WO2017168702A1 - 無線通信システム、無線機器、リレーノード、及び、基地局 - Google Patents

無線通信システム、無線機器、リレーノード、及び、基地局 Download PDF

Info

Publication number
WO2017168702A1
WO2017168702A1 PCT/JP2016/060751 JP2016060751W WO2017168702A1 WO 2017168702 A1 WO2017168702 A1 WO 2017168702A1 JP 2016060751 W JP2016060751 W JP 2016060751W WO 2017168702 A1 WO2017168702 A1 WO 2017168702A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
information
relay node
coverage extension
Prior art date
Application number
PCT/JP2016/060751
Other languages
English (en)
French (fr)
Inventor
紅陽 陳
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201680084154.0A priority Critical patent/CN108886692A/zh
Priority to JP2018508296A priority patent/JP6631697B2/ja
Priority to EP16896919.4A priority patent/EP3439336B1/en
Priority to PCT/JP2016/060751 priority patent/WO2017168702A1/ja
Publication of WO2017168702A1 publication Critical patent/WO2017168702A1/ja
Priority to US16/127,803 priority patent/US20190014535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the technology described in this specification relates to a wireless communication system, a wireless device, a relay node, and a base station.
  • IoT Internet of Things
  • Various “things” equipped with a communication function can communicate with each other by connecting to the Internet or a wireless access network, or between the “things”.
  • “Communication between“ things ” is sometimes referred to as“ D2D (device-to-device) communication ”, MTC (machine type-communications), or the like.
  • “things” equipped with a communication function may be referred to as D2D devices, MTC devices, or the like.
  • MTC devices are placed in places where radio waves are difficult to reach compared to outdoors with good visibility and where the wireless environment is not good, such as indoors and underground May be.
  • CE coverage enhancement
  • a relay node that relays data transmission of a plurality of MTC devices to the base station may be arranged in the wireless communication system.
  • the MTC device does not transmit directly to the base station, but transmits to the relay node.
  • the MTC device is restricted from direct uplink (UL) communication addressed to the base station.
  • UL direct uplink
  • the base station cannot directly receive information such as the reception quality of the signal received by the MTC device from the MTC device.
  • Information such as the reception quality of the signal received by the MTC device from the base station may be used by the base station to determine the level of downlink (DL) coverage extension (CE level).
  • DL downlink
  • CE level coverage extension
  • the fact that the base station cannot directly receive information used for determining the CE level from the MTC device leads to an inability to determine an appropriate CE level for the MTC device and to provide an appropriate DL coverage extension. obtain.
  • one of the objects of the technology described in this specification is to enable an appropriate coverage extension level to be determined for a wireless device in which UL communication with a base station is limited.
  • the wireless communication system may include a base station, a relay node, and a wireless device.
  • the wireless device may perform downlink communication with the base station without passing through the relay node, and may perform uplink communication with the base station through the relay node.
  • the wireless device may transmit a discovery signal for discovering the relay node using a radio resource associated with a coverage extension level corresponding to the reception quality of the reference signal transmitted by the base station.
  • the relay node may transmit information on the radio resource that has received the discovery signal, or information on a coverage extension level determined based on the radio resource that has received the discovery signal, to the base station.
  • the base station determines a downlink coverage extension level for the wireless device based on information received from the relay node, and performs downlink communication with the wireless device at the determined coverage extension level. Good.
  • the wireless device may include a measurement unit and a transmission unit.
  • the measurement unit may measure the reception quality of the reference signal transmitted by the base station.
  • the transmission unit may transmit a discovery signal using a radio resource associated with a coverage extension level corresponding to the reception quality.
  • the discovery signal is a signal for discovering a relay node that relays uplink communication to the base station.
  • the relay node may include a reception unit and a transmission unit.
  • the receiving unit may receive a discovery signal transmitted by the wireless device.
  • the wireless device may transmit the discovery signal using a radio resource associated with a coverage extension level corresponding to the reception quality of the reference signal transmitted by the base station.
  • the transmission unit may transmit information on the radio resource used for transmitting the discovery signal or information on a coverage extension level determined based on the radio resource to the base station.
  • the base station may include a transmission unit, a reception unit, and a control unit.
  • the transmission unit may transmit a reference signal.
  • the receiving unit may receive, from the relay node, information on the radio resource used by the wireless device for transmitting the discovery signal or information on the coverage extension level determined based on the radio resource.
  • the radio resource used by the wireless device for transmitting the discovery signal may be associated with a coverage extension level corresponding to the reception quality of the reference signal.
  • the control unit determines a downlink coverage extension level for the wireless device based on the information received by the receiving unit, and controls the downlink communication with the wireless device at the determined coverage extension level. It's okay.
  • an appropriate coverage extension level can be determined for a wireless device in which uplink communication with a base station is restricted.
  • FIG. 3 is a sequence diagram illustrating an operation example according to the first embodiment of the wireless communication system illustrated in FIG. 1. It is a figure which shows an example of the information linked
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • the radio communication system 1 illustrated in FIG. 1 may include, for example, a base station 11, a plurality of UEs (User Equipment) 12, and a relay (Relay) UE 13.
  • UEs User Equipment
  • Relay relay
  • the base station 11 forms a wireless area 100.
  • One radio area 100 may be formed by one base station 11, or a plurality of radio areas 100 may be formed.
  • the wireless area 100 is determined according to the reach of wireless radio waves transmitted by the base station 11 (may be referred to as “coverage”).
  • Wireless area may be referred to as “cell”, “coverage area” or “communication area”.
  • the “cell” may be divided into “sector cells”.
  • the base station 11 may be referred to as a “base station (BS)”, “node B (NB)”, or “enhanced NB (eNB)”.
  • BS base station
  • NB node B
  • eNB enhanced NB
  • the UE 12 and the relay UE 13 can perform radio communication with the base station 11.
  • UE12 and UE13 are examples of wireless devices.
  • the UEs 12 and 13 may be referred to as wireless devices, mobile terminals, or terminal devices.
  • the UE 12 may be a sensor device or a meter (measuring instrument) having a wireless communication function that forms a sensor network.
  • the relay UE 13 may be a mobile phone or a smartphone as a non-limiting example.
  • the wireless communication between the eNB 11 and the UEs 12 and 13 may be referred to as “cellular communication” for convenience.
  • cellular communication For example, 3GPP (3rd Generation Generation Partnership Project) LTE (Long Termination Evolution) or a wireless communication system based on LTE-Advanced may be applied to the “cellular communication”.
  • LTE Long Termination Evolution
  • the cellular communication signal may be abbreviated as a cellular signal for convenience.
  • the UE 12 does not transmit a signal directly to the eNB 11 but transmits a signal via the relay UE 13.
  • uplink (UL) communication from the UE 12 to the eNB 11 may be performed via the relay UE 13.
  • downlink (DL) communication from the eNB 11 to the UE 12 may be performed via the relay UE 13 or may be performed directly without using the relay UE 13.
  • the UE 12 can receive the signal transmitted by the eNB 11 via the relay UE 13 or can directly receive the signal.
  • the relay UE 13 When the relay UE 13 relays the UL communication of the UE 12 to the eNB 11, the UE 12 can perform the UL communication with less power than when the signal is transmitted directly to the base station 11.
  • the eNB 11 allocates UL and DL radio resources to the relay UE 13, it is not necessary to individually allocate UL communication radio resources to many UEs 12. Therefore, it is possible to improve the utilization efficiency of radio resources for UL communication.
  • D2D Device-to-Device
  • the UE 12 may be referred to as “D2D UE 12”, “MTC UE 12”, “remote MTC UE 12”, “MTC device 12”, “MTC node 12”, or the like for convenience.
  • MTC UE12 may be abbreviated as “MUE12”.
  • the relay UE 13 may be referred to as a “relay node 13” for convenience.
  • IoT enables various “things” to be equipped with communication functions.
  • Various “things” equipped with a communication function may correspond to the MTC UE 12. Therefore, the number of MTC UEs 12 that can be connected to a radio access network such as LTE can also be large.
  • the amount of data that each MTC device transmits at one time tends to be smaller than that of a UE such as a mobile phone or a smartphone.
  • the MUE 12 may be referred to as a low-cost (LC-) MTC device 12, and the MTC performed by the LC-MTC device 12 may be referred to as an LC-MTC.
  • LC-MTC low-cost MTC
  • LC-MTC whenever the transmission data is generated in the MUE 12, for example, when the eNB 11 controls the transmission timing of each MUE 12, the resource consumption of the control channel increases.
  • the eNB 11 can control the TTI (transmission time interval) of each MUE 12 by transmitting a TA (timing advance) command using a DL control channel such as PDCCH (physical downlink control channel).
  • a DL control channel such as PDCCH (physical downlink control channel).
  • TTI bundling it is possible to instruct the UE that the same transmission data may be continuously transmitted over a plurality of TTIs with a single TA command. Therefore, the resource consumption of the control channel used for transmitting the TA command can be suppressed.
  • the eNB 11 transmits a TA command to the relay UE 13 instead of the individual MUE 12. I will do better.
  • the MUE 12 may be placed in a place where radio waves are difficult to reach compared to outdoors with good visibility and the wireless environment is not good, for example, indoors or underground. Therefore, it may be preferable for the MUE 12 to be able to extend the standard coverage provided by the eNB 11 (coverage enhancement, CE).
  • CE coverage enhancement
  • a coverage extension of about several dB to several tens of dB may be desired rather than the standard coverage in LTE or LTE-Advanced. Therefore, as an example of the CE technique, a technique called “repetitions” may be used.
  • “Repetition” is a technology that repeatedly transmits the same signal at different times.
  • the eNB 11 can improve the reception success rate at the MUE 12 by repeating the transmission of the same DL data signal and the same control signal a finite number of times. Therefore, the coverage of DL communication can be expanded.
  • the number of “Repetition” may be referred to as “CE level”.
  • the CE level may be different for different DL channels.
  • the CE level may be different between the DL data channel and the DL control channel.
  • DL data channel is PDSCH (physical link shared channel), and an example of a DL control channel is the above-described PDCCH.
  • the eNB 11 can determine the CE level according to the measurement result by receiving the measurement result of the DL communication quality from the UE through the UL communication.
  • the UE measures “reference signal received power (RSRP)” that is the received power of the reference signal (reference signal, RS) transmitted by the eNB 11 and reports the measured RSRP to the base station 11 through UL communication.
  • the “reference signal” may be referred to as a “pilot signal”.
  • the reference signal and the pilot signal are examples of signals that are known between the transmission side and the reception side.
  • the eNB 11 determines the CE level according to the RSRP reported from the UE, and performs DL transmission to the UE at the determined CE level.
  • reference signal received quality (RSRQ) may be used instead of RSRP.
  • the RSRQ can be expressed as a ratio of RSRP and Received Signal Strength Indicator (RSSI).
  • RSRP reference signal-to-interference signal-power ratio
  • RSRQ reception quality indicator of radio signals
  • the MUE 12 can receive the DL signal transmitted by the eNB 11, the MUE 12 cannot directly transmit the UL signal to the base station 11.
  • the UL radio interface (sometimes referred to as “Uu interface”) between the eNB 11 and the MUE 12 is not available. Therefore, the MUE 12 cannot directly transmit or report information indicating radio quality such as RSRP to the eNB 11.
  • FIG. 2 is a sequence diagram illustrating an operation example of the wireless communication system 1 according to the first embodiment.
  • the operation example illustrated in FIG. 2 is an example in which transmission data is generated in the MUE 12 and the data is transmitted to the eNB 11 via the relay UE 13.
  • the eNB 11 may transmit a DL RS (step S1).
  • MUE12 may measure RSRP, if RS is received (step S2). Once RSRP is measured, MUE 12 may determine the CE level from RSRP for initial access.
  • the MUE 12 may select a radio resource pool (or radio resource) related to the CE level used for transmission of the discovery signal (DS) (step S3).
  • DS is an example of a signal for searching for and discovering relay UE13.
  • Radio resources may be represented in two dimensions of frequency and time.
  • the radio resource may be a resource block (RB).
  • the radio resource pool may be a set of multiple RBs.
  • FIG. 3 shows an example of the relationship between RSRP, CE level, and resource (or resource pool). As illustrated in FIG. 3, different resources (or resource pools) may be associated with different CE levels.
  • the first entry in the table illustrated in FIG. 3 is the CE level of 0 to 5 dB when the RSRP is X1 ⁇ RSRP ⁇ X2, and the resources (or resource pools) # 1 and # 2 are selected. Indicates that it is possible. The same applies to the other entries.
  • two resources (or resource pools) are registered per entry, but three or more resources (or resource pools) may be registered in one entry. Further, the number of resources (or resource pools) registered between entries may be the same or different.
  • the MUE 12 may store information exemplified in the first column to the third column in FIG. In other words, the MUE 12 may not store the information exemplified in the fourth column and the fifth column in FIG.
  • the information exemplified in the fourth column (Repetitions (for initial access)) is exemplarily stored in the relay UE 13 in association with at least one of the first to third information including the third column. Good.
  • the information exemplified in the fifth column (Repetitions for (E) PDCCH / PDSCH) is illustratively stored in the eNB 11 in association with one or more of the first to fourth information including at least the fourth column. May be.
  • the MUE 12 may transmit the DS using the selected resource pool (or resource) as illustrated in FIG. 2 (step S4).
  • the DS may include identification information (ID) of the MUE 12.
  • the relay UE 13 may acquire and determine information on the CE level of the MUE 12 by decoding the received DS (step S5).
  • “Information related to the CE level” may be information that can specify the CE level, and may be information that explicitly (or directly) indicates the CE level or may be information that implicitly (or indirectly).
  • “CE level information” may be abbreviated as “CE level information”.
  • the relay UE 13 may determine the number of repetitions corresponding to the resource (or resource pool) from information on the resource (or resource pool) used for transmission of the DS.
  • repetition rates Y11 and Y12 are associated with resources (or resource pools) # 1 and # 2. The same applies to the other entries.
  • the relay UE 13 may transmit information on the determined number of repetitions to the eNB 11 together with the ID of the MUE 12 (may be referred to as “notification”) (step S6).
  • the information regarding the number of repetitions is an example of CE level information that implicitly (or indirectly) indicates the CE level of the MUE 12.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the PRACH is used when the relay UE 13 accesses the eNB 11 for the first time, or when re-establishing an RRC (radio resource control) connection with the eNB 11.
  • RRC radio resource control
  • the relay UE 13 may notify the eNB 11 of the ID and CE level information of the MUE 12 using a random access (RA) preamble, or may notify the eNB 11 using an RRC connection re-establishment request signal. .
  • RA random access
  • the eNB 11 may transmit an RRC connection reconfiguration (RRC connection reconfiguration) signal to the relay UE 13 (step S8).
  • the relay UE 13 can transmit the RRC connection re-establishment request signal to the eNB 11 by receiving the RRC connection re-setting signal.
  • the relay UE 13 uses the PUCCH or PUSCH to obtain the ID of the MUE 12 and the CE level information for the eNB 11 May be notified.
  • the eNB 11 can determine the CE level for one or both of the DL control channel (eg, PDCCH) and the data channel (eg, PDSCH) addressed to the MUE 12 (step S7). ).
  • the DL control channel eg, PDCCH
  • the data channel eg, PDSCH
  • the eNB 11 may determine the number of repetitions (Z) for one or both of the PDCCH (or EPDCCH) and the PDSCH corresponding to the information from the information (Y) regarding the number of repetitions illustrated in FIG.
  • the number of repetitions Z11 for PDCCH or EPDCCH and the number of repetitions Z12 for PDSCH are associated with the number of repetitions Y11 and Y12. The same applies to the other entries.
  • the eNB 11 may notify the MUE 12 of information regarding the determined number of repetitions (Z), for example, by DL signaling. Further, the eNB 11 may transmit the C-RNTI and the relay UE 13 layer 2 identifier (relay UE L2 ID) to the MUE 12 with the determined number of repetitions (in other words, the CE level) (FIG. 2). Step S9).
  • C-RNTI is an abbreviation of “cell-radio network temporary identifier” and is an example of a temporary cell identifier assigned to the MUE 12 by the eNB 11.
  • PDSCH which is an example of a DL data channel, may be used for transmission of C-RNTI and relay UE layer 2 ID.
  • the eNB 11 may notify the MUE 12 of the C-RNTI and the relay UE layer 2 ID using a random access response (response) message transmitted to the MUE 12 by PDSCH.
  • a random access response response
  • the network relay is a layer 3 relay, but can be extended to a layer 2 relay to assist the eNB 11. Therefore, the eNB 11 may transmit the layer 2 ID to the MUE 12.
  • the received radio (RF) signal may be demodulated and decoded, and then encoded and modulated again to transmit the RF signal. Since the layer 2 relay re-encodes and modulates the received signal, it can be expected to improve the reception characteristics due to interference from other cells and noise amplification. Layer 2 relays do not require user data retransmission or transmission.
  • the eBN 11 may transmit the resource allocation information used by the MUE 12 for D2D communication with the relay UE 13 to the MUE 12 at the determined number of repetitions (in other words, the CE level) (step S10 in FIG. 2). .
  • the allocation of D2D resources may be performed according to “mode 1” described in “3GPP Release 12”, for example. “Mode 1” is also referred to as “Scheduled resource allocation”.
  • the MUE 12 makes a resource allocation request to the eNB 11 in a state where the RRC connection is established with the eNB 11.
  • the eNB 11 schedules resources used for transmission / reception of a physical sidelink control channel and a data channel with the request source MUE 12.
  • the MUE 12 transmits “ProSE BSR” to the eNB 11, notifies the eNB 11 of information related to the data amount to be transmitted directly to the eNB 11, and then transmits a scheduling request (SR) to the eNB 11.
  • SR scheduling request
  • ProSE BSR is an abbreviation for “proximity-based” services ”buffer” status ”report”.
  • the SR may be transmitted on a dedicated channel (dedicated SR) or may be transmitted on a random access channel.
  • ENB11 schedules the resource according to the data amount which MUE12 wants to transmit based on "ProSE BSR" received from MUE12.
  • D2D resource allocation may be performed according to “mode 1”.
  • a PDCCH that is an example of a DL control channel may be used as an example. Note that step S9 and step S10 may be integrated into one step (the same applies to FIG. 8 of the second embodiment described later).
  • the MUE 12 may transmit an SA (scheduling assignment) message to the relay UE 13 according to the D2D resource allocation information (step S11), and then transmit a data signal of D2D communication to the relay UE 13 (step S12).
  • the SA exemplarily indicates a position in a frequency domain and a time domain of a reception resource associated with a physical channel through which a transmission data signal of the MUE 12 propagates.
  • the relay UE 13 may transmit (transfer) the data signal received from the MUE 12 to the eNB 11 (step S13).
  • the MUE 12 may attempt to transmit a control signal and a data signal directly to the eNB 11 using UL CE technology (for example, repetition) (step S14).
  • the CE level information of the MUE 12 is passed through the relay UE 13 even if the MUE 12 is not capable of using direct UL communication with the eNB 11 (in other words, limited). Can be notified to the eNB 11.
  • the eNB 11 can determine an appropriate CE level for each channel such as a DL control channel or a data channel for the MUE 12. Therefore, it is possible to realize and provide an appropriate DL CE even for the MUE 12 in which direct UL communication is restricted to the eNB 11.
  • the MUE 12 can appropriately perform DL and UL communication with the eNB 11.
  • the MUE 12 is arranged in a place where the radio wave environment is not good, it is not necessary to perform special transmission control or reception control, and the power consumption of the MUE 12 can be reduced and the cost can be reduced.
  • the MUE 12 transmits the DS to the relay UE 13 using the resource (or resource pool) associated with the CE level corresponding to the RSRP, and thus the RSRP and CE level values and information itself. May not be sent. Therefore, it is not necessary to consume resources to transmit RSRP and CE level values and information itself.
  • FIG. 4 is a block diagram illustrating a configuration example of the MUE 12.
  • the MUE 12 illustratively includes a transmission processing unit 121 and a reception processing unit 122 for cellular communication, a transmission processing unit 123 and a reception processing unit 124 for D2D communication, and a control unit 125. You may prepare.
  • the transmission processing unit 121 for cellular communication includes a channel encoder 1211, an inverse fast Fourier transformer (IFFT) 1212, a CP adder (Cyclic Prefix Adder) 1213, a radio (RF) transmission unit 1214, and a transmission antenna. 1215 may be provided.
  • IFFT inverse fast Fourier transformer
  • CP adder Cyclic Prefix Adder
  • RF radio
  • the channel encoder 1211 exemplarily channel-encodes data traffic transmitted by UL cellular communication.
  • the IFFT 1212 exemplarily performs IFFT (Inverse Fast Fourier ⁇ Transform) on channel-encoded data traffic.
  • Data traffic that is a frequency domain signal eg, baseband signal
  • IFFT Inverse Fast Fourier ⁇ Transform
  • the CP adder 1213 illustratively adds a CP to the time domain signal obtained by the IFFT 1212. By adding a CP, it is possible to suppress intersymbol interference and intersubcarrier interference in the transmission signal.
  • the RF transmission unit 1214 illustratively converts the transmission baseband signal to which the CP is added into a radio frequency and transmits it through the transmission antenna 1215.
  • the reception processing unit 122 for cellular communication includes, for example, a reception antenna 1220, an RF reception unit 1221, a CP remover (Cyclic Prefix Remover) 1222, a PDSCH demodulation unit 1223, an RS demodulation unit 1224, and an RSRP measurement unit. 1225 may be provided.
  • the RF receiving unit 1221 illustratively converts a DL cellular communication radio signal received through the receiving antenna 1220 into a baseband signal.
  • CP remover 1222 illustratively removes the CP added to the received baseband signal.
  • the PDSCH demodulator 1223 illustratively demodulates a PDSCH signal, which is an example of a DL data channel, from the received baseband signal from which the CP has been removed.
  • the RS demodulator 1224 illustratively demodulates the reference signal (RS) from the received baseband signal from which the CP has been removed.
  • RS reference signal
  • the RSRP measurement unit 1225 exemplarily measures RSRP that is the received power of the RS demodulated by the RS demodulation unit 1224.
  • the transmission processing unit 123 for D2D communication includes, for example, an SA (Schedule Assignment) generation unit 1231, a D2D data generation unit 1232, a DS (Discovery Signal) generation unit 1233, an RF transmission unit 1234, and a transmission antenna 1235. May be provided.
  • the SA generation unit 1231 exemplarily generates the above-described SA.
  • the D2D data generation unit 1232 exemplarily generates a data signal for D2D communication.
  • the data may be referred to as “D2D data signal” for convenience.
  • the DS generation unit 1233 exemplarily generates the above-described discovery signal (DS) for searching for and discovering the relay UE 13.
  • the RF transmission unit 1234 illustratively converts the signals generated by the above-described generation units 1231 to 1233 into radio frequency signals and transmits them from the transmission antenna 1235.
  • the block including the DS generation unit 1233 and the RF transmission unit 1234 may be regarded as an example of a transmission unit that transmits a DS.
  • the reception processing unit 124 for D2D communication may include, for example, a reception antenna 1240, an RF reception unit 1241, a D2D DS detection unit 1242, and a D2D data demodulation unit 1243.
  • the RF receiving unit 1241 converts a radio signal of D2D communication received by the receiving antenna 1240 into a baseband signal.
  • the D2D DS detection unit 1242 illustratively detects a DS transmitted by another UE 12 from the received baseband signal.
  • the D2D data demodulator 1243 illustratively demodulates the D2D data signal from the received baseband signal.
  • the control unit 125 of the MUE 12 may include, for example, a resource setting unit (Resource ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Configurator) 1251, a discovery resource selection unit 1252, and a D2D scheduler 1253.
  • a resource setting unit Resource ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Configurator
  • a discovery resource selection unit 1252 Discovery resource selection unit
  • a D2D scheduler 1253 D2D scheduler
  • the resource setting unit 1251 illustratively performs configuration of resources used for D2D communication based on the resource allocation information obtained from the signal demodulated by the PDSCH demodulation unit 1223.
  • the discovery resource selection unit 1252 selects a resource (or resource pool) used for DS transmission based on the RSRP measured by the RSRP measurement unit 1225, for example, as described with reference to FIGS.
  • the DS generated by the DS generation unit 1233 is transmitted from the transmission antenna 1235 using the selected resource (or resource pool).
  • the information in the first to third columns of the table illustrated in FIG. 3 may be stored in the discovery resource selection unit 1252.
  • the discovery resource selection unit 1252 may include a storage unit that stores information on CE-level resources (or resource pools) according to RSRP.
  • the storage unit may be provided inside the MUE 12 so that the discovery resource selection unit 1252 can access it.
  • the D2D scheduler 1253 exemplarily performs scheduling of D2D resources respectively used for transmission of the above-described SA, D2D data signal, and DS according to the resource setting by the resource setting unit 1251.
  • FIG. 5 is a block diagram illustrating a configuration example of the relay UE 13.
  • the relay UE 13 exemplarily includes a transmission processing unit 131 and a reception processing unit 132 for cellular communication, a transmission processing unit 133 and a reception processing unit 134 for D2D communication, a control unit 135, May be provided.
  • the transmission processing unit 131 for cellular communication may include, for example, a channel encoder 1311, a UL signal generation unit 1312, an IFFT 1313, a CP adder 1314, an RF transmission unit 1315, and a transmission antenna 1316.
  • the channel encoder 1311 illustratively performs channel coding on data traffic to be transmitted by UL cellular communication.
  • the data traffic encoded by the channel encoder 1311 is not limited to the data traffic generated by the relay UE 13, but may include the traffic of the D2D data signal received by the reception processing unit 134 for D2D communication.
  • the UL signal generation unit 1312 exemplarily generates a UL signal (for example, a PRACH signal, an RRC connection re-establishment request signal, a PUCCH signal, a PUSCH signal, etc.) addressed to the eNB 11.
  • a UL signal for example, a PRACH signal, an RRC connection re-establishment request signal, a PUCCH signal, a PUSCH signal, etc.
  • the UL signal generation unit 1312 when notifying the CE level information and the ID of the MUE 12 to the eNB 11 using the PRACH, the UL signal generation unit 1312 generates an RA preamble indicating the CE level information and the ID of the MUE 12. An included PRACH signal may be generated.
  • the UL signal generation unit 1312 may generate an RRC connection re-establishment request signal including these information sets.
  • the UL signal generation unit 1312 may generate a PUCCH signal including these information sets.
  • the UL signal generation unit 1312 may generate a PUSCH signal including these information sets.
  • the IFFT 1313 performs IFFT on the output signals of the channel encoder 1311 and the UL signal generation unit 1312 to convert the output signal from a frequency domain to a time domain signal.
  • CP adder 1314 adds a CP to a time-domain transmission baseband signal that is an output signal of IFFT 1313.
  • the RF transmission unit 1315 illustratively converts the transmission baseband signal to which the CP is added into a radio frequency and transmits it through the transmission antenna 1316.
  • the reception processing unit 132 for cellular communication may include, for example, a reception antenna 1320, an RF reception unit 1321, a CP remover 1322, and a PDSCH demodulation unit 1323.
  • the RF reception unit 1321 illustratively exemplarily converts a radio signal for DL cellular communication received through the reception antenna 1320 into a baseband signal.
  • CP remover 1322 illustratively removes the CP added to the received baseband signal.
  • the PDSCH demodulator 1323 illustratively demodulates a PDSCH signal, which is an example of a DL data channel, from the received baseband signal from which the CP has been removed.
  • the transmission processing unit 133 for D2D communication may include an SA generation unit 1331, a D2D data generation unit 1332, a DS generation unit 1333, an RF transmission unit 1334, and a transmission antenna 1335, for example.
  • the SA generation unit 1331 exemplarily generates an SA.
  • the D2D data generation unit 1332 exemplarily generates a D2D data signal.
  • the DS generation unit 1333 illustratively generates a discovery signal (DS) for searching for and discovering the UE 12 or another UE 13.
  • DS discovery signal
  • the RF transmission unit 1334 illustratively converts the signals generated by the above-described generation units 1331 to 1333 into radio frequency signals and transmits them from the transmission antenna 1335.
  • the reception processing unit 134 for D2D communication may include, for example, a reception antenna 1340, an RF reception unit 1341, a D2D DS detection unit 1342, and a D2D data demodulation unit 1343.
  • the RF receiving unit 1341 converts a radio signal of D2D communication received by the receiving antenna 1340 into a baseband signal.
  • the D2D DS detection unit 1342 illustratively detects the DS transmitted from the UE 12 or another UE 13 from the received baseband signal.
  • the block including the RF receiver 1341 and the D2D DS detector 1342 may be regarded as an example of a receiver that receives the DS transmitted by the MUE 12.
  • the D2D data demodulator 1343 illustratively demodulates the D2D data signal from the received baseband signal.
  • the demodulated D2D data signal may be channel-encoded by the channel encoder 1311 and transmitted from the transmission antenna 1316 to the eNB 11.
  • the control unit 135 of the relay UE 13 may include, for example, a resource setting unit (resource configurator) 1351, a CE level determining unit (CE level ⁇ ⁇ determiner) 1352, and a D2D scheduler 1353.
  • resource setting unit resource configurator
  • CE level determining unit CE level ⁇ ⁇ determiner
  • the resource setting unit 1351 illustratively performs configuration of resources used for D2D communication based on the resource allocation information obtained from the signal demodulated by the PDSCH demodulating unit 1323.
  • the CE level determination unit 1352 exemplarily determines the CE level information of the MUE 12 based on the DS detected by the D2D DS detection unit 1342 as described in step S5 of FIG. 2 and FIG.
  • the information set of the determined CE level information and the ID of the MUE 12 may be provided to the UL signal generation unit 1312.
  • the D2D scheduler 1353 exemplarily performs scheduling of D2D resources respectively used for transmission of the above-described SA, data signal, and DS according to the resource setting by the resource setting unit 1351.
  • FIG. 6 is a block diagram illustrating a configuration example of the eNB 11.
  • the eNB 11 may include, for example, a UL reception processing unit 111, a DL transmission processing unit 112, and a control unit 113.
  • the reception processing unit 111 may include, for example, a reception antenna 1110, an RF reception unit 1111, a CP remover 1112, an FFT (Fast Fourier Transformer) 1113, and a physical channel separator 1114.
  • the reception processing unit 111 may include a data signal demodulation unit 1115, a control signal demodulation unit 1117, channel decoders 1116 and 1118, and a PRACH signal detection unit 1119.
  • the RF receiving unit 1111 converts a wireless signal of UL cellular communication received through the receiving antenna 1110 into a baseband signal.
  • the CP remover 1112 illustratively removes the CP added to the received baseband signal.
  • the FFT 1113 performs fast Fourier transform (FFT) on the received baseband signal from which the CP is removed, thereby converting the received baseband signal from a time domain to a frequency domain signal.
  • FFT fast Fourier transform
  • the physical channel separator 1114 illustratively separates the received baseband signal in the frequency domain after the FFT into a signal for each UL physical channel.
  • An example of a UL physical channel is PUSCH, PUCCH, and PRACH.
  • PUSCH is an example of a UL data channel.
  • PUCCH is an example of a UL control channel.
  • the data signal demodulator 1115 illustratively demodulates the data channel signal separated by the physical channel separator 1114.
  • the channel decoder 1116 illustratively decodes the data channel signal demodulated by the data signal demodulator 1115.
  • the control signal demodulator 1117 illustratively demodulates the control channel signal (which may be referred to as a “control signal”) separated by the physical channel separator 1114.
  • the channel decoder 1118 illustratively decodes the control signal demodulated by the control signal demodulator 1117.
  • the PRACH signal detection unit 1119 illustratively detects the PRACH signal (for example, RA preamble) separated by the physical channel separator 1114.
  • the DL transmission processing unit 112 exemplarily includes an RS generation unit 1121, a DL data signal generation unit 1122, a DL control signal generation unit 1123, an IFFT 1124, a CP adder 1125, an RF transmission unit 1126, and a transmission antenna 1127. May be provided.
  • the RS generation unit 1121 exemplarily generates an RS.
  • the block including the RS generation unit 1121, IFFT 1124, CP adder 1125, and RF transmission unit 1126 may be regarded as an example of a transmission unit that transmits an RS.
  • the DL data signal generation unit 1122 exemplarily generates a DL data signal (for example, a PDSCH signal).
  • the DL data signal may be generated based on D2D resource allocation information by a D2D resource scheduler 1133 described later of the control unit 113.
  • the DL control signal generation unit 1123 illustratively generates a DL control signal (for example, a PDCCH signal).
  • a DL control signal for example, a PDCCH signal.
  • the C-RNTI and relay UE layer 2 ID described above may be included in the DL control signal in step S9 of FIG.
  • information on the CE level determined by a CE level determination unit 1131 (to be described later) of the control unit 113 may be included in the DL control signal.
  • IFFT 1124 exemplarily performs signal conversion from the frequency domain to the time domain by performing IFFT on the signals generated by the generation units 1121 to 1123 described above.
  • the CP adder 1125 exemplarily adds a CP to the time domain signal obtained by the IFFT 1124.
  • the RF transmission unit 1126 illustratively converts the signal (transmission baseband signal) to which the CP is added by the CP adder 1125 into a radio frequency and transmits the radio frequency through the transmission antenna 1127.
  • the control unit 113 of the eNB 11 exemplarily includes a CE level determination unit (CE level determiner) 1131, a relay UE layer 2 ID and C-RNTI determination unit (relay UE L2 ID & C-RNTI determiner) 1132, and a D2D resource scheduler 1133 may be provided.
  • CE level determiner CE level determiner
  • relay UE layer 2 ID and C-RNTI determination unit relay UE L2 ID & C-RNTI determiner
  • D2D resource scheduler 1133 may be provided.
  • the CE level determination unit 1131 exemplarily controls the DL based on information acquired from the received signal (eg, PRACH signal) from the relay UE 13 as described in step S7 in FIG. 2 and FIG. Determine the CE level for one or both of the channel and the data channel.
  • the received signal eg, PRACH signal
  • the relay UE layer 2 ID and C-RNTI determination unit 1132 exemplarily shows information to be notified to the MUE 12 in step S9 of FIG. 2 based on the control signal decoded by the channel decoder 1118 (example: relay UE layer 2 ID and C -RNTI).
  • the D2D resource scheduler 1133 illustratively determines information to be notified to the MUE 12 in step S10 in FIG. 2 (eg, D2D resource allocation information) based on the control signal decoded by the channel decoder 1118.
  • the number of repetitions (Y) that indirectly indicates the CE level of the MUE 12 is determined based on the DS received from the MUE 12.
  • the relay UE 13 may transfer the CE level information acquired through decoding of the received DS to the eNB 11 together with the ID of the MUE 12 without determining the number of repetitions (Y). Good (steps S5a and S6a).
  • the relay UE 13 may transfer the information on the resource (or resource pool) used by the MUE 12 to transmit the DS to the eNB 11 together with the ID of the MUE 12.
  • the eNB 11 may determine the number of repetitions (Z) for one or both of the PDCCH (or EPDCCH) and the PDSCH corresponding to the information from the information of the resource (or resource pool) illustrated in FIG.
  • the number of repetitions Z11 for PDCCH or EPDCCH and the number of repetitions Z12 for PDSCH are associated with resources (or resource pools) # 1 and # 2. The same applies to the other entries.
  • steps S1 to S4 and S7 to S14 may be the same as those already described in FIG. 7
  • the configuration example of the MUE 12 may be the same as the configuration example illustrated in FIG.
  • the CE level determination unit 1352 may be unnecessary in the configuration example illustrated in FIG.
  • the information set of the resource (or resource pool) information used by the MUE 12 for DS transmission detected by the D2D DS detection unit 1342 and the ID of the MUE 12 is an UL signal (e.g., PRACH) addressed to the eNB 11. Signal).
  • the CE level determination unit 1131 determines the number of repetitions (Z) as described above based on the information on the resource (or resource pool) transferred from the relay UE 13. Can be determined.
  • the same operational effects as the first embodiment can be obtained, and the CE level information does not have to be determined based on the DS received from the MUE 12 in the relay UE 13.
  • the configuration and operation of the relay UE 13 can be simplified. Therefore, the power consumption and cost of the relay UE 13 can be reduced.
  • the operation example illustrated in FIG. 8 is an example in which transmission data is generated in the MUE 12 and the data is transmitted to the eNB 11 via the relay UE 13 as in the first embodiment.
  • steps S3 and S5 illustrated in FIG. 2 are not necessary in FIG. Therefore, in FIG. 8, steps S4, S6, and S7 illustrated in FIG. 2 are replaced with steps S4b, S6b, and S7b, respectively.
  • the MUE 12 measures the RSRP indicating the received power of the RS received from the eNB 11 (Steps S1 and S2), and transmits the ID of the MUE 12 and the measured RSRP in the DS. Good (step S4b).
  • the resource (or resource pool) used for transmission of the DS may be selected depending on RSRP in the same manner as in the first embodiment, or by any rule (for example, randomly) without depending on RSRP. It may be selected.
  • the relay UE 13 may transmit (in other words, transfer) the information set of the ID of the MUE 12 and the RSRP included in the DS to the eNB 11 (step S6b).
  • an RA preamble an RRC connection re-establishment request signal, a PUCCH signal, a PUSCH signal, or the like may be used for transferring the information set.
  • the eNB 11 stores, for example, information in the first column and the fifth column of the table in FIG. 3 in the storage unit. Thereby, eNB11 can determine the number of repetitions (Z) about one or both of PDCCH (or EPDCCH) and PDSCH corresponding to RSRP based on RSRP of the information set transferred from relay UE13 (Step S7b).
  • processing in steps S8 to S14 in FIG. 8 may be the same as the processing in steps S8 to S14 illustrated in FIG. 2 in the first embodiment.
  • the same effects as in the first embodiment can be obtained.
  • a resource (or resource pool) associated with the CE level corresponding to the RSRP is obtained.
  • FIG. 9 is a block diagram illustrating a configuration example of the MUE 12 according to the second embodiment.
  • the configuration example illustrated in FIG. 9 is different from the configuration example illustrated in FIG. 4 of the first embodiment in that the discovery resource selection unit 1252 is unnecessary.
  • the RSRP measured by the RSRP measurement unit 1225 may be provided to the DS generation unit 1233.
  • the DS generation unit 1233 generates a DS including the RSRP.
  • the DS is transmitted to the relay UE 13 through the RF transmission unit 1234 and the transmission antenna 1235 in step S4b of FIG.
  • FIG. 10 is a block diagram illustrating a configuration example of the relay UE 13 according to the second embodiment.
  • the configuration example illustrated in FIG. 10 is different from the configuration example illustrated in FIG. 5 of the first embodiment in that an RSRP value determination unit 1352b is provided instead of the CE level determination unit 1352 of FIG.
  • the RSRP value determination unit 1352b exemplarily acquires and determines the RSRP value included in the DS detected by the D2D DS detection unit 1342.
  • the information set of the RSRP value and the ID of the MUE 12 may be provided to the UL signal generation unit 1312.
  • FIG. 11 is a block diagram illustrating a configuration example of the eNB 11 according to the second embodiment.
  • the configuration example illustrated in FIG. 11 is different from the configuration example illustrated in FIG. 6 of the first embodiment in that a CE level determination unit 1131b is provided instead of the CE level determination unit 1131 of FIG.
  • the CE level determination unit 1131b determines the CE level for one or both of the DL control channel and the data channel based on the RSRP value acquired from the received signal (eg, PRACH signal) from the relay UE13.
  • 1 wireless communication system 11 base station (eNB) 111 Reception Processing Unit (UL) 1110 Receive antenna 1111 RF receiver 1112 CP remover 1113 FFT (Fast Fourier Transformer) 1114 Physical Channel Separator 1115 Data Signal Demodulator 1116, 1118 Channel Decoder 1117 Control Signal Demodulator 1119 PRACH Signal Detector 112 Transmission Processing Unit (DL) 1121 RS generator 1122 DL data signal generator 1123 DL control signal generator 1124 IFFT 1125 CP Adder 1126 RF Transmitting Unit 1127 Transmitting Antenna 113 Control Unit 1131, 1131b CE Level Determination Unit 1132 Ray UE Layer 2 ID and C-RNTI Determination Unit 1133 D2D Resource Scheduler 12 UE (MUE) 121 Transmission processing unit (cellular communication) 1211 channel encoder 1212 IFFT 1213 CP adder 1214 Wireless (RF) transmission unit 1215 Transmission antenna 122 Reception processing unit (cellular communication) 1220 receiving antenna 1221 RF receiving unit 1222 CP remover 1223 PD

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線機器(12)は、基地局(11)が送信したリファレンス信号(RS)の受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて、リレーノードを発見するためのディスカバリ信号(DS)を送信する。リレーノード(13)は、DSを受信した無線リソースの情報、又は、DSを受信した無線リソースを基に決定したカバレッジ拡張レベルに関する情報を、基地局(11)へ送信する。基地局(11)は、リレーノード(13)から受信した情報を基に、無線機器(12)に対するダウンリンクのカバレッジ拡張レベルを決定し、決定したカバレッジ拡張レベルにて無線機器(12)とダウンリンクの通信を行なう。

Description

無線通信システム、無線機器、リレーノード、及び、基地局
 本明細書に記載する技術は、無線通信システム、無線機器、リレーノード、及び、基地局に関する。
 IoT(Internet of Things)によって、様々な「物」に通信機能が搭載され得る。通信機能を搭載した様々な「物」は、インターネットや無線アクセス網等に接続して通信を行なったり、「物」同士で通信を行なったりすることができる。
 「物」同士の通信は、「D2D(device to device)通信」、MTC(machine type communications)等と称されることがある。そのため、通信機能を搭載した「物」は、D2Dデバイス、MTCデバイス等と称されることがある。
特表2015-537422号公報
3GPP TS 36.211 V13.0.0 (2015-12), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 13)
 MTCデバイスは、携帯電話やスマートフォン等のユーザ機器(UE)とは異なり、見通しの良い屋外等と比べて無線電波が到達しにくく無線環境が良好とはいえない場所、例えば、屋内や地下に配置されることがある。
 そのため、MTCデバイスに対しては、例えば、基地局によって提供される標準的な無線サービスエリア(「カバレッジ」と称されてよい。)を拡張(coverage enhancement, CE)できることが好ましい場合がある。
 また、多数のMTCデバイスが個々に基地局に接続してデータ送信を行なってしまうと、基地局の処理能力が不足したり、無線リソースの利用効率が低下したりする。そのため、複数のMTCデバイスのデータ送信を基地局に中継するリレーノードが無線通信システムに配置されることがある。
 この場合、MTCデバイスは、基地局宛にダイレクトには送信を行なわずに、リレーノード宛に送信を行なう。別言すると、MTCデバイスは、基地局宛のダイレクトなアップリンク(UL)の通信が制限される。
 そのため、基地局は、例えばMTCデバイスが受信した信号の受信品質等の情報を当該MTCデバイスからダイレクトには受信できない。MTCデバイスが基地局から受信した信号の受信品質等の情報は、基地局が、ダウンリンク(DL)のカバレッジ拡張のレベル(CEレベル)を決定するために用いられることがある。
 したがって、基地局がCEレベルの決定に用いる情報をMTCデバイスからダイレクトに受信できないことは、MTCデバイスに対して、適切なCEレベルを決定できず、適切なDLのカバレッジ拡張を提供できないことにつながり得る。
 1つの側面では、本明細書に記載する技術の目的の1つは、基地局に対するUL通信が制限された無線機器に対して、適切なカバレッジ拡張レベルを決定できるようにすることにある。
 1つの側面において、無線通信システムは、基地局と、リレーノードと、無線機器と、を備えてよい。前記無線機器は、前記リレーノードを介さずに前記基地局とダウンリンクの通信を行ない、前記リレーノードを介して前記基地局とアップリンクの通信を行なってよい。また、前記無線機器は、前記基地局が送信したリファレンス信号の受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて、前記リレーノードを発見するためのディスカバリ信号を送信してよい。前記リレーノードは、前記ディスカバリ信号を受信した前記無線リソースの情報、又は、前記ディスカバリ信号を受信した無線リソースを基に決定したカバレッジ拡張レベルに関する情報を、前記基地局へ送信してよい。前記基地局は、前記リレーノードから受信した情報を基に、前記無線機器に対する前記ダウンリンクのカバレッジ拡張レベルを決定し、決定したカバレッジ拡張レベルにて前記無線機器と前記ダウンリンクの通信を行なってよい。
 また、1つの側面において、無線機器は、測定部と送信部とを備えてよい。測定部は、基地局が送信したリファレンス信号の受信品質を測定してよい。送信部は、前記受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて、ディスカバリ信号を送信してよい。ディスカバリ信号は、前記基地局へのアップリンクの通信を中継するリレーノードを発見するための信号である。
 更に、1つの側面において、リレーノードは、受信部と送信部とを備えてよい。受信部は、無線機器が送信したディスカバリ信号を受信してよい。無線機器は、基地局が送信したリファレンス信号の受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて前記ディスカバリ信号を送信してよい。送信部は、前記ディスカバリ信号の送信に用いられた無線リソースの情報、又は、前記無線リソースを基に決定したカバレッジ拡張レベルに関する情報を、前記基地局へ送信してよい。
 また、1つの側面において、基地局は、送信部と、受信部と、制御部と、を備えてよい。送信部は、リファレンス信号を送信してよい。受信部は、リレーノードから、無線機器がディスカバリ信号の送信に用いた無線リソースの情報、又は、前記無線リソースを基に決定したカバレッジ拡張レベルに関する情報を受信してよい。無線機器がディスカバリ信号の送信に用いた無線リソースは、前記リファレンス信号の受信品質に応じたカバレッジ拡張レベルに関連付けられていてよい。制御部は、前記受信部で受信した情報を基に、前記無線機器に対するダウンリンクのカバレッジ拡張レベルを決定し、前記決定したカバレッジ拡張レベルにて前記無線機器との前記ダウンリンクの通信を制御してよい。
 1つの側面として、基地局に対するアップリンクの通信が制限された無線機器に対して、適切なカバレッジ拡張レベルを決定できる。
一実施形態に係る無線通信システムの一例を示す図である。 図1に例示した無線通信システムの第1実施例に係る動作例を示すシーケンス図である。 一実施形態に係るRSRPに応じたカバレッジ拡張レベルに関連付けられた情報の一例を示す図である。 第1実施例に係る無線機器(MUE)の構成例を示すブロック図である。 第1実施例に係るリレーノード(リレーUE)の構成例を示すブロック図である。 第1実施例に係る基地局(eNB)の構成例を示すブロック図である。 第1実施例の変形例に係る無線通信システムの動作例を示すシーケンス図である。 第2実施例に係る無線通信システムの動作例を示すシーケンス図である。 第2実施例に係る無線機器(MUE)の構成例を示すブロック図である。 第2実施例に係るリレーノード(リレーUE)の構成例を示すブロック図である。 第2実施例に係る基地局(eNB)の構成例を示すブロック図である。
 以下、図面を参照して実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。また、以下に説明する各種の例示的態様は、適宜に組み合わせて実施しても構わない。なお、以下の実施形態で用いる図面において、同一符号を付した部分は、特に断らない限り、同一若しくは同様の部分を表す。
 図1は、一実施形態に係る無線通信システムの一例を示す図である。図1に示す無線通信システム1は、例示的に、基地局11と、複数のUE(User Equipment)12と、リレー(Relay)UE13と、を備えてよい。
 基地局11は、無線エリア100を形成する。1つの基地局11によって、1つの無線エリア100が形成されてもよいし、複数の無線エリア100が形成されてもよい。無線エリア100は、基地局11が送信する無線電波の到達範囲(「カバレッジ」と称してもよい)に応じて定まる。
 「無線エリア」は、「セル」、「カバレッジエリア」あるいは「通信エリア」と称してもよい。「セル」は「セクタセル」に分割されていてもよい。
 基地局11は、「ベースステーション(BS)」、「ノードB(NB)」あるいは「エンハンスドNB(eNB)」と称されてもよい。
 UE12及びリレーUE13は、無線エリア100内に位置している場合に、基地局11と無線通信することが可能である。UE12及びUE13は、無線機器の一例である。UE12及び13は、無線機器、移動端末、又は、端末装置と称されてもよい。
 UE12は、非限定的な一例として、センサネットワークを成す、無線通信機能を具備したセンサデバイスやメータ(測定器)等であってよい。リレーUE13は、非限定的な一例として、携帯電話やスマートフォン等であってよい。
 eNB11とUE12及び13との間の無線通信は、便宜的に、「セルラー通信」と称してよい。「セルラー通信」には、例示的に、3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)やLTE-Advancedに準拠した無線通信方式が適用されてよい。セルラー通信の信号は、便宜的に、セルラー信号と略称してよい。
 ただし、UE12は、eNB11宛にダイレクトには信号を送信せず、リレーUE13を介して信号を送信する。別言すると、UE12からeNB11へのアップリンク(UL)の通信は、リレーUE13を介して行なわれてよい。
 これに対し、eNB11からUE12へのダウンリンク(DL)の通信は、リレーUE13を介して行なわれてもよいし、リレーUE13を介さずに、ダイレクトに行なわれてもよい。別言すると、UE12は、eNB11が送信した信号を、リレーUE13を介して受信することもできるし、ダイレクトに受信することもできる。
 UE12のUL通信をリレーUE13がeNB11に中継することで、UE12は、基地局11宛にダイレクトに信号を送信する場合よりも、少ない電力でUL通信を行なうことができる。
 また、eNB11は、リレーUE13に対してUL及びDLの無線リソースを割り当てれば、多数のUE12に対して個々にUL通信の無線リソースを割り当てなくて済む。したがって、UL通信用の無線リソースの利用効率を向上できる。
 UE12とリレーUE13との間の通信は、既述のように、「D2D(Device-to-Device)」通信と称されることがある。
 UE12は、便宜的に、「D2D UE12」、「MTC UE12」、「リモートMTC UE12」、「MTCデバイス12」、「MTCノード12」等と称されてもよい。「MTC UE12」は、「MUE12」と略称されてよい。リレーUE13は、便宜的に、「リレーノード13」と称されてもよい。
 IoTによって、様々な「物」に通信機能が搭載され得る。通信機能を搭載した様々な「物」が、MTC UE12に該当し得る。そのため、LTE等の無線アクセス網に接続し得るMTC UE12の数も大量になり得る。
 センサデバイスや計測器のようなMTCデバイス12の場合、個々のMTCデバイスが1回あたりに送信するデータ量は、携帯電話やスマートフォン等のUEに比べて、小さい傾向にある。
 そのため、MUE12は、低コスト(LC-)MTCデバイス12と称されることもあり、LC-MTCデバイス12が実施するMTCは、LC-MTCと称されることもある。
 LC-MTCにおいて、MUE12に送信データが発生する毎に、例えばeNB11が、個々のMUE12の送信タイミングを制御するとなると、制御チャネルのリソース消費量が増大する。
 例えば、eNB11は、個々のMUE12のTTI(transmission time interval)を、PDCCH(physical downlink control channel)のようなDLの制御チャネルにてTA(timing advance)コマンドを送信することで制御することができる。
 しかし、1回あたりの送信データ量が小さいMUE12に送信要求が生じる毎に、1つのTAコマンドで1つのTTIを制御すると、TAコマンドの送信に用いる制御チャネルのリソース消費量が増大する。
 そこで、LTEでは、「TTIバンドリング」と呼ばれる技術が用いられることがある。TTIバンドリングでは、1回のTAコマンドで、同一の送信データを複数TTIにわたって連続送信してよいことをUEに指示できる。したがって、TAコマンドの送信に用いる制御チャネルのリソース消費量を抑えることができる。
 ただし、無線通信システム1において、大量のMUE12が配置されると、eNB11による大量のTAコマンドの送信が必要になる。そこで、既述のように、MUE12のUL通信を、リレーUE13に集約してリレーUE13を介した通信に制限することで、eNB11は、個々のMUE12ではなく、リレーUE13に対してTAコマンドを送信すればよくなる。
 ところで、MUE12は、見通しの良い屋外等と比べて無線電波が到達しにくく無線環境が良好とはいえない場所、例えば、屋内や地下に配置されることがある。そのため、MUE12に対しては、eNB11が提供する標準的なカバレッジを拡張(coverage enhancement, CE)できることが好ましい場合がある。
 例えば、LTEやLTE-Advancedにおける標準のカバレッジよりも数dB~数十dB(例示的に、20dB)程度のカバレッジ拡張が望まれることがある。そこで、CE技術の一例として、「レペティション(repetitions)」と呼ばれる技術が用いられることがある。
 「レペティション」は、同じ信号を異なる時間に繰り返し送信する技術である。例えば、eNB11は、同じDLのデータ信号や同じ制御信号の送信を有限の回数だけ繰り返すことで、MUE12での受信成功率を向上することができる。したがって、DL通信のカバレッジを拡張できる。
 「レペティション」の回数は、「CEレベル」と称されることがある。CEレベルは、異なるDLチャネル毎に異なってよい。例えば、DLのデータチャネルとDLの制御チャネルとでCEレベルは異なってよい。
 DLのデータチャネルの一例は、PDSCH(physical downlink shared channel)であり、DLの制御チャネルの一例は、既述のPDCCHである。
 CEレベルは、通常であれば、eNB11が、DLの通信品質のUEでの測定結果をUL通信にて当該UEから受信することで、当該測定結果に応じたCEレベルを決定できる。
 例えば、UEは、eNB11が送信したリファレンス信号(reference signal, RS)の受信電力である「reference signal received power(RSRP)」を測定し、測定したRSRPを基地局11にUL通信にて報告する。なお、「リファレンス信号」は、「パイロット信号」と称されてもよい。リファレンス信号及びパイロット信号は、送信側と受信側との間で既知の信号の一例である。
 eNB11は、UEから報告されたRSRPに応じたCEレベルを決定して、決定したCEレベルにてUE宛のDLの送信を実施する。なお、RSRPの代わりに、reference signal received quality(RSRQ)が用いられてもよい。RSRQは、RSRPとReceived Signal Strength Indicator(RSSI)との比で表すことができる。
 また、RSRPやRSRQの代わりに、リファレンス信号のSignal to Interference power Ratio(SIR)が用いられてもよい。RSRPやRSRQやSIRは、いずれも、無線信号の受信品質の指標の一例であり、「無線品質(radio quality)」と称されてもよい。
 しかし、MUE12は、既述のとおり、eNB11が送信したDLの信号は受信できても、ULの信号は、ダイレクトに基地局11へ送信できない。
 別言すると、eNB11とMUE12との間のULの無線インタフェース(「Uuインタフェース」と称されることがある。)は、利用可能でない。そのため、MUE12は、RSRP等の無線品質を示す情報を、eNB11宛にダイレクトには送信、報告できない。
 そこで、以下に説明する実施形態では、MUE12からリレーUE13を介して基地局11へ、MUE12での受信無線品質を示す情報を明示的あるいは暗示的に報告する術を提供する。
 (第1実施例)
 図2は、第1実施例に係る無線通信システム1の動作例を示すシーケンス図である。図2に示す動作例は、MUE12において送信データが発生し、当該データがリレーUE13を介してeNB11へ送信される例である。
図2に例示するように、eNB11は、DLのRSを送信してよい(ステップS1)。MUE12は、RSを受信すると、RSRPを測定してよい(ステップS2)。RSRPが測定されると、MUE12は、初回アクセス(initial access)のために、RSRPからCEレベルを決定してよい。
 MUE12は、ディスカバリ信号(DS)の送信に用いる、CEレベルに関連する無線リソースプール(又は、無線リソースでもよい)を選択してよい(ステップS3)。DSは、リレーUE13を探索、発見するための信号の一例である。
 無線リソース(以下、単に「リソース」と略称することがある。)は、周波数及び時間の2次元で表されてよい。例えば、無線リソースは、リソースブロック(RB)であってよい。無線リソースプールは、複数のRBのセットであってよい。
 図3に、RSRP、CEレベル、及び、リソース(又は、リソースプールでもよい。)の関係の一例を示す。図3に例示するように、異なるCEレベルに対して異なるリソース(又は、リソースプール)が関連付けられてよい。
 例えば図3に例示するテーブルの第1エントリは、RSRPが、X1<RSRP≦X2である場合のCEレベルが0~5dBのCEレベルであり、リソース(又はリソースプール)#1及び#2が選択可能であることを示す。他のエントリについても同様である。
 なお、図3には、1エントリ当たり2つのリソース(又は、リソースプール)が登録されているが、1エントリに3以上のリソース(又は、リソースプール)が登録されてもよい。また、エントリ間で登録されるリソース(又は、リソースプール)の数は同じでもよいし異なっていてもよい。
 MUE12は、図3の第1列~第3列に例示する情報を記憶しておけばよい。別言すると、MUE12は、図3の第4列及び第5列に例示する情報は、記憶しておかなくて構わない。
 第4列に例示する情報(Repetitions (for initial access))は、例示的に、少なくとも第3列を含む第1~第3のいずれか1以上の情報との関連で、リレーUE13において記憶されてよい。第5列に例示する情報(Repetitions for (E)PDCCH/PDSCH))は、例示的に、少なくとも第4列を含む第1~第4のいずれか1以上の情報との関連で、eNB11で記憶されてよい。
 MUE12は、図2に例示するように、選択したリソースプール(又はリソース)を用いてDSを送信してよい(ステップS4)。当該DSには、MUE12の識別情報(ID)が含められてよい。
 MUE12が送信したDSをリレーUE13が受信すると、リレーUE13は、受信したDSを復号することを通じて、MUE12のCEレベルに関する情報を取得、決定してよい(ステップS5)。
 「CEレベルに関する情報」は、CEレベルを特定可能な情報であればよく、CEレベルを明示的(又は直接)に示す情報でもよいし暗示的(又は間接的)に示す情報でもよい。以下、「CEレベルに関する情報」を、「CEレベル情報」と略称することがある。
 例えば、リレーUE13は、DSの送信に用いられたリソース(又はリソースプール)の情報から、当該リソース(又はリソースプール)に対応するレペティション数を決定してよい。図3の例では、リソース(又はリソースプール)#1及び#2に対してレペティション数Y11及びY12が関連付けられている。他のエントリについても同様である。
 リレーUE13は、決定したレペティション数に関する情報を、MUE12のIDと共に、eNB11へ送信(「通知」と称してもよい。)してよい(ステップS6)。レペティション数に関する情報は、MUE12のCEレベルを暗示的(又は間接的)に示すCEレベル情報の一例である。
 MUE12のIDとCEレベル情報とのeNB11への通知には、例示的に、PRACH(physical random access channel)や、PUCCH(physical uplink control channel)、PUSCH(physical uplink shared channel)等を利用してよい。
 PRACHは、リレーUE13が、eNB11に初回アクセスする場合、あるいは、eNB11との間でRRC(radio resource control)コネクションを再確立(re-establishment)する場合に用いられる。
 例えば、リレーUE13は、MUE12のIDとCEレベル情報とを、ランダムアクセス(RA)プリアンブルを用いてeNB11に通知してもよいし、RRCコネクション再確立要求信号を用いてeNB11に通知してもよい。
 RRCコネクション再確立要求信号を用いる場合、eNB11は、RRCコネクション再設定(RRC connection reconfiguration)信号をリレーUE13へ送信してよい(ステップS8)。リレーUE13は、RRCコネクション再設定信号を受信することで、RRCコネクション再確立要求信号をeNB11へ送信することが可能になる。
 一方、リレーUE13とeNB11との間のRRCコネクションが確立済みで、PUCCHやPUSCHが利用可能な状態にあれば、リレーUE13は、PUCCHやPUSCHを用いて、MUE12のIDとCEレベル情報とをeNB11に通知してよい。
 eNB11は、MUE12のIDとCEレベル情報とを取得すると、当該MUE12宛のDLの制御チャネル(例:PDCCH)及びデータチャネル(例:PDSCH)の一方又は双方についてのCEレベルを決定できる(ステップS7)。
 例えば、eNB11は、図3に例示したレペティション数に関する情報(Y)から、当該情報に対応するPDCCH(又はEPDCCH)及びPDSCHの一方又は双方についてのレペティション数(Z)を決定してよい。
 図3の例では、レペティション数Y11及びY12に対して、PDCCH又はEPDCCHのためのレペティション数Z11と、PDSCHのためのレペティション数Z12と、が関連付けられている。他のエントリについても同様である。
 eNB11は、決定したレペティション数(Z)に関する情報を例えばDLのシグナリングによってMUE12に通知してよい。また、eNB11は、C-RNTI及びリレーUE13のレイヤ2の識別子(relay UE L2 ID)を、決定したレペティション数(別言すると、CEレベル)にて、MUE12宛に送信してよい(図2のステップS9)。
 「C-RNTI」は、「cell-radio network temporary identifier」の略称であり、eNB11によってMUE12に割り当てられる一時的なセル識別子の一例である。C-RNTI及びリレーUEレイヤ2IDの送信には、例示的に、DLのデータチャネルの一例であるPDSCHが用いられてよい。
 例えば、eNB11は、PDSCHにてMUE12へ送信されるランダムアクセス応答(レスポンス)メッセージを用いて、C-RNTI及びリレーUEレイヤ2IDをMUE12に通知してよい。
 なお、ネットワークリレーは、レイヤ3リレーであるが、eNB11をアシストするために、レイヤ2リレーに拡張できる。そのため、eNB11は、MUE12宛に、レイヤ2のIDを送信してよい。
 レイヤ2リレーでは、受信した無線(RF)信号を復調及び復号してから、再度、符号化及び変調を行なってRF信号を送信してよい。レイヤ2のリレーでは、受信信号の再度の符号化及び変調を行なうため、他セル干渉や雑音増幅による受信特性劣化の改善効果が期待できる。レイヤ2のリレーでは、ユーザデータの再送処理や伝送処理は不要でよい。
 eBN11は、MUE12がリレーUE13との間のD2D通信に用いるリソースの割当情報を、決定したレペティション数(別言すると、CEレベル)にて、MUE12宛に送信してよい(図2のステップS10)。
 D2Dリソースの割当は、例示的に、「3GPP Release 12」に記述されている「モード1」に従って行なわれてよい。「モード1」は、「Scheduled resource allocation」とも称される。
 「モード1」では、MUE12は、eNB11とRRCコネクションが確立した状態において、eNB11に対してリソースの割当要求を行なう。eNB11は、当該要求を受信すると、要求元MUE12との間で物理サイドリンク(physical sidelink)の制御チャネル及びデータチャネルの送受信に用いるリソースをスケジューリングする。
 MUE12は、eNB11へ「ProSE BSR」を送信することで、eNB11にダイレクトに送信したいデータ量に関する情報をeNB11に通知した上で、スケジューリングリクエスト(SR)をeNB11宛に送信する。
 「ProSE BSR」は、「proximity-based services buffer status report」の略称である。SRは、個別チャネルで送信されてもよいし(dedicated SR)、ランダムアクセスチャネルで送信されてもよい。
 eNB11は、MUE12から受信した「ProSE BSR」を基に、MUE12が送信したいデータ量に見合ったリソースをスケジューリングする。なお、後述の図7及び図8に例示するステップS10においても、D2Dリソースの割当は「モード1」に従って実施されてよい。
 D2D通信に用いるリソース(便宜的に「D2Dリソース」と称してよい。)の割当情報の送信には、例示的に、DLの制御チャネルの一例であるPDCCHが用いられてよい。なお、ステップS9とステップS10とは、1つのステップに統合されてもよい(後述する第2実施例の図8においても同様)。
 MUE12は、D2Dリソースの割当情報に従って、SA(scheduling assignment)メッセージをリレーUE13宛に送信し(ステップS11)、その後、リレーUE13へD2D通信のデータ信号を送信してよい(ステップS12)。SAは、例示的に、MUE12の送信データ信号が伝搬する物理チャネルに関連付いた受信リソースの周波数領域及び時間領域における位置を示す。
 リレーUE13は、MUE12から受信したデータ信号をeNB11宛に送信(転送)してよい(ステップS13)。
 なお、eNB11がステップS9で送信したC-RNTIを、MUE12が正常に受信できない場合が有り得る。この場合、MUE12は、ULのCE技術(例えば、レペティション)を用いて、eNB11宛にダイレクトに制御信号やデータ信号を送信することを試みてよい(ステップS14)。
 以上のように、第1実施例によれば、eNB11に対して直接のUL通信が利用可能でない(別言すると、制限された)MUE12であっても、当該MUE12のCEレベル情報をリレーUE13経由でeNB11に通知することができる。
 したがって、eNB11は、MUE12向けのDLの制御チャネルやデータチャネル等のチャネル別に適切なCEレベルを決定することができる。よって、eNB11に対して直接のUL通信が制限されたMUE12に対しても、適切なDLのCEを実現、提供することが可能になる。
 その結果、例えば、MUE12が、電波環境が良好とはいえない場所に配置されていても、MUE12は、eNB11とDL及びULの通信を適切に行なうことができる。
 よって、MUE12は、電波環境が良好とはいえない場所に配置されていても、特別な送信制御や受信制御を行なわずに済み、MUE12の消費電力の低減や低コスト化を図ることができる。
 また、第1実施例によれば、MUE12は、RSRPに応じたCEレベルに関連付いたリソース(又は、リソースプール)にてDSをリレーUE13に送信するため、RSRPやCEレベルの値や情報そのものを送信しなくてもよい。したがって、RSRPやCEレベルの値や情報そのものを送信するためにリソースを消費しなくて済む。
 (MUE、リレーUE、及び、eNBの構成例)
 次に、上述したMUE12、リレーUE13、及び、eNB11の構成例について、それぞれ、図4~図6を参照して説明する。
 (MUE12の構成例)
 図4は、MUE12の構成例を示すブロック図である。図4に示すように、MUE12は、例示的に、セルラー通信向けの送信処理部121及び受信処理部122と、D2D通信向けの送信処理部123及び受信処理部124と、制御部125と、を備えてよい。
 セルラー通信向けの送信処理部121は、例示的に、チャネルエンコーダ1211、逆高速フーリエ変換器(IFFT)1212、CP付加器(Cyclic Prefix Adder)1213、無線(RF)送信部1214、及び、送信アンテナ1215を備えてよい。
 チャネルエンコーダ1211は、例示的に、ULのセルラー通信で送信するデータトラフィックをチャネル符号化する。
 IFFT1212は、例示的に、チャネル符号化されたデータトラフィックにIFFT(Inverse Fast Fourier Transform)を施す。IFFTによって周波数領域の信号(例えば、ベースバンド信号)であるデータトラフィックが時間領域の信号に変換される。
 CP付加器1213は、例示的に、IFFT1212にて得られた時間領域の信号に対してCPを付加する。CPの付加によって、送信信号のシンボル間干渉やサブキャリア間干渉を抑制できる。
 RF送信部1214は、例示的に、CPが付加された送信ベースバンド信号を無線周波数に変換して送信アンテナ1215を通じて送信する。
 一方、セルラー通信向けの受信処理部122は、例示的に、受信アンテナ1220、RF受信部1221、CP除去器(Cyclic Prefix Remover)1222、PDSCH復調部1223、RS復調部1224、及び、RSRP測定部1225を備えてよい。
 RF受信部1221は、例示的に、受信アンテナ1220を通じて受信した、DLのセルラー通信の無線信号をベースバンド信号に変換する。
 CP除去器1222は、例示的に、受信ベースバンド信号に付加されているCPを除去する。
 PDSCH復調部1223は、例示的に、CPが除去された受信ベースバンド信号から、DLのデータチャネルの一例であるPDSCHの信号を復調する。
 RS復調部1224は、例示的に、CPが除去された受信ベースバンド信号から、リファレンス信号(RS)を復調する。
 RSRP測定部1225は、例示的に、RS復調部1224で復調されたRSの受信電力であるRSRPを測定する。
 また、D2D通信向けの送信処理部123は、例示的に、SA(Schedule Assignment)生成部1231、D2Dデータ生成部1232、DS(Discovery Signal)生成部1233、RF送信部1234、及び、送信アンテナ1235を備えてよい。
 SA生成部1231は、例示的に、既述のSAを生成する。
 D2Dデータ生成部1232は、例示的に、D2D通信のデータ信号を生成する。当該データは、便宜的に、「D2Dデータ信号」と称してよい。
 DS生成部1233は、例示的に、リレーUE13を探索、発見するための既述のディスカバリ信号(DS)を生成する。
 RF送信部1234は、例示的に、上述した各生成部1231~1233で生成された信号を無線周波数の信号に変換して送信アンテナ1235から送信する。
 DS生成部1233及びRF送信部1234を含むブロックは、DSを送信する送信部の一例であると捉えてよい。
 一方、D2D通信向けの受信処理部124は、例示的に、受信アンテナ1240、RF受信部1241、D2D DS検出部1242、及び、D2Dデータ復調部1243を備えてよい。
 RF受信部1241は、受信アンテナ1240で受信された、D2D通信の無線信号をベースバンド信号に変換する。
 D2D DS検出部1242は、例示的に、受信ベースバンド信号から、他のUE12が送信したDSを検出する。
 D2Dデータ復調部1243は、例示的に、受信ベースバンド信号から、D2Dデータ信号を復調する。
 MUE12の制御部125は、例示的に、リソース設定部(Resource Configurator)1251、ディスカバリリソース選択部1252、及び、D2Dスケジューラ1253を備えてよい。
 リソース設定部1251は、例示的に、PDSCH復調部1223で復調された信号から得られるリソース割当情報を基に、D2D通信に用いるリソースの設定(configuration)を行なう。
 ディスカバリリソース選択部1252は、例えば図2及び図3にて説明したとおり、RSRP測定部1225で測定されたRSRPに基づいて、DS送信に用いるリソース(又はリソースプール)の選択を行なう。選択されたリソース(又はリソースプール)にて、DS生成部1233で生成されたDSが送信アンテナ1235から送信される。
 そのため、図3に例示したテーブルの第1~第3列の情報が、ディスカバリリソース選択部1252において記憶されてよい。別言すると、ディスカバリリソース選択部1252は、RSRPに応じたCEレベルのリソース(又はリソースプール)の情報を記憶する記憶部を備えてよい。ただし、当該記憶部は、ディスカバリリソース選択部1252がアクセス可能なように、MUE12の内部に備わっていればよい。
 D2Dスケジューラ1253は、例示的に、リソース設定部1251によるリソース設定に従って、既述のSA、D2Dデータ信号、及び、DSの送信にそれぞれ用いるD2Dリソースのスケジューリングを行なう。
 (リレーUE13の構成例)
 図5は、リレーUE13の構成例を示すブロック図である。図5に示すように、リレーUE13は、例示的に、セルラー通信向けの送信処理部131及び受信処理部132と、D2D通信向けの送信処理部133及び受信処理部134と、制御部135と、を備えてよい。
 セルラー通信向けの送信処理部131は、例示的に、チャネルエンコーダ1311、UL信号生成部1312、IFFT1313、CP付加器1314、RF送信部1315、及び、送信アンテナ1316を備えてよい。
 チャネルエンコーダ1311は、例示的に、ULのセルラー通信で送信するデータトラフィックをチャネル符号化する。チャネルエンコーダ1311で符号化されるデータトラフィックには、リレーUE13で生成されたデータトラフィックに限らず、D2D通信向けの受信処理部134で受信されたD2Dデータ信号のトラフィックが含まれてよい。
 UL信号生成部1312は、例示的に、eNB11宛のULの信号(例えば、PRACH信号やRRCコネクション再確立要求信号、PUCCH信号、PUSCH信号等)を生成する。
 図2のステップS6に例示したように、PRACHを用いてCEレベル情報とMUE12のIDとをeNB11に通知する場合、UL信号生成部1312は、CEレベル情報とMUE12のIDとを示すRAプリアンブルを含むPRACH信号を生成してよい。
 RRCコネクション再確立要求信号を用いてCEレベル情報とMUE12のIDとをeNB11に通知する場合、UL信号生成部1312は、これらの情報セットを含むRRCコネクション再確立要求信号を生成してよい。
 PUCCHを用いてCEレベル情報とMUE12のIDとをeNB11に通知する場合、UL信号生成部1312は、これらの情報セットを含むPUCCH信号を生成してよい。
 PUSCHを用いてCEレベル情報とMUE12のIDとをeNB11に通知する場合、UL信号生成部1312は、これらの情報セットを含むPUSCH信号を生成してよい。
 IFFT1313は、例示的に、チャネルエンコーダ1311及びUL信号生成部1312の出力信号にIFFTを施すことで、当該出力信号を周波数領域から時間領域の信号に変換する。
 CP付加器1314は、IFFT1313の出力信号である時間領域の送信ベースバンド信号に対してCPを付加する。
 RF送信部1315は、例示的に、CPが付加された送信ベースバンド信号を無線周波数に変換して送信アンテナ1316を通じて送信する。
 一方、セルラー通信向けの受信処理部132は、例示的に、受信アンテナ1320、RF受信部1321、CP除去器1322、及び、PDSCH復調部1323を備えてよい。
 RF受信部1321は、例示的に、例示的に、受信アンテナ1320を通じて受信した、DLのセルラー通信の無線信号をベースバンド信号に変換する。
 CP除去器1322は、例示的に、受信ベースバンド信号に付加されているCPを除去する。
 PDSCH復調部1323は、例示的に、CPが除去された受信ベースバンド信号から、DLのデータチャネルの一例であるPDSCHの信号を復調する。
 D2D通信向けの送信処理部133は、例示的に、SA生成部1331、D2Dデータ生成部1332、DS生成部1333、RF送信部1334、及び、送信アンテナ1335を備えてよい。
 SA生成部1331は、例示的に、SAを生成する。
 D2Dデータ生成部1332は、例示的に、D2Dデータ信号を生成する。
 DS生成部1333は、例示的に、UE12又は他のUE13を探索、発見するためのディスカバリ信号(DS)を生成する。
 RF送信部1334は、例示的に、上述した各生成部1331~1333で生成された信号を無線周波数の信号に変換して送信アンテナ1335から送信する。
 一方、D2D通信向けの受信処理部134は、例示的に、受信アンテナ1340、RF受信部1341、D2D DS検出部1342、及び、D2Dデータ復調部1343を備えてよい。
 RF受信部1341は、受信アンテナ1340で受信された、D2D通信の無線信号をベースバンド信号に変換する。
 D2D DS検出部1342は、例示的に、受信ベースバンド信号から、UE12又は他のUE13が送信したDSを検出する。
 RF受信部1341及びD2D DS検出部1342を含むブロックは、MUE12が送信したDSを受信する受信部の一例であると捉えてよい。
 D2Dデータ復調部1343は、例示的に、受信ベースバンド信号から、D2Dデータ信号を復調する。復調されたD2Dデータ信号は、チャネルエンコーダ1311にてチャネル符号化されてeNB11宛に送信アンテナ1316から送信されてよい。
 リレーUE13の制御部135は、例示的に、リソース設定部(resource configurator)1351、CEレベル決定部(CE level determiner)1352、及び、D2Dスケジューラ1353を備えてよい。
 リソース設定部1351は、例示的に、PDSCH復調部1323で復調された信号から得られるリソース割当情報を基に、D2D通信に用いるリソースの設定(configuration)を行なう。
 CEレベル決定部1352は、例示的に、D2D DS検出部1342で検出されたDSを基に、図2のステップS5及び図3にて既述のとおり、MUE12のCEレベル情報を決定する。
 決定したCEレベル情報と、MUE12のIDと、の情報セットは、UL信号生成部1312に提供されてよい。
 D2Dスケジューラ1353は、例示的に、リソース設定部1351によるリソース設定に従って、既述のSA、データ信号、及び、DSの送信にそれぞれ用いるD2Dリソースのスケジューリングを行なう。
 (eNB11の構成例)
 図6は、eNB11の構成例を示すブロック図である。図6に示すように、eNB11は、例示的に、ULの受信処理部111、DLの送信処理部112、及び、制御部113を備えてよい。
 受信処理部111は、例示的に、受信アンテナ1110、RF受信部1111、CP除去器1112、FFT(Fast Fourier Transformer)1113、及び、物理チャネルセパレータ1114を備えてよい。また、受信処理部111は、データ信号復調部1115、制御信号復調部1117、チャネルデコーダ1116,1118、及び、PRACH信号検出部1119を備えてよい。
 RF受信部1111は、受信アンテナ1110を通じて受信した、ULのセルラー通信の無線信号をベースバンド信号に変換する。
 CP除去器1112は、例示的に、受信ベースバンド信号に付加されているCPを除去する。
 FFT1113は、例示的に、CPが除去された受信ベースバンド信号に高速フーリエ変換(FFT)を施すことで、受信ベースバンド信号を時間領域から周波数領域の信号に変換する。
 物理チャネルセパレータ1114は、例示的に、FFT後の周波数領域の受信ベースバンド信号をULの物理チャネル毎の信号に分離する。ULの物理チャネルの一例は、PUSCH、PUCCH、PRACHである。
 PUSCHは、ULのデータチャネルの一例である。PUCCHは、ULの制御チャネルの一例である。
 データ信号復調部1115は、例示的に、物理チャネルセパレータ1114で分離されたデータチャネル信号を復調する。
 チャネルデコーダ1116は、例示的に、データ信号復調部1115で復調されたデータチャネル信号を復号する。
 制御信号復調部1117は、例示的に、物理チャネルセパレータ1114で分離された、制御チャネルの信号(「制御信号」と称してよい。)を復調する。
 チャネルデコーダ1118は、例示的に、制御信号復調部1117で復調された制御信号を復号する。
 PRACH信号検出部1119は、例示的に、物理チャネルセパレータ1114で分離されたPRACHの信号(例えば、RAプリアンブル)を検出する。
 一方、DLの送信処理部112は、例示的に、RS生成部1121、DLデータ信号生成部1122、DL制御信号生成部1123、IFFT1124、CP付加器1125、RF送信部1126、及び、送信アンテナ1127を備えてよい。
 RS生成部1121は、例示的に、RSを生成する。
 RS生成部1121、IFFT1124、CP付加器1125、及び、RF送信部1126を含むブロックは、RSを送信する送信部の一例であると捉えてよい。
 DLデータ信号生成部1122は、例示的に、DLのデータ信号(例えば、PDSCH信号)を生成する。DLのデータ信号は、制御部113の後述するD2Dリソーススケジューラ1133によるD2Dリソースの割当情報に基づいて生成されてよい。
 DL制御信号生成部1123は、例示的に、DLの制御信号(例えば、PDCCH信号)を生成する。当該DLの制御信号に、図2のステップS9にて既述のC-RNTI及びリレーUEレイヤ2IDが含められてよい。また、制御部113の後述するCEレベル決定部1131で決定されたCEレベルに関する情報が、DLの制御信号に含められてよい。
 IFFT1124は、例示的に、上述した各生成部1121~1123で生成された信号にIFFTを施して周波数領域から時間領域への信号変換を行なう。
 CP付加器1125は、例示的に、IFFT1124にて得られた時間領域の信号にCPを付加する。
 RF送信部1126は、例示的に、CP付加器1125にてCPが付加された信号(送信ベースバンド信号)を無線周波数に変換して送信アンテナ1127を通じて送信する。
 eNB11の制御部113は、例示的に、CEレベル決定部(CE level determiner)1131、リレーUEレイヤ2ID及びC-RNTI決定部(relay UE L2 ID & C-RNTI determiner)1132、及び、D2Dリソーススケジューラ1133を備えてよい。
 CEレベル決定部1131は、例示的に、図2のステップS7及び図3にて既述のとおり、リレーUE13からの受信信号(例:PRACH信号)から取得される情報を基に、DLの制御チャネル及びデータチャネルの一方又は双方のためのCEレベルを決定する。
 リレーUEレイヤ2ID及びC-RNTI決定部1132は、例示的に、チャネルデコーダ1118で復号された制御信号を基に、図2のステップS9でMUE12に通知する情報(例:リレーUEレイヤ2ID及びC-RNTI)を決定する。
 D2Dリソーススケジューラ1133は、例示的に、チャネルデコーダ1118で復号された制御信号を基に、図2のステップS10でMUE12に通知する情報(例:D2Dリソースの割当情報)を決定する。
 (第1実施例の変形例)
 図2にて上述した第1実施例では、リレーUE13(ステップS5)において、MUE12から受信したDSを基に、MUE12のCEレベルを間接的に示すレペティション数(Y)を決定した。
 第2実施例では、例えば図7に示すように、リレーUE13は、レペティション数(Y)を決定せずに、受信DSの復号を通じて取得したCEレベル情報をeNB11へMUE12のIDと共に転送してもよい(ステップS5a及びS6a)。
 例えば、リレーUE13は、MUE12がDSの送信に用いたリソース(又はリソースプール)の情報をMUE12のIDと共にeNB11へ転送してよい。
 この場合、eNB11では、図3に例示したリソース(又はリソースプール)の情報から、当該情報に対応するPDCCH(又はEPDCCH)及びPDSCHの一方又は双方についてのレペティション数(Z)を決定してよい。
 図3の例では、リソース(又はリソースプール)#1及び#2に対して、PDCCH又はEPDCCHのためのレペティション数Z11と、PDSCHのためのレペティション数Z12と、が関連付けられている。他のエントリについても同様である。
 図7における他の動作例(ステップS1~S4及びS7~S14)については、図2にて既述の動作例と同様でよい。
 なお、第1実施例の変形例において、MUE12の構成例は、図4に例示した構成例と同じでよい。
 リレーUE13の構成例については、図5に例示した構成例において、CEレベル決定部1352が不要でよい。代替的に、D2D DS検出部1342で検出された、MUE12がDSの送信に用いたリソース(又はリソースプール)の情報と、MUE12のIDとの情報セットが、eNB11宛のUL信号(例えば、PRACH信号)に含められればよい。
 eNB11の構成例については、図6に例示した構成例において、CEレベル決定部1131が、リレーUE13から転送されたリソース(又はリソースプール)の情報を基に、上述したようにレペティション数(Z)を決定すればよい。
 第1実施例の変形例によれば、第1実施例と同様の作用効果が得られるほか、リレーUE13において、MUE12から受信したDSを基にCEレベル情報を決定しなくてよいので、第1実施例に比して、リレーUE13の構成や動作を簡素化できる。したがって、リレーUE13の低消費電力化や低コスト化を図ることができる。
 (第2実施例)
 次に、図8を参照して、第2実施例に係る無線通信システム1の動作例について説明する。図8に示す動作例は、第1実施例と同様に、MUE12において送信データが発生し、当該データがリレーUE13を介してeNB11へ送信される例である。
 図8と図2とを比較すると、図8においては、図2に例示したステップS3及びS5が不要である点が異なる。そのため、図8においては、図2に例示したステップS4、S6及びS7が、それぞれ、ステップS4b、S6b及びS7bに代替されている。
 すなわち、MUE12は、第1実施例と同様に、eNB11から受信したRSの受信電力を示すRSRPを測定すると(ステップS1及びS2)、MUE12のIDと測定したRSRPとをDSに含めて送信してよい(ステップS4b)。
 当該DSの送信に用いるリソース(又はリソースプール)は、第1実施例と同様にしてRSRPに依存して選択されてもよいし、RSRPには依存しないで任意のルールで(例えば、ランダムに)選択されてもよい。
 リレーUE13は、MUE12が送信したDSを受信すると、当該DSに含まれる、MUE12のIDとRSRPとの情報セットを、eNB11宛に送信(別言すると、転送)してよい(ステップS6b)。
 当該情報セットの転送にも、第1実施例と同様に、RAプリアンブルや、RRCコネクション再確立要求信号、PUCCH信号、PUSCH信号等が用いられてよい。
 eNB11では、例えば図3のテーブルの第1列及び第5列の情報を記憶部に記憶しておく。これにより、eNB11は、リレーUE13から転送された情報セットのRSRPを基に、RSRPに対応するPDCCH(又はEPDCCH)及びPDSCHの一方又は双方についてのレペティション数(Z)を決定できる(ステップS7b)。
 なお、図8のステップS8~S14での処理は、それぞれ、第1実施例において図2に例示したステップS8~S14での処理と同じで構わない。
 以上のように、第2実施例においても、第1実施例と同様の作用効果が得られるほか、第2実施例では、MUE12において、RSRPに応じたCEレベルに関連付いたリソース(又はリソースプール)の選択を行なわなくてよい。そのため、第1実施例に比して、下記のようにMUE12の構成や動作を簡素化することができ、MUE12の低消費電力化や低コスト化を図ることができる。
 (MUE、リレーUE、及び、eNBの構成例)
 次に、第2実施例のMUE12、リレーUE13、及び、eNB11の構成例について、それぞれ、図9~図11を参照して説明する。
 (MUE12の構成例)
 図9は、第2実施例に係るMUE12の構成例を示すブロック図である。図9に例示する構成例は、第1実施例の図4に例示した構成例と比較して、ディスカバリリソース選択部1252が不要である点が異なる。
 そのため、図9において、RSRP測定部1225で測定されたRSRPは、DS生成部1233に提供されてよい。DS生成部1233は、当該RSRPを含むDSを生成する。当該DSが、図8のステップS4bにおいて、RF送信部1234及び送信アンテナ1235を通じて、リレーUE13へ送信される。
 (リレーUE13の構成例)
 図10は、第2実施例に係るリレーUE13の構成例を示すブロック図である。図10に例示する構成例は、第1実施例の図5に例示した構成例と比較して、図5のCEレベル決定部1352に代えて、RSRP値決定部1352bが備えられる点が異なる。
 RSRP値決定部1352bは、例示的に、D2D DS検出部1342で検出されたDSに含まれるRSRPの値を取得、決定する。当該RSRPの値と、MUE12のIDと、の情報セットは、UL信号生成部1312に提供されてよい。
 (eNB11の構成例)
 図11は、第2実施例に係るeNB11の構成例を示すブロック図である。図11に例示する構成例は、第1実施例の図6に例示した構成例に比して、図6のCEレベル決定部1131に代えて、CEレベル決定部1131bが備えられる点が異なる。
 CEレベル決定部1131bは、リレーUE13からの受信信号(例:PRACH信号)から取得されるRSRPの値を基に、DLの制御チャネル及びデータチャネルの一方又は双方のためのCEレベルを決定する。
 1 無線通信システム
 11 基地局(eNB)
 111 受信処理部(UL)
 1110 受信アンテナ
 1111 RF受信部
 1112 CP除去器
 1113 FFT(Fast Fourier Transformer)
 1114 物理チャネルセパレータ
 1115 データ信号復調部
 1116,1118 チャネルデコーダ
 1117 制御信号復調部
 1119 PRACH信号検出部
 112 送信処理部(DL)
 1121 RS生成部
 1122 DLデータ信号生成部
 1123 DL制御信号生成部
 1124 IFFT
 1125 CP付加器
 1126 RF送信部
 1127 送信アンテナ
 113 制御部
 1131,1131b CEレベル決定部
 1132 レーUEレイヤ2ID及びC-RNTI決定部
 1133 D2Dリソーススケジューラ
 12 UE(MUE)
 121 送信処理部(セルラー通信)
 1211 チャネルエンコーダ
 1212 IFFT
 1213 CP付加器
 1214 無線(RF)送信部
 1215 送信アンテナ
 122 受信処理部(セルラー通信)
 1220 受信アンテナ
 1221 RF受信部
 1222 CP除去器
 1223 PDSCH復調部
 1224 RS復調部
 1225 RSRP測定部
 123 送信処理部(D2D通信)
 1231 SA生成部
 1232 D2Dデータ生成部
 1233 DS生成部
 1234 RF送信部
 1235 送信アンテナ
 124 受信処理部(D2D通信)
 1240 受信アンテナ
 1241 RF受信部
 1242 D2D DS検出部
 1243 D2Dデータ復調部
 125 制御部
 1251 リソース設定部(Resource Configurator)
 1252 ディスカバリリソース選択部
 1253 D2Dスケジューラ
 13 リレーUE
 131 送信処理部(セルラー通信)
 1311 チャネルエンコーダ
 1312 UL信号生成部
 1313 IFFT
 1314 CP付加器
 1315 RF送信部
 1316 送信アンテナ
 132 受信処理部(セルラー通信)
 1320 受信アンテナ
 1321 RF受信部
 1322 CP除去器
 1323 PDSCH復調部
 133 送信処理部(D2D通信)
 1331 SA生成部
 1332 D2Dデータ生成部
 1333 DS生成部
 1334 RF送信部
 1335 送信アンテナ
 134 受信処理部(D2D通信)
 1340 受信アンテナ
 1341 RF受信部
 1342 D2D DS検出部
 1343 D2Dデータ復調部
 135 制御部
 1351 リソース設定部(resource configurator)
 1352 CEレベル決定部
 1352b RSRP決定部
 1353 D2Dスケジューラ

Claims (11)

  1.  基地局と、
     リレーノードと、
     前記リレーノードを介さずに前記基地局とダウンリンクの通信を行ない、前記リレーノードを介して前記基地局とアップリンクの通信を行なう無線機器と、を備え、
     前記無線機器は、
     前記基地局が送信したリファレンス信号の受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて、前記リレーノードを発見するためのディスカバリ信号を送信し、
     前記リレーノードは、
     前記ディスカバリ信号を受信した前記無線リソースの情報、又は、前記ディスカバリ信号を受信した無線リソースを基に決定したカバレッジ拡張レベルに関する情報を、前記基地局へ送信し、
     前記基地局は、
     前記リレーノードから受信した情報を基に、前記無線機器に対する前記ダウンリンクのカバレッジ拡張レベルを決定し、
     前記決定したカバレッジ拡張レベルにて前記無線機器と前記ダウンリンクの通信を行なう、無線通信システム。
  2.  前記受信品質は、前記リファレンス信号の受信電力であるRSRP(reference signal received power)である、請求項1に記載の無線通信システム。
  3.  前記リレーノードは、前記決定したカバレッジ拡張レベルに関する情報を、前記基地局に対するランダムアクセスチャネルの信号にて、前記基地局へ送信する、請求項1又は2に記載の無線通信システム。
  4.  前記リレーノードは、前記決定したカバレッジ拡張レベルに関する情報を、前記基地局に対するRRC(radio resource control)コネクション再確立要求信号にて、前記基地局へ送信する、請求項1又は2に記載の無線通信システム。
  5.  前記リレーノードは、前記決定したカバレッジ拡張レベルに関する情報を、前記基地局との間で確立済みのアップリンクの制御チャネル信号又はデータチャネル信号にて、前記基地局へ送信する、請求項1又は2に記載の無線通信システム。
  6.  前記基地局は、前記決定したカバレッジ拡張レベルにて、前記無線機器に一時的に割り当てる識別子と、前記リレーノードのレイヤ2の識別子と、を前記無線機器宛に送信する、請求項1~5のいずれか1項に記載の無線通信システム。
  7.  前記基地局は、前記決定したカバレッジ拡張レベルにて、前記無線機器が前記リレーノードとの通信に用いる無線リソースの割当情報を、前記無線機器宛に送信する、請求項1~6のいずれか1項に記載の無線通信システム。
  8.  前記無線機器は、前記一時的な識別子を受信できない場合、アップリンクのカバレッジ拡張レベルにて、前記基地局宛に制御信号及びデータ信号の一方又は双方を送信する、請求項6に記載の無線通信システム。
  9.  基地局が送信したリファレンス信号の受信品質を測定する測定部と、
     前記受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて、前記基地局へのアップリンクの通信を中継するリレーノードを発見するためのディスカバリ信号を送信する送信部と、
    を備えた、無線機器。
  10.  基地局が送信したリファレンス信号の受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて無線機器が送信したディスカバリ信号を受信する受信部と、
     前記ディスカバリ信号の送信に用いられた無線リソースの情報、又は、前記無線リソースを基に決定したカバレッジ拡張レベルに関する情報を、前記基地局へ送信する送信部と、
    を備えた、リレーノード。
  11.  リファレンス信号を送信する送信部と、
     前記リファレンス信号の受信品質に応じたカバレッジ拡張レベルに関連付けられた無線リソースを用いて無線機器が送信したディスカバリ信号を受信するリレーノードから、前記ディスカバリ信号の送信に用いられた無線リソースの情報、又は、前記無線リソースを基に決定したカバレッジ拡張レベルに関する情報を受信する受信部と、
     前記受信部で受信した情報を基に、前記無線機器に対するダウンリンクのカバレッジ拡張レベルを決定し、前記決定したカバレッジ拡張レベルにて前記無線機器との前記ダウンリンクの通信を制御する制御部と、
    を備えた、基地局。
PCT/JP2016/060751 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局 WO2017168702A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084154.0A CN108886692A (zh) 2016-03-31 2016-03-31 无线通信系统、无线设备、中继节点以及基站
JP2018508296A JP6631697B2 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局
EP16896919.4A EP3439336B1 (en) 2016-03-31 2016-03-31 Wireless communication system, wireless device, relay node, and base station
PCT/JP2016/060751 WO2017168702A1 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局
US16/127,803 US20190014535A1 (en) 2016-03-31 2018-09-11 Wireless communication system, wireless equipment, relay node, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060751 WO2017168702A1 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/127,803 Continuation US20190014535A1 (en) 2016-03-31 2018-09-11 Wireless communication system, wireless equipment, relay node, and base station

Publications (1)

Publication Number Publication Date
WO2017168702A1 true WO2017168702A1 (ja) 2017-10-05

Family

ID=59963835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060751 WO2017168702A1 (ja) 2016-03-31 2016-03-31 無線通信システム、無線機器、リレーノード、及び、基地局

Country Status (5)

Country Link
US (1) US20190014535A1 (ja)
EP (1) EP3439336B1 (ja)
JP (1) JP6631697B2 (ja)
CN (1) CN108886692A (ja)
WO (1) WO2017168702A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135824A1 (ja) * 2022-01-17 2023-07-20 株式会社Nttドコモ 端末及び通信方法
JP7416778B2 (ja) 2019-05-29 2024-01-17 京セラ株式会社 無線測定収集方法及びユーザ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491346B (zh) * 2018-12-14 2021-09-21 常州讯顺通讯科技有限公司 一种数据采集盒及面向智能制造的工业大数据采集方法
US20230300894A1 (en) * 2020-08-18 2023-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Configuring Radio Resource in a Wireless Network
CN114585045A (zh) * 2020-12-02 2022-06-03 华硕电脑股份有限公司 支持用户设备到网络中继通信的方法和设备
US20230199467A1 (en) * 2021-12-17 2023-06-22 Qualcomm Incorporated Discovery procedure of a local network of assisting nodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051126A1 (ja) * 2012-09-27 2014-04-03 京セラ株式会社 移動通信システム、ユーザ端末、プロセッサ及び基地局
JP2014527763A (ja) * 2011-08-19 2014-10-16 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド 無線通信システムおよび方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877860B (zh) * 2009-04-28 2016-01-20 中兴通讯股份有限公司 中继节点、服务网关、中继数据的传输方法及系统
GB2493784B (en) * 2011-08-19 2016-04-20 Sca Ipla Holdings Inc Wireless communications system and method
EP3809759A3 (en) * 2012-10-05 2021-05-12 Interdigital Patent Holdings, Inc. Method and apparatuses for transmitting feedback
US9609663B2 (en) * 2012-11-02 2017-03-28 Qualcomm Incorporated Techniques for decoupling downlink and uplink operations
EP2844000A1 (en) * 2013-08-30 2015-03-04 SITILabs - I&D em Sistemas e Tecnologias Informáticas Cooperative relaying for dynamic networks
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统
CN110266433B (zh) * 2014-01-10 2022-06-24 夏普株式会社 物理信道配置方法以及基站和用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527763A (ja) * 2011-08-19 2014-10-16 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド 無線通信システムおよび方法
WO2014051126A1 (ja) * 2012-09-27 2014-04-03 京セラ株式会社 移動通信システム、ユーザ端末、プロセッサ及び基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues on random access for Rel-13 low complexity and enhanced coverage Ues", 3GPP TSG-RAN WG2 #92 R2-156774, 16 November 2015 (2015-11-16), XP051040424 *
See also references of EP3439336A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416778B2 (ja) 2019-05-29 2024-01-17 京セラ株式会社 無線測定収集方法及びユーザ装置
WO2023135824A1 (ja) * 2022-01-17 2023-07-20 株式会社Nttドコモ 端末及び通信方法

Also Published As

Publication number Publication date
US20190014535A1 (en) 2019-01-10
JP6631697B2 (ja) 2020-01-15
EP3439336B1 (en) 2019-11-13
EP3439336A1 (en) 2019-02-06
JPWO2017168702A1 (ja) 2018-10-04
EP3439336A4 (en) 2019-02-06
CN108886692A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US11191041B2 (en) Method and device for controlling transmission power of terminal in D2D communication
US20200252976A1 (en) Random access procedures in next gen networks
KR102543782B1 (ko) 빔 대응성의 다양한 레벨들을 위한 빔 관리
JP6631697B2 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
US20210037557A1 (en) Systems and methods for accommodating specific user equipments
US20170325243A1 (en) User equipment apparatus and d2d communication method
WO2015103952A1 (zh) 物理信道配置方法以及基站和用户设备
WO2019080817A1 (zh) 一种信号配置方法及相关设备
WO2016019862A1 (zh) 基站、用户设备及相关方法
EP2991438A1 (en) Method for simultaneous communications with multiple base stations and related communication device
JP6696566B2 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
JP6636038B2 (ja) リンク品質判定のためのユーザ装置および方法
WO2018128031A1 (ja) 基地局装置、端末装置、方法及び記録媒体
JP6409167B2 (ja) 無線通信システム、無線通信方法、無線機器、及び、無線基地局
WO2019206050A1 (zh) 一种随机接入方法及装置
CN108282894B (zh) 一种小区接入的方法、基站及终端
WO2023048089A1 (ja) ユーザ装置、通信装置及び通信方法
WO2017163784A1 (ja) 無線基地局及び通信制御方法
WO2023048088A1 (ja) 通信装置及び通信方法
KR20220133733A (ko) 무선 통신 시스템에서 사이드링크 릴레이 탐색 메시지의 전송 자원 할당을 지원하는 방법 및 장치
WO2022216364A1 (en) Techniques for indicating message repetition parameters
TW202245518A (zh) 定義prs和srs關聯以改進處理能力受限情況下的多rtt定位
KR20220133759A (ko) 무선 통신 시스템에서 사이드링크 릴레이 탐색 메시지의 전송 자원 할당을 지원하는 방법 및 장치
CN117099465A (zh) 用于指示消息重复参数的技术
WO2022084395A1 (en) Technique for discovery in proximity services comprising different discovery models

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016896919

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896919

Country of ref document: EP

Effective date: 20181031