KR102246452B1 - Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof - Google Patents

Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof Download PDF

Info

Publication number
KR102246452B1
KR102246452B1 KR1020180081561A KR20180081561A KR102246452B1 KR 102246452 B1 KR102246452 B1 KR 102246452B1 KR 1020180081561 A KR1020180081561 A KR 1020180081561A KR 20180081561 A KR20180081561 A KR 20180081561A KR 102246452 B1 KR102246452 B1 KR 102246452B1
Authority
KR
South Korea
Prior art keywords
light
infrared
gas sensor
optical waveguide
dispersive
Prior art date
Application number
KR1020180081561A
Other languages
Korean (ko)
Other versions
KR20200007438A (en
Inventor
박준식
박광범
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020180081561A priority Critical patent/KR102246452B1/en
Publication of KR20200007438A publication Critical patent/KR20200007438A/en
Application granted granted Critical
Publication of KR102246452B1 publication Critical patent/KR102246452B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4972Determining alcohol content
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

가스 측정 정밀도가 높아 신뢰성이 우수한 비분산 적외선 가스센서 및 그의 제조방법이 제안된다. 본 발명에 따른 비분산 적외선 가스센서는 적외선을 발광하는 적외선 발광소자를 포함하는 발광부; 적외선을 수광하는 적외선 수광소자를 포함하는 수광부; 및 발광부 및 수광부 사이에 위치하여 적외선이 진행하는, 감지대상물질이 투입되는 내부 표면의 적어도 일부에 금속층이 형성된 광도파로;를 포함한다. A non-dispersive infrared gas sensor having high gas measurement accuracy and excellent reliability and a method of manufacturing the same are proposed. The non-dispersive infrared gas sensor according to the present invention comprises: a light-emitting unit including an infrared light-emitting device that emits infrared light; A light receiving unit including an infrared light receiving element for receiving infrared light; And an optical waveguide in which a metal layer is formed on at least a part of an inner surface into which the object to be sensed is injected, which is positioned between the light-emitting unit and the light-receiving unit and through which infrared rays proceed.

Description

비분산 적외선 가스센서 및 그의 제조방법{Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof}Non-dispersive infrared gas sensor and its manufacturing method {Non-dispersive Infra Red (NDIR) gas sensor and manufacturing method thereof}

본 발명은 비분산 적외선 가스센서 및 그의 제조방법에 관한 것으로, 상세하게는 가스 측정 정밀도가 높아 신뢰성이 우수한 비분산 적외선 가스센서 및 그의 제조방법에 관한 것이다.The present invention relates to a non-dispersive infrared gas sensor and a method of manufacturing the same, and more particularly, to a non-dispersive infrared gas sensor having high reliability and high gas measurement accuracy, and a method of manufacturing the same.

가스를 감지하기 위한 가스센서는 가스누출여부와 농도측정에 주로 사용되고 있다. 가스센서는 크게 광학식 가스센서와 화학식 가스센서로 분류된다. 화학식 가스센서는 히터부, 온도센서부, 감지막으로 이루어지며, 가스를 감지하는 감도와 선택성은 감지막과 동작온도에 의존한다. Gas sensors for detecting gas are mainly used for gas leakage and concentration measurement. Gas sensors are largely classified into optical gas sensors and chemical gas sensors. Chemical formula gas sensor consists of a heater part, a temperature sensor part, and a sensing film, and the sensitivity and selectivity for sensing gas depend on the sensing film and the operating temperature.

가스센서를 이용한 가스 농도 측정 방법에는 비분산 적외선 (NDIR, Non-dispersive Infra Red) 방식과 금속산화물 (Metal Oxide) 감지소재를 이용하는 방식이 있다. 금속산화물 (Metal Oxide) 가스센서는 비분산 적외선 가스센서에 비해 더 저렴하지만, 비분산 적외선 가스센서는 장기 안정성, 높은 정확도 등과 같은 면에서 더 유리하다. 또한 비분산 적외선 가스센서는 목표 가스가 특정 파장에서 빛을 흡수한다는 물리적 센싱 원리를 이용하기 때문에 선택도가 감지소재를 이용하는 금속산화물 (Metal Oxide) 방식에 비해 우수하다. Methods of measuring gas concentration using a gas sensor include a non-dispersive infrared (NDIR, Non-dispersive Infra Red) method and a method using a metal oxide sensing material. Metal oxide gas sensors are cheaper than non-dispersive infrared gas sensors, but non-dispersive infrared gas sensors are more advantageous in terms of long-term stability and high accuracy. In addition, since the non-dispersive infrared gas sensor uses a physical sensing principle that the target gas absorbs light at a specific wavelength, the selectivity is superior to the metal oxide method using a sensing material.

비분산 적외선 가스센서는 광 공동(optical cavity), 즉 광도파로 내에서 반복적인 반사를 통해 가스 흡수율을 높이는 구조로 제작되고, IR 광원으로 램프가 사용된다. 그러나, 비분산 적외선 가스센서에서 광원으로부터 발생된 이 광도파로를 통해 진행해 가면서 센서에 도달하는 과정에서의 세기가 감소되어 가스센서의 감도가 낮아지는 문제가 발생한다. The non-dispersive infrared gas sensor is manufactured in an optical cavity, that is, a structure that increases gas absorption through repeated reflection in an optical waveguide, and a lamp is used as an IR light source. However, as the non-dispersive infrared gas sensor proceeds through the optical waveguide generated from the light source, the intensity in the process of reaching the sensor decreases, resulting in a problem that the sensitivity of the gas sensor decreases.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 가스 측정 정밀도가 높아 신뢰성이 우수한 비분산 적외선 가스센서 및 그의 제조방법을 제공함에 있다. The present invention has been conceived to solve the above problems, and an object of the present invention is to provide a non-dispersive infrared gas sensor having high reliability and high gas measurement accuracy, and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 비분산 적외선 가스센서는 적외선을 발광하는 적외선 발광소자를 포함하는 발광부; 적외선을 수광하는 적외선 수광소자를 포함하는 수광부; 및 발광부 및 수광부 사이에 위치하여 적외선이 진행하는, 감지대상물질이 투입되는 내부 표면의 적어도 일부에 금속층이 형성된 광도파로;를 포함한다. A non-dispersive infrared gas sensor according to an embodiment of the present invention for achieving the above object includes: a light-emitting unit including an infrared light-emitting device that emits infrared light; A light receiving unit including an infrared light receiving element for receiving infrared light; And an optical waveguide in which a metal layer is formed on at least a part of an inner surface into which the object to be sensed is injected, which is positioned between the light-emitting unit and the light-receiving unit and through which infrared rays proceed.

광도파로는, 감지대상물질이 투입되는 투입부; 감지대상물질이 배출되는 배출부; 및 적외선의 파장을 제한하는 광학필터부;를 포함할 수 있다. The optical waveguide includes: an input unit into which a sensing target material is input; A discharge unit through which the sensing target material is discharged; And an optical filter unit that limits the wavelength of infrared rays.

광학필터부는 적외선의 파장을 3.4㎛ 또는 9.3㎛으로 제한할 수 있다. The optical filter unit may limit the wavelength of infrared rays to 3.4 μm or 9.3 μm.

본 발명에 따른 비분산 적외선 가스센서는 광학필터부와 수광부 사이에 집광부;를 더 포함할 수 있다. The non-dispersive infrared gas sensor according to the present invention may further include a condensing unit between the optical filter unit and the light receiving unit.

금속층은 니켈도금층 및 금도금층을 포함할 수 있다. The metal layer may include a nickel plated layer and a gold plated layer.

광도파로 소재는 구리(Cu) 또는 구리-아연(Cu-Zn) 합금(황동)을 포함할 수 있다. The optical waveguide material may include copper (Cu) or a copper-zinc (Cu-Zn) alloy (brass).

감지대상물질은 알코올일 수 있다. The substance to be detected may be alcohol.

본 발명의 다른 측면에 따르면, 금속관 내부를 화학적 연마하는 제1단계; 및 금속관 내부를 무전해도금하는 제2단계;를 포함하는 비분산 적외선 가스센서용 광도파로 제조방법이 제공된다.According to another aspect of the present invention, the first step of chemically polishing the inside of the metal tube; And a second step of electroless plating the inside of the metal tube. A method of manufacturing an optical waveguide for a non-dispersive infrared gas sensor is provided.

본 발명의 실시예들에 따르면, Cu 또는 Cu-Zn 합금인 황동계 소재로 제작된 튜브형 광도파로의 적외선 반사도를 향상시켜 광도파로내에서의 적외선 광의 세기가 감소되는 것을 개선할 수 있어 고감도의 비분산 적외선 가스센서 제조가 가능한 효과가 있다. According to the embodiments of the present invention, it is possible to improve the infrared reflectivity of the tubular optical waveguide made of a brass-based material made of Cu or Cu-Zn alloy, thereby improving the decrease in the intensity of infrared light in the optical waveguide, and thus a high sensitivity ratio. There is an effect that it is possible to manufacture a distributed infrared gas sensor.

도 1은 본 발명의 일실시예에 따른 비분산 적외선 가스센서의 단면도이다.
도 2는 도금전의 구리튜브의 단면들이고, 도 3은 도금전의 구리호일의 이미지이다.
도 4는 도 2의 구리튜브를 Ni/Au도금 및 Ni도금한 후의 이미지이고, 도 5는 도 3의 구리호일을 Ni/Au도금 및 Ni도금한 도금한 후의 이미지이다.
도 6은 도금전 구리호일, Ni 도금 구리호일 및 Ni/Au 도금 구리호일의 적외선 반사도 측정결과를 도시한 그래프이다.
1 is a cross-sectional view of a non-dispersive infrared gas sensor according to an embodiment of the present invention.
2 is a cross section of a copper tube before plating, and FIG. 3 is an image of a copper foil before plating.
FIG. 4 is an image after Ni/Au plating and Ni plating of the copper tube of FIG. 2, and FIG. 5 is an image after plating of the copper foil of FIG. 3 with Ni/Au plating and Ni plating.
6 is a graph showing infrared reflectivity measurement results of a copper foil, a Ni-plated copper foil, and a Ni/Au-plated copper foil before plating.

이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art. In the accompanying drawings, there may be elements having a specific pattern or having a predetermined thickness, but this is for convenience of explanation or distinction, so even if they have a specific pattern and a predetermined thickness, the present invention is characterized by the illustrated elements. It is not limited to only.

도 1은 본 발명의 일실시예에 따른 비분산 적외선 가스센서의 단면도이다. 본 발명에 따른 비분산 적외선 가스센서(100)는 적외선을 발광하는 적외선 발광소자(111)를 포함하는 발광부(110); 적외선을 수광하는 적외선 수광소자(121)를 포함하는 수광부(120); 및 발광부(110) 및 수광부(120) 사이에 위치하여 적외선이 진행하는, 감지대상물질이 투입되는 내부 표면의 적어도 일부에 금속층(131)이 형성된 광도파로(130);를 포함한다. 1 is a cross-sectional view of a non-dispersive infrared gas sensor according to an embodiment of the present invention. The non-dispersive infrared gas sensor 100 according to the present invention includes a light-emitting unit 110 including an infrared light-emitting device 111 that emits infrared light; A light-receiving unit 120 including an infrared light-receiving element 121 for receiving infrared light; And an optical waveguide 130 in which a metal layer 131 is formed on at least a part of an inner surface into which the sensing target material is injected, which is positioned between the light emitting unit 110 and the light receiving unit 120 to allow infrared rays to proceed.

비분산 적외선 가스센서(100)는 적외선을 이용하여 가스 상태의 샘플의 농도를 측정하는 센서이다. 적외선은 주파수가 물질을 구성하고 있는 분자의 고유진동수와 유사한 범위에 있기 때문에, 물질에 적외선이 부딪히면 전자기적 공진 현상을 일으켜 광파의 에너지가 효과적으로 흡수되어 강한 열이 발산된다. 액체나 기체 상태의 물질은 각각의 물질마다 특유한 파장의 적외선을 강하게 흡수하는 성질이 있다. 비분산 적외선 가스센서(100)는 이와 같은 적외선의 특성을 이용하여 감지대상물질의 농도를 측정한다. 즉, 감지대상물질을 광도파로에 투입하여 특정파장에서의 광세기의 감소를 측정하여 감지대상물질의 농도를 측정할 수 있다. The non-dispersive infrared gas sensor 100 is a sensor that measures the concentration of a gaseous sample using infrared rays. Since infrared rays have a frequency in a range similar to the natural frequency of molecules constituting a substance, when infrared rays collide with a substance, it causes an electromagnetic resonance phenomenon to effectively absorb the energy of the light wave and emit strong heat. Liquid or gaseous substances have the property of strongly absorbing infrared rays of a specific wavelength for each substance. The non-dispersive infrared gas sensor 100 measures the concentration of the object to be detected using the infrared characteristics. That is, the concentration of the detection target material can be measured by measuring a decrease in light intensity at a specific wavelength by inserting the detection target material into the optical waveguide.

본 발명에 따른 비분산 적외선 가스센서(100)는 적외선을 발광하는 적외선 발광소자(111)를 포함하는 발광부(110)와 적외선을 수광하는 적외선 수광소자(121)를 포함하는 수광부(120)가 서로 대향하여 위치한다. 도 1을 참조하면, 발광부(110)와 수광부(120)는 서로 대향하도록 위치되어 적외선이 발광 및 수광된다. The non-dispersive infrared gas sensor 100 according to the present invention includes a light-emitting unit 110 including an infrared light-emitting element 111 for emitting infrared light and a light-receiving unit 120 including an infrared light-receiving element 121 for receiving infrared rays. They are located opposite each other. Referring to FIG. 1, the light-emitting unit 110 and the light-receiving unit 120 are positioned to face each other to emit and receive infrared rays.

발광부(110)에서 발광된 적외선(화살표)은 광도파로(130)를 거쳐 수광부(120)의 수광소자에 도달하는데, 적외선 발광소자(111)가 적외선 램프인 경우 적외선이 적외선 발광소자(111)의 전체 표면을 통해 발광되므로 적외선은 광도파로(130)에 임의의 방향으로 진입한다. 적외선은 광도파로(130)의 내부 표면에서 반사되면서 수광부(120)측으로 진행하는데, 광도파로(130)에서 반사됨에 따라 광세기가 감소되어 발광부(110)에서의 광세기보다 수광부에서의 광세기가 감소된다. 또한, 감지대상물질이 광도파로(130)에 투입되는 경우, 감지대상물질의 특성에 따라 특정파장에서의 광세기가 더욱 감소되게 된다. Infrared light (arrow) emitted from the light-emitting unit 110 passes through the optical waveguide 130 and reaches the light-receiving element of the light-receiving unit 120. When the infrared light-emitting element 111 is an infrared lamp, the infrared light is the infrared light-emitting element 111 Since the light is emitted through the entire surface of the infrared ray enters the optical waveguide 130 in an arbitrary direction. Infrared light is reflected from the inner surface of the optical waveguide 130 and proceeds toward the light receiving unit 120. As the light is reflected from the optical waveguide 130, the light intensity is reduced, so that the light intensity at the light-receiving unit is less than the light intensity at the light-emitting unit 110. Is reduced. In addition, when the sensing target material is input into the optical waveguide 130, the light intensity at a specific wavelength is further reduced according to the characteristics of the sensing target material.

광도파로(130)는 감지대상물질이 투입되는 투입부(132); 감지대상물질이 배출되는 배출부(133); 및 적외선의 파장을 제한하는 광학필터부(134);를 포함할 수 있다. 광도파로(130) 소재는 구리(Cu) 또는 구리-아연(Cu-Zn) 합금(황동)을 포함할 수 있다. 감지대상물질은 발광부(110)측으로 투입되고, 수광부(120)측에서 배출된다. 적외선은 감지대상물질이 존재하면, 감지대상물질의 특성에 따라 특정파장대역의 광세기가 감소된다. 예를 들어, 감지대상물질이 알코올인 경우, 적외선은 3.4㎛ 또는 9.3㎛의 파장에서 알코올의 농도에 따라 광세기가 감소되어 감소된 적외선을 수광부(120)에서 수광하여 알코올의 농도를 측정할 수 있다. 광학필터부(134)는 측정을 원하는 감지대상물질의 특성에 따라 파장을 제한할 수 있는데, 예를들어 적외선의 파장을 3.4㎛ 또는 9.3㎛으로 제한할 수 있다. The optical waveguide 130 includes an input unit 132 into which a sensing target material is input; A discharge unit 133 from which the sensing target material is discharged; And an optical filter unit 134 for limiting the wavelength of infrared rays. The material of the optical waveguide 130 may include copper (Cu) or a copper-zinc (Cu-Zn) alloy (brass). The sensing target material is introduced into the light emitting unit 110 and discharged from the light receiving unit 120 side. In the case of infrared rays, when a sensing target material is present, the light intensity in a specific wavelength band is reduced according to the characteristics of the sensing target material. For example, when the detection target material is alcohol, the light intensity of infrared rays decreases according to the concentration of alcohol at a wavelength of 3.4 μm or 9.3 μm, and the reduced infrared rays are received by the light receiving unit 120 to measure the concentration of alcohol. have. The optical filter unit 134 may limit the wavelength according to the characteristics of the target material to be measured. For example, the wavelength of infrared rays may be limited to 3.4 μm or 9.3 μm.

본 발명에 따른 비분산 적외선 가스센서(100)는 광학필터부(134)와 수광부(120) 사이에 집광부(135);를 더 포함할 수 있다. 집광부(135)는 감지대상물질에 의해 광세기가 감소된 광을 적외선 수광소자(121)측으로 집광하여 비분산 적외선 가스센서(100)의 센서감도를 향상시킬 수 있다. 집광부(135)는 집광렌즈를 사용할 수 있다. The non-dispersive infrared gas sensor 100 according to the present invention may further include a condensing unit 135 between the optical filter unit 134 and the light receiving unit 120. The condensing unit 135 may improve the sensor sensitivity of the non-dispersive infrared gas sensor 100 by condensing light whose light intensity is reduced by the sensing target material toward the infrared light receiving element 121. The condensing part 135 may use a condensing lens.

본 발명에서는 감지대상물질에 의한 것이 아닌 광도파로(130)의 표면에서의 반사 손실에 따른 적외선의 광세기의 감소를 억제하여 센서의 감도를 향상시키기 위하여 광도파로(130)의 내부에 금속층(131)을 포함한다. 금속층(131)은 광도파로(130)의 내부 표면의 적어도 일부에 형성된다. 금속층(131)은 광도파로(130)의 적외선에 대한 광반사율을 높이기 위한 것으로서, 광도파로(130) 내부표면의 표면조도를 낮출 수 있는 것이 바람직하다. In the present invention, in order to improve the sensitivity of the sensor by suppressing a decrease in the light intensity of infrared rays due to a reflection loss from the surface of the optical waveguide 130, which is not caused by the object to be detected, a metal layer 131 is provided inside the optical waveguide 130. ). The metal layer 131 is formed on at least a part of the inner surface of the optical waveguide 130. The metal layer 131 is for increasing the light reflectance of the optical waveguide 130 to infrared rays, and it is preferable that the surface roughness of the inner surface of the optical waveguide 130 is reduced.

금속층(131)은 광도파로(130)표면에서 적외선의 광반사율을 높일 수 있는 것이 바람직한데, 금속층(131)은 반사율이 높은 금속을 포함할 수 있다. 반사율이 높은 금속으로는 금(Au), 은(Ag), 크롬(Cr), 알루미늄(Al), 몰리브덴(Mo), 티타늄(Ti) 또는 마그네슘(Mg) 및 이들의 합금을 사용하는 것이 바람직하다. The metal layer 131 is preferably capable of increasing the light reflectance of infrared rays on the surface of the optical waveguide 130, and the metal layer 131 may include a metal having high reflectivity. It is preferable to use gold (Au), silver (Ag), chromium (Cr), aluminum (Al), molybdenum (Mo), titanium (Ti) or magnesium (Mg), and alloys thereof as a metal with high reflectivity. .

광도파로(130)가 튜브형상인 경우, 내부 표면에 금속층(131)을 형성하는 방법으로는 도금공정이 수행될 수 있다. 도금공정을 수행하기 전에는 광도파로(130) 내부의 표면조도를 낮추기 위하여 금속관 내부를 화학적 연마하는 전처리단계가 수행될 수 있다. When the optical waveguide 130 has a tube shape, a plating process may be performed as a method of forming the metal layer 131 on the inner surface. Before performing the plating process, a pretreatment step of chemically polishing the inside of the metal tube may be performed in order to lower the surface roughness inside the optical waveguide 130.

금속층(131)을 형성하기 위한 도금공정으로, 무전해도금공정이 수행되는 것이 바람직하다. 전기장을 인가하는 전해도금의 경우, 광도파로(130)의 내부에 불균일한 도금층을 형성할 수 있으나, 무전해도금의 경우 내부 표면전체에 균일한 도금층 형성이 가능하여 적외선의 반사율이 균일하게 향상될 수 있다. As a plating process for forming the metal layer 131, it is preferable to perform an electroless plating process. In the case of electroplating applying an electric field, a non-uniform plating layer may be formed inside the optical waveguide 130, but in the case of electroless plating, a uniform plating layer can be formed over the entire inner surface, so that the reflectance of infrared rays is uniformly improved. I can.

금속층(131)은 광도파로(130)의 내부 표면의 표면조도를 낮출 수 있는 금속층과 광반사율이 높은 금속층을 포함할 수 있다. 금속층(131)은 예를 들어 니켈도금층 및 금도금층을 포함할 수 있는데, 니켈도금층으로 광도파로(130) 내부 표면의 표면조도를 낮추고, 금도금층으로 적외선의 광반사율을 높일 수 있다. 금속층(131)은 니켈을 예를 들어, 약 1 내지 3 ㎛ 두께 정도로 무전해 도금한 후에, 이어서 금을 0.1 ㎛ 정도로 얇게 무전해 도금하여 형성하면 표면조도 향상과 적외선 반사도 향상을 동시에 도모할 수 있다.The metal layer 131 may include a metal layer capable of lowering the surface roughness of the inner surface of the optical waveguide 130 and a metal layer having high light reflectance. The metal layer 131 may include, for example, a nickel plated layer and a gold plated layer. The nickel plated layer can lower the surface roughness of the inner surface of the optical waveguide 130, and the gold plated layer can increase the light reflectance of infrared rays. When the metal layer 131 is formed by electroless plating nickel, for example, about 1 to 3 µm thick, and then gold is electrolessly plated as thin as about 0.1 µm, it is possible to simultaneously improve surface roughness and infrared reflectivity. .

도 2는 도금전의 구리튜브의 단면들이고, 도 3은 도금 전의 구리호일의 이미지이다. 광도파로는 구리나 구리-아연합금과 같은 황동계 소재가 사용될 수 있다. 도 2는 구리튜브의 단면이고, 도 3은 구리호일의 단면들이다. 2 is a cross section of a copper tube before plating, and FIG. 3 is an image of a copper foil before plating. As the optical waveguide, a brass-based material such as copper or copper-zinc alloy may be used. 2 is a cross section of a copper tube, and FIG. 3 is a cross section of a copper foil.

이러한 구리튜브와 구리호일에 도금공정을 수행하면, 도 4 및 도 5와 같이 도금층이 형성된 것을 확인할 수 있다. 도 4는 도 2의 구리튜브를 Ni/Au도금(왼쪽) 및 Ni도금(오른쪽)한 후의 이미지이고, 도 5는 도 3의 구리호일을 Ni/Au도금(왼쪽)및 Ni도금(오른쪽)한 후의 이미지이다. 도 4의 좌측의 구리튜브 및 도 5의 좌측의 구리호일에는 3 ㎛ 두께의 Ni층을 형성하고, 그 위에 0.1 ㎛ 두께의 Au층을 형성하였고, 도 4의 우측의 구리튜브 및 도 5의 우측의 구리호일에는 3 ㎛ 두께의 Ni층을 무전해도금하여 형성하였다. When the plating process is performed on such a copper tube and a copper foil, it can be seen that a plating layer is formed as shown in FIGS. 4 and 5. 4 is an image after Ni/Au plating (left) and Ni plating (right) of the copper tube of FIG. 2, and FIG. 5 is an image obtained by plating the copper foil of FIG. 3 with Ni/Au plating (left) and Ni plating (right). This is the image of later. A 3 μm-thick Ni layer was formed on the copper tube on the left side of FIG. 4 and the copper foil on the left side of FIG. 5, and a 0.1 μm-thick Au layer was formed thereon, and the copper tube on the right side of FIG. 4 and the right side of FIG. 5 The copper foil of was formed by electroless plating a 3 µm-thick Ni layer.

도 4를 참조하면, 구리튜브와 같이 관형상의 경우에도 전체 표면에 금 또는 니켈층이 균일하게 형성되어 있음을 확인할 수 있는데, 이는 무전해도금공정을 수행하여 도금층을 형성하였기 때문이다. 도 5의 구리호일의 경우에도 도금층이 균일하게 형성되었음을 확인할 수 있다. Referring to FIG. 4, it can be seen that even in the case of a tubular shape such as a copper tube, a gold or nickel layer is uniformly formed on the entire surface, because a plating layer is formed by performing an electroless plating process. In the case of the copper foil of FIG. 5, it can be seen that the plating layer is uniformly formed.

도 6은 도금전 구리호일, Ni 도금 구리호일 및 Ni/Au 도금 구리호일의 적외선 반사도 측정결과를 도시한 그래프이다. 도 6은 FTIR (Nicolet 5700)장비를 이용하여 구리호일, 3 ㎛두께의 Ni 무전해 도금된 구리호일, 및 3 ㎛ Ni/0.1 ㎛ Au 무전해 도금된 구리호일의 도금 표면에서 적외선 반사도 측정한 결과를 나타낸다. Background는 표준 Au plate를 사용했으며, x축은 파수(cm-1) 이며, 4000내지 700 cm-1 (파장으로는 2.5 내지 14 ㎛)범위이다. 6 is a graph showing infrared reflectivity measurement results of a copper foil, a Ni-plated copper foil, and a Ni/Au-plated copper foil before plating. 6 is a result of measuring infrared reflectance on the plating surface of copper foil, 3 µm thick Ni electroless plated copper foil, and 3 µm Ni/0.1 µm Au electroless plated copper foil using FTIR (Nicolet 5700) equipment Represents. A standard Au plate was used as the background, and the x-axis is the wave number (cm -1 ), and it is in the range of 4000 to 700 cm -1 (2.5 to 14 µm in wavelength).

도 6을 참조하면, 구리호일의 적외선 반사도를 측정한 결과에 비하여, 구리 호일 상에 3 ㎛ Ni/0.1 ㎛ Au 복합도금층이 형성된 샘플의 경우 반사도가 증가함을 알 수 있다. 특히, 알코올의 적외선 흡수파장인 9.3㎛ 대역에서 반사도가 증가하는데, 이에 따라 본 발명에 따라 금속도금층이 내부표면에 형성된 광도파로를 이용하면, 알코올을 감지대상물질로 하는 비분산 적외선 가스센서의 감도가 향상될 수 있다. Referring to FIG. 6, it can be seen that the reflectivity is increased in the case of a sample in which a 3 µm Ni/0.1 µm Au composite plating layer is formed on a copper foil compared to the result of measuring the infrared reflectivity of the copper foil. In particular, the reflectivity increases in the 9.3 μm band, which is the infrared absorption wavelength of alcohol. Accordingly, when the optical waveguide having the metal plating layer formed on the inner surface according to the present invention is used, the sensitivity of the non-dispersive infrared gas sensor using alcohol as a sensing target material Can be improved.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.In the above, embodiments of the present invention have been described, but those of ordinary skill in the relevant technical field add, change, delete or add components within the scope not departing from the spirit of the present invention described in the claims. It will be possible to variously modify and change the present invention by means of the like, and it will be said that this is also included within the scope of the present invention.

100: 비분산 적외선 가스센서
110: 발광부
111: 적외선 발광소자
120: 금속후막층
121: 적외선 수광소자
130: 광도파로
131: 금속층
132: 투입부
133: 배출부
134: 광학필터부
135: 집광부
100: non-dispersive infrared gas sensor
110: light emitting unit
111: infrared light emitting device
120: metal thick film layer
121: infrared light receiving element
130: optical waveguide
131: metal layer
132: input section
133: discharge unit
134: optical filter unit
135: condensing unit

Claims (8)

적외선을 발광하는 적외선 발광소자를 포함하는 발광부;
적외선을 수광하는 적외선 수광소자를 포함하는 수광부; 및
발광부 및 수광부 사이에 위치하여 적외선이 진행하는, 감지대상물질이 투입되는 내부 표면의 적어도 일부에 감지대상물질에 의한 것이 아닌 광도파로의 표면에서의 반사 손실에 따른 적외선의 광세기의 감소를 억제하여 센서의 감도를 향상시키기 위한 금속층이 형성된 광도파로;를 포함하는 비분산 적외선 가스센서로서,
광도파로는 튜브형상이고,
광도파로는 구리 또는 구리-아연 합금을 포함하고,
금속층은 니켈도금층 및 금도금층을 포함하고,
광도파로는 표면이 화학적 연마된 후 무전해도금공정이 수행되어 내부 표면에 금속층이 도금된 것을 특징으로 하는 비분산 적외선 가스센서.
A light-emitting unit including an infrared light-emitting device that emits infrared light;
A light-receiving unit including an infrared light-receiving element for receiving infrared light; And
It is located between the light-emitting part and the light-receiving part, where infrared rays travel, and suppresses the decrease in the light intensity of infrared rays due to reflection loss from the surface of the optical waveguide not caused by the sensing target material on at least part of the inner surface into which the sensing target material is injected As a non-dispersive infrared gas sensor comprising; an optical waveguide on which a metal layer is formed for improving the sensitivity of the sensor,
The optical waveguide is in the shape of a tube,
The optical waveguide includes copper or a copper-zinc alloy,
The metal layer includes a nickel plated layer and a gold plated layer,
The optical waveguide is a non-dispersive infrared gas sensor, characterized in that after the surface is chemically polished, an electroless plating process is performed, and a metal layer is plated on the inner surface of the optical waveguide.
청구항 1에 있어서,
광도파로는,
감지대상물질이 투입되는 투입부;
감지대상물질이 배출되는 배출부; 및
적외선의 파장을 제한하는 광학필터부;를 포함하는 것을 특징으로 하는 비분산 적외선 가스센서.
The method according to claim 1,
As the optical waveguide,
An input unit into which the object to be detected is input;
A discharge unit through which the sensing target material is discharged; And
Non-dispersive infrared gas sensor comprising; an optical filter for limiting the wavelength of infrared rays.
청구항 2에 있어서,
광학필터부는 적외선의 파장을 3.4㎛ 또는 9.3㎛으로 제한하는 것을 특징으로 하는 비분산 적외선 가스센서.
The method according to claim 2,
The optical filter unit is a non-dispersive infrared gas sensor, characterized in that limiting the wavelength of the infrared to 3.4㎛ or 9.3㎛.
청구항 2에 있어서,
광학필터부와 수광부 사이에 집광부;를 더 포함하는 것을 특징으로 하는 비분산 적외선 가스센서.
The method according to claim 2,
Non-dispersive infrared gas sensor, characterized in that it further comprises a; condensing unit between the optical filter unit and the light receiving unit.
삭제delete 삭제delete 청구항 1에 있어서,
감지대상물질은 알코올인 것을 특징으로 하는 비분산 적외선 가스센서.
The method according to claim 1,
Non-dispersive infrared gas sensor, characterized in that the detection target material is alcohol.
삭제delete
KR1020180081561A 2018-07-13 2018-07-13 Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof KR102246452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180081561A KR102246452B1 (en) 2018-07-13 2018-07-13 Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180081561A KR102246452B1 (en) 2018-07-13 2018-07-13 Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20200007438A KR20200007438A (en) 2020-01-22
KR102246452B1 true KR102246452B1 (en) 2021-04-30

Family

ID=69368226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180081561A KR102246452B1 (en) 2018-07-13 2018-07-13 Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102246452B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072927A (en) 2021-11-18 2023-05-25 한국전자기술연구원 Multi focus infrared light source and non-dispersive infrared gas sensor using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494103B1 (en) * 2003-12-12 2005-06-10 (주)이엘티 Optical gas sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085552A (en) * 1994-06-14 1996-01-12 Tokuyama Corp Nondispersive infrared gas detector
KR100791961B1 (en) * 2004-12-24 2008-01-04 코리아디지탈 주식회사 Optical Structure of Non-dispersive Infrared Gas Analyzer
KR101108497B1 (en) * 2009-11-24 2012-01-31 한국과학기술연구원 NDIR Gas Sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494103B1 (en) * 2003-12-12 2005-06-10 (주)이엘티 Optical gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072927A (en) 2021-11-18 2023-05-25 한국전자기술연구원 Multi focus infrared light source and non-dispersive infrared gas sensor using the same

Also Published As

Publication number Publication date
KR20200007438A (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US8023115B2 (en) Sensor, sensing system and sensing method
US8969808B2 (en) Non-dispersive infrared sensor with a reflective diffuser
US20090213384A1 (en) Sensor, multichannel sensor, sensing apparatus, and sensing method
US7286235B2 (en) Long-range surface plasmon resonance device utilizing nano-scale porous dielectric and method of fabricating the same
CN101865840A (en) Surface plasmon resonance imaging sensing system
US9804089B2 (en) Sensing device for detecting a target substance
KR20050084016A (en) Method for generating electromagnetic field distributions
JP2011075513A (en) Gas spectroscopic analysis device
KR102246452B1 (en) Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof
CN102243175A (en) Surface plasma resonance light detection device based on ellipsoidal reflector light collection structure
KR101108497B1 (en) NDIR Gas Sensor
JP2006300738A (en) Gas sensor
FI118864B (en) refractometer
JP2010107231A (en) Infrared gas sensor
JP2007024870A (en) Sensor, and sensing device and method
JP2014032148A (en) Surface plasmon excitation enhanced fluorescence acquisition structure and surface plasmon excitation enhanced fluorescence measurement system
CN102608075A (en) Capillary surface plasmon resonance sensor
EP3961191B1 (en) Spectroscopic analysis device, optical system, and spectroscopic method
JP4560105B2 (en) Miniaturized surface plasmon resonance sensing chip
KR20090013434A (en) Measurement device of gas
KR102274264B1 (en) Slit antenna probe and defect inspection apparatus and method for multi-junction semiconductor using same
KR101222700B1 (en) Surface plasmon resonance system device
RU2673443C2 (en) Measuring cuvette for spectrometric measuring instrument
CN109283136A (en) Optical cavity with wide range
JP2007101242A (en) Sensing device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant