WO2017170009A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2017170009A1
WO2017170009A1 PCT/JP2017/011323 JP2017011323W WO2017170009A1 WO 2017170009 A1 WO2017170009 A1 WO 2017170009A1 JP 2017011323 W JP2017011323 W JP 2017011323W WO 2017170009 A1 WO2017170009 A1 WO 2017170009A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed refrigerant
evaporator
refrigerant
heat
phase
Prior art date
Application number
PCT/JP2017/011323
Other languages
English (en)
French (fr)
Inventor
明日華 松葉
寿人 佐久間
正樹 千葉
雅人 矢野
広瀬 賢二
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018509108A priority Critical patent/JPWO2017170009A1/ja
Publication of WO2017170009A1 publication Critical patent/WO2017170009A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device, for example, a cooling device that cools a heating element by circulating a refrigerant between an evaporator and a condenser.
  • phase change cooling method a technique for transporting exhaust heat from an electronic device using a method (phase change cooling method) that utilizes a phase change phenomenon of a refrigerant. This utilizes latent heat when the phase of the refrigerant changes into a liquid phase and a gas phase depending on the cycle of vaporization and condensation of the refrigerant, and is characterized by a large amount of heat transfer.
  • the evaporator receives the heat of the heating element, evaporates the liquid-phase refrigerant stored therein by the heat of the heating element, and causes the gas-phase refrigerant to flow out.
  • the gas phase refrigerant flowing out of the evaporator flows into the condenser.
  • the condenser receives gas phase refrigerant flowing out of the evaporator.
  • a condenser condenses the gaseous-phase refrigerant
  • the condenser receives the heat of the heating element from the evaporator via the refrigerant, and radiates the heat of the received heating element to the outside air. That is, the condenser exchanges heat between the heat of the heating element that has absorbed heat by the refrigerant and the heat of the outside air. Further, the liquid phase refrigerant flowing out of the condenser flows out toward the evaporator
  • the heat of the heating element is cooled by repeating the operation of circulating the refrigerant between the evaporator and the condenser while changing the phase (liquid phase refrigerant ⁇ ⁇ gas phase refrigerant).
  • Patent Document 1 A technique related to the phase change cooling method is described in Patent Document 1, for example.
  • a decompressor (expansion valve) and a compressor (compressor) are provided between an evaporator and a condenser (heat radiator) to circulate refrigerant between the evaporator and the condenser. Promoting.
  • the flow rate of the refrigerant is adjusted using a plurality of bypass pipes and a plurality of flow rate adjusting valves. Thereby, the fall of cooling efficiency was controlled.
  • JP 2013-2800 A JP 2004-53191 A Japanese Patent No. 4253747 JP 05-215424 A
  • Patent Document 1 it is necessary to provide a plurality of bypass pipes and a plurality of flow rate adjusting valves. Moreover, it is necessary to further provide a device for controlling these. For this reason, the technique described in Patent Document 1 has a problem in that the configuration is complicated and much cost is required.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a cooling device that can cool the heat of a heating element with a simple configuration.
  • the cooling device of the present invention includes an evaporator that receives the heat of the heating element, evaporates the mixed refrigerant in a liquid state stored therein by the heat of the heating element, and flows out the mixed refrigerant in a gas phase state
  • a condenser that condenses the gas-phase mixed refrigerant flowing out from the evaporation section and flows out the liquid-phase mixed refrigerant to the evaporation section, and the mixed refrigerant is stored in the evaporator.
  • the liquid refrigerant in the liquid phase state decreases, the boiling point of the mixed refrigerant decreases.
  • the cooling device according to the present invention can cool the heat of the heating element with a simple configuration.
  • FIG. 1 is a diagram illustrating a configuration of the cooling device 1000.
  • the cooling device 1000 includes an evaporator 10, a compressor 20, a heat-use heat exchanger 30, a condensation heat exchanger 40, and a decompressor 50.
  • pipes 61 to 65 are provided between them.
  • the evaporator 10, the compressor 20, the heat-utilizing heat exchanger 30, the condensing heat exchanger 40, and the decompressor 50 are connected by pipes 61 to 65 so that the inside is sealed.
  • the condensation heat exchanger 40 corresponds to the condenser of the second embodiment.
  • the cooling device 1000 has a mixed refrigerant that circulates through the evaporator 10, the compressor 20, the heat-utilizing heat exchanger 30, the condensing heat exchanger 40, and the decompressor 50. That is, a cavity is provided inside the evaporator 10, the compressor 20, the heat-use heat exchanger 30, the condensation heat exchanger 40, and the decompressor 50.
  • the mixed refrigerant is sealed in a closed space formed by the evaporator 10, the decompressor 20, the heat-utilizing heat exchanger 30, the condensing heat exchanger 40, the compressor 50, and the pipes 61 to 65. Trapped in.
  • This mixed refrigerant circulates through the evaporator 10, the compressor 20, the heat-utilizing heat exchanger 30, the condensing heat exchanger 40, the decompressor 50, and the pipes 61 to 65 in a sealed state.
  • the mixed refrigerant is made of, for example, a polymer material, and has a characteristic of vaporizing at a high temperature and liquefying at a low temperature.
  • the specific composition of the mixed refrigerant will be described later.
  • the method of filling the mixed refrigerant in the closed space of the cooling device 1000 is, for example, as follows. First, an opening hole for injecting refrigerant (not shown) in a closed space formed by the evaporator 10, the decompressor 20, the heat exchanger 30 for heat utilization, the heat exchanger 40 for condensation, the compressor 50, and the pipes 61 to 65. ) To inject the mixed refrigerant.
  • pouring is provided in the piping 65 arrange
  • pouring may be provided in members other than the piping 65. FIG.
  • a vacuum pump (not shown) or the like is used to exclude air from the closed space, and the refrigerant is sealed in the closed space.
  • the pressure in the space becomes equal to the saturated vapor pressure of the refrigerant, and the boiling point of the mixed refrigerant sealed in the closed space becomes near room temperature.
  • the method of filling the mixed refrigerant in the closed space of the cooling device 1000 has been described.
  • the filling method demonstrated here is described also in international publication 2015/133548, for example.
  • the evaporator 10 is connected to the compressor 20 by a pipe 61.
  • the evaporator 10 is connected to the decompressor 50 by a pipe 65.
  • the evaporator 10 is provided in the vicinity of the heating element N and receives heat from the heating element N.
  • the evaporator 10 stores a mixed refrigerant in a liquid phase state therein.
  • the evaporator 10 absorbs the heat of the heating element N as indicated by arrows in FIG. That is, the evaporator 10 receives the heat of the heating element N, evaporates the liquid-phase mixed refrigerant stored inside by the heat of the heating element N, and flows out the gas-phase mixed refrigerant.
  • the evaporator 10 flows the mixed refrigerant in a gas phase state to the compressor 20 through the pipe 61.
  • the compressor 20 is connected to the heat-use heat exchanger 30 through a pipe 62.
  • the compressor 20 is connected to the evaporator 10 by a pipe 61.
  • the compressor 20 pressurizes the gas-phase mixed refrigerant flowing out of the evaporator 10 and flows out to the heat-use heat exchanger 30.
  • the heat-use heat exchanger 30 is connected to the condensation heat exchanger 40 by a pipe 63.
  • the heat-use heat exchanger 30 is connected to the compressor 20 by a pipe 62.
  • the heat-use heat exchanger 30 radiates heat for secondary use from the gas-phase mixed refrigerant that has flowed out of the compressor 20. That is, the heat-use heat exchanger 30 takes out heat for secondary use from the gas-phase mixed refrigerant that has flowed out of the compressor 20. Then, the heat-use heat exchanger 30 takes out heat for secondary use, and then flows out the gas-phase mixed refrigerant to the condensation heat exchanger 40.
  • a general heat exchanger for example, plate type heat exchanger
  • the condensation heat exchanger 40 is connected to the decompressor 50 by a pipe 64.
  • the condensation heat exchanger 40 is connected to the heat-use heat exchanger 30 by a pipe 63.
  • the condensation heat exchanger 40 condenses the gas-phase mixed refrigerant flowing out from the evaporation unit 10, and flows the liquid-phase mixed refrigerant out to the evaporation unit 10 via the decompressor 50.
  • the condensing heat exchanger 40 condenses the gas-phase mixed refrigerant from the heat-use heat exchanger 30, and flows the liquid-phase mixed refrigerant out to the decompressor 50.
  • the condensation heat exchanger 40 cools (dissipates) excess heat of the mixed refrigerant in the gas phase state from the heat-use heat exchanger 30 as indicated by the thick white arrows in FIG. By doing so, the gas-phase mixed refrigerant is condensed to produce a liquid-phase mixed refrigerant. Then, the heat exchanger for condensation 40 flows out the generated mixed refrigerant in the liquid phase state to the decompressor 50.
  • the condensation heat exchanger 40 can be a general heat exchanger (for example, a plate heat exchanger).
  • the decompressor 50 is connected to the evaporator 10 by a pipe 65.
  • the decompressor 50 is connected to the condensation heat exchanger 40 by a pipe 64.
  • the decompressor 50 decompresses the liquid-phase mixed refrigerant flowing out from the condensation heat exchanger 40 and flows out to the evaporator 10.
  • the liquid-phase mixed refrigerant flowing out of the condensation heat exchanger 40 expands due to decompression, and the temperature and pressure decrease.
  • the configuration of the cooling device 1000 has been described based on FIG.
  • the mixed refrigerant used in the present invention generally refers to a refrigerant including a plurality of refrigerants.
  • the mixed refrigerant of the present embodiment is configured such that the boiling point of the mixed refrigerant decreases when the liquid-phase mixed refrigerant stored in the evaporator 10 decreases.
  • the mixed refrigerant of the present embodiment is an azeotropic or azeotrope-like mixed refrigerant.
  • Azeotropic means that the composition of the liquid phase and the gas phase coincide when the refrigerant mixed in a certain ratio boils.
  • azeotrope-like means that when the refrigerant mixed at a certain ratio boils, the composition of the liquid phase and the gas phase are almost the same, and the composition hardly changes even when evaporation and condensation are repeated.
  • the mixed refrigerant of the present embodiment includes a plurality of types of refrigerant mixed at a predetermined mixing ratio, and exhibits a minimum azeotropic point under atmospheric pressure.
  • the mixed refrigerant of the present embodiment has the same composition of the gas phase and the liquid phase, and changes phase as if it is a single component.
  • the concentration of the lowest boiling point refrigerant is set higher than the azeotropic concentration among a plurality of types of refrigerants included in the mixed refrigerant. That is, the predetermined mixing ratio is set such that the concentration of the lowest boiling point refrigerant among the plurality of types of refrigerants included in the mixed refrigerant is higher than the azeotropic concentration.
  • the azeotropic concentration is the concentration at the azeotropic point of the mixed refrigerant.
  • the azeotropic point is called the maximum azeotropic point.
  • the azeotropic point is called the minimum azeotropic point.
  • FIG. 2 is a diagram showing the characteristics of the mixed refrigerant.
  • the horizontal axis represents the molar fraction ( ⁇ ) of the low boiling point refrigerant, and the vertical axis represents the boiling point (° C.). Note that (-) indicates no unit.
  • the mixed refrigerant in FIG. 2 it is obtained by mixing two kinds of refrigerants.
  • FIG. 2 shows the relationship between the molar fraction ( ⁇ ) and the boiling point (° C.) of the low boiling point refrigerant.
  • the azeotropic point corresponds to the apex of a curve indicating the characteristics of the mixed refrigerant.
  • coolant of ethanol and benzene is shown.
  • Ethanol is a low boiling point refrigerant compared to benzene.
  • the concentration of the low boiling point refrigerant (the refrigerant having a low boiling point) out of the two types of refrigerants is higher than the azeotropic concentration. Is set. However, the concentration of the low boiling point refrigerant (the refrigerant having a low boiling point) is less than 100%.
  • the first method for producing a mixed refrigerant two kinds of refrigerants are mixed at a predetermined mixing ratio before the mixed refrigerant is sealed in the cooling device 1000.
  • the predetermined mixing ratio is set so that the concentration of the lowest boiling point refrigerant among the plurality of types of refrigerants included in the mixed refrigerant is set higher than the azeotropic concentration.
  • a plurality of refrigerants can be mixed at room temperature and normal pressure, but the mixing ratio (predetermined mixing ratio) may deviate from the specified ratio (mixing ratio). For this reason, it is preferable to mix a plurality of refrigerants in a sealed space (sealed system) after bringing the plurality of refrigerants into a liquid phase state.
  • a plurality of types of refrigerant are separately enclosed in the cooling device 1000.
  • the refrigerant contained in the mixed refrigerant is not limited to two types, and may be three or more types. Specifically, when a plurality of types of refrigerants are mixed at a predetermined mixing ratio, the concentration of the lowest boiling point refrigerant among the plurality of types of refrigerants included in the mixed refrigerant is set higher than the azeotropic concentration. Just do it.
  • the refrigerant contained in the mixed refrigerant include a refrigerant having a minimum azeotropic point when plural kinds of substances are mixed, and a refrigerant obtained by adding a foaming agent, a stabilizer, a lubricant, etc. to the mixed refrigerant. It is done.
  • Examples of the mixed refrigerant include 1,1,1,2,3,3-hexafluoro-3- (2,2,2-trifluoroethoxy) propane (85.0 to 99.9% by weight) and 2 A mixed solution of butanol (0.1 to 15.0% by weight) is mentioned (for example, see JP-A-2003-233892). Further, a mixed solution of (1,1,2,2-tetrafluoroethyl) methyl ether (94.2 to 97.4% by weight) and methanol (2.6 to 5.8% by weight) can be mentioned (for example, JP, 2006-111781, A).
  • the evaporator 10 first receives the heat of the heating element N, evaporates the mixed refrigerant in the liquid phase state stored therein by the heat of the heating element N, and enters the gas phase state. Produces a mixed refrigerant. Then, the evaporator 10 flows out the mixed refrigerant in a gas phase state to the compressor 20 via the pipe 61.
  • the compressor 20 pressurizes the gas-phase mixed refrigerant flowing out of the evaporator 10, and flows the pressurized mixed refrigerant out to the heat-use heat exchanger 30.
  • the heat-use heat exchanger 30 takes out heat for secondary use from the gas-phase mixed refrigerant that has flowed out of the compressor 20. Then, the heat-use heat exchanger 30 takes out heat for secondary use, and then flows out the gas-phase mixed refrigerant to the condensation heat exchanger 40.
  • the condensation heat exchanger 40 condenses the gas-phase mixed refrigerant from the heat-use heat exchanger 30, and flows the liquid-phase mixed refrigerant to the decompressor 50.
  • the decompressor 50 decompresses the mixed refrigerant in the liquid phase that flows out of the heat exchanger 40 for condensation and flows out to the evaporator 10.
  • the operation of circulating the mixed refrigerant between the evaporator 10 and the heat exchanger for condensation 40 while changing the phase (mixed refrigerant in a liquid phase state ⁇ mixed refrigerant in a gas phase state) is performed.
  • the heat of the heating element N is cooled repeatedly.
  • the heat quantity of the heating element N increases rapidly.
  • the amount of the mixed refrigerant in the gas phase flowing out from the evaporator 10 to the condensing heat exchanger 40 is temporarily larger than the amount of the mixed refrigerant flowing into the evaporator 10 from the condensing heat exchanger 40.
  • the evaporation amount of the refrigerant having the lowest boiling point becomes larger than the evaporation amounts of the other refrigerants.
  • the amount of evaporation of ethanol which is a refrigerant having a lower boiling point than benzene
  • the ratio of the refrigerant having the lowest boiling point in the mixed refrigerant in the evaporator 10 decreases.
  • the proportion of ethanol is reduced. At this time, the boiling point of the mixed refrigerant decreases.
  • the gas-phase mixed refrigerant flows into the heat-use heat exchanger 30 and the heat-condensation heat exchanger 40 via the compressor 20.
  • the gas-phase mixed refrigerant is condensed by the condensing heat exchanger 40 to become a liquid-phase mixed refrigerant.
  • the mixed refrigerant in the liquid phase flows out from the condensation heat exchanger 40 to the evaporator 10 via the decompressor 50. As a result, the liquid amount of the mixed refrigerant in the liquid phase state in the evaporator 10 is also recovered.
  • the cooling device 1000 even when the amount of heat of the heating element N increases rapidly and the mixed refrigerant in the evaporator 10 temporarily decreases, the boiling point of the mixed refrigerant is lowered, and the evaporator The evaporation of the mixed refrigerant in the evaporator 10 can be promoted, and the amount of the mixed refrigerant in the evaporator 10 can be recovered. That is, in the cooling device 1000, the heating element N can be continuously cooled without drastically reducing the cooling capacity. As a result, the cooling device 1000 efficiently cools the heat of the heating element N even when the amount of heat of the heating element N rapidly increases and the mixed refrigerant in the evaporator 10 temporarily decreases. Can do.
  • FIG. 3 is a diagram illustrating an example of the relationship between the boiling point of the mixed refrigerant and the molar ratio of the low boiling point refrigerant. Specifically, FIG. 3 shows the boiling point of the mixed refrigerant of 1-methoxy-1,1,2,2-tetrafluoroethane and methanol and the moles of 1-methoxy-1,1,2,2-tetrafluoroethane. It is a figure which shows the relationship of a ratio. 1-methoxy-1,1,2,2-tetrafluoroethane is the same substance as (1,1,2,2-tetrafluoroethyl) methyl ether.
  • the inside of the cooling device 1000 was evacuated, and this mixed refrigerant was sealed in the cooling device 1000. At this time, the amount of liquid refrigerant in the evaporator 10 was adjusted to 80% of the volume of the evaporator 10.
  • the cooling device 1000 when the cooling device 1000 is operating normally, a certain amount of 1-methoxy-1,1,2,2-tetrafluoroethane and a certain amount of methanol are evaporated in the evaporator 10.
  • the phase changes to a refrigerant in a gas phase.
  • 1-methoxy-1,1,2,2-tetrafluoroethane having the same amount as the amount of evaporation in the evaporator 10 and the amount of evaporation in the evaporator 10 are the same.
  • the amount of methanol condenses and changes to a liquid phase refrigerant. Then, the mixed refrigerant in the liquid phase state flows from the condensation heat exchanger 40 into the evaporator 10.
  • the mixed refrigerant is phase-changed between the evaporator 10 and the condensing heat exchanger 40 (liquid-phase mixed refrigerant ⁇ ⁇ gas-phase state).
  • the heat of the heating element N is cooled by repeating the circulation operation while the refrigerant is mixed.
  • the amount of vapor-phase mixed refrigerant (evaporation amount) flowing out from the evaporator 10 to the condensation heat exchanger 40 is equal to the amount of mixed refrigerant (return amount) flowing into the evaporator 10 from the condensation heat exchanger 40. It becomes temporarily larger than the amount.
  • the amount of evaporation of 1-methoxy-1,1,2,2-tetrafluoroethane, which is a refrigerant having the lowest boiling point, is smaller than that before the amount of heat of the heating element N suddenly increases. More than the evaporation amount of methanol which is another refrigerant. For this reason, the ratio of 1-methoxy-1,1,2,2-tetrafluoroethane, which is the lowest boiling point refrigerant, in the mixed refrigerant in the evaporator 10 decreases. At this time, as shown by the arrows in FIG. 3, the boiling point of the mixed refrigerant of 1-methoxy-1,1,2,2-tetrafluoroethane and methanol decreases with a decrease in the molar ratio.
  • the evaporation of the mixed refrigerant in the evaporator 10 is promoted, and the mixed refrigerant in the gas phase flows into the heat-use heat exchanger 30 and the heat-condensation heat exchanger 40 via the compressor 20. .
  • the gas-phase mixed refrigerant is condensed by the heat exchanger for condensation 40 to become a liquid-phase mixed refrigerant.
  • the mixed refrigerant in the liquid phase flows out from the condensation heat exchanger 40 to the evaporator 10 via the decompressor 50. As a result, the liquid amount of the mixed refrigerant in the liquid phase state in the evaporator 10 is also recovered.
  • the amount of heat of the heating element N increases rapidly, and the mixed refrigerant of 1-methoxy-1,1,2,2-tetrafluoroethane and methanol in the evaporator 10 temporarily Even if it decreases, the boiling point of the mixed refrigerant can be lowered, the evaporation of the mixed refrigerant in the evaporator 10 can be promoted, and the heat of the heating element N can be efficiently cooled.
  • the cooling device 1000 includes the evaporator 10 and the heat exchanger for condensation 40 (condenser).
  • the evaporator 10 receives the heat of the heating element N, evaporates the liquid-phase mixed refrigerant stored inside by the heat of the heating element N, and flows out the gas-phase mixed refrigerant.
  • the condensation heat exchanger 40 condenses the gas-phase mixed refrigerant flowing out from the evaporation unit 10, and flows the liquid-phase mixed refrigerant out to the evaporation unit 10.
  • the mixed refrigerant is configured such that the boiling point of the mixed refrigerant decreases when the mixed refrigerant in the liquid phase state stored in the evaporator 10 decreases.
  • the mixed refrigerant is configured such that the boiling point of the mixed refrigerant decreases when the liquid-phase mixed refrigerant stored in the evaporator 10 decreases. For this reason, for example, even when the amount of heat of the heating element N suddenly increases and the mixed refrigerant in the evaporator 10 temporarily decreases, the boiling point of the mixed refrigerant is lowered, The evaporation of the mixed refrigerant can be promoted, and the amount of the mixed refrigerant in the evaporator 10 can be recovered. As a result, the cooling device 1000 efficiently cools the heat of the heating element N even when the amount of heat of the heating element N rapidly increases and the mixed refrigerant in the evaporator 10 temporarily decreases. Can do. Further, unlike the technique described in Patent Document 1, it is not necessary to provide a plurality of bypass pipes, a plurality of flow rate adjusting valves, and a device for controlling these.
  • the heat of the heating element N can be cooled with a simple configuration.
  • the cooling device 1000 in the cooling device 1000 according to the first embodiment of the present invention, it is possible to suppress a decrease in the evaporation amount (vaporization amount) of the mixed refrigerant in the evaporator 10. It can suppress that performance deteriorates.
  • the mixed refrigerant includes a plurality of types of refrigerants mixed at a predetermined mixing ratio, and exhibits a minimum azeotropic point under atmospheric pressure.
  • the concentration of the refrigerant having the lowest boiling point is set higher than the azeotropic concentration that is the concentration at the azeotropic point of the mixed refrigerant.
  • At least one of the plurality of types of refrigerants may include a fluorine atom.
  • a refrigerant containing fluorine has a larger specific heat and higher cooling efficiency than a general refrigerant. For this reason, when the mixed refrigerant of the liquid phase state stored in the evaporator 10 reduces, the boiling point of a mixed refrigerant falls efficiently. As a result, the heating element N can be cooled more efficiently.
  • refrigerants containing fluorine atoms include 1,1,1,2,3,3-hexafluoro-3- (2,2,2-trifluoroethoxy) propane, pentafluorodimethyl ether, 1,1, -Difluoroethane, trifluorodimethyl ether, 1,1,1,2-tetrafluoropropene, 1,1,1,2-tetrafluoroethane, 2,3,3,3-tetrafluoro-1-propene .
  • At least one of the plurality of types of refrigerants may include oxygen atoms.
  • the mixed refrigerant in the liquid phase state stored in the evaporator 10 decreases, the mixed refrigerant can be easily generated so that the boiling point of the mixed refrigerant decreases.
  • refrigerants containing oxygen atoms include 2-butanol, pentafluorodimethyl ether, trifluorodimethyl ether, and 1,1,2,2,2-pentafluoroethyl ketone.
  • the cooling device 1000 further includes a compressor 20 and a decompressor 50.
  • the compressor 20 pressurizes the gas-phase mixed refrigerant flowing out of the evaporator 10 and flows out to the condensation heat exchanger 40 (condenser).
  • the decompressor 50 decompresses the liquid-phase mixed refrigerant flowing out from the condensation heat exchanger 40 and flows out to the evaporator 10. Thereby, a mixed refrigerant can be circulated more efficiently between the evaporator 10 and the heat exchanger 40 for condensation.
  • FIG. 4 is a diagram showing a configuration of the cooling device 1000A.
  • constituent elements equivalent to those shown in FIGS. 1 to 3 are given the same reference numerals as those shown in FIGS.
  • the cooling device 1000A includes an evaporator 10 and a condenser 40A. Moreover, piping 71 and 72 are provided between each. Moreover, the evaporator 10 and the condenser 40A are connected by piping 71 and 72 so that the inside is sealed. As an example of the condenser 40A, for example, the condensation heat exchanger 40 used in the cooling device 1000 of the first embodiment can be used.
  • FIG. 1 and FIG. 4 are compared. 4 is different from FIG. 1 in that the compressor 20, the heat-use heat exchanger 30 and the decompressor 50 are not provided.
  • FIG. 1 there are five pipes 61 to 65, whereas in FIG. 4, there are two pipes 71 and 72, which are different from each other.
  • it replaces with the heat exchanger 40 for condensation of FIG. 1, and the condenser 40A is provided.
  • the cooling device 1000A has a mixed refrigerant that circulates through the evaporator 10 and the condenser 40A. That is, a cavity is provided inside the evaporator 10 and the condenser 40A.
  • the mixed refrigerant is confined in a closed state in a closed space formed by the evaporator 10, the condenser 40A, and the pipes 71 and 72.
  • This mixed refrigerant circulates through the evaporator 10 and the condenser 40A through the pipes 71 and 72 in a sealed state.
  • the evaporator 10 is connected to the condenser 40A by a pipe 71 and a pipe 72.
  • the evaporator 10 is provided in the vicinity of the heating element N and receives heat from the heating element N.
  • the evaporator 10 stores a mixed refrigerant in a liquid phase state therein.
  • the evaporator 10 receives the heat of the heating element N, evaporates the liquid-phase mixed refrigerant stored inside by the heat of the heating element N, and flows out the gas-phase mixed refrigerant.
  • the evaporator 10 flows the mixed refrigerant in a gas phase state through the pipe 71 to the condenser 40A.
  • the condenser 40A is connected to the evaporator 10 by a pipe 71 and a pipe 72.
  • the condenser 40 ⁇ / b> A condenses the gas-phase mixed refrigerant flowing out from the evaporator 10, and flows the liquid-phase mixed refrigerant out to the evaporator 10.
  • the condenser 40 ⁇ / b> A condenses the gas-phase mixed refrigerant from the evaporator 10 and flows out the liquid-phase mixed refrigerant to the evaporator 10.
  • the piping 71 and the piping 72 connect between the evaporator 10 and the condenser 40A.
  • the configuration of the cooling device 1000A has been described based on FIG.
  • the evaporator 10 first receives the heat of the heating element N, evaporates the mixed refrigerant in the liquid phase stored therein by the heat of the heating element N, and enters the gas phase state. Produces a mixed refrigerant. Then, the evaporator 10 flows the mixed refrigerant in a gas phase out to the condenser 40A via the pipe 71.
  • the condenser 40A condenses the gas-phase mixed refrigerant flowing from the evaporator 10 to generate a liquid-phase mixed refrigerant, and the liquid-phase refrigerant flows out to the evaporator 10.
  • the cooling device 1000 between the evaporator 10 and the condenser 40A, the operation of circulating the mixed refrigerant while changing the phase (mixed refrigerant in the liquid phase ⁇ ⁇ mixed refrigerant in the gas phase) is repeated, The heat of the heating element N is cooled.
  • the cooling device 1000 includes the evaporator 10 and the condenser 40A.
  • the evaporator 10 receives the heat of the heating element N, evaporates the liquid-phase mixed refrigerant stored inside by the heat of the heating element N, and flows out the gas-phase mixed refrigerant.
  • the condenser 40 ⁇ / b> A condenses the gas-phase mixed refrigerant flowing out from the evaporator 10, and flows the liquid-phase mixed refrigerant out to the evaporator 10.
  • the mixed refrigerant is configured such that the boiling point of the mixed refrigerant decreases when the mixed refrigerant in the liquid phase state stored in the evaporator 10 decreases.
  • the mixed refrigerant is configured such that the boiling point of the mixed refrigerant decreases when the liquid-phase mixed refrigerant stored in the evaporator 10 decreases. For this reason, for example, even when the amount of heat of the heating element N suddenly increases and the mixed refrigerant in the evaporator 10 temporarily decreases, the boiling point of the mixed refrigerant is lowered, The evaporation of the mixed refrigerant can be promoted, and the amount of the mixed refrigerant in the evaporator 10 can be recovered. As a result, the cooling device 1000 efficiently cools the heat of the heating element N even when the amount of heat of the heating element N rapidly increases and the mixed refrigerant in the evaporator 10 temporarily decreases. Can do. Further, unlike the technique described in Patent Document 1, it is not necessary to provide a plurality of bypass pipes, a plurality of flow rate adjusting valves, and a device for controlling these.
  • the heat of the heating element N can be cooled with a simple configuration.
  • the cooling device 1000 in the cooling device 1000 according to the first embodiment of the present invention, it is possible to suppress a decrease in the evaporation amount (vaporization amount) of the mixed refrigerant in the evaporator 10. It can suppress that performance deteriorates.
  • a tank for adjusting the amount of the mixed refrigerant circulating between the evaporator 10 and the condenser 40A can be further provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

発熱体の熱を冷却する冷却装置(1000)は、蒸発器(10)と、凝縮器(40A)とを備えている。蒸発器(10)は、発熱体(N)の熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体(N)の熱により蒸発させて、気相状態の混合冷媒を流出する。凝縮器(40A)は、蒸発部(10)から流出する気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を蒸発部(10)へ流出する。このとき、混合冷媒は、蒸発器(10)内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように構成されている。

Description

冷却装置
 本発明は、冷却装置に関し、例えば、蒸発器および凝縮器の間で冷媒を循環させて発熱体を冷却する冷却装置に関する。
 近年、冷媒の相変化現象を利用する方式(相変化冷却方式)を用いて、電子装置からの排気熱を輸送する技術が知られている。これは、冷媒の気化と凝縮のサイクルによって、液相と気相に冷媒の相が変化する際の潜熱を利用するもので、熱移動量が大きいという特徴がある。
 たとえば、蒸発器は、発熱体の熱を受けて、内部に貯留されている液相冷媒を発熱体の熱により蒸発させて、気相冷媒を流出させる。蒸発器から流出する気相冷媒は、凝縮器へ流入する。凝縮器は、蒸発器から流出する気相冷媒を受け取る。そして、凝縮器は、蒸発器から流出する気相冷媒を凝縮して、液相冷媒を流出する。このとき、凝縮器は、冷媒を介して発熱体の熱を蒸発器から受熱し、受熱した発熱体の熱を外気に放熱する。すなわち、凝縮器は、冷媒により吸熱された発熱体の熱と、外気の熱とを熱交換する。また、凝縮器から流出する液相冷媒は、蒸発器へ向けて流出する。
 このように、相変化冷却方式では、蒸発器および凝縮器の間で、冷媒を相変化(液相冷媒←→気相冷媒)させながら循環させる動作を繰り返して、発熱体の熱を冷却する。
 相変化冷却方式に関する技術が、たとえば、特許文献1に記載されている。特許文献1に記載の技術では、蒸発器および凝縮器(放熱器)の間に、減圧器(膨張弁)および圧縮器(圧縮機)を設けて、蒸発器および凝縮器間の冷媒の循環を促進している。また、特許文献1に記載の技術では、複数のバイパス管と複数の流量調整弁を用いて、冷媒の流量を調整している。これにより、冷却効率の低下を抑制していた。
 なお、本発明に関連する技術が、特許文献2-4にも開示されている。
特開2013-2800号公報 特開2004-53191号公報 特許第4253747号公報 特開平05-215424号公報
 しかしながら、特許文献1に記載の技術では、複数のバイパス管および複数の流量調整弁を設ける必要がある。また、これらを制御する機器をさらに設ける必要がある。このため、特許文献1に記載の技術には、構成が複雑となり、多くのコストがかかるという問題があった。
 本発明は、このような事情を鑑みてなされたものであり、本発明の目的は、簡単な構成で、発熱体の熱を冷却することができる冷却装置を提供することにある。
 本発明の冷却装置は、発熱体の熱を受けて、内部に貯留されている液相状態の混合冷媒を前記発熱体の熱により蒸発させて、気相状態の混合冷媒を流出する蒸発器と、前記蒸発部から流出する前記気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を前記蒸発部へ流出する凝縮器とを備え、前記混合冷媒は、前記蒸発器内に貯留されている前記液相状態の混合冷媒が減少した場合に、前記混合冷媒の沸点が低下するように構成されている。
 本発明にかかる冷却装置によれば、簡単な構成で、発熱体の熱を冷却することができる。
本発明の第1の実施の形態における冷却装置の構成を示す図である。 混合冷媒の特性を示す図である。 混合冷媒の沸点と、低沸点の冷媒のモル比率の関係の一例を示す図である。 本発明の第2の実施の形態における冷却装置の構成を示す図である。
<第1の実施の形態>
 本発明の第1の実施の形態における冷却装置1000の構成について説明する。図1は、冷却装置1000の構成を示す図である。
 図1に示されるように、冷却装置1000は、蒸発器10と、圧縮器20と、熱利用用熱交換器30と、凝縮用熱交換器40と、減圧器50とを備えている。また、それぞれの間には、配管61~65が設けられている。また、蒸発器10、圧縮器20、熱利用用熱交換器30、凝縮用熱交換器40および減圧器50は、内部が密閉されるように、配管61~65により連結されている。なお、凝縮用熱交換器40は、第2の実施形態の凝縮器に相当する。
 また、冷却装置1000は、蒸発器10、圧縮器20、熱利用用熱交換器30、凝縮用熱交換器40および減圧器50を循環する混合冷媒を有する。すなわち、蒸発器10、圧縮器20、熱利用用熱交換器30、凝縮用熱交換器40および減圧器50の内部には、空洞が設けられている。
 また、混合冷媒は、蒸発器10、減圧器20、熱利用用熱交換器30、凝縮用熱交換器40、圧縮器50および配管61~65により形成される閉鎖空間内に、密閉された状態で閉じ込められる。この混合冷媒は、密閉された状態で、蒸発器10、圧縮器20、熱利用用熱交換器30、凝縮用熱交換器40、減圧器50および配管61~65を介して、循環する。
 混合冷媒は、例えば、高分子材料などにより構成されており、高温になると気化し、低温になると液化する特性を有している。混合冷媒の具体的な組成については、後述する。
 冷却装置1000の前記閉鎖空間内に混合冷媒を充填する方法については、たとえば、次の通りである。まず、蒸発器10、減圧器20、熱利用用熱交換器30、凝縮用熱交換器40、圧縮器50および配管61~65により形成される閉鎖空間内に冷媒注入用の開口穴(不図示)から混合冷媒を注入する。なお、冷媒注入用の開口穴は、たとえば、発熱体Nおよび減圧器50の間に配置された配管65に、設けられている。ただし、これに限定されず、冷媒注入用の開口穴は、配管65以外の部材にもうけられてもよい。次に、真空ポンプ(不図示)などを用いて、前記閉鎖空間内から空気を排除して、この当該閉鎖空間内に冷媒を密閉する。これにより、前記空間内の圧力は冷媒の飽和蒸気圧と等しくなり、前記閉鎖空間内に密閉された混合冷媒の沸点が室温近傍となる。以上の通り、冷却装置1000の前記閉鎖空間内に混合冷媒を充填する方法を説明した。なお、ここで説明した充填方法は、たとえば、国際公開第2015/133548号にも記載されている。
 図1に示されるように、蒸発器10は、配管61によって、圧縮器20に接続されている。また、蒸発器10は、配管65によって、減圧器50に接続されている。蒸発器10は、発熱体Nの近傍に設けられており、発熱体Nの熱を受ける。蒸発器10は、内部に液相状態の混合冷媒を貯留する。蒸発器10は、図1の矢印で示されるように、発熱体Nの熱を吸熱する。すなわち、蒸発器10は、発熱体Nの熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体Nの熱により蒸発させて、気相状態の混合冷媒を流出する。蒸発器10は、配管61を介して、気相状態の混合冷媒を圧縮器20へ流出する。
 図1に示されるように、圧縮器20は、配管62によって、熱利用用熱交換器30と接続している。また、圧縮器20は、配管61によって、蒸発器10に接続されている。圧縮器20は、蒸発器10から流出する気相状態の混合冷媒を加圧して、熱利用用熱交換器30へ流出する。
 図1に示されるように、熱利用用熱交換器30は、配管63によって、凝縮用熱交換器40と接続されている。また、熱利用用熱交換器30は、配管62によって、圧縮器20に接続されている。熱利用用熱交換器30は、図1で太い矢印で示されるように、圧縮器20により流出された気相状態の混合冷媒から、2次利用するための熱を放熱する。すなわち、熱利用用熱交換器30は、圧縮器20により流出された気相状態の混合冷媒から、2次利用するための熱を取り出す。そして、熱利用用熱交換器30は、2次利用するための熱を取り出した後、気相状態の混合冷媒を凝縮用熱交換器40へ流出する。なお、熱利用用熱交換器30には、一般的な熱交換器(たとえば、プレート式熱交換器)を用いることができる。
 図1に示されるように、凝縮用熱交換器40は、配管64によって、減圧器50に接続されている。また、凝縮用熱交換器40は、配管63によって、熱利用用熱交換器30に接続されている。凝縮用熱交換器40は、蒸発部10から流出する気相状態の混合冷媒を凝縮して、減圧器50を介して液相状態の混合冷媒を蒸発部10へ流出する。図1の例では、凝縮用熱交換器40は、熱利用用熱交換器30から気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を減圧器50へ流出する。より具体的には、凝縮用熱交換器40は、図1の太い白抜きの矢印で示されるように、熱利用用熱交換器30から気相状態の混合冷媒の余剰熱を冷却(放熱)することにより、気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を生成する。そして、凝縮用熱交換器40は、生成された液相状態の混合冷媒を減圧器50へ流出する。なお、凝縮用熱交換器40には、一般的な熱交換器(たとえば、プレート式熱交換器)を用いることができる。
 図1に示されるように、減圧器50は、配管65によって、蒸発器10に接続されている。また、減圧器50は、配管64によって、凝縮用熱交換器40に接続されている。減圧器50は、凝縮用熱交換器40から流出する液相状態の混合冷媒を減圧して蒸発器10へ流出する。凝縮用熱交換器40から流出する液相状態の混合冷媒は、減圧により膨張し、温度および圧力が低下する。
 以上、冷却装置1000の構成について、図1に基づいて説明した。
 ここで、本発明で使用する混合冷媒について、具体的に説明する。混合冷媒は、一般的に、複数の冷媒を含む冷媒をいう。本実施の形態の混合冷媒は、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように構成されている。
 また、本実施の形態の混合冷媒は、共沸または共沸様の混合冷媒である。共沸とは、ある比率で混合された冷媒が沸騰する際に、液相および気相の組成が一致することをいう。また、共沸様とは、ある比率で混合された冷媒が沸騰する際に、液相および気相の組成がほぼ一致し、且つ、蒸発および凝縮を繰り返した際にも組成がほとんど変化しないことをいう。すなわち、本実施の形態の混合冷媒は、所定の混合比で混合された複数種類の冷媒を含み、大気圧下で極小共沸点を呈する。本実施の形態の混合冷媒は、気相および液相の組成が同一となり、あたかも一成分であるかのような相変化をする。また、本実施の形態の混合冷媒は、当該混合冷媒に含まれる複数種類の冷媒のうちで、最低沸点の冷媒の濃度が、共沸濃度よりも高く設定されている。すなわち、混合冷媒に含まれる複数種類の冷媒のうちで、最低沸点の冷媒の濃度が、共沸濃度よりも高くなるように、所定の混合比が設定されている。なお、共沸濃度は、混合冷媒の共沸点における濃度である。
 また、混合する冷媒によって、共沸点が各冷媒の沸点よりも高い場合、共沸点は極大共沸点と呼ばれている。一方、共沸点が各冷媒の沸点よりも低い場合、共沸点は極小共沸点と呼ばれている。
 図2は、混合冷媒の特性を示す図である。図2では、低沸点の冷媒のモル分率(-)を横軸とし、沸点(℃)を縦軸とした。なお、(-)は単位がないことを示す。図2の混合冷媒の例では、2種類の冷媒を混合して得られるものとした。
 図2には、低沸点の冷媒のモル分率(-)および沸点(℃)の関係が、示されている。図2に示されるように、共沸点は、混合冷媒の特性を示す曲線の頂点に対応している。なお、図2では、エタノールとベンゼンの混合冷媒の例を示している。エタノールは、ベンゼンと比較して低沸点の冷媒である。
 本実施の形態の混合冷媒では、図2にて網掛け領域で示すように、2種類の冷媒のうち、低沸点冷媒(沸点が低い冷媒)の濃度は、共沸濃度よりも高くなるように設定されている。ただし、低沸点冷媒(沸点が低い冷媒)の濃度は、100%未満である。
 つぎに、2種類の冷媒から混合冷媒を製造する方法について、2つの方法を説明する。
 混合冷媒の製造方法の1つ目では、混合冷媒を冷却装置1000に封入する前に、2種類の冷媒を所定の混合比で混合する。この所定の混合比は、混合冷媒に含まれる複数種類の冷媒のうちで、最低沸点の冷媒の濃度が、共沸濃度よりも高く設定されているように、設定される。
 このとき、常温常圧下で複数の冷媒を混合することもできるが、混合の割合(所定の混合比)が指定の割合(混合比)から外れてしまう可能性がある。このため、複数の冷媒を液相状態にしてから、密閉された空間内(密閉系)で複数の冷媒を混合することが、好ましい。
 すなわち、複数の冷媒を混合する際に設定される圧力に対応する低沸点冷媒の沸点よりも低い温度を維持しながら、密閉された空間で複数の冷媒を混合することが好ましい。または、複数の冷媒を混合する際に設定される温度に対応する低沸点冷媒の飽和蒸気圧よりも高い圧力を維持しながら、密閉された空間で複数の冷媒を混合することが好ましい。
 混合冷媒の製造方法の2つ目では、複数種類の冷媒を別々に冷却装置1000に封入する。
 この場合も、常温常圧下で2種類の冷媒を混合することもできるが、混合の割合(所定の混合比)が指定の割合(混合比)から外れてしまう可能性がある。このため、2種類の冷媒を液相状態にしてから、冷却装置1000に封入することが、好ましい。また、冷却装置1000を動作させる際の初期状態として、混合冷媒に含まれる2種類の冷媒が蒸発器10に、指定の割合(混合比)で存在しなければならない。
 なお、混合冷媒に含まれる冷媒は、2種類に限らず、3種類以上であってもよい。具体的には、複数種類の冷媒を所定の混合比で混合した場合に、混合冷媒に含まれる複数種類の冷媒のうちで、最低沸点の冷媒の濃度が、共沸濃度よりも高く設定されていればよい。混合冷媒に含まれる冷媒として、例えば、複数種類の物質を混合した場合に極小となる共沸点を持つ冷媒や、混合冷媒に発泡剤や、安定剤や、潤滑剤等を加えた冷媒が、挙げられる。また、混合冷媒として、例えば、1,1,1,2,3,3-ヘキサフルオロ-3-(2,2,2-トリフルオロエトキシ)プロパン(85.0~99.9重量%)と2-ブタノール(0.1~15.0重量%)の混合液が、挙げられる(たとえば、特開2003-238992号公報参照)。また、(1,1,2,2-テトラフルオロエチル)メチルエーテル(94.2~97.4重量%)とメタノール(2.6~5.8重量%)の混合液が、挙げられる(たとえば、特開2006-117811号公報参照)。また、2,3,3,3-テトラフルオロプロパン(50.6~54.6重量%)と1,1-ジフルオロエタン(9.1~13.1重量%)とシクロプロパン(34.3~38.3重量%)の混合液が、挙げられる(たとえば、特開2015-110795号公報参照)。また、1,1,1,2-テトラフルオロプロペン(たとえば、70~99重量%)と1,1,1,2-テトラフルオロエタン(1~30重量%)の混合液に発泡剤としてポリウレタンフォームなどを加えた液が、挙げられる(たとえば、特表2012-500323号公報参照)。
 次に、冷却装置1000の動作について、説明する。
 図1に示されるように、蒸発器10は、まず、発熱体Nの熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体Nの熱により蒸発させて、気相状態の混合冷媒を生成する。そして、蒸発器10は、配管61を介して、気相状態の混合冷媒を圧縮器20へ流出する。
 次に、圧縮器20は、蒸発器10から流出する気相状態の混合冷媒を加圧して、加圧後の混合冷媒を熱利用用熱交換器30へ流出する。
 次に、熱利用用熱交換器30は、圧縮器20により流出された気相状態の混合冷媒から、2次利用するための熱を取り出す。そして、熱利用用熱交換器30は、2次利用するための熱を取り出した後、気相状態の混合冷媒を凝縮用熱交換器40へ流出する。
 凝縮用熱交換器40は、熱利用用熱交換器30から気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を減圧器50へ流出する。
 そして、減圧器50は、凝縮用熱交換器40から流出する液相状態の混合冷媒を減圧して蒸発器10へ流出する。
 以上の通り、冷却装置1000では、蒸発器10および凝縮用熱交換器40の間で、混合冷媒を相変化(液相状態の混合冷媒←→気相状態の混合冷媒)させながら循環させる動作を繰り返して、発熱体Nの熱を冷却する。
 ここで、発熱体Nの熱量が急激に増加した場合を想定する。この場合、蒸発器10から凝縮用熱交換器40へ流出する気相状態の混合冷媒の量が、凝縮用熱交換器40から蒸発器10へ流入する混合冷媒の量よりも、一時的に多くなる。このとき、蒸発器10内では、最低沸点の冷媒の蒸発量が、他の冷媒の蒸発量よりも多くなる。たとえば、エタノールとベンゼンの混合冷媒である場合、ベンゼンと比較して低沸点の冷媒であるエタノールの蒸発量が、ベンゼンの蒸発量よりも多くなる。このため、蒸発器10内の混合冷媒中における最低沸点の冷媒の割合が減少する。エタノールとベンゼンの混合冷媒である場合、エタノールの割合が減少する。このとき、混合冷媒の沸点が低下する。
 このため、蒸発器10内での混合冷媒の蒸発が促進される。そして、気相状態の混合冷媒が、圧縮器20を介して、熱利用用熱交換器30および熱凝縮用熱交換器40に流入する。気相状態の混合冷媒は、凝縮用熱交換器40により凝縮され、液相状態の混合冷媒となる。液相状態の混合冷媒は、凝縮用熱交換器40から、減圧器50を介して、蒸発器10へ流出する。この結果、蒸発器10内の液相状態の混合冷媒の液量も回復する。
 このように、冷却装置1000では、発熱体Nの熱量が急激に増加して、蒸発器10内の混合冷媒が一時的に減少した場合であっても、混合冷媒の沸点を低下させ、蒸発器10内での混合冷媒の蒸発を促進し、蒸発器10内の混合冷媒の量を回復させることができる。すなわち、冷却装置1000では、冷却能力を極端に落とすことなく、発熱体Nを継続して冷却することができる。この結果、冷却装置1000では、発熱体Nの熱量が急激に増加して、蒸発器10内の混合冷媒が一時的に減少した場合であっても、効率よく発熱体Nの熱を冷却することができる。
 一般的な冷却装置のように1種類の冷媒を使用している場合、発熱体Nの発熱量が急激に増加して一時的に蒸発器内の液量が一定量以上減少した際に、タンクを使用して冷媒を追加しない限り冷媒の蒸発量は変化しないので、発熱体Nの熱を冷却しきれなくなってしまう。しかし、本発明では、一時的に蒸発器10内の液量が減少した際に、冷媒の組成変化によって沸騰が促進されるため、一般的な冷却装置と比べて冷却能力の劣化を防ぐことができる。
 (実施例)
 たとえば、環境温度15℃、大気圧の実験室にて、(1,1,2,2-テトラフルオロエチル)メチルエーテル(97.4重量%)とメタノール(2.6重量%)を混合して、混合冷媒を生成した。図3は、混合冷媒の沸点と、低沸点の冷媒のモル比率の関係の一例を示す図である。具体的には、図3は、1-メトキシ-1、1、2、2-テトラフルオロエタンおよびメタノールの混合冷媒の沸点と、1-メトキシ-1、1、2、2-テトラフルオロエタンのモル比率の関係を示す図である。なお、1-メトキシ-1、1、2、2-テトラフルオロエタンは、(1,1,2,2-テトラフルオロエチル)メチルエーテルと同一物質である。
 冷却装置1000内を真空状態にして、この混合冷媒を当該冷却装置1000内に封入した。このとき、蒸発器10内の液相状態の冷媒の液量が、蒸発器10の容積に対して、8割になるように調整した。
 例えば、冷却装置1000が正常な動作をしている際には、蒸発器内10では、ある量の1-メトキシ-1、1、2、2-テトラフルオロエタンと、ある量のメタノールが蒸発して、気相状態の冷媒に相変化する。また、凝縮用熱交換器40内では、蒸発器10内での蒸発量と等量の1-メトキシ-1、1、2、2-テトラフルオロエタンと、蒸発器10内での蒸発量と等量のメタノールとが凝縮して、液相状態の冷媒へ相変化する。そして、液相状態の混合冷媒は、凝縮用熱交換器40から、蒸発器10に流入する。このように、冷却装置1000が正常な動作をしている際には、蒸発器10および凝縮用熱交換器40の間で、混合冷媒を相変化(液相状態の混合冷媒←→気相状態の混合冷媒)させながら循環させる動作を繰り返して、発熱体Nの熱を冷却する。
 ここで、発熱体Nの熱量が急激に増加した場合を想定する。この場合、蒸発器10から凝縮用熱交換器40へ流出する気相状態の混合冷媒の量(蒸発量)が、凝縮用熱交換器40から蒸発器10へ流入する混合冷媒(戻り量)の量よりも、一時的に多くなる。
 このとき、蒸発器10内では、発熱体Nの熱量が急激に増加する前と比較して、最低沸点の冷媒である1-メトキシ-1、1、2、2-テトラフルオロエタンの蒸発量が、他の冷媒であるメタノールの蒸発量よりも多くなる。このため、蒸発器10内の混合冷媒中における最低沸点の冷媒である1-メトキシ-1、1、2、2-テトラフルオロエタンの割合が減少する。このとき、図3の矢印で示されるように、モル比率の減少に伴って、1-メトキシ-1、1、2、2-テトラフルオロエタンおよびメタノールの混合冷媒の沸点が低下する。
 このため、蒸発器10内での混合冷媒の蒸発が促進され、気相状態の混合冷媒が、圧縮器20を介して、熱利用用熱交換器30および熱凝縮用熱交換器40に流入する。そして、気相状態の混合冷媒は、凝縮用熱交換器40により凝縮され、液相状態の混合冷媒となる。液相状態の混合冷媒は、凝縮用熱交換器40から、減圧器50を介して、蒸発器10へ流出する。この結果、蒸発器10内の液相状態の混合冷媒の液量も回復する。
 一般的な冷却装置のように1種類の冷媒を使用している場合、発熱体Nの発熱量が急激に増加して一時的に蒸発器内の液量が一定量以上減少した際に、タンクを使用して冷媒を追加しない限り冷媒の蒸発量は変化しないので、発熱体Nの熱を冷却しきれなくなってしまう。しかし、本実施形態では、一時的に蒸発器10内の液量が減少した際に、冷媒の組成変化によって沸騰が促進されるため、一般的な冷却装置と比べて冷却能力の劣化を防ぐことができる。
 このように、冷却装置1000では、発熱体Nの熱量が急激に増加して、蒸発器10内の1-メトキシ-1、1、2、2-テトラフルオロエタンおよびメタノールの混合冷媒が一時的に減少した場合であっても、混合冷媒の沸点を低下させ、蒸発器10内での混合冷媒の蒸発を促進し、効率よく発熱体Nの熱を冷却することができる。
 以上の通り、本発明の第1の実施の形態における冷却装置1000は、蒸発器10と、凝縮用熱交換器40(凝縮器)とを備えている。蒸発器10は、発熱体Nの熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体Nの熱により蒸発させて、気相状態の混合冷媒を流出する。凝縮用熱交換器40は、蒸発部10から流出する気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を蒸発部10へ流出する。このとき、混合冷媒は、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように構成されている。
 このように、混合冷媒は、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように構成されている。このため、たとえば、発熱体Nの熱量が急激に増加して、蒸発器10内の混合冷媒が一時的に減少した場合であっても、混合冷媒の沸点を低下させ、蒸発器10内での混合冷媒の蒸発を促進し、蒸発器10内の混合冷媒の量を回復させることができる。この結果、冷却装置1000では、発熱体Nの熱量が急激に増加して、蒸発器10内の混合冷媒が一時的に減少した場合であっても、効率よく発熱体Nの熱を冷却することができる。また、特許文献1に記載の技術のように、複数のバイパス管や、複数の流量調整弁や、これらを制御する機器を設ける必要がない。
 したがって、本発明の第1の実施の形態における冷却装置1000では、簡単な構成で、発熱体Nの熱を冷却することができる。
 また、上述の通り、本発明の第1の実施の形態における冷却装置1000では、蒸発器10内での混合冷媒の蒸発量(気化量)が減少することを抑制できるので、冷却装置1000の冷却性能が悪化することを抑制することができる。
 また、上述の通り、特許文献1に記載の技術のように、複数のバイパス管や、複数の流量調整弁や、これらを制御する機器を設ける必要がないので、混合冷媒の量を調整するために流路を切り替える必要もない。これにより、混合冷媒の量を調整するためのバイパス流路等が不要となり、冷却装置1000をより簡単な構成にすることができる。この結果、冷却装置1000の低コスト化や省スペース化を実現することができる。また、流路を切り替えるための制御機器も不要となるため、低コスト化に加えて、故障のリスクを下げることもできる。
 また、本発明の第1の実施の形態における冷却装置1000において、混合冷媒は、所定の混合比で混合された複数種類の冷媒を含み、大気圧下で極小共沸点を呈する。また、複数種類の冷媒のうちで、最低沸点の冷媒の濃度が、混合冷媒の共沸点における濃度である共沸濃度よりも高く設定されている。これにより、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように、混合冷媒を簡単に生成することができる。
 また、本発明の第1の実施の形態における冷却装置1000において、複数種類の冷媒のうち少なくとも1種類の冷媒は、フッ素原子を含んでもよい。フッ素を含む冷媒は、一般的な冷媒と比較して比熱が大きく、冷却効率が高い。このため、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が効率よく低下する。この結果、発熱体Nをより効率よく冷却することができる。フッ素原子を含む冷媒の一例として、たとえば、1,1,1,2,3,3-ヘキサフルオロ-3-(2,2,2-トリフルオロエトキシ)プロパンや、ペンタフルオロジメチルエーテルや、1、1-ジフルオロエタンや、トリフルオロジメチルエーテルや、1,1,1,2-テトラフルオロプロペンや、1、1、1、2-テトラフルオロエタンや、2,3,3,3-テトラフルオロ-1-プロペンが、挙げられる。
 また、本発明の第1の実施の形態における冷却装置1000において、複数種類の冷媒のうち少なくとも1種類の冷媒は、酸素原子を含んでもよい。この結果、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように、混合冷媒を簡単に生成することができる。酸素原子を含む冷媒の一例として、たとえば、2-ブタノールや、ペンタフルオロジメチルエーテルや、トリフルオロジメチルエーテルや、1,1,2,2,2-ペンタフルオロエチルケトンが、挙げられる。
 また、本発明の第1の実施の形態における冷却装置1000は、圧縮器20と、減圧器50とをさらに備えている。圧縮器20は、蒸発器10から流出する気相状態の混合冷媒を加圧して凝縮用熱交換器40(凝縮器)へ流出する。減圧器50は、凝縮用熱交換器40から流出する液相状態の混合冷媒を減圧して蒸発器10へ流出する。これにより、蒸発器10および凝縮用熱交換器40の間で、混合冷媒をより効率よく循環させることができる。
 <第2の実施の形態>
 本発明の第2の実施の形態における冷却装置1000Aの構成について説明する。図4は、冷却装置1000Aの構成を示す図である。なお、図4では、図1~図3で示した各構成要素と同等の構成要素には、図1~図3に示した符号と同等の符号を付している。
 図4に示されるように、冷却装置1000Aは、蒸発器10と、凝縮器40Aとを備えている。また、それぞれの間には、配管71、72が設けられている。また、蒸発器10および凝縮器40Aは、内部が密閉されるように、配管71、72により連結されている。なお、凝縮器40Aの一例として、たとえば、第1の実施の形態の冷却装置1000で用いられた凝縮用熱交換器40を使用することができる。
 ここで、図1と図4を対比する。図4では、圧縮器20、熱利用用熱交換器30および減圧器50が設けられていない点で、図1と相違する。また、図1では、配管61~65の5本であるのに対して、図4では、配管71、72の2本である点で、両者は互いに相違する。また、図1の凝縮用熱交換器40に代えて、凝縮器40Aを設けている。
 また、冷却装置1000Aは、蒸発器10および凝縮器40Aを循環する混合冷媒を有する。すなわち、蒸発器10および凝縮器40Aの内部には、空洞が設けられている。
 混合冷媒は、蒸発器10、凝縮器40Aおよび配管71、72により形成される閉鎖空間内に、密閉された状態で閉じ込められる。この混合冷媒は、密閉された状態で、蒸発器10および凝縮器40Aを、配管71、72を介して、循環する。
 図4に示されるように、蒸発器10は、配管71および配管72によって、凝縮器40Aに接続されている。蒸発器10は、発熱体Nの近傍に設けられており、発熱体Nの熱を受ける。蒸発器10は、内部に液相状態の混合冷媒を貯留する。蒸発器10は、発熱体Nの熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体Nの熱により蒸発させて、気相状態の混合冷媒を流出する。蒸発器10は、配管71を介して、気相状態の混合冷媒を凝縮器40Aへ流出する。
 図4に示されるように、凝縮器40Aは、配管71および配管72によって、蒸発器10に接続されている。凝縮器40Aは、蒸発部10から流出する気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を蒸発部10へ流出する。図4の例では、凝縮器40Aは、蒸発器10から気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を蒸発器10へ流出する。
 配管71および配管72は、蒸発器10および凝縮器40Aの間を接続する。
 以上、冷却装置1000Aの構成について、図1に基づいて説明した。
 なお、混合冷媒の構成については、たとえば、第1の実施の形態で説明した混合冷媒と同等にすることもできる。
 次に、冷却装置1000Aの動作について、説明する。
 図4に示されるように、蒸発器10は、まず、発熱体Nの熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体Nの熱により蒸発させて、気相状態の混合冷媒を生成する。そして、蒸発器10は、配管71を介して、気相状態の混合冷媒を凝縮器40Aへ流出する。
 次に、凝縮器40Aは、蒸発器10から流入する気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を生成し、この液相状態の冷媒を蒸発器10へ流出する。
 以上の通り、冷却装置1000では、蒸発器10および凝縮器40Aの間で、混合冷媒を相変化(液相状態の混合冷媒←→気相状態の混合冷媒)させながら循環させる動作を繰り返して、発熱体Nの熱を冷却する。
 以上の通り、本発明の第1の実施の形態における冷却装置1000は、蒸発器10と、凝縮器40Aとを備えている。蒸発器10は、発熱体Nの熱を受けて、内部に貯留されている液相状態の混合冷媒を発熱体Nの熱により蒸発させて、気相状態の混合冷媒を流出する。凝縮器40Aは、蒸発部10から流出する気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を蒸発部10へ流出する。このとき、混合冷媒は、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように構成されている。
 このように、混合冷媒は、蒸発器10内に貯留されている液相状態の混合冷媒が減少した場合に、混合冷媒の沸点が低下するように構成されている。このため、たとえば、発熱体Nの熱量が急激に増加して、蒸発器10内の混合冷媒が一時的に減少した場合であっても、混合冷媒の沸点を低下させ、蒸発器10内での混合冷媒の蒸発を促進し、蒸発器10内の混合冷媒の量を回復させることができる。この結果、冷却装置1000では、発熱体Nの熱量が急激に増加して、蒸発器10内の混合冷媒が一時的に減少した場合であっても、効率よく発熱体Nの熱を冷却することができる。また、特許文献1に記載の技術のように、複数のバイパス管や、複数の流量調整弁や、これらを制御する機器を設ける必要がない。
 したがって、本発明の第1の実施の形態における冷却装置1000では、簡単な構成で、発熱体Nの熱を冷却することができる。
 また、上述の通り、本発明の第1の実施の形態における冷却装置1000では、蒸発器10内での混合冷媒の蒸発量(気化量)が減少することを抑制できるので、冷却装置1000の冷却性能が悪化することを抑制することができる。
 また、上述の通り、特許文献1に記載の技術のように、複数のバイパス管や、複数の流量調整弁や、これらを制御する機器を設ける必要がないので、混合冷媒の量を調整するために流路を切り替える必要もない。これにより、混合冷媒の量を調整するためのバイパス流路等が不要となり、冷却装置1000をより簡単な構成にすることができる。この結果、冷却装置1000の低コスト化や省スペース化を実現することができる。また、流路を切り替えるための制御機器も不要となるため、低コスト化に加えて、故障のリスクを下げることもできる。
 なお、上記第1および第2の実施の形態において、蒸発器10および凝縮器40Aの間を循環する混合冷媒の量を調整するためのタンクをさらに設けることもできる。
 以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。
 この出願は、2016年3月28日に出願された日本出願特願2016-063619を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1000、1000A  冷却装置
 10  蒸発器
 20  圧縮器
 30  熱利用用熱交換器
 40  凝縮用熱交換器
 40A  凝縮器
 50  減圧器
 61~65  配管
 71、72  配管

Claims (5)

  1.  発熱体の熱を受けて、内部に貯留されている液相状態の混合冷媒を前記発熱体の熱により蒸発させて、気相状態の混合冷媒を流出する蒸発器と、
     前記蒸発部から流出する前記気相状態の混合冷媒を凝縮して、液相状態の混合冷媒を前記蒸発部へ流出する凝縮器とを備え、
     前記混合冷媒は、
     前記蒸発器内に貯留されている前記液相状態の混合冷媒が減少した場合に、前記混合冷媒の沸点が低下するように構成された冷却装置。
  2.  前記混合冷媒は、
     所定の混合比で混合された複数種類の冷媒を含み、
     大気圧下で極小共沸点を呈し、
     前記複数種類の冷媒のうちで、最低沸点の冷媒の濃度が、前記混合冷媒の共沸点における濃度である共沸濃度よりも高く設定されている請求項1に記載の冷却装置。
  3.  前記複数種類の冷媒のうち少なくとも1種類の冷媒は、フッ素原子を含む請求項1または2に記載の冷却装置。
  4.  前記複数種類の冷媒のうち少なくとも1種類の冷媒は、酸素原子を含む請求項1または2に記載の冷却装置。
  5.  前記蒸発器から流出する前記気相状態の混合冷媒を加圧して前記凝縮器へ流出する圧縮器と、
     前記凝縮器から流出する前記液相状態の混合冷媒を減圧して前記蒸発器へ流出する減圧器をさらに備えた請求項1~4のいずれか1項に記載の冷却装置。
PCT/JP2017/011323 2016-03-28 2017-03-22 冷却装置 WO2017170009A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509108A JPWO2017170009A1 (ja) 2016-03-28 2017-03-22 冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-063619 2016-03-28
JP2016063619 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017170009A1 true WO2017170009A1 (ja) 2017-10-05

Family

ID=59965496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011323 WO2017170009A1 (ja) 2016-03-28 2017-03-22 冷却装置

Country Status (2)

Country Link
JP (1) JPWO2017170009A1 (ja)
WO (1) WO2017170009A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215424A (ja) * 1991-12-04 1993-08-24 Daikin Ind Ltd 混合冷媒を用いた冷凍装置
JPH07190543A (ja) * 1993-12-28 1995-07-28 Rinnai Corp 吸収式冷凍サイクル装置
JP2005015634A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2007538115A (ja) * 2004-04-29 2007-12-27 ハネウェル・インターナショナル・インコーポレーテッド テトラフルオロプロペンおよびハイドロフルオロカーボンの共沸混合物様組成物
JP2008304148A (ja) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd 冷却システム
JP2013088031A (ja) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd 冷却システムとその制御方法
JP2016509089A (ja) * 2012-12-26 2016-03-24 アルケマ フランス クロロメタンの共沸又は共沸様組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215424A (ja) * 1991-12-04 1993-08-24 Daikin Ind Ltd 混合冷媒を用いた冷凍装置
JPH07190543A (ja) * 1993-12-28 1995-07-28 Rinnai Corp 吸収式冷凍サイクル装置
JP2005015634A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2007538115A (ja) * 2004-04-29 2007-12-27 ハネウェル・インターナショナル・インコーポレーテッド テトラフルオロプロペンおよびハイドロフルオロカーボンの共沸混合物様組成物
JP2008304148A (ja) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd 冷却システム
JP2013088031A (ja) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd 冷却システムとその制御方法
JP2016509089A (ja) * 2012-12-26 2016-03-24 アルケマ フランス クロロメタンの共沸又は共沸様組成物

Also Published As

Publication number Publication date
JPWO2017170009A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
EP3128257B1 (en) Method for operating a refrigeration cycle device
WO2014156190A1 (ja) 二元冷凍装置
EP3121532B1 (en) Refrigeration cycle apparatus
JP4833330B2 (ja) 超臨界蒸気圧縮式冷凍サイクルおよびこれを用いる冷暖房空調設備とヒートポンプ給湯機
JP2001507784A (ja) 閉鎖回路循環を備えた冷凍システム
JP2006170487A (ja) 冷凍装置
JP7478170B2 (ja) 環境に優しいヒートパイプの作業物質
KR20240090358A (ko) 높은 구배 작동유체가 사용되는 온도 제어 시스템 및 그 작동 방법
JP2007278666A (ja) 二元冷凍装置
JP7081600B2 (ja) 共沸または共沸様組成物、熱サイクル用作動媒体および熱サイクルシステム
CN104567052A (zh) 制冷循环装置
WO2017170009A1 (ja) 冷却装置
KR101982415B1 (ko) 다수의 전자변을 이용한 이원 냉동 사이클 시스템
JP6682081B1 (ja) 冷凍方法
JP6596986B2 (ja) 冷却部品及び電子機器
JP4896505B2 (ja) 非共沸混合冷媒を使用するヒートポンプシステムまたは空調機若しくは冷凍機システム
WO2017051532A1 (ja) 冷却システムおよび冷却方法
JP2013002737A (ja) 冷凍サイクル装置
JP6371881B1 (ja) ガス冷却システム
Onaka et al. Analysis of heat pump cycle using CO2/DME mixture refrigerant
US20230395343A1 (en) Heat switch device using cryogenic loop heat pipe and method therefor
Yoon et al. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube
JP2007155176A (ja) 非共沸混合物冷媒を使用するヒートポンプシステムまたは空調機若しくは冷凍機システム
Kashyap et al. Review on Comparative Analysis of COP of Vapour Compression Refrigeration System
WO2023127459A1 (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509108

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774550

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774550

Country of ref document: EP

Kind code of ref document: A1