JP3829583B2 - Lighting fixture with sensor - Google Patents

Lighting fixture with sensor Download PDF

Info

Publication number
JP3829583B2
JP3829583B2 JP2000157349A JP2000157349A JP3829583B2 JP 3829583 B2 JP3829583 B2 JP 3829583B2 JP 2000157349 A JP2000157349 A JP 2000157349A JP 2000157349 A JP2000157349 A JP 2000157349A JP 3829583 B2 JP3829583 B2 JP 3829583B2
Authority
JP
Japan
Prior art keywords
heat ray
sensor
light
detection sensor
ray detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157349A
Other languages
Japanese (ja)
Other versions
JP2001338522A (en
Inventor
渉 田中
哲 山内
晋治 野口
加津己 渡辺
耕司 山本
慎一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000157349A priority Critical patent/JP3829583B2/en
Publication of JP2001338522A publication Critical patent/JP2001338522A/en
Application granted granted Critical
Publication of JP3829583B2 publication Critical patent/JP3829583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、センサ付照明器具に関するものである。
【0002】
【従来の技術】
近年、省エネルギ志向が高まりつつあり、人体などから放射される熱線を集光し人体等の検知を行う熱線検知センサの出力にて点灯制御するよう成したセンサ付照明器具が広く利用されつつある。
【0003】
この種の照明器具においては、例えばカバーとなるグローブを、照明器具の基本性能である可視光の透過性、拡散性、及び紫外線に対する耐劣化性能である耐候性以外に、遠赤外線である上記熱線を透過する、熱線領域の高率透過性能を十分に満足できる材料で形成することが理想である。
【0004】
しかし、従来、上記耐候性が良好で、且つグローブとして適した赤外線透過性の十分な合成樹脂材料がなかったため、図14に示すように、耐候性及び上記光学性能の良好なアクリル樹脂またはポリスチレン樹脂にてグローブBを形成し、熱線検知センサCの検知性能を確保するために、熱線検知センサCもしくはその集光用レンズDを照明器具の外側に露出する構成としていた。したがって、熱線検知センサCが目立って外観の見栄えが悪く、センサ付照明器具Aとしてのデザイン的な統一感も損なわれるという問題があった。
【0005】
【発明が解決しようとする課題】
ところで、特開平10−106340として開示されている、図15に示すように、器具本体E下面に光源ランプFと熱線検知センサCとを設けて、グローブBで覆い、同グローブBを、光源ランプFから発せられる可視光を透過し人体が発する熱線を透過しない第1材質部B1(例えばアクリル樹脂またはポリスチレン樹脂)と、熱線検知センサCに対向して設けられた光源ランプFからの可視光を透過するとともに人体が発する熱線を透過する第2材質部B2(例えばポリエチレン樹脂)とを備えた構成としている。したがって、従来のものよりも熱線検知センサCが視認されにくくなり、外観のデザイン性の向上も図れる。
【0006】
しかしながら、このグローブBの構成は、異なる樹脂材料どうしを組み合わせ接合するため、生産面で従来よりも工数が増え、また、上記接合部の違和感を無くすために装飾品を設けるなどの配慮も必要となって、その分コスト面で不利になることも懸念された。
【0007】
本発明は、上記事由に鑑みてなしたもので、その目的とするところは、照明器具外部から熱線検知センサを目立たなく設けることができて熱線検知センサの検知性能を確保できるセンサ付照明器具を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明のセンサ付照明器具にあっては、合成樹脂材料製のグローブにて覆われた光源ランプを、該グローブ内に配設されて人体などから放射される熱線を集光し人体等の検知を行う熱線検知センサの出力にて点灯制御するよう成したセンサ付照明器具において、グローブを、可視光及び3〜15μmの波長領域の熱線の双方が高率透過されるポリエチレン系樹脂にて、少なくとも熱線検知センサの受光面と対向するその検知領域を構成する立体角に含まれる受光部となる部分が、大略1.5mm以下の肉厚となるよう形成して成るとともに、光源ランプの略同一平面、又はそれより下方位置に熱線検知センサの受光面を設け、熱線検知センサ及び光源ランプ間に熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材を設けて成ることを特徴としている。
【0009】
この構成にて、人体などから放射される熱線を、グローブ内に配設された熱線検知センサに対してそのグローブ越しに検知させてそのグローブに覆われた光源ランプを点灯制御できる。したがって、熱線検知センサを器具外部から目立たなく設けることができて外観のデザイン性向上を図ることができる。そして、グローブを、汎用の安価な合成樹脂である、高密度ポリエチレン樹脂、中密度ポリエチレン樹脂などのポリエチレン系樹脂にて安いコストにて形成できる。また、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部越しに熱線が検知されるので、グローブを透過するに際しての熱線の減衰を比較的少なくして熱線検知センサの検知感度を維持できる。また、上記光源ランプの略同一平面、又はそれより下方位置に熱線検知センサの受光面を設け、同熱線検知センサ及び光源ランプ間に熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材を設けてなるので、光源から熱線検知センサへの放射熱が、それと光源ランプ間に設けられた熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材にて遮蔽される。
【0010】
また、上記グローブを、受光部以外の肉厚が受光部より厚くなるよう形成するのが好ましい。この場合、受光部の肉厚を薄くしてそれ以外の箇所の機械的強度を維持できる。
【0011】
また、上記検知領域を、前記の受光面、受光部のそれぞれの略中心間を結ぶ法線を軸とする立体角150度以下の範囲とするのが好ましい。この場合、グローブの受光部に対して15度以上の角度をもった熱線が熱線検知センサに入射するよう検知領域が形成される。したがって、受光部の領域を必要な範囲に限定してグローブを形成することができる。
【0012】
また、上記熱線検知センサを、その受光面に集光レンズを有するものとするのが好ましい。この場合、熱線検知センサの検知領域内の人体等は、その受光面となる集光レンズを介して、それから発せられる熱線がグローブ越しに確実に集光されて検知される。したがって、熱線検知センサの検知感度を、グローブ内面温度の影響をより少なくして維持できる。
【0014】
また、上記受光部に前記集光レンズと略同一光軸の受光レンズを形成するのが好ましい。この場合、熱線検知センサの検知領域内の人体等は、それから発せられる熱線が、熱線検知センサの集光レンズ、及びグローブの受光部に同集光レンズと略同一光軸となるよう設けられた受光レンズにて確実に集光されて検知される。したがって、熱線検知センサの検知感度を、グローブ内面温度の影響をさらに少なくして維持できる。
【0015】
また、上記の受光面及び受光部間の間隔を5mm以上とするのが好ましい。この場合、熱線検知センサが、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部越しに5mm以上離隔させて配設される。したがって、グローブを透過する熱線検知センサの受光面の視認性を低下できる。
【0016】
また、上記の受光部及び熱線検知センサ間に、可視光を遮蔽し熱線を透過する遮蔽部材を設けるのが好ましい。この場合、熱線検知センサが、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部と熱線検知センサとの間に配設された、可視光を遮蔽し熱線を透過する遮蔽部材越しに視認される。したがって、グローブを透過する熱線検知センサの受光面の視認性をより低下できる。
【0017】
また、上記熱線検知センサを、その受光面との色差ΔEが2以下の表面色をもった器具本体下面に設けるのが好ましい。この場合、熱線検知センサが、大略1.5mm以下の肉厚をもったポリエチレン系樹脂越しに、その受光面との色差ΔEが2以下の表面色をもった器具本体とともに視認される。したがって、グローブを透過する熱線検知センサの受光面の視認性をさらに低下できる。
【0019】
また、上記受光部以外のグローブ表面に帯電防止処理を施すのが好ましい。この場合、受光部以外のグローブ表面の帯電防止性能が確保され、且つ、熱線検知センサの検知感度も維持できる。
【0020】
【発明の実施の形態】
図1乃至図9は、本発明の、請求項1乃至4、6、8全てに対応する第1の実施の形態を示し、図10は、請求項5に対応する第2の実施の形態を示し、図11は、請求項7に対応する第3の実施の形態を示し。図12は、請求項に対応する第4の実施の形態を示し、図13は、請求項に対応する第5の実施の形態を示している。
【0021】
[第1の実施の形態]
図1は、本発明の第1の実施の形態のセンサ付照明器具を示す概略構成図、図2は、同センサ付照明器具のグローブを示す断面図、図3は、同センサ付照明器具の実施例の、グローブの材料比較を示す説明図、図4は、同センサ付照明器具の検知領域の説明図、図5は、同センサ付照明器具の受光部の肉厚と熱線透過率の関係を示す説明図、図6は、同センサ付照明器具の内部蓄熱状態の確認実験の説明図、図7は、同センサ付照明器具の、実施例の内部蓄熱状態の実験結果を示す説明図、図8は、同センサ付照明器具の他の実施例の説明図、図9は、同センサ付照明器具のさらに他の実施例の説明図である。
【0022】
この実施の形態のセンサ付照明器具1は、合成樹脂材料製のグローブ3にて覆われた光源ランプ4を、該グローブ3内に配設された、人体などから放射される熱線を集光し人体等の検知を行う熱線検知センサ6の出力にて点灯制御するよう成したセンサ付照明器具において、グローブ3を、可視光及び熱線の双方が高率透過される合成樹脂材料にて形成して成る。また、該実施の形態のセンサ付照明器具1は、合成樹脂材料を3〜15μmの波長領域の熱線を透過するポリエチレン系樹脂としてもいる。
【0023】
詳しくは、この実施の形態におけるセンサ付照明器具1は、住宅等の居住空間照明用のもので、図1に示すように天井Cに取り付けられて使用される。そして、丸形蛍光管にて形成された光源ランプ4と、この光源ランプ4を点灯させる器具本体5及び熱線検知センサ6とを備えており、これらは何れも3〜15μmの波長領域の熱線を透過するポリエチレン系樹脂製のグローブ3をその主要部とする外郭ケース内部に配設される。なお、この外郭ケースは、上記光源ランプ4の透光カバーとなるポリエチレン系樹脂材料として、透光性の高密度ポリエチレン樹脂にておわん状に形成されたグローブ3と、このグローブ3を着脱自在に取り付けるための鋼板製で略円板形の基台2とで構成されている。
【0024】
グローブ3は、詳しくは図2に示す形状で、後述する熱線検知センサ6の受光面61と対向するその検知領域を構成する立体角に含まれる受光部31となる部分が大略1.5mm以下の肉厚となるようにしており、この場合、受光部31以外の肉厚が受光部31より厚くなるよう形成している。この受光部31は、図1に示す如く、熱線検知センサ6による検知領域11が、その熱線検知センサ6の受光面61、受光部31のそれぞれの略中心間を結ぶ法線を軸とする立体角150度以下の範囲となるようにしている。受光部31を薄くする加工方法については、成形金型内にて肉厚を薄くする部分のみ凸状にすることが好ましく、他に、成形時にプラグ等で押すことにより部分的に肉厚を薄くした成形体を得ることも可能である。
【0025】
また、この実施例のものにおいては、グローブ3を、耐候性及び可視光領域の光の拡散性を向上させるために、比較例となる従来のアクリル樹脂のものと同様に耐候剤となる紫外線吸収剤、及び白色拡散剤を、図3に示すように分散させた材質のものを採用している。したがって、高密度ポリエチレン材料による成形体自体にて耐候性を維持するとともに、光源ランプ4及び熱線検知センサ6の視認性を、可視光の拡散効果にて低下させて外観の向上を図ることができる。そして、勿論、赤外線透過性も良好なことから、熱線検知センサ6の出力にて光源ランプ4を点灯制御することができ、また、光源ランプ4から発せられる熱を外部へ放熱する効果も奏することができる。そのため、合成樹脂製のグローブを用いた照明器具において従来から問題となっている、点灯時に部材どうしの接合部から異音が発生するという問題の抑制もできる。
【0026】
なお、この外郭ケース内には、光源ランプ4とともに、後述する器具本体5の点灯装置の一部となるプルスイッチの操作部分をスライド自在にガイドするガイド片(図示せず)が横向きに出退自在となるよう配設される。このガイド片の先端には、後述するプルスイッチの操作用の引きひもを挿通垂下させるガイド孔が穿設されている。
【0027】
器具本体5は、この場合、光源の蛍光管を高効率に点灯させる点灯装置として、電子安定器であるインバータ点灯回路を有して形成されている。この器具本体5には、その下面側に後述する熱線検知センサ6が設けられるが、その受光面61となる白色との色差ΔEが2以下の白色系の表面色をもったケース内に、このインバータ点灯回路に電源を供給する電源回路が設けられている。したがって、熱線検知センサ6が、大略1.5mm以下の肉厚をもった高密度ポリエチレン樹脂越しに、その受光面61との色差ΔEが2以下の表面色をもった器具本体5とともに視認されて目立ちにくいものとなる。なお、上記電源回路は、後述する熱線検知センサ6のセンサ本体部をへ電源を供給するようになっており、また、上記の電子安定器は、光源ランプ4の点滅操作を、後述する熱線検知センサ6のセンサ本体部とプルスイッチとにより行われるように構成されている。なお、このプルスイッチは、良く知られた接点式の点滅機構を備えた構造のものにて形成することができる。
【0028】
熱線検知センサ6は、上記電子安定器を制御し光源ランプ4を点灯させる出力回路と熱線検知センサ6全体の電源供給を行うセンサ電源回路とをもったセンサ本体部と、人体熱の検知を行ってその存在あるいは移動状態の検出を行うセンサ部とを備えている。このセンサ部は、人体から放射される熱線を感知する焦電センサと、焦電センサから出力される微弱な人体検知信号を電気的に増幅し信号処理を行う信号処理回路とが、熱線検知センサ6下面に配設された受光面61であって、該焦電センサへ向けて集光する熱線集光用のポリエチレン樹脂材料製ドーム状マルチレンズの内部に収容され一体化されている。
【0029】
この場合、受光面61は、上記したように器具本体5とは色差ΔEが2以下の表面色をもった白色系の表面色にて形成されているが、その視認性をさらに改善するために、受光面61及びグローブ3の受光部31間の間隔dを5mm以上としている。すなわち、熱線検知センサ6が、大略1.5mm以下の肉厚をもった高密度ポリエチレン樹脂の受光部31越しに、5mm以上離隔させて配設されることにて、グローブ3と熱線検知センサ6との距離がより接近してグローブ3を通して受光面61が映り出て見栄えが悪くのを解消し、色彩コントラスト面の配慮に加えて受光面61を目立ちにくくできる。その結果、グローブ3を透過する熱線検知センサ6の受光面61の視認性による外観の不具合をより改善している。
【0030】
上記のセンサ付照明器具1においては、まず、図1に示すように、器具本体5及び熱線検知センサ6の設けられた基台2が天井Cに取り付けられ、次いで、この基台2にグローブ3が回転されて係止されて使用される。なお、光源ランプ4は、ランプソケット(図示せず)を介して器具本体5の点灯装置と電気的に接続され且つランプホルダを介して所定位置に予め支持させている。
【0031】
そして、人体などから放射される熱線を、グローブ3内に配設された熱線検知センサ6に対してそのグローブ3越しに検知させて、そのグローブ3に覆われた光源ランプが点灯制御される。
【0032】
このとき、熱線検知センサ6の検知領域11が、グローブ3の受光部31に対して15度以上の角度をもった熱線が熱線検知センサ6の受光面61に入射するように形成される。すなわち、図4に示す如く、受光部31の接線と成す角度(θ)が15度以下においては、受光部31から受光面61を経て熱線検知センサ6に進入していく熱線の光路長が長くなって、到達するまでに減衰することとなるが、この場合、受光部31の領域を必要な範囲に限定してグローブ3を形成しており、さらに、受光部31による熱線の反射量も軽減されて熱線検知センサ6の検知感度を効果的に維持することができるのである。
【0033】
なお、熱線の減衰及び反射のみを解消する方策としては、外観意匠的に許される場合には、部分的に受光部31を突出し湾曲させても良いし(図示せず)、熱線の反射量をより軽減するためには、グローブ3の内外面の少なくとも一方の表面粗さをRa3.0μm以下もしくはRy10μm以下にしても良い。すなわち、成形体の表面粗さがこれら値以下とすることによっても、熱線あるいは光源ランプ4から発せられる可視光がグローブ3表面で反射されて透過性が低下し、その結果、赤外線人体検知センサの感度が低下したり、或いはランプからの光の透過率が低下することをより解消することができる。
【0034】
この場合、検知領域11を構成する、熱線検知センサ6の受光面61と対向する立体角に含まれる、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部31越しに熱線が検知される。すなわち、図5に示す、肉厚−熱線透過率の関係を示すグラフからも明らかなように、1.5mm以下の肉厚において直線的に熱線透過率が増加していることから、熱線検知センサの検知感度を維持するためには、受光部31となる部分は大略1.5mm以下の肉厚となるよう形成するのが好ましい。この肉厚寸法は、グローブ3の強度面での性能確保、あるいは成型加工の生産面からみたときには、その最小寸法を0.4mm以上にすることが好ましい。そのため、上記グローブ3を、受光部31以外の肉厚が受光部31より厚くなるよう形成している。すなわち、受光部31の肉厚を薄くしてそれ以外の箇所の機械的強度を維持できて、且つ、熱線検知センサ6の検知感度も維持できて、任意の形状にグローブ3を形成可能となる。
【0035】
このセンサ付照明器具による場合、グローブ3内の光源ランプ4から発せられる熱をグローブ3を透過して外部へ放出させることができるが、次に、このことについての確認実験内容を説明する。この確認実験においては、前述したように、図3の材料比較表に基づく1mm程度の肉厚をもった高密度ポリエチレン樹脂製(実施例)及び、アクリル樹脂製(比較例)のグローブ3を、熱線検知センサ6を有していないものの基台2に装着させて、40Wの丸形蛍光管による光源ランプ4を連続点灯させ、(1)乃至(4)に示す各箇所の表面温度を、当該各部の温度変化の安定した後に計測した。計測結果を比較した比較表を図7に示す。
【0036】
このときの各部表面温度は、照明器具外側−電子安定器上(1)にて3.8度、光源ランプ管壁-ホルダー横(2)にて2.7度、器具本体内側−電子安定器上(3)にて4.2度、及びグローブ内面−中心(4)にて5度の温度差だけ、高密度ポリエチレン樹脂製のものがアクリル樹脂製のものより表面温度が低く、器具内部に熱が蓄積されにくいことが解る。特に、(4)に示す熱線検知センサ6の検知視野内となるグローブ6内面の温度が、従来の技術の項で述べた、図15に示すような構成のものと比較しても、30度の周囲温度において5度程度低いことから、熱線検知センサ6の検知性能を良好に確保できることが解る。
【0037】
なお、この表において、全光線透過率、すなわち可視光領域の波長の光透過率と、熱線すなわち人体表面温度程度の遠赤外線領域の波長の光透過率を示している。これによると、全光線透過率が、比較例のものが62.2%に対して実施例のものは42%で、また、熱線が、比較例のものが6.1%に対して実施例のものは39.7%であり、このものにおいて可視光及び熱線の双方が高率透過されるのが解る。
【0038】
また、この場合、実施例のものは、熱線検知センサ6の検知視野内であるグローブ内面における表面温度測定値が37.8度であるにも関わらず、器具本体5に熱線検知センサ6を設けたときには良好に人体を検知している。このことから、このものの熱線検知センサ6をその受光面61に集光レンズを有するものとしているので、熱線検知センサ6の検知領域11内の人体、すなわちその表面温度の32〜34度程度の熱源が、受光面61となる集光レンズを介して、近傍の38度程度の温度をもった透過面となるグローブ3越しに焦点を結んで、確実に集光されて検知されることが解る。
【0039】
表中に示した拡散率は、グローブ表面の所定角度方向の可視光による輝度値を求めて、直接透過する可視光による輝度値との比率を所定の計算式に基づいて算出したもので、拡散剤の量によっても異なるものである。(比較例のものが53%であるのに対しこの実施例においては78.2%であり拡散剤による効果が顕著であることが解る。)
【0040】
したがって、以上説明したセンサ付照明器具1によると、人体などから放射される熱線を、グローブ3内に配設された熱線検知センサ6に対してそのグローブ3越しに検知させてそのグローブ3に覆われた光源ランプ4を点灯制御できるので、熱線検知センサ6を器具外部から目立たなく設けることができて外観のデザイン性向上を図ることができて、熱線検知センサ6の検知性能を確保できる。
【0041】
そして、グローブ3を、汎用の安価な合成樹脂である、高密度ポリエチレン樹脂、中密度ポリエチレン樹脂などのポリエチレン系樹脂にて安いコストにて形成できる。また、熱線検知センサ6の検知領域11内の人体等は、その受光面61となる集光レンズを介して、それから発せられる熱線がグローブ3越しに確実に集光されて検知されるので、熱線検知センサ6の検知感度を、グローブ3内面温度の影響をより少なくして維持できる。
【0042】
また、熱線検知センサ6の検知領域11を構成する、熱線検知センサ6の受光面61と対向する立体角に含まれる、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部31越しに熱線が検知されるので、グローブ3を透過するに際しての熱線の減衰を比較的少なくして熱線検知センサ6の検知感度を維持でき、しかも、受光部31の肉厚を薄くしてそれ以外の箇所の機械的強度を維持できる。また、グローブ3の受光部31に対して15度以上の角度をもった熱線が熱線検知センサ6に入射するよう検知領域11が形成されるので、受光部31の領域を必要な範囲に限定してグローブ3を形成できる。
【0043】
また、熱線検知センサ6が、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部31越しに5mm以上離隔させて配設されるので、グローブ3を透過する熱線検知センサ6の受光面61の視認性を低下でき、しかも、熱線検知センサ6が、その受光面61との色差ΔEが2以下の表面色をもった器具本体5とともに視認されるので、グローブ3を透過する熱線検知センサ6の受光面61の視認性をさらに低下できる。
【0044】
なお、本発明は、上記に示されたもの以外に、例えば、図8に示すように、グローブ3外面に装飾を施したもの、あるいは図9の(a)正面図、(b)側面断面図に示すように、グローブに替えて、可視光及び熱線の双方が高率透過される合成樹脂材料のブラケット7にて光源及び熱線検知センサを覆ったもの等、各種実施形態のセンサ付照明器具を含むことは言うまでもない。
【0045】
[第2の実施の形態]
図10は、第2の実施の形態のセンサ付照明器具を示す概略構成図である。
【0046】
この実施の形態のセンサ付照明器具は、グローブの受光部の構成のみが第1の実施の形態と異なるもので、他の構成部材は第1の実施の形態のものと同一で、該実施の形態のセンサ付照明器具は、図10に示すように、受光部31に前記熱線検知センサ6の集光レンズと略同一光軸の受光レンズ32を形成している。
【0047】
詳しくは、このもののグローブ3は、受光部31となる部分が大略1.5mm以下の肉厚となるようにして複数の凸レンズ32aを、その光軸が熱線検知センサ6下面で受光面61となる前記のポリエチレン樹脂材料製ドーム状マルチレンズと略一致させて形成している。なお、この受光レンズ32は、上記の凸レンズ以外に、フレネルレンズによっても形成することができる。この場合、比較的短い焦点距離をもって開口面積の大きい受光レンズを容易に形成することが可能となる。
【0048】
したがって、以上説明したセンサ付照明器具1によると、熱線検知センサ6の検知領域11内の人体等は、それから発せられる熱線が、熱線検知センサ6の集光レンズ、及びグローブ3の受光部31に同集光レンズと略同一光軸となるよう設けられた受光レンズ32にて確実に集光されて検知されるので、熱線検知センサ6の検知感度を、グローブ3内面温度の影響をさらに少なくして維持できる。
【0049】
[第3の実施の形態]
図11は、第3の実施の形態のセンサ付照明器具の概略構成を示す説明図である。
【0050】
この実施の形態のセンサ付照明器具は、遮蔽部材を設ける構成のみが第1の実施の形態と異なるもので、他の構成部材は第1の実施の形態のものと同一で、該実施の形態のセンサ付照明器具は、図11に示すように、前記の受光部31及び熱線検知センサ6間に、可視光を遮蔽し熱線を透過する遮蔽部材8を設けている。
【0051】
詳しくは、遮蔽部材8は、可視光を遮蔽し熱線を透過させる材料として高密度ポリエチレン樹脂を用いて、図11(a)に示すものは肉厚0.4mm程度のシート材を、真空成形加工を行って半球のカップ状としてあり、熱線検知センサ6を覆うようにして器具本体5の下面に設けられている。なお、この高密度ポリエチレン樹脂は、紫外線吸収剤及び白色拡散剤を添加させたものを使用している。
【0052】
したがって、以上説明したセンサ付照明器具1によると、熱線検知センサ6が、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部31と熱線検知センサ6との間に配設された、可視光を遮蔽し熱線を透過する遮蔽部材8越しに視認されるので、グローブ3を透過する熱線検知センサ6の受光面61の視認性をより低下できる。
【0053】
なお、この遮蔽部材8については、上記によるものの他、図11(b)に示すように、上記シート材をメッシュ状として熱線の透過率を向上させたもの、あるいは、図11(c)に示すように四角錐台状に形成したもの、あるいは、図11(d)に示すように、四角錐台状にし、そのシート材をメッシュ状としたものなど、熱線検知センサ6の機能に影響を及ぼさない形状であれば各種の構成とすることができる。
【0054】
[第4の実施の形態]
図12は、第4の実施の形態のセンサ付照明器具の概略構成を示す説明図である。
【0055】
この実施の形態のセンサ付照明器具は、熱線遮蔽部材を設ける構成のみが第1の実施の形態と異なるもので、他の構成部材は第1の実施の形態のものと同一で、該実施の形態のセンサ付照明器具は、図12(a)に示すように、光源ランプ4の略同一平面、又はそれより下方位置に熱線検知センサ6の受光面61を設け、同熱線検知センサ6及び光源ランプ4間に熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材9を設けている。
【0056】
詳しくは、熱線遮蔽部材9は、光源ランプ4から発する熱線にて前記熱線検知センサ6が感度低下したり、光源ランプ4消灯後に気流などの影響でその熱が熱線検知センサ6に及んで誤動作したりするのを防止するためのもので、この場合、器具本体5下面に一体となるよう装着された円環状部材にて形成されている。また、この熱線遮蔽部材9は、グローブ3越しに視認されにくようにするために可視光を透過する材料としてある。この条件に見合う材料としては、アクリル樹脂、ポリカーボネイト樹脂などの合成樹脂材料や、ガラス材料等が挙げられるが、耐候性すなわち耐紫外線特性の良好で成型性の良好なアクリルを使用することが好ましい。
【0057】
したがって、以上説明したセンサ付照明器具1によると、光源ランプ4から熱線検知センサ6への放射熱が、それと光源ランプ4間に設けられた熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材9にて遮蔽されるので、光源ランプ4の熱に起因する誤動作要因を無くして検知性能をより安定化できる。
【0058】
なお、熱線遮蔽部材の形状については、特に限定されるものではないが、例えば、図12(b)に示すように、例えば熱線検知センサ6の受光面61周囲に一体化して装着するもの等、熱線検知センサ6の受光面61に向けて熱線を集光できる形状であれば特に限定されない。
【0059】
[第5の実施の形態]
図13は、第5の実施の形態のセンサ付照明器具の概略構成を示す説明図である。
【0060】
この実施の形態のセンサ付照明器具は、グローブ表面に帯電防止処理をする構成のみが第1の実施の形態と異なるもので、他の構成部材は第1の実施の形態のものと同一で、該実施の形態のセンサ付照明器具は、図13(a)に示すように、前記受光部31以外のグローブ3表面に帯電防止処理を施して成る。
【0061】
詳しくは、このもののグローブ3は、グローブ3の透過カバーとしての実用性を考慮して、グローブ3表面に埃が付着しないよう帯電防止層10を構成させている。この場合、図12(b)の詳細図の如く、グローブ3の外面に帯電防止層を設けている。したがって、カバー内部全体に帯電防止剤を分散させるもののように、赤外線がカバー内部を入射し透過するまでの間に帯電防止剤に反射される回数が多くなって、受光部31において透過性が低くなりセンサ感度が低下することが軽減される。
【0062】
この帯電防止層10を設ける方法としては、グローブ3を成形加工した後に、塗装、印刷等の方法でグローブ3表面に親水性塗料を塗布し、次いで、受光部31の部分のみマスキング処理を行った後帯電防止層を設ける方法、或いは、プラズマ処理にて、グローブ3表面を親水性を持たせて同様に帯電防止層を設ける方法等、各種の方法により達成できる。
【0063】
したがって、以上説明したセンサ付照明器具1によると、受光部31以外のグローブ3表面の帯電防止性能が確保され、且つ、熱線検知センサ6の検知感度も維持できる。
【0064】
【発明の効果】
本発明は、上述の実施態様の如く実施されて、請求項1記載のセンサ付照明器具にあっては、人体などから放射される熱線を、グローブ内に配設された熱線検知センサに対してそのグローブ越しに検知させてそのグローブに覆われた光源ランプを点灯制御できるので、熱線検知センサを器具外部から目立たなく設けることができて外観のデザイン性向上を図ることができる。また、グローブを、汎用の安価な合成樹脂である、高密度ポリエチレン樹脂、中密度ポリエチレン樹脂などのポリエチレン系樹脂にて安いコストにて形成できる。さらに、熱線検知センサの検知領域を構成する、熱線検知センサの受光面と対向する立体角に含まれる、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部越しに熱線が検知されるので、グローブを透過するに際しての熱線の減衰を比較的少なくして熱線検知センサの検知感度を維持できる。また、上記光源ランプの略同一平面、又はそれより下方位置に熱線検知センサの受光面を設け、同熱線検知センサ及び光源ランプ間に熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材を設けてなるので、光源から熱線検知センサへの放射熱が、それと光源ランプ間に設けられた熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材にて遮蔽される。
【0065】
また、請求項2記載のセンサ付照明器具にあっては、受光部の肉厚を薄くしてそれ以外の箇所の機械的強度を維持できる。
【0066】
また、請求項3記載のセンサ付照明器具にあっては、グローブの受光部に対して15度以上の角度をもった熱線が熱線検知センサに入射するよう検知領域が形成されるので、受光部の領域を必要な範囲に限定してグローブを形成することができる。
【0067】
また、請求項4記載のセンサ付照明器具にあっては、熱線検知センサの検知領域内の人体等は、その受光面となる集光レンズを介して、それから発せられる熱線がグローブ越しに確実に集光されて検知されるので、熱線検知センサの検知感度を、グローブ内面温度の影響をより少なくして維持できる。
【0070】
また、請求項記載のセンサ付照明器具にあっては、熱線検知センサの検知領域内の人体等は、それから発せられる熱線が、熱線検知センサの集光レンズ、及びグローブの受光部に同集光レンズと略同一光軸となるよう設けられた受光レンズにて確実に集光されて検知されるので、熱線検知センサの検知感度を、グローブ内面温度の影響をさらに少なくして維持できる。
【0071】
また、請求項記載のセンサ付照明器具にあっては、熱線検知センサが、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部越しに5mm以上離隔させて配設されるので、グローブを透過する熱線検知センサの受光面の視認性を低下できる。
【0072】
また、請求項記載のセンサ付照明器具にあっては、熱線検知センサが、大略1.5mm以下の肉厚をもったポリエチレン系樹脂の受光部と熱線検知センサとの間に配設された、可視光を遮蔽し熱線を透過する遮蔽部材越しに視認されるので、グローブを透過する熱線検知センサの受光面の視認性をより低下できる。
【0073】
また、請求項記載のセンサ付照明器具にあっては、熱線検知センサが、大略1.5mm以下の肉厚をもったポリエチレン系樹脂越しに、その受光面との色差ΔEが2以下の表面色をもった器具本体とともに視認されるので、グローブを透過する熱線検知センサの受光面の視認性をさらに低下できる。
【0075】
また、請求項記載のセンサ付照明器具にあっては、受光部以外のグローブ表面の帯電防止性能が確保され、且つ、熱線検知センサの検知感度も維持できる。
【0076】
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のセンサ付照明器具を示す概略構成図である。
【図2】同センサ付照明器具のグローブを示す断面図である。
【図3】同センサ付照明器具の実施例の、グローブの材料比較を示す説明図である。
【図4】同センサ付照明器具の検知領域の説明図である。
【図5】同センサ付照明器具の受光部の肉厚と熱線透過率の関係を示す説明図である。
【図6】同センサ付照明器具の内部蓄熱状態の確認実験の説明図である。
【図7】同センサ付照明器具の、実施例の内部蓄熱状態の実験結果を示す説明図である。
【図8】同センサ付照明器具の他の実施例の説明図である。
【図9】同センサ付照明器具のさらに他の実施例の説明図である。
【図10】第2の実施の形態のセンサ付照明器具を示す概略構成図である。
【図11】第3の実施の形態のセンサ付照明器具の概略構成を示す説明図である。
【図12】第4の実施の形態のセンサ付照明器具の概略構成を示す説明図である。
【図13】第5の実施の形態のセンサ付照明器具の概略構成を示す説明図である。
【図14】本発明の従来例であるセンサ付照明器具を示す概略構成図である。
【図15】同センサ付照明器具の他の構成を示す概略構成図である。
【符号の説明】
1 センサ付照明器具
3 グローブ
31 受光部
32 受光レンズ
4 光源ランプ
5 器具本体
6 熱線検知センサ
61 受光面
8 遮蔽部材
9 熱線遮蔽部材
11 検知領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor-equipped lighting fixture.
[0002]
[Prior art]
In recent years, energy-saving intentions are increasing, and sensor-equipped lighting fixtures that control lighting with the output of a heat ray detection sensor that collects heat rays emitted from the human body and detects the human body are becoming widely used. .
[0003]
In this type of lighting fixture, for example, the heat rays that are far infrared rays are used in addition to the visible light transmittance, diffusibility, and weather resistance, which is the deterioration resistance against ultraviolet rays, which are the basic performance of the lighting fixture. Ideally, it should be formed of a material that can sufficiently satisfy the high rate transmission performance in the heat ray region.
[0004]
However, since there has not been a synthetic resin material with good weather resistance and sufficient infrared transparency suitable as a glove, an acrylic resin or polystyrene resin with good weather resistance and optical performance as shown in FIG. In order to form the globe B and secure the detection performance of the heat ray detection sensor C, the heat ray detection sensor C or its condensing lens D is exposed to the outside of the lighting fixture. Therefore, there is a problem that the heat ray detection sensor C is conspicuous, the appearance is not good, and the design unification as the sensor-equipped lighting fixture A is also impaired.
[0005]
[Problems to be solved by the invention]
By the way, as shown in FIG. 15 disclosed in Japanese Patent Application Laid-Open No. 10-106340, a light source lamp F and a heat ray detection sensor C are provided on the lower surface of the instrument body E and covered with a globe B. Visible light emitted from the first material part B1 (for example, acrylic resin or polystyrene resin) that transmits visible light emitted from F and does not transmit heat rays emitted by the human body, and visible light from the light source lamp F provided facing the heat ray detection sensor C. A second material portion B2 (for example, polyethylene resin) that transmits heat rays generated by the human body while transmitting is provided. Therefore, the heat ray detection sensor C is less visible than the conventional one, and the appearance design can be improved.
[0006]
However, since the configuration of the globe B is made by joining different resin materials in combination, the number of man-hours in production is increased as compared to the conventional method, and consideration is required for providing decorations to eliminate the uncomfortable feeling at the joint. As a result, there were concerns that it would be disadvantageous in terms of cost.
[0007]
The present invention has been made in view of the above reasons, and the object of the present invention is to provide a sensor-equipped luminaire that can provide a heat ray detection sensor inconspicuously from the outside of the luminaire and ensure the detection performance of the heat ray detection sensor. It is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the sensor-equipped lighting fixture of the present invention, a light source lamp covered with a glove made of a synthetic resin material is disposed in the glove and is a heat ray emitted from a human body or the like. In a sensor-equipped lighting fixture that controls lighting with the output of a heat ray detection sensor that collects light and detects a human body etc., both visible light and heat rays in the wavelength region of 3 to 15 μm are transmitted through the globe at a high rate. In the polyethylene-based resin, at least the portion that becomes the light receiving portion included in the solid angle that constitutes the detection region facing the light receiving surface of the heat ray detection sensor is formed to have a thickness of approximately 1.5 mm or less.In addition, a heat ray shielding member made of a synthetic resin material that provides a light receiving surface of the heat ray detection sensor at substantially the same plane of the light source lamp or at a position below it, shields the heat ray between the heat ray detection sensor and the light source lamp, and transmits visible light. EstablishedIt is characterized by that.
[0009]
With this configuration, it is possible to control the lighting of the light source lamp covered by the glove by causing the heat ray radiated from the human body or the like to be detected through the glove by the heat ray detection sensor disposed in the glove. Therefore, the heat ray detection sensor can be provided inconspicuously from the outside of the instrument, and the appearance design can be improved. The globe can be formed at a low cost with a polyethylene resin such as a high-density polyethylene resin or a medium-density polyethylene resin, which is a general-purpose inexpensive synthetic resin. In addition, since heat rays are detected through the light receiving part of polyethylene resin having a wall thickness of approximately 1.5 mm or less, the attenuation of the heat rays when passing through the globe is relatively reduced, and the detection sensitivity of the heat ray detection sensor is increased. Can be maintained.In addition, a light-receiving surface of a heat ray detection sensor is provided on substantially the same plane of the light source lamp or below the light source lamp, and a heat ray shield made of a synthetic resin material that shields heat rays and transmits visible light between the heat ray detection sensor and the light source lamp. Since the member is provided, the radiant heat from the light source to the heat ray detection sensor is shielded by a heat ray shielding member made of a synthetic resin material that shields the heat ray provided between the light source lamp and the light source lamp and transmits visible light.
[0010]
  Also,It is preferable to form the globe so that the thickness other than the light receiving portion is thicker than that of the light receiving portion. In this case, it is possible to reduce the thickness of the light receiving portion and maintain the mechanical strength of other portions.
[0011]
  Also,It is preferable that the detection region is in a range of a solid angle of 150 degrees or less with a normal line connecting the approximate centers of the light receiving surface and the light receiving portion as axes. In this case, the detection region is formed such that heat rays having an angle of 15 degrees or more with respect to the light receiving portion of the globe enter the heat ray detection sensor. Therefore, the globe can be formed by limiting the region of the light receiving portion to a necessary range.
[0012]
  Also,The heat ray detection sensor preferably has a condensing lens on its light receiving surface. In this case, the human body or the like in the detection region of the heat ray detection sensor is detected by reliably collecting the heat rays emitted from it through the condensing lens serving as the light receiving surface. Therefore, the detection sensitivity of the heat ray detection sensor can be maintained with less influence of the temperature of the inner surface of the globe.
[0014]
Further, it is preferable that a light receiving lens having substantially the same optical axis as that of the condenser lens is formed in the light receiving portion. In this case, the human body or the like in the detection region of the heat ray detection sensor is provided so that the heat rays emitted from the human body are substantially the same optical axis as the light collection unit of the heat ray detection sensor and the light receiving portion of the globe. The light is reliably collected and detected by the light receiving lens. Therefore, it is possible to maintain the detection sensitivity of the heat ray detection sensor while further reducing the influence of the inner surface temperature of the globe.
[0015]
Moreover, it is preferable that the space | interval between said light-receiving surface and light-receiving part shall be 5 mm or more. In this case, the heat ray detection sensor is disposed at a distance of 5 mm or more over the light receiving part of polyethylene resin having a thickness of approximately 1.5 mm or less. Therefore, the visibility of the light receiving surface of the heat ray detection sensor that passes through the globe can be reduced.
[0016]
In addition, a shielding member that shields visible light and transmits heat rays is preferably provided between the light receiving unit and the heat ray detection sensor. In this case, the heat ray detection sensor is disposed between a polyethylene resin light-receiving portion having a thickness of approximately 1.5 mm or less and a heat ray detection sensor, which passes through a shielding member that shields visible light and transmits heat rays. Visible to. Therefore, the visibility of the light receiving surface of the heat ray detection sensor that passes through the globe can be further reduced.
[0017]
Moreover, it is preferable to provide the said heat ray detection sensor in the instrument main body lower surface with the surface color whose color difference (DELTA) E with respect to the light-receiving surface is 2 or less. In this case, the heat ray detection sensor is visually recognized together with the instrument body having a surface color having a color difference ΔE of 2 or less with respect to the light receiving surface through a polyethylene resin having a thickness of approximately 1.5 mm or less. Therefore, the visibility of the light receiving surface of the heat ray detection sensor that passes through the globe can be further reduced.
[0019]
Moreover, it is preferable to apply an antistatic treatment to the surface of the globe other than the light receiving portion. In this case, antistatic performance on the surface of the globe other than the light receiving portion is ensured, and the detection sensitivity of the heat ray detection sensor can be maintained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1 to 9 show a first embodiment corresponding to all of claims 1 to 4, 6 and 8 of the present invention, and FIG. 10 shows a second embodiment corresponding to claim 5. FIG. 11 shows a third embodiment corresponding to the seventh aspect. FIG. 12 claims1FIG. 13 shows a fourth embodiment corresponding to FIG.9The 5th Embodiment corresponding to is shown.
[0021]
[First Embodiment]
FIG. 1 is a schematic configuration diagram showing a sensor-equipped lighting fixture according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a glove of the sensor-equipped lighting fixture, and FIG. FIG. 4 is an explanatory diagram showing a comparison of the materials of the glove of the example, FIG. 4 is an explanatory diagram of a detection region of the lighting fixture with the sensor, and FIG. 5 is a relationship between the thickness of the light receiving portion of the lighting fixture with the sensor and the heat ray transmittance FIG. 6 is an explanatory diagram of an experiment for confirming the internal heat storage state of the illuminating device with the sensor, and FIG. 7 is an explanatory diagram illustrating an experimental result of the internal heat storage state of the embodiment of the luminaire with the sensor, FIG. 8 is an explanatory view of another embodiment of the lighting fixture with the sensor, and FIG. 9 is an explanatory view of yet another embodiment of the lighting fixture with the sensor.
[0022]
The sensor-equipped lighting fixture 1 of this embodiment collects heat rays emitted from a human body or the like disposed in the globe 3 by using a light source lamp 4 covered with a globe 3 made of a synthetic resin material. In a sensor-equipped lighting fixture that is controlled to be turned on by the output of a heat ray detection sensor 6 that detects a human body or the like, the globe 3 is formed of a synthetic resin material that transmits both visible light and heat rays at a high rate. Become. Moreover, the sensor-equipped lighting fixture 1 of the embodiment uses a synthetic resin material as a polyethylene-based resin that transmits heat rays in a wavelength region of 3 to 15 μm.
[0023]
Specifically, the sensor-equipped luminaire 1 in this embodiment is for illumination of a living space such as a house, and is used by being attached to a ceiling C as shown in FIG. And it has the light source lamp 4 formed with the round fluorescent tube, the instrument main body 5 which turns on this light source lamp 4, and the heat ray detection sensor 6, and these are all the heat rays of the wavelength range of 3-15 micrometers. The glove 3 made of a polyethylene-based resin that permeates is disposed inside the outer case having the main part thereof. The outer case includes a globe 3 formed in a bowl shape in translucent high-density polyethylene resin as a polyethylene-based resin material for the light-transmitting cover of the light source lamp 4, and the globe 3 is detachable. It is made of a steel plate for mounting and is constituted by a substantially disc-shaped base 2.
[0024]
The globe 3 has the shape shown in FIG. 2 in detail, and the portion that becomes the light receiving portion 31 included in the solid angle that constitutes the detection region facing the light receiving surface 61 of the heat ray detection sensor 6 described later is approximately 1.5 mm or less. In this case, the thickness other than the light receiving portion 31 is formed to be thicker than that of the light receiving portion 31. As shown in FIG. 1, the light receiving unit 31 has a three-dimensional structure in which the detection region 11 by the heat ray detection sensor 6 has a normal line connecting the light receiving surface 61 of the heat ray detection sensor 6 and the respective approximate centers of the light receiving unit 31 as axes. The angle is within a range of 150 degrees or less. As for the processing method for thinning the light receiving portion 31, it is preferable that only the portion where the thickness is reduced in the molding die is convex, and the thickness is partially reduced by pressing with a plug or the like during molding. It is also possible to obtain a molded body.
[0025]
  Moreover, in the thing of this Example, in order to improve the weather resistance and the diffusibility of light in the visible light region, the globe 3 absorbs ultraviolet rays as a weathering agent as in the case of a conventional acrylic resin as a comparative example. As shown in FIG. 3, a material in which the agent and the white diffusing agent are dispersed is employed. Therefore, while maintaining the weather resistance with the molded body itself made of the high-density polyethylene material, the visibility of the light source lamp 4 and the heat ray detection sensor 6 can be reduced by the visible light diffusion effect to improve the appearance. . And of course, since the infrared ray transmission is also good, the light source lamp 4 is turned on by the output of the heat ray detection sensor 6.Lighting control can beMoreover, the effect which thermally radiates the heat | fever emitted from the light source lamp 4 to the exterior can also be show | played. Therefore, it is possible to suppress the problem that abnormal noise is generated from the joint portion between the members at the time of lighting, which has been a problem in the lighting fixture using the synthetic resin globe.
[0026]
In the outer case, a guide piece (not shown) for slidingly guiding an operation portion of a pull switch, which is a part of a lighting device of the fixture body 5 described later, together with the light source lamp 4 is retracted horizontally. Arranged to be free. A guide hole is formed at the tip of the guide piece to insert and hang a pull cord for pull switch operation, which will be described later.
[0027]
In this case, the fixture body 5 is formed with an inverter lighting circuit, which is an electronic ballast, as a lighting device for lighting the fluorescent tube of the light source with high efficiency. The appliance main body 5 is provided with a heat ray detection sensor 6 to be described later on the lower surface side thereof, but in a case having a white surface color whose color difference ΔE with respect to white as the light receiving surface 61 is 2 or less. A power supply circuit that supplies power to the inverter lighting circuit is provided. Therefore, the heat ray detection sensor 6 is visually recognized together with the instrument main body 5 having a surface color with a color difference ΔE of 2 or less through the high-density polyethylene resin having a thickness of approximately 1.5 mm or less. It will be inconspicuous. The power supply circuit supplies power to a sensor main body of a heat ray detection sensor 6 to be described later, and the electronic ballast performs a flashing operation of the light source lamp 4 to detect a heat ray to be described later. The sensor 6 is configured to be performed by a sensor main body portion and a pull switch. The pull switch can be formed with a well-known contact type flashing mechanism.
[0028]
The heat ray detecting sensor 6 controls the electronic ballast and turns on the light source lamp 4 and a sensor main body having a sensor power supply circuit for supplying power to the whole heat ray detecting sensor 6, and detects human body heat. And a sensor unit for detecting the presence or movement state. This sensor unit includes a pyroelectric sensor that senses heat rays emitted from a human body, and a signal processing circuit that electrically amplifies a weak human body detection signal output from the pyroelectric sensor and performs signal processing. 6 is a light receiving surface 61 disposed on the lower surface, and is housed and integrated within a dome-shaped multi-lens made of a polyethylene resin material for condensing heat rays that condenses toward the pyroelectric sensor.
[0029]
In this case, the light receiving surface 61 is formed with a white surface color having a surface color with a color difference ΔE of 2 or less from the instrument body 5 as described above, in order to further improve the visibility. The distance d between the light receiving surface 61 and the light receiving portion 31 of the globe 3 is set to 5 mm or more. That is, the heat ray detection sensor 6 is disposed at a distance of 5 mm or more over the light receiving portion 31 of high density polyethylene resin having a thickness of approximately 1.5 mm or less, so that the globe 3 and the heat ray detection sensor 6 are arranged. The light receiving surface 61 is reflected through the globe 3 and the appearance is poor, and the light receiving surface 61 can be made inconspicuous in addition to consideration of the color contrast surface. As a result, the appearance defect due to the visibility of the light receiving surface 61 of the heat ray detection sensor 6 that passes through the globe 3 is further improved.
[0030]
In the sensor-equipped lighting fixture 1, first, as shown in FIG. 1, the base 2 provided with the fixture body 5 and the heat ray detection sensor 6 is attached to the ceiling C, and then the glove 3 is attached to the base 2. Is rotated and locked for use. The light source lamp 4 is electrically connected to the lighting device of the fixture body 5 via a lamp socket (not shown) and is supported in advance at a predetermined position via a lamp holder.
[0031]
And the heat ray radiated | emitted from a human body etc. is detected over the globe 3 with the heat ray detection sensor 6 arrange | positioned in the globe 3, and the light source lamp covered with the globe 3 is lighting-controlled.
[0032]
At this time, the detection region 11 of the heat ray detection sensor 6 is formed so that a heat ray having an angle of 15 degrees or more with respect to the light receiving portion 31 of the globe 3 is incident on the light receiving surface 61 of the heat ray detection sensor 6. That is, as shown in FIG. 4, when the angle (θ) formed with the tangent line of the light receiving unit 31 is 15 degrees or less, the optical path length of the heat ray entering the heat ray detection sensor 6 from the light receiving unit 31 through the light receiving surface 61 is long. In this case, the globe 3 is formed by limiting the region of the light receiving unit 31 to a necessary range, and the amount of heat rays reflected by the light receiving unit 31 is also reduced. Thus, the detection sensitivity of the heat ray detection sensor 6 can be effectively maintained.
[0033]
In addition, as a measure for eliminating only the attenuation and reflection of the heat rays, the light receiving part 31 may be partially protruded and curved (not shown) if the appearance design permits, or the amount of reflection of the heat rays can be increased. In order to further reduce, the surface roughness of at least one of the inner and outer surfaces of the globe 3 may be Ra 3.0 μm or less or Ry 10 μm or less. That is, even when the surface roughness of the molded body is less than these values, the visible light emitted from the heat rays or the light source lamp 4 is reflected on the surface of the globe 3 and the transmittance is lowered. As a result, the infrared human body detection sensor It is possible to further eliminate a decrease in sensitivity or a decrease in light transmittance from the lamp.
[0034]
In this case, a heat ray is detected through the light receiving portion 31 of polyethylene resin having a thickness of approximately 1.5 mm or less, which is included in the solid angle facing the light receiving surface 61 of the heat ray detecting sensor 6 constituting the detection region 11. Is done. That is, as is apparent from the graph showing the relationship between the thickness and the heat ray transmittance shown in FIG. 5, the heat ray transmittance increases linearly at a thickness of 1.5 mm or less. In order to maintain the detection sensitivity, it is preferable to form the light receiving portion 31 so as to have a thickness of approximately 1.5 mm or less. This thickness dimension is preferably set to a minimum dimension of 0.4 mm or more when viewed from the viewpoint of securing the strength of the globe 3 or the production process of the molding process. Therefore, the globe 3 is formed so that the thickness other than the light receiving portion 31 is thicker than the light receiving portion 31. That is, the thickness of the light receiving unit 31 can be reduced to maintain the mechanical strength of other portions, and the detection sensitivity of the heat ray detection sensor 6 can be maintained, so that the globe 3 can be formed in an arbitrary shape. .
[0035]
  In the case of this sensor-equipped lighting fixture, the heat generated from the light source lamp 4 in the globe 3 can be transmitted to the outside through the globe 3. Next, the contents of the confirmation experiment for this will be described. In this confirmation experiment, as described above, a glove 3 made of a high-density polyethylene resin (Example) and an acrylic resin (Comparative Example) having a thickness of about 1 mm based on the material comparison table of FIG. Although it does not have the heat ray detection sensor 6, it is attached to the base 2, and the light source lamp 4 with a 40 W round fluorescent tube is continuously lit, and the surface temperature of each location shown in (1) to (4) is Stable temperature change in each partlaterMeasured. A comparison table comparing the measurement results is shown in FIG.
[0036]
  At this time, the surface temperature of each part is 3.8 degrees on the outside of the lighting fixture-on the electronic ballast (1), 2.7 degrees on the light source lamp tube wall-next to the holder (2), inside the fixture body-the electronic ballast A high-density polyethylene resin is made of acrylic resin by a temperature difference of 4.2 degrees at the top (3) and 5 degrees at the globe inner surface-center (4).Low surface temperatureIt can be seen that heat is hard to accumulate inside the instrument. In particular, the temperature of the inner surface of the globe 6 that is within the detection visual field of the heat ray detection sensor 6 shown in (4) is 30 degrees even when compared with the configuration shown in FIG. It is understood that the detection performance of the heat ray detection sensor 6 can be ensured satisfactorily because the temperature is lower by about 5 degrees at the ambient temperature.
[0037]
In this table, the total light transmittance, that is, the light transmittance at a wavelength in the visible light region, and the light transmittance at a wavelength in the far-infrared region, which is about the temperature of the human body surface, are shown. According to this, the total light transmittance is 42% for the example in comparison with 62.2% in the comparative example, and the example in which the heat ray is 6.1% for the comparative example. It is 39.7%, and it can be seen that both visible light and heat rays are transmitted at a high rate.
[0038]
Further, in this case, in the embodiment, although the surface temperature measurement value on the inner surface of the globe that is within the detection visual field of the heat ray detection sensor 6 is 37.8 degrees, the heat ray detection sensor 6 is provided in the instrument body 5. The human body is well detected. Therefore, since the heat ray detection sensor 6 of this one has a condensing lens on the light receiving surface 61, a human body in the detection region 11 of the heat ray detection sensor 6, that is, a heat source having a surface temperature of about 32 to 34 degrees. However, it is understood that the light is reliably collected and detected through the condenser lens serving as the light receiving surface 61 through the nearby globe 3 serving as the transmitting surface having a temperature of about 38 degrees.
[0039]
The diffusivity shown in the table is a value obtained by calculating the luminance value by visible light in the predetermined angle direction on the surface of the globe, and calculating the ratio with the luminance value by directly transmitting visible light based on a predetermined calculation formula. It depends on the amount of the agent. (Compared to 53% of the comparative example, it is 78.2% in this example, which shows that the effect of the diffusing agent is remarkable.)
[0040]
Therefore, according to the sensor-equipped lighting fixture 1 described above, the heat ray emitted from the human body or the like is detected by the heat ray detection sensor 6 disposed in the globe 3 through the globe 3 and covered with the globe 3. Since the light source lamp 4 can be controlled to be turned on, the heat ray detection sensor 6 can be provided inconspicuously from the outside of the appliance, the appearance design can be improved, and the detection performance of the heat ray detection sensor 6 can be ensured.
[0041]
The globe 3 can be formed at a low cost with a polyethylene resin such as a high-density polyethylene resin or a medium-density polyethylene resin, which is a general-purpose inexpensive synthetic resin. Moreover, since the human body etc. in the detection area | region 11 of the heat ray detection sensor 6 are reliably collected and detected through the condensing lens used as the light-receiving surface 61 through the globe 3, The detection sensitivity of the detection sensor 6 can be maintained with less influence of the inner surface temperature of the globe 3.
[0042]
Moreover, it passes over the light-receiving part 31 of the polyethylene-type resin with the thickness of about 1.5 mm or less included in the solid angle which opposes the light-receiving surface 61 of the heat-ray detection sensor 6 which comprises the detection area | region 11 of the heat-ray detection sensor 6. Therefore, the detection sensitivity of the heat ray detection sensor 6 can be maintained by relatively reducing the attenuation of the heat ray when passing through the globe 3, and the thickness of the light receiving portion 31 is reduced to reduce the thickness. The mechanical strength of the location can be maintained. Further, since the detection region 11 is formed so that the heat ray having an angle of 15 degrees or more with respect to the light receiving unit 31 of the globe 3 is incident on the heat ray detection sensor 6, the region of the light receiving unit 31 is limited to a necessary range. Thus, the globe 3 can be formed.
[0043]
Further, since the heat ray detection sensor 6 is disposed at a distance of 5 mm or more over the polyethylene resin light receiving portion 31 having a thickness of approximately 1.5 mm or less, the light ray detection sensor 6 that transmits the globe 3 receives light. The visibility of the surface 61 can be reduced, and the heat ray detection sensor 6 is visually recognized together with the instrument body 5 having a surface color having a color difference ΔE of 2 or less with respect to the light receiving surface 61. The visibility of the light receiving surface 61 of the sensor 6 can be further reduced.
[0044]
In addition to the above-described ones, the present invention has, for example, a decoration on the outer surface of the globe 3 as shown in FIG. 8, or (a) a front view and (b) a side sectional view of FIG. As shown in the figure, instead of the globe, the sensor-equipped lighting fixtures of various embodiments, such as those in which the light source and the heat ray detection sensor are covered with a bracket 7 made of a synthetic resin material through which both visible light and heat rays are transmitted at a high rate, Needless to say.
[0045]
[Second Embodiment]
FIG. 10: is a schematic block diagram which shows the lighting fixture with a sensor of 2nd Embodiment.
[0046]
The sensor-equipped lighting fixture of this embodiment is different from that of the first embodiment only in the configuration of the light receiving part of the globe, and the other components are the same as those of the first embodiment. As shown in FIG. 10, the sensor-equipped lighting fixture includes a light receiving lens 32 having substantially the same optical axis as the condensing lens of the heat ray detection sensor 6 in the light receiving portion 31.
[0047]
Specifically, the globe 3 of this item has a plurality of convex lenses 32a so that the portion that becomes the light receiving portion 31 is approximately 1.5 mm or less in thickness, and the optical axis thereof becomes the light receiving surface 61 on the lower surface of the heat ray detection sensor 6. It is formed so as to be substantially coincident with the above-mentioned dome-shaped multi-lens made of polyethylene resin material. The light receiving lens 32 can be formed by a Fresnel lens in addition to the convex lens. In this case, it is possible to easily form a light receiving lens having a relatively short focal distance and a large aperture area.
[0048]
Therefore, according to the sensor-equipped lighting fixture 1 described above, the human body or the like in the detection region 11 of the heat ray detection sensor 6 causes the heat rays emitted from the human body to the condenser lens of the heat ray detection sensor 6 and the light receiving unit 31 of the globe 3. Since it is reliably collected and detected by the light receiving lens 32 provided so as to have substantially the same optical axis as the condensing lens, the detection sensitivity of the heat ray detection sensor 6 is further reduced by the influence of the temperature inside the globe 3. Can be maintained.
[0049]
[Third Embodiment]
FIG. 11 is an explanatory diagram illustrating a schematic configuration of a sensor-equipped lighting fixture according to the third embodiment.
[0050]
The sensor-equipped lighting fixture of this embodiment is different from that of the first embodiment only in the configuration in which a shielding member is provided, and the other components are the same as those of the first embodiment. As shown in FIG. 11, the sensor-equipped lighting fixture includes a shielding member 8 that shields visible light and transmits heat rays between the light receiving unit 31 and the heat ray detection sensor 6.
[0051]
Specifically, the shielding member 8 uses a high-density polyethylene resin as a material that shields visible light and transmits heat rays, and the material shown in FIG. It is made into a hemispherical cup shape and is provided on the lower surface of the instrument body 5 so as to cover the heat ray detection sensor 6. In addition, this high-density polyethylene resin uses what added the ultraviolet absorber and the white diffuser.
[0052]
Therefore, according to the sensor-equipped lighting fixture 1 described above, the heat ray detection sensor 6 is disposed between the light receiving portion 31 of polyethylene resin having a thickness of approximately 1.5 mm or less and the heat ray detection sensor 6. Since it is visually recognized through the shielding member 8 that shields visible light and transmits heat rays, the visibility of the light receiving surface 61 of the heat ray detection sensor 6 that transmits the globe 3 can be further reduced.
[0053]
As for the shielding member 8, in addition to the above, as shown in FIG. 11 (b), the sheet material is meshed to improve the heat ray transmittance, or as shown in FIG. 11 (c). The function of the heat ray detection sensor 6 is affected, such as the one formed in the shape of a quadrangular pyramid or the shape of a quadrangular pyramid as shown in FIG. Various configurations can be used as long as the shape is not present.
[0054]
[Fourth Embodiment]
FIG. 12 is an explanatory diagram illustrating a schematic configuration of a sensor-equipped lighting fixture according to the fourth embodiment.
[0055]
The sensor-equipped lighting fixture of this embodiment is different from that of the first embodiment only in the configuration in which the heat ray shielding member is provided, and the other components are the same as those in the first embodiment. As shown in FIG. 12 (a), the sensor-equipped lighting fixture is provided with a light receiving surface 61 of the heat ray detection sensor 6 at substantially the same plane of the light source lamp 4 or at a position below it, and the heat ray detection sensor 6 and the light source. A heat ray shielding member 9 made of a synthetic resin material that shields heat rays and transmits visible light is provided between the lamps 4.
[0056]
Specifically, the heat ray shielding member 9 malfunctions when the sensitivity of the heat ray detection sensor 6 decreases due to the heat rays emitted from the light source lamp 4, or the heat reaches the heat ray detection sensor 6 due to the influence of airflow after the light source lamp 4 is turned off. In this case, it is formed of an annular member that is mounted integrally with the lower surface of the instrument body 5. The heat ray shielding member 9 is made of a material that transmits visible light so that the heat ray shielding member 9 is less visible through the globe 3. Examples of the material that satisfies this condition include synthetic resin materials such as acrylic resin and polycarbonate resin, and glass materials. It is preferable to use acrylic having good weather resistance, that is, ultraviolet resistance and good moldability.
[0057]
Therefore, according to the sensor-equipped lighting fixture 1 described above, the radiant heat from the light source lamp 4 to the heat ray detection sensor 6 shields the heat rays provided between the light source lamp 4 and the light source lamp 4 and is made of a synthetic resin material that transmits visible light. Since it is shielded by the heat ray shielding member 9, it is possible to eliminate the cause of malfunction caused by the heat of the light source lamp 4 and further stabilize the detection performance.
[0058]
The shape of the heat ray shielding member is not particularly limited. For example, as shown in FIG. 12B, for example, the heat ray detection member 6 that is integrally mounted around the light receiving surface 61 of the heat ray detection sensor, etc. The shape is not particularly limited as long as the heat ray can be condensed toward the light receiving surface 61 of the heat ray detection sensor 6.
[0059]
[Fifth Embodiment]
FIG. 13 is an explanatory diagram illustrating a schematic configuration of a sensor-equipped lighting fixture according to the fifth embodiment.
[0060]
The sensor-equipped lighting fixture of this embodiment is different from the first embodiment only in the configuration for performing antistatic treatment on the glove surface, and the other components are the same as those in the first embodiment. As shown in FIG. 13A, the sensor-equipped lighting fixture of the embodiment is obtained by performing antistatic treatment on the surface of the globe 3 other than the light receiving unit 31.
[0061]
Specifically, in this globe 3, the antistatic layer 10 is configured so that dust does not adhere to the surface of the globe 3 in consideration of practicality as a transmission cover of the globe 3. In this case, an antistatic layer is provided on the outer surface of the globe 3 as shown in the detailed view of FIG. Therefore, the number of times the infrared rays are reflected by the antistatic agent before entering and transmitting through the inside of the cover, such as the case where the antistatic agent is dispersed throughout the cover, increases, and the transmittance at the light receiving unit 31 is low. That is, the sensor sensitivity is reduced.
[0062]
As a method for providing the antistatic layer 10, after forming the globe 3, a hydrophilic paint is applied to the surface of the globe 3 by a method such as painting or printing, and then only a portion of the light receiving portion 31 is masked. This can be achieved by various methods such as a method of providing a post-antistatic layer or a method of providing a surface of the globe 3 with hydrophilicity by plasma treatment and similarly providing a antistatic layer.
[0063]
Therefore, according to the lighting fixture 1 with a sensor demonstrated above, the antistatic performance of the glove 3 surface other than the light-receiving part 31 is ensured, and the detection sensitivity of the heat ray detection sensor 6 can also be maintained.
[0064]
【The invention's effect】
The present invention is implemented as in the above-described embodiment, and in the sensor-equipped lighting fixture according to claim 1, the heat rays radiated from the human body or the like are transmitted to the heat ray detection sensor disposed in the globe. Since the light source lamp that is detected through the globe and covered with the globe can be controlled to be turned on, the heat ray detection sensor can be provided inconspicuously from the outside of the instrument, and the appearance design can be improved. In addition, the globe can be formed at a low cost using a polyethylene resin such as a high-density polyethylene resin or a medium-density polyethylene resin, which is a general-purpose inexpensive synthetic resin. Furthermore, a heat ray is detected through a light receiving portion of a polyethylene resin having a thickness of approximately 1.5 mm or less, which is included in a solid angle facing the light receiving surface of the heat ray detecting sensor, which constitutes a detection region of the heat ray detecting sensor. Therefore, the detection sensitivity of the heat ray detection sensor can be maintained by relatively reducing the attenuation of the heat ray when passing through the globe.In addition, a light-receiving surface of a heat ray detection sensor is provided on substantially the same plane of the light source lamp or below the light source lamp, and a heat ray shield made of a synthetic resin material that shields heat rays and transmits visible light between the heat ray detection sensor and the light source lamp. Since the member is provided, the radiant heat from the light source to the heat ray detection sensor is shielded by a heat ray shielding member made of a synthetic resin material that shields the heat ray provided between the light source lamp and the light source lamp and transmits visible light.
[0065]
  In the lighting fixture with a sensor according to claim 2,The thickness of the light receiving portion can be reduced to maintain the mechanical strength at other locations.
[0066]
  In the lighting fixture with a sensor according to claim 3,Since the detection region is formed so that heat rays having an angle of 15 degrees or more with respect to the light receiving portion of the globe are incident on the heat ray detection sensor, it is possible to form the globe by limiting the region of the light receiving portion to a necessary range. it can.
[0067]
  Moreover, in the lighting fixture with a sensor according to claim 4,The human body in the detection area of the heat ray detection sensor detects the heat ray emitted from the human body through the condensing lens, which is the light receiving surface. The effect of the temperature on the inner surface of the globe can be reduced and maintained.
[0070]
  Claims5In the sensor-equipped luminaire described above, the human body in the detection region of the heat ray detection sensor has a heat ray emitted from the same, and the light collection portion of the heat ray detection sensor and the light receiving portion of the globe are substantially the same as the light collection lens. Since the light receiving lens provided so as to be the optical axis is reliably condensed and detected, the detection sensitivity of the heat ray detection sensor can be maintained with the influence of the inner surface temperature of the globe being further reduced.
[0071]
  Claims6In the illuminating device with a sensor described above, the heat ray detection sensor is disposed at a distance of 5 mm or more over the light-receiving portion of the polyethylene resin having a thickness of approximately 1.5 mm or less, so that it passes through the globe. The visibility of the light receiving surface of the heat ray detection sensor can be lowered.
[0072]
  Claims7In the sensor-equipped luminaire described above, the heat ray detection sensor is disposed between the light receiving portion of the polyethylene resin having a thickness of approximately 1.5 mm or less and the heat ray detection sensor, and shields visible light. And since it is visually recognized through the shielding member which permeate | transmits a heat ray, the visibility of the light-receiving surface of the heat ray detection sensor which permeate | transmits a glove can be reduced more.
[0073]
  Claims8In the illuminating equipment with a sensor described above, the heat ray detection sensor has a surface color with a color difference ΔE of 2 or less with respect to the light receiving surface through a polyethylene resin having a thickness of about 1.5 mm or less. Since it is visually recognized together with the main body, the visibility of the light receiving surface of the heat ray detection sensor that passes through the globe can be further reduced.
[0075]
Claims9In the sensor-equipped lighting fixture described above, the antistatic performance of the glove surface other than the light receiving portion is ensured, and the detection sensitivity of the heat ray detection sensor can be maintained.
[0076]
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a sensor-equipped lighting fixture according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a glove of the illumination fixture with the sensor.
FIG. 3 is an explanatory view showing a comparison of materials of gloves in an example of the illumination device with the sensor.
FIG. 4 is an explanatory diagram of a detection region of the illumination fixture with the sensor.
FIG. 5 is an explanatory diagram showing the relationship between the thickness of the light receiving part of the lighting fixture with the sensor and the heat ray transmittance.
FIG. 6 is an explanatory diagram of a confirmation experiment of an internal heat storage state of the lighting fixture with the sensor.
FIG. 7 is an explanatory diagram showing an experimental result of an internal heat storage state of the example of the lighting fixture with the sensor.
FIG. 8 is an explanatory diagram of another embodiment of the illumination fixture with the sensor.
FIG. 9 is an explanatory diagram of still another embodiment of the illumination fixture with the sensor.
FIG. 10 is a schematic configuration diagram showing a sensor-equipped lighting fixture according to a second embodiment.
FIG. 11 is an explanatory diagram showing a schematic configuration of a sensor-equipped lighting fixture according to a third embodiment.
FIG. 12 is an explanatory diagram showing a schematic configuration of a sensor-equipped lighting fixture according to a fourth embodiment.
FIG. 13 is an explanatory diagram showing a schematic configuration of a sensor-equipped lighting fixture according to a fifth embodiment.
FIG. 14 is a schematic configuration diagram showing a sensor-equipped lighting fixture according to a conventional example of the present invention.
FIG. 15 is a schematic configuration diagram showing another configuration of the sensor-equipped lighting fixture.
[Explanation of symbols]
1 Lighting fixture with sensor
3 Gloves
31 Light receiver
32 Receiving lens
4 Light source lamp
5 Instrument body
6 Hot wire detection sensor
61 Photosensitive surface
8 Shielding member
9 Heat ray shielding member
11 Detection area

Claims (9)

合成樹脂材料製のグローブにて覆われた光源ランプを、該グローブ内に配設されて人体などから放射される熱線を集光し人体等の検知を行う熱線検知センサの出力にて点灯制御するよう成したセンサ付照明器具において、グローブを、可視光及び3〜15μmの波長領域の熱線の双方が高率透過されるポリエチレン系樹脂にて、少なくとも熱線検知センサの受光面と対向するその検知領域を構成する立体角に含まれる受光部となる部分が、大略1.5mm以下の肉厚となるよう形成して成るとともに、光源ランプの略同一平面、又はそれより下方位置に熱線検知センサの受光面を設け、熱線検知センサ及び光源ランプ間に熱線を遮蔽し可視光を透過する合成樹脂材料製の熱線遮蔽部材を設けて成ることを特徴とするセンサ付照明器具。Lighting control of the light source lamp covered with a glove made of a synthetic resin material is performed by the output of a heat ray detection sensor that is disposed inside the glove and collects heat rays emitted from the human body etc. and detects the human body etc. In the sensor-equipped lighting fixture as described above, the detection region facing the light-receiving surface of the heat ray detection sensor at least with the polyethylene resin through which both the visible light and the heat ray in the wavelength region of 3 to 15 μm are highly transmitted. The light-receiving portion included in the solid angle constituting the light-receiving portion is formed so as to have a thickness of approximately 1.5 mm or less, and the light-receiving light of the heat ray detection sensor is positioned substantially on the same plane of the light source lamp or below it. A sensor-equipped luminaire comprising a heat ray shielding member made of a synthetic resin material that is provided with a surface and shields heat rays between a heat ray detection sensor and a light source lamp and transmits visible light . グローブを、受光部以外の肉厚が受光部より厚くなるよう形成した請求項1記載のセンサ付照明器具。 The illumination fixture with a sensor of Claim 1 which formed the glove | globe so that thickness other than a light-receiving part might become thicker than a light-receiving part. 前記検知領域を、前記の受光面、受光部のそれぞれの略中心間を結ぶ法線を軸とする立体角150度以下の範囲とした請求項1又は2記載のセンサ付照明器具。 The sensor-equipped luminaire according to claim 1 or 2, wherein the detection region is in a range of a solid angle of 150 degrees or less with a normal line connecting the approximate centers of the light receiving surface and the light receiving portion as axes. 熱線検知センサを、その受光面に集光レンズを有するものとした請求項1乃至3のいずれか一つの請求項に記載のセンサ付照明器具。 The lighting fixture with a sensor according to any one of claims 1 to 3, wherein the heat ray detection sensor has a condensing lens on a light receiving surface thereof. 受光部に前記集光レンズと略同一光軸の受光レンズを形成した請求項4記載のセンサ付照明器具。 The sensor-equipped lighting fixture according to claim 4, wherein a light-receiving lens having substantially the same optical axis as the condensing lens is formed in a light-receiving portion. 前記の受光面及び受光部間の間隔を5mm以上とした請求項1乃至5のいずれか一つの請求項に記載のセンサ付照明器具。 The lighting fixture with a sensor according to any one of claims 1 to 5, wherein an interval between the light receiving surface and the light receiving portion is 5 mm or more. 前記の受光部及び熱線検知センサ間に、可視光を遮蔽し熱線を透過する遮蔽部材を設けて成る請求項1乃至6のいずれか一つの請求項に記載のセンサ付照明器具。 The lighting fixture with a sensor according to any one of claims 1 to 6, wherein a shielding member that shields visible light and transmits heat rays is provided between the light receiving unit and the heat ray detection sensor. 前記熱線検知センサを、その受光面との色差ΔEが2以下の表面色をもった器具本体下面に設けて成る請求項1乃至7のいずれか一つの請求項に記載のセンサ付照明器具。 The sensor-equipped lighting fixture according to any one of claims 1 to 7, wherein the heat ray detection sensor is provided on a lower surface of the fixture main body having a surface color having a color difference ΔE with respect to a light receiving surface of 2 or less. 前記受光部以外のグローブ表面に帯電防止処理を施して成る請求項1乃至8のいずれか一つの請求項に記載のセンサ付照明器具。The lighting fixture with a sensor according to any one of claims 1 to 8, wherein an antistatic treatment is applied to a globe surface other than the light receiving portion.
JP2000157349A 2000-05-26 2000-05-26 Lighting fixture with sensor Expired - Fee Related JP3829583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157349A JP3829583B2 (en) 2000-05-26 2000-05-26 Lighting fixture with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157349A JP3829583B2 (en) 2000-05-26 2000-05-26 Lighting fixture with sensor

Publications (2)

Publication Number Publication Date
JP2001338522A JP2001338522A (en) 2001-12-07
JP3829583B2 true JP3829583B2 (en) 2006-10-04

Family

ID=18661999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157349A Expired - Fee Related JP3829583B2 (en) 2000-05-26 2000-05-26 Lighting fixture with sensor

Country Status (1)

Country Link
JP (1) JP3829583B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398930B2 (en) * 2005-10-05 2010-01-13 哲也 渡丸 Vortex tube
JP5480551B2 (en) * 2009-07-28 2014-04-23 パナソニック株式会社 lighting equipment
JP2011243463A (en) * 2010-05-19 2011-12-01 Panasonic Electric Works Co Ltd Lighting fixture, and illumination system using the same

Also Published As

Publication number Publication date
JP2001338522A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
US20060181416A1 (en) Bulb with sensing function
CN204611452U (en) A kind of multi-functional intelligent lamp
US11092479B2 (en) Sensor assembly and a device comprising such sensor assembly
JP3829583B2 (en) Lighting fixture with sensor
CA2279952A1 (en) General asphere-conic conformal optical windows
US7399106B2 (en) Lens optics used to reduce part deformation due to heat
TWI518281B (en) Inductive light source module
JP2009036731A (en) Detection area checking device of human sensing sensor
JPH08321215A (en) Illumination fixture
JP5491824B2 (en) lighting equipment
JP2004139864A (en) Luminaire with built-in human body detecting sensor
CN211066326U (en) Water mist detection sensing controller, switch device and bathroom mirror applying same
JP2002098772A (en) Luminaire with sensor
JP4599283B2 (en) Lighting lamp
KR101198398B1 (en) LED lighting lamp that improve object sensing and illumination sensing reaction
CN221897695U (en) Night lamp
CN214948653U (en) Energy-saving infrared induction lamp
CN217540628U (en) Anti-dazzle lamp
CN216431454U (en) Embedded response footlight that has spotlight structure
CN110410723B (en) Light is along with manual type garden lamp
JP3656528B2 (en) Lighting fixture with sensor
JPS5829525Y2 (en) lighting equipment
JPH0525032Y2 (en)
JPH10106340A (en) Luminaire
JP2017021921A (en) Luminaire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees