensation due to a change in the surrounding temperature and humidity environment.
  • the conventional infrared sensor condensing device including the waveguide disclosed in Patent Document 1 pays attention to the dew condensation that occurs with changes in the surrounding temperature and humidity environment, and measures against the dew condensation are taken. There was no.
  • the present invention has been made in view of the above-described circumstances, and can efficiently guide infrared rays radiated from an object to be measured to an infrared sensor, and when condensation occurs due to changes in the surrounding temperature and humidity environment.
  • An object of the present invention is to provide a condensing device for an infrared sensor that can quickly eliminate the condensation.
  • the present invention is formed in a cylindrical shape and takes infrared rays emitted from a measurement object into a hollow portion from a front end opening and guides it to an infrared sensor arranged opposite to the base end opening.
  • Infrared sensor concentrator for It is characterized by including an inner peripheral surface portion for waveguide that is made of a synthetic resin and is mirror-finished, and an outer peripheral surface portion for heat absorption / heat radiation that is not mirror-finished.
  • the infrared sensor By providing a mirror-finished inner peripheral surface portion for waveguide, it is possible to efficiently guide infrared rays radiated from the measurement target to the infrared sensor. Furthermore, since the heat absorption / radiation outer peripheral surface portion that is not mirror-finished has a large surface area and low reflectance, it can efficiently absorb the surrounding heat and contribute to quick elimination of condensation. When the internal temperature of the infrared sensor is higher than the ambient temperature, the heat stored in the infrared sensor can be efficiently radiated from the outer peripheral surface for heat absorption / radiation.
  • the condensing device for an infrared sensor of the present invention is manufactured by two kinds of synthetic resins having a difference in affinity with plating, and the first synthetic resin having high affinity with plating is set on the inside.
  • the second synthetic resin which has a lower affinity for plating than the first synthetic resin, can be configured as the outside.
  • the inner peripheral surface of the first synthetic resin is plated to form an inner peripheral surface portion for waveguide, and the outer peripheral surface of the second synthetic resin forms an outer peripheral surface portion for heat absorption and heat dissipation.
  • the first synthetic resin be exposed from the front end opening to the outer peripheral surface side because an electrode used in the electrolytic plating process can be formed protrudingly on the exposed portion.
  • the heat absorption (and heat dissipation) can be further improved by roughening the outer peripheral surface for heat absorption and heat dissipation.
  • the support part held by the surrounding structure is formed by extending from the outer peripheral surface part for heat absorption / radiation, and the support part is also roughened so that it can be held without rattling with the surrounding structure.
  • the support part held by the surrounding structure is formed by extending from the outer peripheral surface part for heat absorption / radiation, and the support part is also roughened so that it can be held without rattling with the surrounding structure.
  • the condensing device for an infrared sensor of the present invention has an infrared incident window on the front surface, and an infrared sensor including a configuration for irradiating infrared rays taken from the infrared incident window to an infrared detection element provided therein.
  • the end opening may be arranged with a gap formed between the front surface of the infrared sensor.
  • At least three legs are extended from the peripheral wall of the base end opening, and each leg is brought into contact with the infrared sensor to combine them, so that the gap between the base end opening and the front of the infrared sensor.
  • a gap can be formed.
  • the central axis of the waveguide inner peripheral surface portion is coaxial with the center of the infrared incident window in the infrared sensor. If they are aligned so that they are arranged, simply by combining the legs with the infrared sensor, the inner peripheral surface of the waveguide can be automatically aligned with the central axis of the infrared sensor, improving workability. .
  • the infrared sensor condensing device and infrared sensor are incorporated into lighting fixtures, crime prevention devices, air conditioners, thermometers, etc.
  • the relative position of the infrared sensor condensing device fluctuates in the axial direction with respect to the infrared sensor, particularly infrared light reflected near the proximal end opening (near the infrared sensor) is taken in from the infrared incident window of the infrared sensor. This may cause the orbit entering the infrared detecting element to be off.
  • the infrared light reflected near the proximal end opening does not enter the infrared detection element in this way, the amount of infrared light incident on the infrared sensor is reduced, and the infrared detection accuracy of the infrared sensor is reduced.
  • the infrared sensor condensing device of the present invention forms an infrared diffusing surface that diffuses and reflects the infrared rays taken from the front end opening into the hollow portion in the region from the base end opening to the periphery of the inner peripheral surface. It is preferable to do.
  • the inner peripheral surface of the waveguide is a mirror-finished inner peripheral surface portion
  • the infrared reflection trajectory taken into the hollow portion from the front end opening in accordance with a predetermined axial relative position variation with respect to the infrared sensor is infrared
  • the reflection region that is removed from the infrared detection element of the sensor is at least an infrared diffusion surface.
  • the infrared diffusing surface By forming the infrared diffusing surface in this way, even if there is a relative position fluctuation in the axial direction between the infrared sensor and the infrared sensor condensing device, a part of the infrared diffused on the infrared diffusing surface is an infrared detecting element. Therefore, a decrease in the amount of infrared incident light on the infrared sensor can be suppressed.
  • the manufacturing method of the condensing device for infrared sensors is as follows: A two-color molding step for producing a cylindrical intermediate molded body by two-color molding of the first synthetic resin and the second synthetic resin; A plating process for plating the inner peripheral surface of the first synthetic resin to form an inner peripheral surface portion for waveguide; It is characterized by including.
  • the manufacturing method of the condensing device for infrared sensor according to the present invention is as follows:
  • the first synthetic resin and the second synthetic resin are molded in two colors, and the first synthetic resin is exposed from the front end opening portion to the outer peripheral surface side, and the protruding portion for the electrode protrudes from the exposed portion.
  • a two-color molding process to produce an intermediate molded body A pre-plating treatment step of performing an electroless plating treatment on the exposed portion of the first synthetic resin in the intermediate molded body; An electric current is passed from the electrode protruding portion subjected to the electroless plating treatment, and the exposed portion of the first synthetic resin is subjected to electrolytic plating treatment, and the inner peripheral surface portion for waveguide is formed on the inner peripheral surface of the first synthetic resin.
  • the manufacturing method of the concentrating device for an infrared sensor according to the present invention includes a step of roughening the outer peripheral surface of the second synthetic resin.
  • the infrared rays radiated from the measurement object can be efficiently guided to the infrared sensor, and when condensation occurs due to changes in the surrounding temperature and humidity environment, It is possible to quickly eliminate condensation and return the detection accuracy of the infrared sensor to the original state in a short time.
  • FIG. 1A is a perspective view showing an appearance of a condensing device for an infrared sensor according to the first embodiment of the present invention.
  • FIG. 1B is a front sectional view showing the configuration of the apparatus.
  • FIG. 2A is a front view showing the configuration of the condensing device for an infrared sensor according to the first embodiment of the present invention.
  • FIG. 2B is also a left side view.
  • FIG. 2C is also a right side view.
  • FIG. 2D is also a bottom view.
  • FIG. 3 is a partial cross-sectional front view showing a configuration example of the infrared sensor.
  • FIG. 1A is a perspective view showing an appearance of a condensing device for an infrared sensor according to the first embodiment of the present invention.
  • FIG. 1B is a front sectional view showing the configuration of the apparatus.
  • FIG. 2A is a front view showing the configuration of the condensing device for an infrared sensor according to the
  • FIG. 4 is an enlarged front sectional view showing an infrared sensor and a condensing device for the infrared sensor incorporated in the housing of the device using the infrared sensor.
  • FIG. 5A, FIG. 5B, and FIG. 5C are sectional front views schematically showing a method for manufacturing the condensing device for an infrared sensor according to the first embodiment of the present invention.
  • 6A, FIG. 6B, and FIG. 6C are sectional front views schematically showing the manufacturing method of the concentrating device for an infrared sensor according to the first embodiment of the present invention, following FIG. 5C.
  • 7A and 7B are perspective views for explaining the manufacturing method of the condensing device for an infrared sensor according to the first embodiment of the present invention, following FIG.
  • FIG. 8A is a perspective view showing an appearance of a condensing device for an infrared sensor according to a second embodiment of the present invention.
  • FIG. 8B is a front sectional view showing the configuration of the apparatus.
  • FIG. 9A is a front view showing a configuration of a condensing device for an infrared sensor according to a second embodiment of the present invention.
  • FIG. 9B is a left side view of the same.
  • FIG. 9C is a right side view of the same.
  • FIG. 9D is a bottom view of the same.
  • FIG. 10A, FIG. 10B, and FIG. 10C are sectional front views schematically showing a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention.
  • FIG. 10A, FIG. 10B, and FIG. 10C are sectional front views schematically showing a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention.
  • FIG. 11A, FIG. 11B, and FIG. 11C are cross-sectional front views schematically showing a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention, following FIG. 10C.
  • 12A and 12B are perspective views for explaining a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention, following FIG. 11C.
  • FIG. 13A is a front cross-sectional view for explaining a condensing device for an infrared sensor according to a third embodiment of the present invention.
  • FIG. 13B is an enlarged front sectional view showing a part of FIG. 13A.
  • FIG. 14A is a front sectional view for explaining an infrared sensor condensing device according to the third embodiment of the present invention, in conjunction with FIG. 13A.
  • FIG. 14B is a front sectional view showing a part of FIG. 14A in an enlarged manner.
  • FIG. 15 is a front cross-sectional view showing the configuration of the condensing device for an infrared sensor according to the third embodiment of the present invention.
  • a condensing device for an infrared sensor according to the present embodiment (hereinafter sometimes simply referred to as a “condensing device”) is generally a waveguide. It adopts a cylindrical basic structure, also called.
  • the condensing device 1 is incorporated in the inside of a device 4 (hereinafter also referred to as “device to be incorporated”) 4 such as an infrared thermometer together with the infrared sensor 3.
  • the proximal end opening 12 is disposed to face the infrared incident window 31 of the infrared sensor 3.
  • infrared rays radiated from the measurement object are taken into the hollow portion 13 from the front end opening 11, guided to the base end opening 12 while reflecting the infrared rays on the inner peripheral surface, and detected through the infrared incident window 31 of the infrared sensor 3.
  • the element 32 is irradiated.
  • FIG. 3 shows a configuration example of the infrared sensor 3.
  • the infrared sensor 3 shown in the figure is called a thermopile type infrared sensor, and when a thermal type infrared detection element 32 called a thermopile receives infrared rays, a thermoelectromotive force corresponding to the amount of incident energy is output as an electrical signal.
  • an infrared detection element 32 is disposed in the center of the front surface of the substrate 33, and a temperature detection element 34 is disposed in the vicinity thereof.
  • a thermistor that changes the resistance value according to the ambient temperature of the infrared detection element 32 is applied.
  • the infrared detecting element 32 and the temperature detecting element 34 are covered with a protective member 35 that forms the appearance of the infrared sensor 3, and infrared rays are incident on the front center portion of the protective member 35 (that is, the front central portion of the infrared sensor 3).
  • a window 31 is formed.
  • the infrared incident window 31 faces the light receiving part of the infrared detecting element 32, and the infrared light incident through the infrared incident window 31 enters the light receiving part of the infrared detecting element 32.
  • the lead wire 36 has extended outside.
  • the infrared incident window 31 and the infrared detecting element 32 are arranged on the same central axis.
  • the light collecting device 1 is made of synthetic resin, and the inner peripheral surface is mirror-finished by plating.
  • This mirror-finished inner peripheral surface is referred to as a waveguide inner peripheral surface portion 14.
  • the waveguide inner peripheral surface portion 14 of the light collecting device 1 is formed in a cylindrical shape whose diameter is reduced from the front end opening 11 to the base end opening 12.
  • the waveguide inner peripheral surface portion 14 is formed in a parabolic shape.
  • the shape of the inner peripheral surface portion 14 for waveguide is not limited to a parabolic shape, and may be appropriately designed as necessary, such as a conical cylindrical inner peripheral surface.
  • the infrared rays taken in from the front end opening 11 are reflected toward the base end opening 12.
  • the light is gradually converged, and the infrared detecting element 32 can be irradiated with high intensity through the infrared incident window 31 of the infrared sensor 3 having a small size.
  • the outer peripheral surface of the light collecting device 1 has a configuration in which the background of the synthetic resin is exposed without being mirror-finished except for a part, and the background of the exposed synthetic resin is roughened.
  • the outer peripheral surface portion in which the surface of the synthetic resin is roughened without being mirror-finished in this way is referred to as a heat absorbing / radiating outer peripheral surface portion 15.
  • the condensing device 1 and the infrared sensor 3 incorporated therein are also in a low temperature state. Thereafter, when the device 4 to be incorporated is moved to a room temperature environment, there is a possibility that condensation occurs on the surface of the light collecting device 1 in a low temperature state.
  • the heat absorbing / dissipating outer peripheral surface portion 15 which is not mirror-finished and has a roughened synthetic resin surface has a large surface area and low reflectivity, and thus efficiently absorbs surrounding heat. be able to.
  • the heat absorption / radiation outer peripheral surface portion 15 efficiently absorbs the surrounding heat, whereby the internal temperature of the light collecting device 1 can be brought close to the ambient temperature quickly. As a result, the surface of the light collecting device 1 It is possible to quickly eliminate the dew condensation that has occurred.
  • the condensing device 1 has a configuration in which three legs 16 are extended in the axial direction from the peripheral wall 12a of the base end opening 12.
  • the peripheral wall 12a of the base end opening portion 12 is formed in an annular shape, and the leg portion 16 extends from each portion that is divided into three in the circumferential direction.
  • These leg portions 16 have the same size and shape, and both have an inner peripheral surface with a stepped shape, and a flat front support portion 16 a is formed at a site slightly outside the base end opening 12.
  • the inner peripheral surface of the leg 16 forms a side support 16b from the front support 16a to the tip.
  • the heat absorbing / dissipating outer peripheral surface portion 15 of the light collecting device 1 is formed with a flat plate-like support portion 18 extending from two locations in the outer diameter direction.
  • These support portions 18 have a function of holding the light collecting device 1 inside the device to be incorporated 4 as described later.
  • These support portions 18 have a surface shape in which the surface of the synthetic resin is roughened in the same manner as the outer peripheral surface portion 15 for heat absorption and heat dissipation. Thereby, the heat absorption property (and heat dissipation) of the condensing device 1 can be further improved.
  • the support part 18 designs a formation location, a shape, etc. corresponding to the holding structure comprised inside the apparatus 4 to be assembled.
  • the condensing device 1 is incorporated into the assembling target device 4 together with the infrared sensor 3.
  • the support unit 18 formed in the light collecting device 1 is engaged with the holding unit 41 provided in the installation target device 4 to hold the light collection device 1 in the installation target device 4.
  • the lead wire 36 is fixed to the printed circuit board 43 attached to the built-in device 4 by soldering.
  • each leg portion 16 is in contact with the three peripheral portions of the front surface 3 a of the infrared sensor 3, and the side surface support portion 16 b of each leg portion 16 is the side surface 3 b of the infrared sensor 3.
  • Each leg part 16 is fitted by the infrared sensor 3 in the state which contacted three places.
  • shaft O of the waveguide internal peripheral surface part 14 is the infrared sensor 3.
  • the light collecting device 1 is pre-aligned so as to be arranged coaxially with the center of the infrared incident window 31 in FIG.
  • each leg portion 16 is fitted to the infrared sensor 3
  • the front surface 3 a of the infrared sensor 3 is disposed away from the peripheral wall 12 a of the proximal end opening portion 12 of the light collector 1. Therefore, a gap 17 is formed between the proximal end opening 12 in the light collecting device 1 and the front surface 3 a of the infrared sensor 3. Therefore, the inside of the hollow portion 13 of the light collecting device 1 communicates with the surrounding space 42 of the infrared sensor 3 described above through the gap 17.
  • the surrounding space 42 communicates with the surrounding space where the heat absorbing / dissipating outer peripheral surface portion 15 of the light collecting device 1 is in contact.
  • the above-described light collecting device 1 is made of two types of synthetic resins having a difference in affinity with plating. That is, the first synthetic resin 5 having a high affinity for plating is provided on the inside, while the second synthetic resin 6 having a low affinity for plating as compared with the first synthetic resin 5 is provided on the outside.
  • the first synthetic resin 5 having high affinity with plating for example, ABS resin (a thermoplastic resin composed of three components of acrylonitrile, butadiene, and styrene) can be applied.
  • the second synthetic resin 6 having a low affinity for plating for example, polycarbonate (PC) or polystyrene (PS) can be applied.
  • PC polycarbonate
  • PS polystyrene
  • Each component of the light collecting device 1 described above is formed on one of the first and second synthetic resins 5 and 6. That is, the waveguide inner peripheral surface portion 14 is formed on the inner peripheral surface of the first synthetic resin 5. On the other hand, the outer peripheral surface portion 15 for heat absorption / radiation is formed on the outer peripheral surface of the second synthetic resin 6. Further, the leg portion 16 and the support portion 18 are formed in the second synthetic resin 6. The first synthetic resin 5 is exposed to the outer peripheral surface side from the front end opening 11 to form a peripheral wall 11 a of the front end opening 11. As will be described later, the peripheral wall 11a of the front end opening 11 is plated, and an electrode protrusion 20 is formed on the peripheral wall during the manufacturing process (see FIG. 7A).
  • the light collecting device 1 having a configuration in which the inner peripheral surface is plated and mirror-finished, and the outer peripheral surface is exposed to the background of the synthetic resin is realized by using a resin molding method called two-color molding (double molding).
  • two-color molding double molding
  • 5A to 6C show the procedure of the two-color molding process.
  • FIGS. 5A and 5B first, molds 51 and 52 for molding the first synthetic resin 5 having a high affinity with plating are prepared, and the molds 51 and 52 are provided.
  • the cavity 53 is filled with a melt of the first synthetic resin 5 and molded.
  • the first synthetic resin 5 for example, an ABS resin can be applied.
  • one mold 52 formed with the outer peripheral surface of the molded product made of the first synthetic resin 5 is used as a mold 54 for molding the second synthetic resin 6. change.
  • the mold 55 is filled with a melt of the second synthetic resin 6 in a cavity 55 formed on the outer peripheral surface side of the molded product of the first synthetic resin 5 in the molds 51 and 54.
  • the second synthetic resin 6 for example, polycarbonate (PC) or polystyrene (PS) can be applied.
  • FIG. 7A shows the appearance of the intermediate molded body 21.
  • the cylindrical intermediate molded body 21 is formed of the first synthetic resin 5 at the portion from the inner peripheral surface to the peripheral wall 11a of the front end opening 11, and the outer peripheral surface excluding the peripheral wall 11a of the front end opening 11 is the second synthetic resin. Molded with resin 6.
  • the peripheral wall 11a of the front end opening portion 11 formed of the first synthetic resin 5 is exposed to the outer peripheral surface side, and the electrode protruding portion 20 protrudes in the outer diameter direction.
  • an electroless plating process is performed on the exposed portion of the first synthetic resin 5 in the intermediate molded body 21 shown in FIG. 7A (preliminary plating process).
  • electroless nickel plating is performed to form a nickel metal film on the exposed portion of the first synthetic resin 5.
  • a nickel metal film is also formed on the electrode protrusion 20.
  • the exposed portion of the second synthetic resin 6 is not plated.
  • an electric current is passed from the electrode protrusion 20 that has been subjected to the electroless plating process, and the exposed portion of the first synthetic resin 5 is subjected to an electrolytic plating process (electrolytic plating process).
  • the electrolytic plating process is performed in three steps in the order of, for example, copper plating process, nickel plating process, and gold plating process, so that a high-quality plating layer that does not peel off even if the gold plating on the surface is thin is first synthesized. It can be formed on the exposed portion of the resin 5. Also in this electrolytic plating process, the exposed portion of the second synthetic resin 6 is not plated.
  • the technique of an electroless plating process and an electroplating process is already a well-known technique, detailed description in this specification is abbreviate
  • the electrode protrusion 20 is cut and removed as shown in FIG. 7B (protrusion removal step).
  • the heat absorption / radiation outer peripheral surface portion 15 and the support portion 18 where the background of the second synthetic resin 6 is exposed are roughened.
  • the rough surface finish can be processed, for example, by applying a texture to the lumen of the mold 54 in FIG. 6A.
  • a known surface treatment such as a blasting process for roughing the heat absorption / radiation outer peripheral surface portion 15 and the support portion 18 where the background of the second synthetic resin 6 is exposed is performed.
  • the technology can be applied (rough surface finishing process).
  • the condensing device 1 according to the second embodiment is configured as shown in FIGS. 8A, 8B, and 9A to 9D, and is manufactured by the manufacturing method shown in FIGS. 10A to 12B.
  • the manufacturing method of the first embodiment described above in the two-color molding step, the first synthetic resin 5 is first molded, and then the second synthetic resin 6 is molded.
  • the ABS resin applied to the first synthetic resin 5 has a lower melting point than the polycarbonate and polystyrene applied to the second synthetic resin 6. For this reason, when the second synthetic resin 6 is molded, the ABS resin already solidified in the mold may be dissolved again. Therefore, in order to maintain the shape of the first synthetic resin 5, it is necessary to carefully perform temperature management and time management.
  • the second synthetic resin 6 having a high melting point is first molded, and then the first synthetic resin 5 is molded. Thereby, about the 1st, 2nd synthetic resins 5 and 6, the shape at the time of shaping
  • FIGS. 10A and 10B first, molds 61, 62, and 63 for molding the second synthetic resin 6 having a high melting point are prepared.
  • the cavity 64 is filled with a melt of the second synthetic resin 6 and molded.
  • the molds 61 and 62 formed with a part of the outer shape of the molded product of the second synthetic resin 6 are used as the mold for molding the first synthetic resin 5.
  • a melt of the first synthetic resin 5 is filled into a cavity 67 formed for molding the first synthetic resin 5 in the molds 63, 65, 66 and then molded. .
  • FIG. 12A shows the appearance of the intermediate molded body 21.
  • the intermediate molded body 21 is subjected to electroless plating treatment (pre-plating treatment step) and electrolytic plating treatment in the same procedure as in the first embodiment, and thereafter, as shown in FIG. Is removed by cutting (protrusion removal step).
  • pre-plating treatment step electroless plating treatment
  • electrolytic plating treatment in the same procedure as in the first embodiment
  • FIG. Is removed by cutting protrusion removal step
  • the heat absorption / radiation outer peripheral surface portion 15 and the support portion 18 at which the background of the second synthetic resin 6 is exposed are roughened by the same method as in the first embodiment.
  • the three leg portions 16 extending from the peripheral wall 12 a of the proximal end opening 12 in the light collecting device 1 are molded with the first synthetic resin 5.
  • the first synthetic resin 5 has step portions 11b and 12b formed on the peripheral wall 11a of the front end opening 11 and the peripheral wall 12a of the base end opening 12, respectively.
  • the second synthetic resin 5 is formed. The two-color molding can be performed in the order in which the first synthetic resin 5 is molded after the molding 6 is molded first.
  • FIGS. 13A to 15 an infrared sensor condensing device according to a third embodiment of the present invention will be described in detail with reference to FIGS. 13A to 15.
  • the third embodiment only technical matters that are different from the first embodiment or the second embodiment already described will be described in detail, and the same or corresponding parts as those in the first embodiment or the second embodiment will be described. Are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the condensing device 1 reflects the infrared rays S1, S2, S3... Taken into the hollow portion 13 from the front end opening 11 by the inner peripheral surface portion 14 for wave guide, and the infrared sensor 3 The relative position with respect to the infrared sensor 3 is adjusted so as to be incident on the infrared detection element 32.
  • the condensing device 1 and the infrared sensor 3 are incorporated in the assembling target device 4, the assembling positions of the condensing device 1 and the infrared sensor 3 are slightly shifted or loosened after assembling. There may be a date. 14A and 14B, when the relative position of the light collecting device 1 fluctuates in the axial direction with respect to the infrared sensor 3, the light is reflected particularly near the proximal end opening 12 (near the infrared sensor 3). There is a possibility that the infrared ray S ⁇ b> 1 is taken out of the infrared incident window 31 and deviates from the orbit where it enters the infrared detection element 32.
  • the infrared ray S1 reflected near the proximal end opening 12 does not enter the infrared detection element 32, the amount of infrared incident light on the infrared sensor 3 decreases, and the infrared detection accuracy of the infrared sensor 3 decreases. End up.
  • the distance from the portion P where infrared rays are reflected to the infrared detecting element 32 of the infrared sensor 3 is shortened near the proximal end opening 12 in the waveguide inner peripheral surface portion 14. .
  • the incident angle ⁇ of the infrared ray S1 reflected near the proximal end opening 12 to the infrared detecting element 32 becomes smaller than the incident angles of the other infrared rays S2 and S3.
  • the incident angle ⁇ to the infrared detection element 32 decreases, the relative position from the portion P where the infrared ray is reflected to the infrared detection element 32 of the infrared sensor 3 slightly varies, as shown in FIG. 14B.
  • the probability that the infrared rays S ⁇ b> 1 reflected near the proximal end opening 12 will be detached from the infrared detection element 32 increases.
  • an infrared diffusing surface 19 is formed in a region L ⁇ b> 2 extending from the proximal end opening 12 to the periphery of the inner peripheral surface of the light collecting device 1.
  • the infrared diffusing surface 19 has a function of irregularly reflecting infrared rays taken into the hollow portion from the front end opening 11 of the light collecting device 1.
  • the base end portion of the first synthetic resin 5 provided on the inner side is shortened, and instead, the second synthetic resin 6 is expanded to the inner peripheral surface (region L2) of the base end portion. It is as. If comprised in this way, the area
  • the inner peripheral surface region L2 is roughened by applying the embossing to the inner cavity as described above. Can be. As a result, a surface-shaped infrared diffusing surface 19 for irregularly reflecting incident infrared rays is formed in the region L2.
  • the surface of the second synthetic resin 6 where the background is exposed is subjected to a rough surface finish by applying a known surface treatment technique such as blasting, so that an infrared diffusion surface 19 can also be formed.
  • the region L2 of the inner peripheral surface where the infrared diffusing surface 19 is formed can be set as follows from the relationship with the relative position fluctuation in the axial direction of the light collecting device 1 with respect to the infrared sensor 3.
  • positional deviation when the light collecting device 1 and the infrared sensor 3 are incorporated into the device to be incorporated 4 and rattling after the incorporation are specified by performing simulations or experiments at the stage of design or prototyping. Can do. Therefore, it is defined in advance how much the position of the condensing device 1 changes in the axial direction with respect to the infrared sensor 3.
  • the relative position of the infrared ray sensor 3 is changed by a predetermined length L1 in the axial direction. Is assumed.
  • the infrared reflection trajectory taken into the hollow portion 13 from the front end opening 11 includes at least the reflection region that is out of the infrared detection element 32 of the infrared sensor 3.
  • the formation region L2 of the infrared diffusing surface 19 is set.
  • the region L2 may include a region where the infrared reflection trajectory does not deviate from the infrared detection element 32 of the infrared sensor 3. Conversely, as the region becomes wider, the amount of infrared incident light on the infrared sensor 3 decreases. Therefore, it is preferable to minimize the area.
  • the infrared diffusing surface 19 By forming the infrared diffusing surface 19 in this way, even if there is a relative position variation in the axial direction between the infrared sensor 3 and the light collecting device 1, a part of the infrared light irregularly reflected by the infrared diffusing surface 19 is infrared sensor. Therefore, a decrease in the amount of infrared incident light on the infrared sensor can be suppressed.
  • the inventor manufactured the condensing device 1 having the following configurations (1) to (3), and combined with the infrared sensor 3 to the inner peripheral surface of the condensing device 1 and the front surface of the infrared sensor 3. The state of condensation was visually observed.
  • the common shape parts are manufactured to the same dimensions, and the combination structure with the infrared sensor 3 is the same structure except for the presence or absence of the gap 17 due to the presence or absence of the legs 16, and experiments such as temperature change and humidity are performed. The conditions were the same.
  • Condensing device A according to the first embodiment shown in FIGS. 1A and 1B It has a waveguide inner peripheral surface portion 14 which is manufactured by two-color molding using ABS resin and polycarbonate and is mirror-finished, and an outer heat absorption / radiation outer peripheral surface portion 15 which is not mirror-finished. A gap 17 is formed between the front surface of each of the two.
  • the outer peripheral surface portion 15 for heat absorption / radiation and the support portion 18 are roughened by blasting.
  • Condensing device B having a configuration in which legs 16 in the shape shown in FIGS. 1A and 1B are provided over the entire circumference instead of three places. It has a waveguide inner peripheral surface portion 14 which is manufactured by cutting ABS resin and is mirror-finished by plating, and a heat absorbing / dissipating outer peripheral surface portion 15 where the plating is scraped off (not mirror-finished). However, since the leg portion 16 is provided on the entire periphery, the hollow portion 13 and the surrounding space 42 are not communicated with each other by the peripheral wall 12a. The outer peripheral surface portion 15 for heat absorption / radiation and the support portion 18 are roughened by cutting.
  • Condensing device C having the appearance shown in FIG. 1A and FIG. 1B and mirror-finished as a whole by plating. It is made of only ABS resin, the entire exposed surface is plated and mirror-finished, and a gap 17 is formed between the front surface of the infrared sensor 3 by the leg portion 16.
  • the condensation that occurred on the inner peripheral surface and the condensation that occurred on the front surface of the infrared sensor 3 both disappeared in 3 minutes and 47 seconds.
  • the condensation generated on the inner peripheral surface disappeared in about 5 minutes
  • the condensation generated on the front surface of the infrared sensor 3 disappeared in about 9 minutes.
  • the integrated device C the condensation generated on the inner peripheral surface and the condensation generated on the front surface of the infrared sensor 3 disappeared in about 6 minutes.

Abstract

The present invention is molded by two-color molding, in which a first synthetic resin 5 having high affinity for a plating is disposed on the inside thereof, while a second synthetic resin 6 having low affinity for the plating relative to the first synthetic resin 5 is disposed on the outside thereof. An internal peripheral face 14 of the first synthetic resin 5 is mirror-finished by a plating treatment. Meanwhile, an external peripheral face 15 of the second synthetic resin 6 is not mirror-finished, and a surface of the synthetic resin thereof is rough-finished to increase heat absorbing properties or heat dissipation properties thereof.

Description

赤外線センサ用集光装置とその製造方法Condenser for infrared sensor and method for manufacturing the same
 この発明は、測定対象から放射された赤外線を赤外線センサに導く赤外線センサ用集光装置に関する。 The present invention relates to a condensing device for an infrared sensor that guides infrared rays radiated from an object to be measured to an infrared sensor.
 赤外線センサは、熱を放射する人間や動物などを感知する等の目的で種々の照明器具や防犯装置、冷暖房装置に利用されている。また、人間や動物の体温を測定する温度計にも使用されている。
 特許文献1には、導波管(waveguide)を備えた赤外線温度計が開示されている。導波管は、人体から放射された赤外線を赤外線センサへと導く集光装置である。同文献1に開示された導波管の内周面は、鏡面仕上げされており、且つ第1の開口部(前端開口部)から第2の開口部(後端開口部)に向かって内径が減少するように収束した形状となっている。
 このように、内周面が鏡面仕上げされ且つ縮径した形状の導波管は、測定対象から放射された赤外線を効率的に赤外線センサへと導くことができる利点を有している。
Infrared sensors are used in various lighting fixtures, crime prevention devices, and air conditioners for the purpose of sensing humans and animals that emit heat. It is also used in thermometers that measure the temperature of humans and animals.
Patent Document 1 discloses an infrared thermometer including a waveguide. A waveguide is a condensing device that guides infrared rays emitted from a human body to an infrared sensor. The inner peripheral surface of the waveguide disclosed in the document 1 is mirror-finished and has an inner diameter from the first opening (front end opening) toward the second opening (rear end opening). The shape converges to decrease.
As described above, the waveguide having a mirror-finished inner peripheral surface and a reduced diameter has an advantage that the infrared rays emitted from the measurement target can be efficiently guided to the infrared sensor.
 ところで、赤外線温度計を、低温の環境から高温多湿環境へ移動したとき、導波管の内周面や、赤外線センサの赤外線入射窓に結露が生じることがある。導波管の内周面に結露が生じると、先端から取り込まれた赤外線が乱反射して、赤外線センサへ導く赤外線の光量が減少してしまう。さらに、赤外線入射窓に結露が生じると、同様に結露部分で赤外線が乱反射してセンサ内部への赤外線の入射光量が減少してしまう。それらが原因で、赤外線センサにより測定した測定対象の温度に誤差が生じる。
 このように赤外線センサと導波管等の集光装置の組み合わせにあっては、周囲の温湿度環境の変化に伴う結露の発生により、赤外線センサの検出精度に誤差が生じるおそれがある。
By the way, when the infrared thermometer is moved from a low-temperature environment to a high-temperature and high-humidity environment, condensation may occur on the inner peripheral surface of the waveguide and the infrared incident window of the infrared sensor. If dew condensation occurs on the inner peripheral surface of the waveguide, the infrared light taken from the tip is diffusely reflected, and the amount of infrared light guided to the infrared sensor is reduced. Further, when condensation occurs in the infrared incident window, the infrared rays are similarly irregularly reflected at the dew condensation portion, and the amount of incident infrared light into the sensor is reduced. Due to these factors, an error occurs in the temperature of the measurement object measured by the infrared sensor.
As described above, in the combination of an infrared sensor and a light collecting device such as a waveguide, an error may occur in the detection accuracy of the infrared sensor due to the occurrence of condensation due to a change in the surrounding temperature and humidity environment.
 しかし、特許文献1に開示された導波管をはじめ、従来の赤外線センサ用集光装置には、周囲の温湿度環境の変化に伴い発生する結露に着目し、その結露対策が施されたものはなかった。 However, the conventional infrared sensor condensing device including the waveguide disclosed in Patent Document 1 pays attention to the dew condensation that occurs with changes in the surrounding temperature and humidity environment, and measures against the dew condensation are taken. There was no.
国際公開WO01/88494号公報International Publication No. WO01 / 88494
 本発明は、上述した事情に鑑みてなされたもので、測定対象から放射された赤外線を効率的に赤外線センサへと導くことができるとともに、周囲の温湿度環境の変化に伴い結露が発生したときは、当該結露を速やかに消すことができる赤外線センサ用集光装置の提供を目的とする。 The present invention has been made in view of the above-described circumstances, and can efficiently guide infrared rays radiated from an object to be measured to an infrared sensor, and when condensation occurs due to changes in the surrounding temperature and humidity environment. An object of the present invention is to provide a condensing device for an infrared sensor that can quickly eliminate the condensation.
 上記目的を達成するために、本発明は、筒状に形成され、測定対象から放射された赤外線を前端開口部から中空部内へ取り込み、基端開口部と対向して配置した赤外線センサに導く構成の赤外線センサ用集光装置であって、
 合成樹脂により製作され、鏡面仕上げした導波用内周面部と、鏡面仕上げしていない吸熱・放熱用外周面部と、を含むことを特徴とする。
In order to achieve the above object, the present invention is formed in a cylindrical shape and takes infrared rays emitted from a measurement object into a hollow portion from a front end opening and guides it to an infrared sensor arranged opposite to the base end opening. Infrared sensor concentrator for
It is characterized by including an inner peripheral surface portion for waveguide that is made of a synthetic resin and is mirror-finished, and an outer peripheral surface portion for heat absorption / heat radiation that is not mirror-finished.
 鏡面仕上げした導波用内周面部を備えることで、測定対象から放射された赤外線を効率的に赤外線センサへと導くことができる。さらに、鏡面仕上げしていない吸熱・放熱用外周面部は、表面積が広くかつ反射率が低いので、周囲の熱を効率的に吸収して結露の速やかな消去に貢献することができる。
 なお、赤外線センサの内部温度が周囲温度よりも高いときには、赤外線センサの内部に蓄えられた熱を、この吸熱・放熱用外周面部から効率的に放熱することができる。
By providing a mirror-finished inner peripheral surface portion for waveguide, it is possible to efficiently guide infrared rays radiated from the measurement target to the infrared sensor. Furthermore, since the heat absorption / radiation outer peripheral surface portion that is not mirror-finished has a large surface area and low reflectance, it can efficiently absorb the surrounding heat and contribute to quick elimination of condensation.
When the internal temperature of the infrared sensor is higher than the ambient temperature, the heat stored in the infrared sensor can be efficiently radiated from the outer peripheral surface for heat absorption / radiation.
 具体的には、本発明の赤外線センサ用集光装置は、メッキとの親和性に差のある二種類の合成樹脂により製作され、メッキとの親和性の高い第1の合成樹脂を内側とし、一方、当該第1の合成樹脂に比べてメッキとの親和性が低い第2の合成樹脂を外側として構成することができる。
 ここで、第1の合成樹脂の内周面は、メッキ処理されて導波用内周面部を形成し、第2の合成樹脂の外周面は、吸熱・放熱用外周面部を形成する。
Specifically, the condensing device for an infrared sensor of the present invention is manufactured by two kinds of synthetic resins having a difference in affinity with plating, and the first synthetic resin having high affinity with plating is set on the inside. On the other hand, the second synthetic resin, which has a lower affinity for plating than the first synthetic resin, can be configured as the outside.
Here, the inner peripheral surface of the first synthetic resin is plated to form an inner peripheral surface portion for waveguide, and the outer peripheral surface of the second synthetic resin forms an outer peripheral surface portion for heat absorption and heat dissipation.
 また、第1の合成樹脂を、前端開口部から外周面側へ露出させた構成とすれば、この露出部分に電解メッキ処理で使う電極を突出形成することができて好ましい。 In addition, it is preferable that the first synthetic resin be exposed from the front end opening to the outer peripheral surface side because an electrode used in the electrolytic plating process can be formed protrudingly on the exposed portion.
 さらに、吸熱・放熱用外周面部を粗面仕上げすることで、いっそう吸熱性(及び放熱性)を向上させることができる。 Furthermore, the heat absorption (and heat dissipation) can be further improved by roughening the outer peripheral surface for heat absorption and heat dissipation.
 また、周囲の構造物に保持される支持部を吸熱・放熱用外周面部から延出して形成し、且つ当該支持部も粗面仕上げすることで、周囲の構造物とのがたつきが無く保持されて赤外線センサとの間の位置ずれを防止するとともに、さらに吸熱性(及び放熱性)を向上させることが可能となる。 In addition, the support part held by the surrounding structure is formed by extending from the outer peripheral surface part for heat absorption / radiation, and the support part is also roughened so that it can be held without rattling with the surrounding structure. As a result, it is possible to prevent positional displacement from the infrared sensor and to further improve the heat absorption (and heat dissipation).
 本発明の赤外線センサ用集光装置は、正面に赤外線入射窓を有し、この赤外線入射窓から取り込まれた赤外線を内部に設けた赤外線検出素子へ照射する構成を含む赤外線センサに対して、基端開口部を、赤外線センサの正面との間に隙間を形成して配置する構成とすることができる。 The condensing device for an infrared sensor of the present invention has an infrared incident window on the front surface, and an infrared sensor including a configuration for irradiating infrared rays taken from the infrared incident window to an infrared detection element provided therein. The end opening may be arranged with a gap formed between the front surface of the infrared sensor.
 具体的には、基端開口部の周壁から少なくとも三本の脚部を延出し、これら各脚部をそれぞれ赤外線センサに接触させて組み合わせることで、基端開口部と赤外線センサの正面との間に隙間を形成することができる。 Specifically, at least three legs are extended from the peripheral wall of the base end opening, and each leg is brought into contact with the infrared sensor to combine them, so that the gap between the base end opening and the front of the infrared sensor. A gap can be formed.
 このように、基端開口部と赤外線センサの正面との間に隙間を形成することで、赤外線センサ用集光装置の中空部から当該隙間を経由して外気を流入させることができるので、赤外線センサ用集光装置の導波用内周面部や赤外線センサの赤外線入射窓の表面に結露が生じても、速やかに消去することが可能となる。 Thus, by forming a gap between the proximal end opening and the front surface of the infrared sensor, it is possible to allow outside air to flow from the hollow portion of the infrared sensor condensing device via the gap. Even if dew condensation occurs on the inner peripheral surface portion of the waveguide of the condensing device for sensors or the surface of the infrared incident window of the infrared sensor, it can be quickly erased.
 また、基端開口部の周壁から延出した各脚部は、赤外線センサにそれぞれ接触させて組み合わせたとき、導波用内周面部の中心軸が赤外線センサにおける赤外線入射窓の中心と同軸上に配置されるように位置合わせしておけば、各脚部を赤外線センサに組み合わせるだけで、自動的に導波用内周面部と赤外線センサの中心軸を一致させることができ、作業性が向上する。 In addition, when the leg portions extending from the peripheral wall of the base end opening are combined in contact with the infrared sensor, the central axis of the waveguide inner peripheral surface portion is coaxial with the center of the infrared incident window in the infrared sensor. If they are aligned so that they are arranged, simply by combining the legs with the infrared sensor, the inner peripheral surface of the waveguide can be automatically aligned with the central axis of the infrared sensor, improving workability. .
 さて、赤外線センサ用集光装置と赤外線センサとを、照明器具、防犯装置、冷暖房装置や温度計等に組み込んだとき、わずかながらも赤外線センサ用集光装置や赤外線センサの組み込み位置にズレが生じたり、組み込み後にがたつきが生じたりすることがある。そして、赤外線センサに対して赤外線センサ用集光装置の相対位置が軸方向に変動すると、特に基端開口部近く(赤外線センサの近傍)で反射した赤外線は、赤外線センサの赤外線入射窓から取り込まれて赤外線検出素子へ入射する軌道を外れてしまうおそれがある。このように基端開口部近くで反射した赤外線が赤外線検出素子へ入射しないと、赤外線センサへの赤外線の入射光量が減少し、赤外線センサによる赤外線の検出精度を低下させてしまう。 Now, when the infrared sensor condensing device and infrared sensor are incorporated into lighting fixtures, crime prevention devices, air conditioners, thermometers, etc., there is a slight shift in the position where the infrared sensor condensing device or infrared sensor is installed. Or rattling may occur after installation. When the relative position of the infrared sensor condensing device fluctuates in the axial direction with respect to the infrared sensor, particularly infrared light reflected near the proximal end opening (near the infrared sensor) is taken in from the infrared incident window of the infrared sensor. This may cause the orbit entering the infrared detecting element to be off. If the infrared light reflected near the proximal end opening does not enter the infrared detection element in this way, the amount of infrared light incident on the infrared sensor is reduced, and the infrared detection accuracy of the infrared sensor is reduced.
 そこで、本発明の赤外線センサ用集光装置は、内周面における基端開口部からその周辺にかけての領域に、前端開口部から中空部内へ取り込んだ赤外線を拡散して反射する赤外線拡散面を形成することが好ましい。
 例えば、内周面を鏡面仕上げした導波用内周面部としたとき、赤外線センサに対するあらかじめ規定した軸方向の相対位置変動に伴い、前端開口部から中空部内へ取り込んだ赤外線の反射軌道が、赤外線センサの赤外線検出素子から外れる当該反射領域は、少なくとも赤外線拡散面とすることが好ましい。
Therefore, the infrared sensor condensing device of the present invention forms an infrared diffusing surface that diffuses and reflects the infrared rays taken from the front end opening into the hollow portion in the region from the base end opening to the periphery of the inner peripheral surface. It is preferable to do.
For example, when the inner peripheral surface of the waveguide is a mirror-finished inner peripheral surface portion, the infrared reflection trajectory taken into the hollow portion from the front end opening in accordance with a predetermined axial relative position variation with respect to the infrared sensor is infrared It is preferable that the reflection region that is removed from the infrared detection element of the sensor is at least an infrared diffusion surface.
 このように赤外線拡散面を形成することで、赤外線センサと赤外線センサ用集光装置との間で軸方向の相対位置変動があっても、赤外線拡散面で拡散した赤外線の一部が赤外線検出素子に入射するので、赤外線センサへの赤外線の入射光量の減少を抑制することができる。 By forming the infrared diffusing surface in this way, even if there is a relative position fluctuation in the axial direction between the infrared sensor and the infrared sensor condensing device, a part of the infrared diffused on the infrared diffusing surface is an infrared detecting element. Therefore, a decrease in the amount of infrared incident light on the infrared sensor can be suppressed.
 さらに、前端開口部から基端開口部にかけて内周面が縮径する筒形状に形成することで、測定対象から放射された赤外線を効率的に赤外線センサへ導くことが可能となる。 Furthermore, it is possible to efficiently guide the infrared rays radiated from the measurement target to the infrared sensor by forming the cylindrical shape whose inner peripheral surface is reduced in diameter from the front end opening to the base end opening.
 次に、本発明に係る赤外線センサ用集光装置の製造方法は、
 第1の合成樹脂と第2の合成樹脂とを二色成形して筒状の中間成形体を製作する二色成形工程と、
 第1の合成樹脂の内周面にメッキ処理を施し導波用内周面部を形成するメッキ処理工程と、
 を含むことを特徴とする。
Next, the manufacturing method of the condensing device for infrared sensors according to the present invention is as follows:
A two-color molding step for producing a cylindrical intermediate molded body by two-color molding of the first synthetic resin and the second synthetic resin;
A plating process for plating the inner peripheral surface of the first synthetic resin to form an inner peripheral surface portion for waveguide;
It is characterized by including.
 具体的には、本発明に係る赤外線センサ用集光装置の製造方法は、
 第1の合成樹脂と第2の合成樹脂とを二色成形し、第1の合成樹脂が前端開口部から外周面側へ露出するとともに、当該露出部から電極用突出部が突き出した筒状の中間成形体を製作する二色成形工程と、
 中間成形体における第1の合成樹脂の露出部分に無電解メッキ処理を施す予備メッキ処理工程と、
 無電解メッキ処理が施された電極用突出部から電流を流して、第1の合成樹脂の露出部分に電解メッキ処理を施し、第1の合成樹脂の内周面に導波用内周面部を形成する電解メッキ処理工程と、
 電極用突出部を切断して取り除く突出部除去工程と、
 を含む方法とすることができる。
Specifically, the manufacturing method of the condensing device for infrared sensor according to the present invention is as follows:
The first synthetic resin and the second synthetic resin are molded in two colors, and the first synthetic resin is exposed from the front end opening portion to the outer peripheral surface side, and the protruding portion for the electrode protrudes from the exposed portion. A two-color molding process to produce an intermediate molded body;
A pre-plating treatment step of performing an electroless plating treatment on the exposed portion of the first synthetic resin in the intermediate molded body;
An electric current is passed from the electrode protruding portion subjected to the electroless plating treatment, and the exposed portion of the first synthetic resin is subjected to electrolytic plating treatment, and the inner peripheral surface portion for waveguide is formed on the inner peripheral surface of the first synthetic resin. Forming an electroplating process;
A protrusion removal step of cutting and removing the electrode protrusion;
It can be set as the method containing.
 さらに、本発明に係る赤外線センサ用集光装置の製造方法は、第2の合成樹脂の外周面を粗面仕上げする工程を含む方法とすることが好ましい。 Furthermore, it is preferable that the manufacturing method of the concentrating device for an infrared sensor according to the present invention includes a step of roughening the outer peripheral surface of the second synthetic resin.
 以上説明したように、本発明によれば、測定対象から放射された赤外線を効率的に赤外線センサへと導くことができ、しかも周囲の温湿度環境の変化に伴い結露が生じたときは、当該結露を速やかに消して、赤外線センサの検出精度を短時間で本来の状態に戻すことが可能となる。 As described above, according to the present invention, the infrared rays radiated from the measurement object can be efficiently guided to the infrared sensor, and when condensation occurs due to changes in the surrounding temperature and humidity environment, It is possible to quickly eliminate condensation and return the detection accuracy of the infrared sensor to the original state in a short time.
図1Aは、本発明の第1実施形態に係る赤外線センサ用集光装置の外観を示す斜視図である。図1Bは、同装置の構成を示す正面断面図である。FIG. 1A is a perspective view showing an appearance of a condensing device for an infrared sensor according to the first embodiment of the present invention. FIG. 1B is a front sectional view showing the configuration of the apparatus. 図2Aは、本発明の第1実施形態に係る赤外線センサ用集光装置の構成を示す正面図である。図2Bは、同じく左側面図である。図2Cは、同じく右側面図である。図2Dは、同じく底面図である。FIG. 2A is a front view showing the configuration of the condensing device for an infrared sensor according to the first embodiment of the present invention. FIG. 2B is also a left side view. FIG. 2C is also a right side view. FIG. 2D is also a bottom view. 図3は、赤外線センサの構成例を示す一部断面正面図である。FIG. 3 is a partial cross-sectional front view showing a configuration example of the infrared sensor. 図4は、赤外線センサを利用する装置のハウジング内に組み込まれた赤外線センサと赤外線センサ用集光装置を拡大して示す正面断面図である。FIG. 4 is an enlarged front sectional view showing an infrared sensor and a condensing device for the infrared sensor incorporated in the housing of the device using the infrared sensor. 図5A、図5B、図5Cは、本発明の第1実施形態に係る赤外線センサ用集光装置の製造方法を模式的に示す断面正面図である。FIG. 5A, FIG. 5B, and FIG. 5C are sectional front views schematically showing a method for manufacturing the condensing device for an infrared sensor according to the first embodiment of the present invention. 図6A、図6B、図6Cは、図5Cに続く、本発明の第1実施形態に係る赤外線センサ用集光装置の製造方法を模式的に示す断面正面図である。6A, FIG. 6B, and FIG. 6C are sectional front views schematically showing the manufacturing method of the concentrating device for an infrared sensor according to the first embodiment of the present invention, following FIG. 5C. 図7A、図7Bは、図6Cに続く、本発明の第1実施形態に係る赤外線センサ用集光装置の製造方法を説明するための斜視図である。7A and 7B are perspective views for explaining the manufacturing method of the condensing device for an infrared sensor according to the first embodiment of the present invention, following FIG. 6C. 図8Aは、本発明の第2実施形態に係る赤外線センサ用集光装置の外観を示す斜視図である。図8Bは、同装置の構成を示す正面断面図である。FIG. 8A is a perspective view showing an appearance of a condensing device for an infrared sensor according to a second embodiment of the present invention. FIG. 8B is a front sectional view showing the configuration of the apparatus. 図9Aは、本発明の第2実施形態に係る赤外線センサ用集光装置の構成を示す正面図である。図9Bは、同じく左側面図である。図9Cは、同じく右側面図である。図9Dは、同じく底面図である。FIG. 9A is a front view showing a configuration of a condensing device for an infrared sensor according to a second embodiment of the present invention. FIG. 9B is a left side view of the same. FIG. 9C is a right side view of the same. FIG. 9D is a bottom view of the same. 図10A、図10B、図10Cは、本発明の第2実施形態に係る赤外線センサ用集光装置の製造方法を模式的に示す断面正面図である。FIG. 10A, FIG. 10B, and FIG. 10C are sectional front views schematically showing a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention. 図11A、図11B、図11Cは、図10Cに続く、本発明の第2実施形態に係る赤外線センサ用集光装置の製造方法を模式的に示す断面正面図である。FIG. 11A, FIG. 11B, and FIG. 11C are cross-sectional front views schematically showing a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention, following FIG. 10C. 図12A、図12Bは、図11Cに続く、本発明の第2実施形態に係る赤外線センサ用集光装置の製造方法を説明するための斜視図である。12A and 12B are perspective views for explaining a manufacturing method of the condensing device for an infrared sensor according to the second embodiment of the present invention, following FIG. 11C. 図13Aは、本発明の第3実施形態に係る赤外線センサ用集光装置を説明するための正面断面図である。図13Bは、図13Aの一部分を拡大して示す正面断面図である。FIG. 13A is a front cross-sectional view for explaining a condensing device for an infrared sensor according to a third embodiment of the present invention. FIG. 13B is an enlarged front sectional view showing a part of FIG. 13A. 図14Aは、図13Aと併せて、本発明の第3実施形態に係る赤外線センサ用集光装置を説明するための正面断面図である。図14Bは、図14Aの一部分を拡大して示す正面断面図である。FIG. 14A is a front sectional view for explaining an infrared sensor condensing device according to the third embodiment of the present invention, in conjunction with FIG. 13A. FIG. 14B is a front sectional view showing a part of FIG. 14A in an enlarged manner. 図15は、本発明の第3実施形態に係る赤外線センサ用集光装置の構成を示す正面断面図である。FIG. 15 is a front cross-sectional view showing the configuration of the condensing device for an infrared sensor according to the third embodiment of the present invention.
1:集光装置、5:第1の合成樹脂、6:第2の合成樹脂、
11:前端開口部、11a:周壁、11b:段部、12:基端開口部、12a:周壁、12b:段部、13:中空部、14:導波用内周面部、15:吸熱・放熱用外周面部、16:脚部、16a:正面支持部、16b:側面支持部、17:隙間、18:支持部、19:赤外線拡散面、
20:電極用突出部、21:中間成形体、
3:赤外線センサ、3a:正面、3b:側面、31:赤外線入射窓、32:赤外線検出素子、33:基盤、34:温度検出素子、35:保護部材、36:リード線、
4:組込み対象装置、41:保持部、42:周囲空間、43:プリント基板、
51,52,54,61,62,63,65,66:金型、
53,55,64,67:空洞
1: condensing device, 5: first synthetic resin, 6: second synthetic resin,
11: front end opening, 11a: peripheral wall, 11b: stepped portion, 12: proximal end opening, 12a: peripheral wall, 12b: stepped portion, 13: hollow portion, 14: inner peripheral surface portion for waveguide, 15: heat absorption / heat dissipation Outer peripheral surface part, 16: leg part, 16a: front support part, 16b: side support part, 17: gap, 18: support part, 19: infrared diffusion surface,
20: electrode projection, 21: intermediate molded body,
3: Infrared sensor, 3a: Front, 3b: Side, 31: Infrared incident window, 32: Infrared detection element, 33: Base, 34: Temperature detection element, 35: Protection member, 36: Lead wire,
4: Device to be incorporated, 41: Holding unit, 42: Surrounding space, 43: Printed circuit board,
51, 52, 54, 61, 62, 63, 65, 66: mold,
53, 55, 64, 67: Cavity
 以下、この発明の実施の形態について図面を参照して詳細に説明する。
〔第1実施形態〕
 まず、図1A~図7Bを参照して、本発明の第1実施形態に係る赤外線センサ用集光装置とその製造方法について詳細に説明する。
 図1A、図1B、図2A~図2Dに示すように、本実施形態に係る赤外線センサ用集光装置(以下、単に「集光装置」ということもある)は、一般に導波管(waveguide)とも称される筒状の基本構造を採用している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
First, with reference to FIG. 1A to FIG. 7B, the infrared sensor condensing device and the manufacturing method thereof according to the first embodiment of the present invention will be described in detail.
As shown in FIGS. 1A, 1B, and 2A to 2D, a condensing device for an infrared sensor according to the present embodiment (hereinafter sometimes simply referred to as a “condensing device”) is generally a waveguide. It adopts a cylindrical basic structure, also called.
 この集光装置1は、赤外線センサ3とともに、赤外線温度計等の装置(以下、「組込み対象装置」ということもある)4の内部へ組み込まれる。ここで、集光装置1は、赤外線センサ3の赤外線入射窓31に対向して基端開口部12が配置される。そして、測定対象から放射された赤外線を前端開口部11から中空部13内へ取り込み、内周面で赤外線を反射させながら基端開口部12へ導き、赤外線センサ3の赤外線入射窓31を通して赤外線検出素子32へ照射する。 The condensing device 1 is incorporated in the inside of a device 4 (hereinafter also referred to as “device to be incorporated”) 4 such as an infrared thermometer together with the infrared sensor 3. Here, in the condensing device 1, the proximal end opening 12 is disposed to face the infrared incident window 31 of the infrared sensor 3. Then, infrared rays radiated from the measurement object are taken into the hollow portion 13 from the front end opening 11, guided to the base end opening 12 while reflecting the infrared rays on the inner peripheral surface, and detected through the infrared incident window 31 of the infrared sensor 3. The element 32 is irradiated.
 図3は、赤外線センサ3の構成例を示している。
 同図に示す赤外線センサ3は、サーモパイル型赤外線センサと称するもので、サーモパイルと称する熱型の赤外線検出素子32が赤外線を受光すると、その入射エネルギー量に応じた熱起電力を電気信号として出力する。
 赤外線センサ3は、基盤33の正面中央部に赤外線検出素子32が配置してあり、その近傍には温度検出素子34が配置されている。温度検出素子34としては、赤外線検出素子32の周囲温度に応じて抵抗値を変えるサーミスタが適用される。これら赤外線検出素子32と温度検出素子34は、赤外線センサ3の外観を形成する保護部材35で被覆されており、保護部材35の正面中央部(すなわち、赤外線センサ3の正面中央部)に赤外線入射窓31が形成されている。赤外線入射窓31は赤外線検出素子32の受光部と対向しており、赤外線入射窓31を通して入射してきた赤外線が赤外線検出素子32の受光部に入射する。なお、基盤33の背面からは、リード線36が外部へ延出している。本実施形態では、赤外線入射窓31と赤外線検出素子32は、同じ中心軸上に配置してある。
FIG. 3 shows a configuration example of the infrared sensor 3.
The infrared sensor 3 shown in the figure is called a thermopile type infrared sensor, and when a thermal type infrared detection element 32 called a thermopile receives infrared rays, a thermoelectromotive force corresponding to the amount of incident energy is output as an electrical signal. .
In the infrared sensor 3, an infrared detection element 32 is disposed in the center of the front surface of the substrate 33, and a temperature detection element 34 is disposed in the vicinity thereof. As the temperature detection element 34, a thermistor that changes the resistance value according to the ambient temperature of the infrared detection element 32 is applied. The infrared detecting element 32 and the temperature detecting element 34 are covered with a protective member 35 that forms the appearance of the infrared sensor 3, and infrared rays are incident on the front center portion of the protective member 35 (that is, the front central portion of the infrared sensor 3). A window 31 is formed. The infrared incident window 31 faces the light receiving part of the infrared detecting element 32, and the infrared light incident through the infrared incident window 31 enters the light receiving part of the infrared detecting element 32. In addition, from the back surface of the board | substrate 33, the lead wire 36 has extended outside. In the present embodiment, the infrared incident window 31 and the infrared detecting element 32 are arranged on the same central axis.
 図1A、図1B、図2A~図2Dに戻り、集光装置1は、合成樹脂で製作してあり、内周面はメッキ処理することで鏡面仕上げされている。この鏡面仕上げされた内周面を導波用内周面部14と呼ぶことにする。鏡面仕上げした導波用内周面部14を備えることで、中空部13内に取り込んだ赤外線の減衰を抑えて効率的に反射させて基端開口部12へ導き、赤外線センサ3の赤外線入射窓31を通して赤外線検出素子32に照射させることができる。 1A, 1B, 2A to 2D, the light collecting device 1 is made of synthetic resin, and the inner peripheral surface is mirror-finished by plating. This mirror-finished inner peripheral surface is referred to as a waveguide inner peripheral surface portion 14. By providing the inner peripheral surface portion 14 for a waveguide with a mirror finish, the infrared radiation taken into the hollow portion 13 is suppressed and efficiently reflected and guided to the proximal end opening portion 12, and the infrared incident window 31 of the infrared sensor 3. The infrared detecting element 32 can be irradiated through the through hole.
 また、集光装置1の導波用内周面部14は、前端開口部11から基端開口部12にかけて縮径する筒形状に形成してある。例えば、図1Bに示す構成では、導波用内周面部14を放物面状に形成してある。ただし、導波用内周面部14の形状は放物面状に限定されるものではなく、円錐筒状の内周面など、必要に応じて適宜設計することができる。 Further, the waveguide inner peripheral surface portion 14 of the light collecting device 1 is formed in a cylindrical shape whose diameter is reduced from the front end opening 11 to the base end opening 12. For example, in the configuration shown in FIG. 1B, the waveguide inner peripheral surface portion 14 is formed in a parabolic shape. However, the shape of the inner peripheral surface portion 14 for waveguide is not limited to a parabolic shape, and may be appropriately designed as necessary, such as a conical cylindrical inner peripheral surface.
 導波用内周面部14を、前端開口部11から基端開口部12にかけて縮径する筒形状に形成することで、前端開口部11から取り込まれた赤外線が基端開口部12に向かって反射する過程で徐々に収束していき、小さな寸法をした赤外線センサ3の赤外線入射窓31を通して赤外線検出素子32へ高強度で照射させることができる。 By forming the waveguide inner peripheral surface portion 14 into a cylindrical shape having a reduced diameter from the front end opening 11 to the base end opening 12, the infrared rays taken in from the front end opening 11 are reflected toward the base end opening 12. In the process, the light is gradually converged, and the infrared detecting element 32 can be irradiated with high intensity through the infrared incident window 31 of the infrared sensor 3 having a small size.
 一方、集光装置1の外周面は、一部分を除き、鏡面仕上げされずに合成樹脂の地肌が露出しており、しかも当該露出した合成樹脂の地肌を粗面に仕上げた構成としてある。このように鏡面仕上げせず、合成樹脂の地肌を粗面仕上げしてある外周面部分を吸熱・放熱用外周面部15と呼ぶことにする。 On the other hand, the outer peripheral surface of the light collecting device 1 has a configuration in which the background of the synthetic resin is exposed without being mirror-finished except for a part, and the background of the exposed synthetic resin is roughened. The outer peripheral surface portion in which the surface of the synthetic resin is roughened without being mirror-finished in this way is referred to as a heat absorbing / radiating outer peripheral surface portion 15.
 さて、組込み対象装置4が低温環境下に長時間置かれると、その内部に組み込まれた集光装置1や赤外線センサ3も低温状態となる。その後に、組込み対象装置4が室温環境下に移されると、低温状態となった集光装置1の表面に結露が生じるおそれがある。
 上述したように鏡面仕上げせず、合成樹脂の地肌を粗面仕上げされた吸熱・放熱用外周面部15は、表面積が広くかつ反射率の低い構成となるため、周囲の熱を効率的に吸収することができる。このように吸熱・放熱用外周面部15が周囲の熱を効率的に吸収することで、集光装置1の内部温度を速やかに周囲温度に近付けることができ、その結果として集光装置1の表面に生じた結露を速やかに消すことが可能となる。
Now, when the device 4 to be incorporated is placed in a low temperature environment for a long time, the condensing device 1 and the infrared sensor 3 incorporated therein are also in a low temperature state. Thereafter, when the device 4 to be incorporated is moved to a room temperature environment, there is a possibility that condensation occurs on the surface of the light collecting device 1 in a low temperature state.
As described above, the heat absorbing / dissipating outer peripheral surface portion 15 which is not mirror-finished and has a roughened synthetic resin surface has a large surface area and low reflectivity, and thus efficiently absorbs surrounding heat. be able to. As described above, the heat absorption / radiation outer peripheral surface portion 15 efficiently absorbs the surrounding heat, whereby the internal temperature of the light collecting device 1 can be brought close to the ambient temperature quickly. As a result, the surface of the light collecting device 1 It is possible to quickly eliminate the dew condensation that has occurred.
 また、集光装置1は、基端開口部12の周壁12aから三本の脚部16を軸方向へ延出した構成としてある。基端開口部12の周壁12aは円環状に形成され、その円周方向に三分割する各部位から脚部16が延出している。これら脚部16は同じ寸法形状であり、ともに内周面を段付き形状とし、基端開口部12より僅かに外側の部位に平坦な正面支持部16aが形成してある。さらに、脚部16の内周面は、正面支持部16aから先端にかけて側面支持部16bを形成している。 Further, the condensing device 1 has a configuration in which three legs 16 are extended in the axial direction from the peripheral wall 12a of the base end opening 12. The peripheral wall 12a of the base end opening portion 12 is formed in an annular shape, and the leg portion 16 extends from each portion that is divided into three in the circumferential direction. These leg portions 16 have the same size and shape, and both have an inner peripheral surface with a stepped shape, and a flat front support portion 16 a is formed at a site slightly outside the base end opening 12. Furthermore, the inner peripheral surface of the leg 16 forms a side support 16b from the front support 16a to the tip.
 また、集光装置1の吸熱・放熱用外周面部15には、2箇所から外径方向へ延出して平板状の支持部18が形成してある。これらの支持部18は、後述するように集光装置1を組込み対象装置4の内部に保持する機能を有している。これらの支持部18は、吸熱・放熱用外周面部15と同様に、合成樹脂の地肌を粗面仕上げした表面形状とする。これにより、集光装置1の吸熱性(及び放熱性)をさらに向上させることができる。
 なお、支持部18は、組込み対象装置4の内部に構成された保持構造に対応して形成箇所や形状などを設計することが好ましい。
Further, the heat absorbing / dissipating outer peripheral surface portion 15 of the light collecting device 1 is formed with a flat plate-like support portion 18 extending from two locations in the outer diameter direction. These support portions 18 have a function of holding the light collecting device 1 inside the device to be incorporated 4 as described later. These support portions 18 have a surface shape in which the surface of the synthetic resin is roughened in the same manner as the outer peripheral surface portion 15 for heat absorption and heat dissipation. Thereby, the heat absorption property (and heat dissipation) of the condensing device 1 can be further improved.
In addition, it is preferable that the support part 18 designs a formation location, a shape, etc. corresponding to the holding structure comprised inside the apparatus 4 to be assembled.
 図4に示すように、集光装置1は、赤外線センサ3とともに、組込み対象装置4の内部へ組み込まれる。このとき、集光装置1に形成した支持部18が、組込み対象装置4の内部に設けた保持部41と係合して、集光装置1を組込み対象装置4の内部に保持する。
 図4に示す組み込み構造では、赤外線センサ3は、リード線36が、組込み対象装置4の内部に装着されたプリント基板43に半田付けにより固定されている。
As shown in FIG. 4, the condensing device 1 is incorporated into the assembling target device 4 together with the infrared sensor 3. At this time, the support unit 18 formed in the light collecting device 1 is engaged with the holding unit 41 provided in the installation target device 4 to hold the light collection device 1 in the installation target device 4.
In the built-in structure shown in FIG. 4, in the infrared sensor 3, the lead wire 36 is fixed to the printed circuit board 43 attached to the built-in device 4 by soldering.
 集光装置1は、各脚部16の正面支持部16aが、赤外線センサ3の正面3aにおける周縁部の三箇所に接触し、各脚部16の側面支持部16bが、赤外線センサ3の側面3bにおける三箇所に接触した状態で、赤外線センサ3に各脚部16が嵌め合わされている。 In the light collecting device 1, the front support portion 16 a of each leg portion 16 is in contact with the three peripheral portions of the front surface 3 a of the infrared sensor 3, and the side surface support portion 16 b of each leg portion 16 is the side surface 3 b of the infrared sensor 3. Each leg part 16 is fitted by the infrared sensor 3 in the state which contacted three places.
 このように基端開口部12の周壁12aから延出した各脚部16が、赤外線センサ3にそれぞれ接触させて組み合わされたとき、導波用内周面部14の中心軸Oが、赤外線センサ3における赤外線入射窓31の中心と同軸上に配置されるように、集光装置1はあらかじめ位置合わせして製作されている。 Thus, when each leg part 16 extended from the surrounding wall 12a of the base end opening part 12 is made to contact with the infrared sensor 3, respectively, the center axis | shaft O of the waveguide internal peripheral surface part 14 is the infrared sensor 3. The light collecting device 1 is pre-aligned so as to be arranged coaxially with the center of the infrared incident window 31 in FIG.
 また、各脚部16を赤外線センサ3に嵌め合わせた状態では、赤外線センサ3の正面3aが集光装置1の基端開口部12の周壁12aから離間して配置される。そのため、集光装置1における基端開口部12と赤外線センサ3の正面3aとの間には、隙間17が形成される。したがって、集光装置1の中空部13内は、この隙間17を通して、上述した赤外線センサ3の周囲空間42に連通する。なお、図4には示されていないが、周囲空間42は集光装置1の吸熱・放熱用外周面部15が接する周囲空間と連通している。
 この構成により、集光装置1の導波用内周面部14や赤外線センサ3の赤外線入射窓31に結露が生じたとき、集光装置1の中空部13と隙間17を通して、温度差のある外気と赤外線センサ3の周囲空間42との間で空気の流動が生じるので、結露を速やかに消すことができる。
Further, in a state where each leg portion 16 is fitted to the infrared sensor 3, the front surface 3 a of the infrared sensor 3 is disposed away from the peripheral wall 12 a of the proximal end opening portion 12 of the light collector 1. Therefore, a gap 17 is formed between the proximal end opening 12 in the light collecting device 1 and the front surface 3 a of the infrared sensor 3. Therefore, the inside of the hollow portion 13 of the light collecting device 1 communicates with the surrounding space 42 of the infrared sensor 3 described above through the gap 17. Although not shown in FIG. 4, the surrounding space 42 communicates with the surrounding space where the heat absorbing / dissipating outer peripheral surface portion 15 of the light collecting device 1 is in contact.
With this configuration, when condensation occurs on the waveguide inner peripheral surface portion 14 of the light collecting device 1 or the infrared light incident window 31 of the infrared sensor 3, the outside air having a temperature difference passes through the hollow portion 13 and the gap 17 of the light collecting device 1. And the ambient space 42 of the infrared sensor 3 cause air flow, so that condensation can be quickly eliminated.
 上述した集光装置1は、メッキとの親和性に差のある二種類の合成樹脂により製作してある。すなわち、メッキとの親和性の高い第1の合成樹脂5を内側に設け、一方、この第1の合成樹脂5に比べてメッキとの親和性が低い第2の合成樹脂6を外側に設けた構成としてある。メッキとの親和性の高い第1の合成樹脂5としては、例えば、ABS樹脂(アクリロニトリル、ブタジエン、スチレンの3成分からなる熱可塑性樹脂)を適用することができる。一方、メッキとの親和性が低い第2の合成樹脂6としては、例えば、ポリカーボネート(PC)やポリスチレン(PS)を適用することができる。 The above-described light collecting device 1 is made of two types of synthetic resins having a difference in affinity with plating. That is, the first synthetic resin 5 having a high affinity for plating is provided on the inside, while the second synthetic resin 6 having a low affinity for plating as compared with the first synthetic resin 5 is provided on the outside. As a configuration. As the first synthetic resin 5 having high affinity with plating, for example, ABS resin (a thermoplastic resin composed of three components of acrylonitrile, butadiene, and styrene) can be applied. On the other hand, as the second synthetic resin 6 having a low affinity for plating, for example, polycarbonate (PC) or polystyrene (PS) can be applied.
 上述した集光装置1の各部要素は、これら第1,第2の合成樹脂5,6のいずれか一方に形成してある。すなわち、導波用内周面部14は、第1の合成樹脂5の内周面に形成してある。一方、吸熱・放熱用外周面部15は、第2の合成樹脂6の外周面に形成してある。さらに、脚部16と支持部18は、第2の合成樹脂6に形成してある。
 また、第1の合成樹脂5は、前端開口部11から外周面側へ露出して、前端開口部11の周壁11aを形成している。この前端開口部11の周壁11aは、後述するようにメッキ処理が施されるとともに、製造過程でこの周壁に電極用突出部20が形成される(図7A参照)。
Each component of the light collecting device 1 described above is formed on one of the first and second synthetic resins 5 and 6. That is, the waveguide inner peripheral surface portion 14 is formed on the inner peripheral surface of the first synthetic resin 5. On the other hand, the outer peripheral surface portion 15 for heat absorption / radiation is formed on the outer peripheral surface of the second synthetic resin 6. Further, the leg portion 16 and the support portion 18 are formed in the second synthetic resin 6.
The first synthetic resin 5 is exposed to the outer peripheral surface side from the front end opening 11 to form a peripheral wall 11 a of the front end opening 11. As will be described later, the peripheral wall 11a of the front end opening 11 is plated, and an electrode protrusion 20 is formed on the peripheral wall during the manufacturing process (see FIG. 7A).
 次に、図5A~図7Bを参照して、本発明の第1実施形態に係る赤外線センサ用集光装置の製造方法について、詳細に説明する。
 内周面をメッキ処理して鏡面仕上げするとともに、外周面は合成樹脂の地肌を露出させた構成の集光装置1は、二色成形(ダブルモールド)と称する樹脂成形方法を用いることで実現することができる。
 図5A~図6Cは、二色成形工程の手順を示している。
 本実施形態では、図5A及び図5Bに示すように、まずメッキとの親和性の高い第1の合成樹脂5を成形するための金型51,52を用意し、当該金型51,52内の空洞53に第1の合成樹脂5の溶湯を充填して成形する。既述したように、第1の合成樹脂5としては、例えば、ABS樹脂を適用することができる。
 次に、図5C及び図6Aに示すように、第1の合成樹脂5による成形品の外周面を形成した一方の金型52を、第2の合成樹脂6を成形するための金型54に変更する。そして、図6Bに示すように、金型51,54内で第1の合成樹脂5による成形品の外周面側にできた空洞55内に、第2の合成樹脂6の溶湯を充填して成形する。既述したように、第2の合成樹脂6としては、例えば、ポリカーボネート(PC)やポリスチレン(PS)を適用することができる。
Next, with reference to FIG. 5A to FIG. 7B, a method for manufacturing the condensing device for an infrared sensor according to the first embodiment of the present invention will be described in detail.
The light collecting device 1 having a configuration in which the inner peripheral surface is plated and mirror-finished, and the outer peripheral surface is exposed to the background of the synthetic resin is realized by using a resin molding method called two-color molding (double molding). be able to.
5A to 6C show the procedure of the two-color molding process.
In this embodiment, as shown in FIGS. 5A and 5B, first, molds 51 and 52 for molding the first synthetic resin 5 having a high affinity with plating are prepared, and the molds 51 and 52 are provided. The cavity 53 is filled with a melt of the first synthetic resin 5 and molded. As described above, as the first synthetic resin 5, for example, an ABS resin can be applied.
Next, as shown in FIG. 5C and FIG. 6A, one mold 52 formed with the outer peripheral surface of the molded product made of the first synthetic resin 5 is used as a mold 54 for molding the second synthetic resin 6. change. Then, as shown in FIG. 6B, the mold 55 is filled with a melt of the second synthetic resin 6 in a cavity 55 formed on the outer peripheral surface side of the molded product of the first synthetic resin 5 in the molds 51 and 54. To do. As described above, as the second synthetic resin 6, for example, polycarbonate (PC) or polystyrene (PS) can be applied.
 金型51,54内に充填した第2の合成樹脂6が固まった後、図6Cに示すように、金型51,54を開いて第1の合成樹脂5と第2の合成樹脂6で構成された筒状の中間成形体21を取り出す。
 図7Aは中間成形体21の外観を示している。筒状の中間成形体21は、内周面から前端開口部11の周壁11aにかけての部分が第1の合成樹脂5で成形され、前端開口部11の周壁11aを除く外周面が第2の合成樹脂6で成形されている。第1の合成樹脂5で成形された前端開口部11の周壁11aは、外周面側へ露出しており、ここに電極用突出部20を外径方向に突き出して形成してある。
After the second synthetic resin 6 filled in the molds 51 and 54 is hardened, the molds 51 and 54 are opened to form the first synthetic resin 5 and the second synthetic resin 6 as shown in FIG. 6C. The formed cylindrical intermediate formed body 21 is taken out.
FIG. 7A shows the appearance of the intermediate molded body 21. The cylindrical intermediate molded body 21 is formed of the first synthetic resin 5 at the portion from the inner peripheral surface to the peripheral wall 11a of the front end opening 11, and the outer peripheral surface excluding the peripheral wall 11a of the front end opening 11 is the second synthetic resin. Molded with resin 6. The peripheral wall 11a of the front end opening portion 11 formed of the first synthetic resin 5 is exposed to the outer peripheral surface side, and the electrode protruding portion 20 protrudes in the outer diameter direction.
 次に、図7Aに示す中間成形体21における第1の合成樹脂5の露出部分に、無電解メッキ処理を施す(予備メッキ処理工程)。本実施形態では、無電解ニッケルメッキを実施して、第1の合成樹脂5の露出部分にニッケルの金属皮膜を形成する。このとき、電極用突出部20にもニッケルの金属皮膜が形成される。一方、予備メッキ処理工程において、第2の合成樹脂6の露出する部分には、メッキは施されない。 Next, an electroless plating process is performed on the exposed portion of the first synthetic resin 5 in the intermediate molded body 21 shown in FIG. 7A (preliminary plating process). In the present embodiment, electroless nickel plating is performed to form a nickel metal film on the exposed portion of the first synthetic resin 5. At this time, a nickel metal film is also formed on the electrode protrusion 20. On the other hand, in the preliminary plating process, the exposed portion of the second synthetic resin 6 is not plated.
 次に、無電解メッキ処理が施された電極用突出部20から電流を流して、第1の合成樹脂5の露出部分に電解メッキ処理を施す(電解メッキ処理工程)。電解メッキ処理は、例えば、銅メッキ処理、ニッケルメッキ処理、金メッキ処理の順序で3工程に分けて実施することで、表面の金メッキが薄くても剥げない高品質なメッキ層を、第1の合成樹脂5の露出部分に形成することができる。この電解メッキ処理工程においても、第2の合成樹脂6の露出する部分には、メッキは施されない。
 なお、無電解メッキ処理及び電解メッキ処理の技術は、すでに周知技術であるため、本明細書での詳細な説明は省略する。
Next, an electric current is passed from the electrode protrusion 20 that has been subjected to the electroless plating process, and the exposed portion of the first synthetic resin 5 is subjected to an electrolytic plating process (electrolytic plating process). The electrolytic plating process is performed in three steps in the order of, for example, copper plating process, nickel plating process, and gold plating process, so that a high-quality plating layer that does not peel off even if the gold plating on the surface is thin is first synthesized. It can be formed on the exposed portion of the resin 5. Also in this electrolytic plating process, the exposed portion of the second synthetic resin 6 is not plated.
In addition, since the technique of an electroless plating process and an electroplating process is already a well-known technique, detailed description in this specification is abbreviate | omitted.
 電解メッキ処理工程を終了した後、図7Bに示すように、電極用突出部20を切断して取り除く(突出部除去工程)。なお、第2の合成樹脂6の地肌が露出する吸熱・放熱用外周面部15と支持部18は粗面仕上げしておくことが好ましい。粗面仕上げは、例えば、図6Aの金型54の内腔にシボ加工を施しておくことで処理することができる。また、電解メッキ処理工程を終了した後に、第2の合成樹脂6の地肌が露出する吸熱・放熱用外周面部15と支持部18を粗面仕上げするためのブラスト加工を施すなどの周知の表面処理技術を適用して実施することができる(粗面仕上げ工程)。
 以上の工程を経て、上述した構成の集光装置1を製作することができる。
After the electrolytic plating treatment step is completed, the electrode protrusion 20 is cut and removed as shown in FIG. 7B (protrusion removal step). In addition, it is preferable that the heat absorption / radiation outer peripheral surface portion 15 and the support portion 18 where the background of the second synthetic resin 6 is exposed are roughened. The rough surface finish can be processed, for example, by applying a texture to the lumen of the mold 54 in FIG. 6A. Further, after the electrolytic plating process is completed, a known surface treatment such as a blasting process for roughing the heat absorption / radiation outer peripheral surface portion 15 and the support portion 18 where the background of the second synthetic resin 6 is exposed is performed. The technology can be applied (rough surface finishing process).
Through the above steps, the light collecting device 1 having the above-described configuration can be manufactured.
〔第2実施形態〕
 次に、図8A~図12Bを参照して、本発明の第2実施形態に係る赤外線センサ用集光装置とその製造方法について詳細に説明する。なお、第2実施形態では、既に説明した第1実施形態と相違する技術事項についてのみ詳細に説明することとし、第1実施形態と同一又は相当する部分については同一符号を付して詳細な説明を省略する。
[Second Embodiment]
Next, with reference to FIGS. 8A to 12B, the infrared sensor condensing device and the manufacturing method thereof according to the second embodiment of the present invention will be described in detail. In the second embodiment, only technical matters different from the first embodiment already described will be described in detail, and the same or corresponding parts as those in the first embodiment will be denoted by the same reference numerals and detailed description will be given. Is omitted.
 第2実施形態に係る集光装置1は、図8A、図8B、図9A~図9Dに示すような構成としてあり、図10A~図12Bに示す製造方法により製作される。
 既述した第1実施形態の製造方法では、二色成形工程において、まず第1の合成樹脂5を成形し、続いて第2の合成樹脂6を成形した。ここで、第1の合成樹脂5に適用されるABS樹脂は、第2の合成樹脂6に適用されるポリカーボネートやポリスチレンよりも融点が低い。このため、第2の合成樹脂6を成形するに際して、既に金型内で固化しているABS樹脂が再び溶解してしまうおそれがある。よって、第1の合成樹脂5の形状を保つために、温度管理や時間管理を慎重に行う必要がある。
 そこで、第2実施形態に係る製造方法では、二色成形工程において、まず融点の高い第2の合成樹脂6を成形し、続いて第1の合成樹脂5を成形する順序に変更した。これにより、第1,第2の合成樹脂5,6について、安定して成形時の形状を保つことができる。
The condensing device 1 according to the second embodiment is configured as shown in FIGS. 8A, 8B, and 9A to 9D, and is manufactured by the manufacturing method shown in FIGS. 10A to 12B.
In the manufacturing method of the first embodiment described above, in the two-color molding step, the first synthetic resin 5 is first molded, and then the second synthetic resin 6 is molded. Here, the ABS resin applied to the first synthetic resin 5 has a lower melting point than the polycarbonate and polystyrene applied to the second synthetic resin 6. For this reason, when the second synthetic resin 6 is molded, the ABS resin already solidified in the mold may be dissolved again. Therefore, in order to maintain the shape of the first synthetic resin 5, it is necessary to carefully perform temperature management and time management.
Therefore, in the manufacturing method according to the second embodiment, in the two-color molding process, the second synthetic resin 6 having a high melting point is first molded, and then the first synthetic resin 5 is molded. Thereby, about the 1st, 2nd synthetic resins 5 and 6, the shape at the time of shaping | molding can be maintained stably.
 具体的には、図10A及び図10Bに示すように、まず融点の高い第2の合成樹脂6を成形するための金型61,62、63を用意し、当該金型61,62、63内の空洞64に第2の合成樹脂6の溶湯を充填して成形する。
 次に、図10C及び図11Aに示すように、第2の合成樹脂6による成形品の外形状の一部を形成した金型61,62を、第1の合成樹脂5を成形するための金型65,66に変更する。そして、図11Bに示すように、金型63,65,66内で第1の合成樹脂5を成形するためにできた空洞67内に、第1の合成樹脂5の溶湯を充填して成形する。
 そして、金型63,65,66内に充填した第1の合成樹脂5が固まった後、図11Cに示すように、金型63,65,66を開いて第1の合成樹脂5と第2の合成樹脂6で構成された筒状の中間成形体21を取り出す。
Specifically, as shown in FIGS. 10A and 10B, first, molds 61, 62, and 63 for molding the second synthetic resin 6 having a high melting point are prepared. The cavity 64 is filled with a melt of the second synthetic resin 6 and molded.
Next, as shown in FIG. 10C and FIG. 11A, the molds 61 and 62 formed with a part of the outer shape of the molded product of the second synthetic resin 6 are used as the mold for molding the first synthetic resin 5. Change to type 65,66. Then, as shown in FIG. 11B, a melt of the first synthetic resin 5 is filled into a cavity 67 formed for molding the first synthetic resin 5 in the molds 63, 65, 66 and then molded. .
Then, after the first synthetic resin 5 filled in the molds 63, 65, 66 is solidified, as shown in FIG. 11C, the molds 63, 65, 66 are opened and the first synthetic resin 5 and the second synthetic resin 5 are opened. A cylindrical intermediate molded body 21 made of the synthetic resin 6 is taken out.
 図12Aは中間成形体21の外観を示している。この中間成形体21に対して、第1の実施形態と同様の手順で無電解メッキ処理(予備メッキ処理工程)と電解メッキ処理を施し、その後に図12Bに示すように、電極用突出部20を切断して取り除く(突出部除去工程)。また、第2の合成樹脂6の地肌が露出する吸熱・放熱用外周面部15と支持部18は、第1の実施形態と同様の方法で粗面仕上げすることが好ましい。以上の工程を経て、図8A、図8B、図9A~図9Dに示す構成の集光装置1を製作することができる。 FIG. 12A shows the appearance of the intermediate molded body 21. The intermediate molded body 21 is subjected to electroless plating treatment (pre-plating treatment step) and electrolytic plating treatment in the same procedure as in the first embodiment, and thereafter, as shown in FIG. Is removed by cutting (protrusion removal step). Moreover, it is preferable that the heat absorption / radiation outer peripheral surface portion 15 and the support portion 18 at which the background of the second synthetic resin 6 is exposed are roughened by the same method as in the first embodiment. Through the above steps, the condensing device 1 having the configuration shown in FIGS. 8A, 8B, and 9A to 9D can be manufactured.
 第2実施形態では、図8Bに示すように、集光装置1における基端開口部12の周壁12aから延出する3本の脚部16を、第1の合成樹脂5で成形している。これにより、第1の合成樹脂5には、前端開口部11の周壁11aと基端開口部12の周壁12aとにそれぞれ段部11b,12b,が形成され、上述したように第2の合成樹脂6を先に成形してから第1の合成樹脂5を成形する順序で、二色成形を実施することが可能となる。 In the second embodiment, as shown in FIG. 8B, the three leg portions 16 extending from the peripheral wall 12 a of the proximal end opening 12 in the light collecting device 1 are molded with the first synthetic resin 5. As a result, the first synthetic resin 5 has step portions 11b and 12b formed on the peripheral wall 11a of the front end opening 11 and the peripheral wall 12a of the base end opening 12, respectively. As described above, the second synthetic resin 5 is formed. The two-color molding can be performed in the order in which the first synthetic resin 5 is molded after the molding 6 is molded first.
〔第3実施形態〕
 次に、図13A~図15を参照して、本発明の第3実施形態に係る赤外線センサ用集光装置について詳細に説明する。なお、第3実施形態では、既に説明した第1実施形態又は第2実施形態と相違する技術事項についてのみ詳細に説明することとし、第1実施形態又は第2実施形態と同一又は相当する部分については同一符号を付して詳細な説明を省略する。
[Third Embodiment]
Next, an infrared sensor condensing device according to a third embodiment of the present invention will be described in detail with reference to FIGS. 13A to 15. In the third embodiment, only technical matters that are different from the first embodiment or the second embodiment already described will be described in detail, and the same or corresponding parts as those in the first embodiment or the second embodiment will be described. Are denoted by the same reference numerals, and detailed description thereof is omitted.
 図13Aに示すように、集光装置1は、前端開口部11から中空部13内へ取り込んだ赤外線S1,S2,S3・・・を導波用内周面部14で反射させて、赤外線センサ3における赤外線検出素子32へ入射するように、赤外線センサ3との相対位置が調整される。 As shown in FIG. 13A, the condensing device 1 reflects the infrared rays S1, S2, S3... Taken into the hollow portion 13 from the front end opening 11 by the inner peripheral surface portion 14 for wave guide, and the infrared sensor 3 The relative position with respect to the infrared sensor 3 is adjusted so as to be incident on the infrared detection element 32.
 ところが既述したように、集光装置1と赤外線センサ3とを組込み対象装置4に組み込んだとき、わずかながらも集光装置1や赤外線センサ3の組み込み位置にズレが生じたり、組み込み後にがたつきが生じたりすることがある。
 そして、図14A及び図14Bに示すように、赤外線センサ3に対して集光装置1の相対位置が軸方向に変動すると、特に基端開口部12の近く(赤外線センサ3の近傍)で反射した赤外線S1は、赤外線入射窓31から取り込まれて赤外線検出素子32へ入射する軌道を外れてしまうおそれがある。このように基端開口部12の近くで反射した赤外線S1が赤外線検出素子32へ入射しないと、赤外線センサ3への赤外線の入射光量が減少し、赤外線センサ3による赤外線の検出精度を低下させてしまう。
However, as described above, when the condensing device 1 and the infrared sensor 3 are incorporated in the assembling target device 4, the assembling positions of the condensing device 1 and the infrared sensor 3 are slightly shifted or loosened after assembling. There may be a date.
14A and 14B, when the relative position of the light collecting device 1 fluctuates in the axial direction with respect to the infrared sensor 3, the light is reflected particularly near the proximal end opening 12 (near the infrared sensor 3). There is a possibility that the infrared ray S <b> 1 is taken out of the infrared incident window 31 and deviates from the orbit where it enters the infrared detection element 32. Thus, if the infrared ray S1 reflected near the proximal end opening 12 does not enter the infrared detection element 32, the amount of infrared incident light on the infrared sensor 3 decreases, and the infrared detection accuracy of the infrared sensor 3 decreases. End up.
 つまり、図13Bに拡大して示すように、導波用内周面部14における基端開口部12の近くでは、赤外線が反射する部位Pから赤外線センサ3の赤外線検出素子32までの距離が短くなる。この距離に比例して、基端開口部12の近くで反射した赤外線S1の赤外線検出素子32への入射角θが、他の赤外線S2,S3の入射角よりも小さくなる。このように、赤外線検出素子32への入射角θが小さくなるほど、赤外線が反射する部位Pから赤外線センサ3の赤外線検出素子32までの相対位置がわずかに変動しただけで、図14Bに示すように、基端開口部12の近くで反射した赤外線S1が、赤外線検出素子32から外れてしまう確率が高くなる。 That is, as shown in an enlarged view in FIG. 13B, the distance from the portion P where infrared rays are reflected to the infrared detecting element 32 of the infrared sensor 3 is shortened near the proximal end opening 12 in the waveguide inner peripheral surface portion 14. . In proportion to this distance, the incident angle θ of the infrared ray S1 reflected near the proximal end opening 12 to the infrared detecting element 32 becomes smaller than the incident angles of the other infrared rays S2 and S3. Thus, as the incident angle θ to the infrared detection element 32 decreases, the relative position from the portion P where the infrared ray is reflected to the infrared detection element 32 of the infrared sensor 3 slightly varies, as shown in FIG. 14B. The probability that the infrared rays S <b> 1 reflected near the proximal end opening 12 will be detached from the infrared detection element 32 increases.
 そこで、本実施形態では、図15に示すように、集光装置1の内周面における基端開口部12からその周辺にかけての領域L2に、赤外線拡散面19を形成してある。赤外線拡散面19は、集光装置1の前端開口部11から中空部内へ取り込んだ赤外線を乱反射させる機能を有している。 Therefore, in this embodiment, as shown in FIG. 15, an infrared diffusing surface 19 is formed in a region L <b> 2 extending from the proximal end opening 12 to the periphery of the inner peripheral surface of the light collecting device 1. The infrared diffusing surface 19 has a function of irregularly reflecting infrared rays taken into the hollow portion from the front end opening 11 of the light collecting device 1.
 図15に示す構成では、内側に設けた第1の合成樹脂5の基端部分を短縮し、代わりに第2の合成樹脂6を当該基端部分の内周面(領域L2)まで拡げた構成としてある。このように構成すれば、内周面の領域L2はメッキ処理されない。さらに、図6Aに示した第2の合成樹脂6を成形するための金型54において、既述したようにその内腔にシボ加工を施しておくことで、内周面の領域L2を粗面にすることができる。これにより、当該領域L2に、入射した赤外線を乱反射させる表面形状の赤外線拡散面19が形成される。
 なお、電解メッキ処理工程を終了した後に、第2の合成樹脂6の地肌が露出する面に、ブラスト加工を施すなどの周知の表面処理技術を適用して粗面仕上げすることで、赤外線拡散面19を形成することもできる。
In the configuration shown in FIG. 15, the base end portion of the first synthetic resin 5 provided on the inner side is shortened, and instead, the second synthetic resin 6 is expanded to the inner peripheral surface (region L2) of the base end portion. It is as. If comprised in this way, the area | region L2 of an internal peripheral surface will not be plated. Further, in the mold 54 for molding the second synthetic resin 6 shown in FIG. 6A, the inner peripheral surface region L2 is roughened by applying the embossing to the inner cavity as described above. Can be. As a result, a surface-shaped infrared diffusing surface 19 for irregularly reflecting incident infrared rays is formed in the region L2.
After finishing the electrolytic plating process, the surface of the second synthetic resin 6 where the background is exposed is subjected to a rough surface finish by applying a known surface treatment technique such as blasting, so that an infrared diffusion surface 19 can also be formed.
 ここで、赤外線拡散面19が形成される内周面の領域L2は、赤外線センサ3に対する集光装置1の軸方向への相対位置変動との関係から、次のように設定することができる。 一般に、集光装置1と赤外線センサ3とを組込み対象装置4に組み込んだ際の位置ズレや組み込み後のがたつき等は、設計又は試作の段階でシミュレーションや実験等を行うことにより規定することができる。そこで、赤外線センサ3に対して集光装置1が軸方向にどの程度相対的に位置変動するのかあらかじめ規定しておく。 Here, the region L2 of the inner peripheral surface where the infrared diffusing surface 19 is formed can be set as follows from the relationship with the relative position fluctuation in the axial direction of the light collecting device 1 with respect to the infrared sensor 3. In general, positional deviation when the light collecting device 1 and the infrared sensor 3 are incorporated into the device to be incorporated 4 and rattling after the incorporation are specified by performing simulations or experiments at the stage of design or prototyping. Can do. Therefore, it is defined in advance how much the position of the condensing device 1 changes in the axial direction with respect to the infrared sensor 3.
 そして、内周面の全体を鏡面仕上げした導波用内周面部14で形成したと仮定し、赤外線センサ3に対し集光装置1が軸方向にあらかじめ規定した長さL1だけ相対位置変動した状態を想定する。 Then, assuming that the entire inner peripheral surface is formed by a waveguide inner peripheral surface portion 14 having a mirror finish, the relative position of the infrared ray sensor 3 is changed by a predetermined length L1 in the axial direction. Is assumed.
 このように相対的な位置変動が生じた状態で、前端開口部11から中空部13内へ取り込んだ赤外線の反射軌道が、赤外線センサ3の赤外線検出素子32から外れる当該反射領域を少なくとも含むように、赤外線拡散面19の形成領域L2を設定する。
 なお、領域L2に、赤外線の反射軌道が赤外線センサ3の赤外線検出素子32から外れない領域を含んでもよいが、当該領域が広くなるに従い、逆に赤外線センサ3への赤外線の入射光量が減少してしまうので、当該領域は最小限とすることが好ましい。
In a state where the relative position variation occurs in this way, the infrared reflection trajectory taken into the hollow portion 13 from the front end opening 11 includes at least the reflection region that is out of the infrared detection element 32 of the infrared sensor 3. The formation region L2 of the infrared diffusing surface 19 is set.
The region L2 may include a region where the infrared reflection trajectory does not deviate from the infrared detection element 32 of the infrared sensor 3. Conversely, as the region becomes wider, the amount of infrared incident light on the infrared sensor 3 decreases. Therefore, it is preferable to minimize the area.
 このように赤外線拡散面19を形成することで、赤外線センサ3と集光装置1との間で軸方向の相対位置変動があっても、赤外線拡散面19で乱反射した赤外線の一部が赤外線センサに入射するので、赤外線センサへの赤外線の入射光量の減少を抑制することができる。 By forming the infrared diffusing surface 19 in this way, even if there is a relative position variation in the axial direction between the infrared sensor 3 and the light collecting device 1, a part of the infrared light irregularly reflected by the infrared diffusing surface 19 is infrared sensor. Therefore, a decrease in the amount of infrared incident light on the infrared sensor can be suppressed.
 なお、本発明は上述した実施形態に限定されるものではなく、種々の変形実施や応用実施が可能であることは勿論である。 In addition, this invention is not limited to embodiment mentioned above, Of course, various deformation | transformation implementation and application implementation are possible.
 本発明者は、次の(1)~(3)の構成をした集光装置1をそれぞれ製作し、赤外線センサ3との組み合わせをもって、集光装置1の内周面と赤外線センサ3の正面に対する結露の状態を目視観察した。
 なお、共通する形状部分は同じ寸法に製作してあり、赤外線センサ3との組み合わせ構造は、脚部16の有無に伴う隙間17の有無以外は同じ構造の配置とし、温度変化や湿度などの実験条件も同じとした。
The inventor manufactured the condensing device 1 having the following configurations (1) to (3), and combined with the infrared sensor 3 to the inner peripheral surface of the condensing device 1 and the front surface of the infrared sensor 3. The state of condensation was visually observed.
The common shape parts are manufactured to the same dimensions, and the combination structure with the infrared sensor 3 is the same structure except for the presence or absence of the gap 17 due to the presence or absence of the legs 16, and experiments such as temperature change and humidity are performed. The conditions were the same.
(1) 図1A及び図1Bに示した第1実施形態に係る集光装置A
 ABS樹脂とポリカーボネートで二色成形して製作され、鏡面仕上げした導波用内周面部14と、鏡面仕上げしていない吸熱・放熱用外周面部15を有しており、脚部16によって赤外線センサ3の正面との間に隙間17を形成してある。吸熱・放熱用外周面部15と支持部18は、ブラスト加工により粗面仕上げしてある。
(1) Condensing device A according to the first embodiment shown in FIGS. 1A and 1B
It has a waveguide inner peripheral surface portion 14 which is manufactured by two-color molding using ABS resin and polycarbonate and is mirror-finished, and an outer heat absorption / radiation outer peripheral surface portion 15 which is not mirror-finished. A gap 17 is formed between the front surface of each of the two. The outer peripheral surface portion 15 for heat absorption / radiation and the support portion 18 are roughened by blasting.
(2) 図1A及び図1Bに示した形状における脚部16を3か所でなく全周にわたって設けた構成の集光装置B
 ABS樹脂を切削加工して製作され、メッキ処理により鏡面仕上げした導波用内周面部14と、メッキを削り落とした(鏡面仕上げしていない)吸熱・放熱用外周面部15とを有しているが、脚部16を全周に設けたため、周壁12aにより中空部13と周囲空間42との間が連通していない。吸熱・放熱用外周面部15と支持部18は、切削加工により粗面仕上げしてある。
(2) Condensing device B having a configuration in which legs 16 in the shape shown in FIGS. 1A and 1B are provided over the entire circumference instead of three places.
It has a waveguide inner peripheral surface portion 14 which is manufactured by cutting ABS resin and is mirror-finished by plating, and a heat absorbing / dissipating outer peripheral surface portion 15 where the plating is scraped off (not mirror-finished). However, since the leg portion 16 is provided on the entire periphery, the hollow portion 13 and the surrounding space 42 are not communicated with each other by the peripheral wall 12a. The outer peripheral surface portion 15 for heat absorption / radiation and the support portion 18 are roughened by cutting.
(3) 図1A及び図1Bに示した外観形状で、全体がメッキ処理により鏡面仕上げされた集光装置C
 ABS樹脂のみで製作し、露出面全体をメッキ処理して鏡面仕上げし、脚部16によって赤外線センサ3の正面との間に隙間17を形成してある。
(3) Condensing device C having the appearance shown in FIG. 1A and FIG. 1B and mirror-finished as a whole by plating.
It is made of only ABS resin, the entire exposed surface is plated and mirror-finished, and a gap 17 is formed between the front surface of the infrared sensor 3 by the leg portion 16.
 その結果、本発明の第1実施形態に係る集光装置Aは、内周面に生じた結露及び赤外線センサ3の正面に生じた結露が、ともに3分47秒で消失した。
 一方、集光装置Bは、内周面に生じた結露が約5分で消失し、赤外線センサ3の正面に生じた結露が約9分で消失した。
 集積装置Cは、内周面に生じた結露及び赤外線センサ3の正面に生じた結露が、ともに約6分で消失した。
As a result, in the light collecting apparatus A according to the first embodiment of the present invention, the condensation that occurred on the inner peripheral surface and the condensation that occurred on the front surface of the infrared sensor 3 both disappeared in 3 minutes and 47 seconds.
On the other hand, in the light collecting device B, the condensation generated on the inner peripheral surface disappeared in about 5 minutes, and the condensation generated on the front surface of the infrared sensor 3 disappeared in about 9 minutes.
In the integrated device C, the condensation generated on the inner peripheral surface and the condensation generated on the front surface of the infrared sensor 3 disappeared in about 6 minutes.
 目視により結露の状態を観察しての実験結果のため、数秒~十数秒の誤差を含む可能性は否めない。しかし、そのような誤差を考慮に入れても、本発明の第1実施形態に係る集光装置Aは、速やかに結露を消失させる格別の効果を奏することが、実験結果より理解される。 ∙ Since it is an experimental result of visually observing the state of condensation, there is a possibility that an error of several seconds to several tens of seconds is included. However, even if such an error is taken into consideration, it is understood from experimental results that the light collecting apparatus A according to the first embodiment of the present invention has an exceptional effect of quickly eliminating condensation.

Claims (14)

  1. 筒状に形成され、測定対象から放射された赤外線を前端開口部から中空部内へ取り込み、基端開口部と対向して配置した赤外線センサに導く構成の赤外線センサ用集光装置であって、
     合成樹脂により製作され、鏡面仕上げした導波用内周面部と、鏡面仕上げしていない吸熱・放熱用外周面部と、を含むことを特徴とする赤外線センサ用集光装置。
    A condensing device for an infrared sensor, which is formed in a cylindrical shape, takes infrared rays radiated from a measurement object into a hollow part from a front end opening, and leads to an infrared sensor arranged opposite to the base end opening,
    A condensing device for an infrared sensor, comprising: an inner peripheral surface portion of a waveguide that is made of a synthetic resin and is mirror-finished; and an outer peripheral surface portion for heat absorption and heat dissipation that is not mirror-finished.
  2. メッキとの親和性に差のある二種類の合成樹脂により製作され、メッキとの親和性の高い第1の合成樹脂を内側とし、当該第1の合成樹脂に比べてメッキとの親和性が低い第2の合成樹脂を外側としてあり、
     前記第1の合成樹脂の内周面が、メッキ処理されて前記導波用内周面部を形成し、
     前記第2の合成樹脂の外周面が、前記吸熱・放熱用外周面部を形成する、ことを特徴とする請求項1の赤外線センサ用集光装置。
    Produced from two types of synthetic resins that have a difference in affinity with plating, the first synthetic resin having a high affinity for plating is the inner side, and the affinity for plating is lower than that of the first synthetic resin. The second synthetic resin is on the outside,
    The inner peripheral surface of the first synthetic resin is plated to form the inner peripheral surface portion for waveguide,
    The infrared sensor condensing device according to claim 1, wherein an outer peripheral surface of the second synthetic resin forms the outer peripheral surface portion for heat absorption and heat dissipation.
  3. 前記第1の合成樹脂を、前端開口部から外周面側へ露出させたことを特徴とする請求項2の赤外線センサ用集光装置。 3. The condensing device for an infrared sensor according to claim 2, wherein the first synthetic resin is exposed from the front end opening to the outer peripheral surface side.
  4. 前記吸熱・放熱用外周面部は、粗面仕上げしてあることを特徴とする請求項1乃至3いずれか一項に記載した赤外線センサ用集光装置。 The infrared sensor condensing device according to any one of claims 1 to 3, wherein the outer peripheral surface portion for heat absorption and heat dissipation is roughened.
  5. 周囲の構造物に保持される支持部を前記吸熱・放熱用外周面部から延出して形成し、且つ当該支持部も粗面仕上げしてあることを特徴とする請求項4の赤外線センサ用集光装置。 5. The infrared sensor condensing device according to claim 4, wherein a support portion held by a surrounding structure is formed to extend from the outer peripheral surface portion for heat absorption and heat dissipation, and the support portion is also roughened. apparatus.
  6. 正面に赤外線入射窓を有し、この赤外線入射窓から取り込まれた赤外線を内部に設けた赤外線検出素子へ照射する構成を含む前記赤外線センサに対して、
     前記基端開口部は、前記赤外線センサの正面との間に隙間を形成して配置されることを特徴とする請求項1乃至5のいずれか一項に記載した赤外線センサ用集光装置。
    For the infrared sensor including a configuration having an infrared incident window on the front and irradiating infrared rays taken from the infrared incident window to an infrared detection element provided therein,
    6. The condensing device for an infrared sensor according to claim 1, wherein the proximal end opening is disposed with a gap formed between the base end opening and the front surface of the infrared sensor.
  7. 前記基端開口部の周壁から少なくとも三本の脚部を延出し、これら各脚部をそれぞれ前記赤外線センサに接触させて組み合わせることで、前記基端開口部と前記赤外線センサの正面との間に前記隙間が形成されることを特徴とする請求項6の赤外線センサ用集光装置。 By extending at least three legs from the peripheral wall of the base end opening, and combining each leg with the infrared sensor, the base end opening and the front of the infrared sensor are combined. The condensing device for an infrared sensor according to claim 6, wherein the gap is formed.
  8. 前記基端開口部の周壁から延出した各脚部は、前記赤外線センサにそれぞれ接触させて組み合わせたとき、前記導波用内周面部の中心軸が前記赤外線センサにおける赤外線入射窓の中心と同軸上に配置されるように位置合わせしてあることを特徴とする請求項7の赤外線センサ用集光装置。 When the leg portions extending from the peripheral wall of the base end opening are combined in contact with the infrared sensor, the central axis of the waveguide inner peripheral surface is coaxial with the center of the infrared incident window in the infrared sensor. 8. The condensing device for an infrared sensor according to claim 7, which is aligned so as to be disposed on the top.
  9. 内周面における前記基端開口部からその周辺にかけての領域に、前記前端開口部から中空部内へ取り込んだ赤外線を拡散して反射する赤外線拡散面を形成したことを特徴とする請求項6乃至8のいずれか一項に記載した赤外線センサ用集光装置。 9. An infrared diffusing surface for diffusing and reflecting infrared rays taken into the hollow portion from the front end opening is formed in a region from the base end opening to the periphery thereof on the inner peripheral surface. The condensing device for infrared sensors described in any one of the above.
  10. 内周面を前記鏡面仕上げした導波用内周面部としたとき、前記赤外線センサに対するあらかじめ規定した軸方向の相対位置変動に伴い、前記前端開口部から中空部内へ取り込んだ赤外線の反射軌道が、前記赤外線センサの前記赤外線検出素子から外れる当該反射領域は、少なくとも前記赤外線拡散面としてあることを特徴とする請求項9の赤外線センサ用集光装置。 When the inner peripheral surface is a mirror-finished inner peripheral surface portion for a waveguide, along with a predetermined axial relative position variation with respect to the infrared sensor, an infrared reflection trajectory taken into the hollow portion from the front end opening portion, The condensing device for an infrared sensor according to claim 9, wherein the reflection region that is separated from the infrared detection element of the infrared sensor is at least the infrared diffusion surface.
  11. 前記前端開口部から前記基端開口部にかけて内周面が縮径する筒形状に形成したことを特徴とする請求項1乃至10のいずれか一項に記載した赤外線センサ用集光装置。 11. The condensing device for an infrared sensor according to claim 1, wherein the concentrating device for an infrared sensor is formed in a cylindrical shape whose inner peripheral surface is reduced in diameter from the front end opening to the base end opening.
  12. 請求項2に記載した赤外線センサ用集光装置を製造するための方法であって、
     前記第1の合成樹脂と前記第2の合成樹脂とを二色成形して筒状の中間成形体を製作する二色成形工程と、
     前記第1の合成樹脂の内周面にメッキ処理を施し前記導波用内周面部を形成するメッキ処理工程と、
     を含むことを特徴とする赤外線センサ用集光装置の製造方法。
    A method for manufacturing a condensing device for an infrared sensor according to claim 2, comprising:
    A two-color molding step for producing a cylindrical intermediate molded body by two-color molding the first synthetic resin and the second synthetic resin;
    A plating process for plating the inner peripheral surface of the first synthetic resin to form the waveguide inner peripheral surface part;
    The manufacturing method of the condensing apparatus for infrared sensors characterized by including these.
  13. 請求項3に記載した赤外線センサ用集光装置を製造するための方法であって、
     前記第1の合成樹脂と前記第2の合成樹脂とを二色成形し、前記第1の合成樹脂が前端開口部から外周面側へ露出するとともに、当該露出部から電極用突出部が突き出した筒状の中間成形体を製作する二色成形工程と、
     前記中間成形体における前記第1の合成樹脂の露出部分に無電解メッキ処理を施す予備メッキ処理工程と、
     前記無電解メッキ処理が施された前記電極用突出部から電流を流して、前記第1の合成樹脂の露出部分に電解メッキ処理を施し、前記第1の合成樹脂の内周面に前記導波用内周面部を形成する電解メッキ処理工程と、
     前記電極用突出部を切断して取り除く突出部除去工程と、
     を含むことを特徴とする赤外線センサ用集光装置の製造方法。
    A method for manufacturing a condensing device for an infrared sensor according to claim 3, comprising:
    The first synthetic resin and the second synthetic resin are molded in two colors, and the first synthetic resin is exposed from the front end opening to the outer peripheral surface side, and the electrode protrusion protrudes from the exposed portion. A two-color molding process to produce a cylindrical intermediate molded body;
    A pre-plating treatment step of performing an electroless plating treatment on an exposed portion of the first synthetic resin in the intermediate molded body;
    An electric current is passed from the electrode protruding portion that has been subjected to the electroless plating treatment, the exposed portion of the first synthetic resin is subjected to electrolytic plating treatment, and the wave guide is applied to the inner peripheral surface of the first synthetic resin. An electroplating process for forming the inner peripheral surface part for
    A protrusion removal step of cutting and removing the electrode protrusion; and
    The manufacturing method of the condensing apparatus for infrared sensors characterized by including these.
  14. 前記第2の合成樹脂の外周面を粗面仕上げする工程を含む請求項12又は13の赤外線センサ用集光装置の製造方法。 The manufacturing method of the condensing apparatus for infrared sensors of Claim 12 or 13 including the process of roughening the outer peripheral surface of a said 2nd synthetic resin.
PCT/JP2017/013186 2016-03-31 2017-03-30 Light condensing device for infrared sensor, and method for manufacturing same WO2017170838A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-069909 2016-03-31
JP2016069909A JP5996139B1 (en) 2016-03-31 2016-03-31 Infrared thermometer
JP2016162417 2016-08-23
JP2016-162417 2016-08-23

Publications (1)

Publication Number Publication Date
WO2017170838A1 true WO2017170838A1 (en) 2017-10-05

Family

ID=59965935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013186 WO2017170838A1 (en) 2016-03-31 2017-03-30 Light condensing device for infrared sensor, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017170838A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225578A1 (en) * 2018-05-24 2019-11-28 オムロンヘルスケア株式会社 Sensor module, production method for sensor module, and blood pressure measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328146A (en) * 1997-05-31 1998-12-15 Horiba Ltd Tympanic thermometer
JPH11281484A (en) * 1998-03-31 1999-10-15 Keiosu:Kk Ear type thermometer
JP2003052645A (en) * 2001-05-22 2003-02-25 Metatech Co Ltd Infrared clinical thermometer
JP2009176751A (en) * 2009-04-28 2009-08-06 Panasonic Corp Induction heating cooker
US20130245488A1 (en) * 2012-03-19 2013-09-19 Welch Allyn, Inc. Temperature measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328146A (en) * 1997-05-31 1998-12-15 Horiba Ltd Tympanic thermometer
JPH11281484A (en) * 1998-03-31 1999-10-15 Keiosu:Kk Ear type thermometer
JP2003052645A (en) * 2001-05-22 2003-02-25 Metatech Co Ltd Infrared clinical thermometer
JP2009176751A (en) * 2009-04-28 2009-08-06 Panasonic Corp Induction heating cooker
US20130245488A1 (en) * 2012-03-19 2013-09-19 Welch Allyn, Inc. Temperature measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225578A1 (en) * 2018-05-24 2019-11-28 オムロンヘルスケア株式会社 Sensor module, production method for sensor module, and blood pressure measurement device
JP2019201979A (en) * 2018-05-24 2019-11-28 オムロンヘルスケア株式会社 Sensor module, manufacturing method of sensor module, and blood pressure measuring device
CN112105291A (en) * 2018-05-24 2020-12-18 欧姆龙健康医疗事业株式会社 Sensor module, method for manufacturing sensor module, and blood pressure measurement device
JP7091832B2 (en) 2018-05-24 2022-06-28 オムロンヘルスケア株式会社 Sensor module, sensor module manufacturing method, and blood pressure measuring device
CN112105291B (en) * 2018-05-24 2023-08-04 欧姆龙健康医疗事业株式会社 Sensor module, method for manufacturing sensor module, and blood pressure measurement device

Similar Documents

Publication Publication Date Title
CN102265125B (en) There is the contactless clinical thermometer of stray radiation shielding
US9671490B2 (en) Reduced stray radiation optoelectronic device
US20060232972A1 (en) Method for manufacturing a vehicular lamp and a vehicular lamp
WO2016104197A1 (en) Method for manufacturing radar cover and radar cover
WO2017170838A1 (en) Light condensing device for infrared sensor, and method for manufacturing same
JP5260858B2 (en) Infrared detector manufacturing method
KR102079838B1 (en) Optoelectronic component and method for producing an optoelectronic component
EP2808912B1 (en) Method for assembling a circuit carrier with a housing component, and an optical unit
JP2017175515A (en) Radar cover
JP2007501404A (en) Infrared sensor utilizing optimized surface
US20040017762A1 (en) Optical pickup
JP6868439B2 (en) Concentrator for infrared sensor and its manufacturing method
JP2007101513A (en) Infrared sensor
JP4741791B2 (en) Method for realizing optical functions in automotive display or lighting device components
EP2060889B1 (en) Detachable probe cover for ear thermometer and manufacturing method thereof
JP3400749B2 (en) Optical fiber sensor head
EP3542099B1 (en) Lighting device, lighting device element, and processes for the production thereof.
JP2001304959A (en) Infrared sensor
KR102246452B1 (en) Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof
JP3829583B2 (en) Lighting fixture with sensor
EP2042800B1 (en) Vehicle light and method for manufacturing the same
JP4138762B2 (en) Heat sensor
TWI731795B (en) Infrared sensing module and forehead thermometer
CN108267825B (en) Optical filter switcher module and lens integration
JP2003107282A (en) Temperature detector of optical connector for laser

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775372

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775372

Country of ref document: EP

Kind code of ref document: A1