WO2017168520A1 - 尤度生成回路および尤度算出方法 - Google Patents

尤度生成回路および尤度算出方法 Download PDF

Info

Publication number
WO2017168520A1
WO2017168520A1 PCT/JP2016/059924 JP2016059924W WO2017168520A1 WO 2017168520 A1 WO2017168520 A1 WO 2017168520A1 JP 2016059924 W JP2016059924 W JP 2016059924W WO 2017168520 A1 WO2017168520 A1 WO 2017168520A1
Authority
WO
WIPO (PCT)
Prior art keywords
likelihood
received
circuit
likelihood calculation
calculation circuit
Prior art date
Application number
PCT/JP2016/059924
Other languages
English (en)
French (fr)
Inventor
慶亮 土肥
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/059924 priority Critical patent/WO2017168520A1/ja
Priority to US16/063,656 priority patent/US10439653B2/en
Priority to CN201680083922.0A priority patent/CN108886371B/zh
Priority to JP2017547014A priority patent/JP6242555B1/ja
Publication of WO2017168520A1 publication Critical patent/WO2017168520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/45Soft decoding, i.e. using symbol reliability information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability

Definitions

  • the present invention relates to a communication system including a likelihood generation circuit necessary for soft decision error correction decoding for multilevel discrimination of received values.
  • the likelihood calculated is the minimum value of errors (Euclidean distance) between all the transmission candidate values of the pattern in which the transmission bit is 1 with respect to the reception value and all the transmission candidates in the pattern in which the transmission bit is 0.
  • a minimum value of an error from each value is obtained, and the difference between them is a log-likelihood ratio LLR (Log Likelihood Ratio).
  • the reception frequency of received values is not uniform and varies.
  • the likelihood is uniquely obtained when the received value is obtained. For this reason, the distribution of the calculated likelihood varies as well as the reception frequency of the reception value.
  • the likelihood calculation circuit is generally simpler and the energy consumption is lower as the number of values that can be taken by the received value is smaller.
  • a likelihood calculation method specialized for frequently received values and a likelihood calculation method corresponding to all values that the received value can take are prepared, and a suitable likelihood calculation method for each received value is selected. As a result, the average energy consumption required for likelihood calculation can be reduced.
  • Patent Document 1 statically selects which method is used for likelihood calculation at the time of circuit design. Therefore, Patent Document 1 cannot cope with the dynamic quality change of the communication path.
  • Patent Document 2 uses statistical information based on a plurality of received values for channel quality estimation for selecting a likelihood calculation method. Therefore, Patent Document 2 has a problem that an optimal likelihood calculation method cannot be selected for each received value.
  • the present invention has been made to solve the above-described problems, and can cope with the dynamic quality change of the communication path, and by selecting an appropriate likelihood calculation method for each received value,
  • An object is to obtain a likelihood generation circuit and a likelihood calculation method capable of reducing energy consumption while maintaining communication capacity.
  • a likelihood generation circuit is a likelihood generation circuit that is applied to a communication device that performs error correction and generates likelihood based on a determination result obtained by multi-valued determination of a reception value.
  • the reception value and likelihood And a first likelihood calculation circuit that calculates the likelihood for the received value by referring to the table, and an arithmetic expression for calculating the likelihood based on the received value.
  • a likelihood output control that selects one of the likelihood calculation circuits, stops the calculation process of the other likelihood calculation circuit that has not been selected, and outputs the likelihood calculated by the selected one of the likelihood calculation circuits And a circuit.
  • the likelihood calculation method is a likelihood calculation method executed in a communication apparatus that generates a likelihood based on a discrimination result obtained by multi-valued discrimination of a received value and performs error correction, and includes a reception frequency A table in which likelihood is associated with a received value that is predicted to be equal to or higher than a predetermined determination frequency, and an arithmetic expression for calculating likelihood based on the received value are stored in the storage unit in advance.
  • the received frequency of received values is greater than or equal to the determination frequency based on the distribution information of received values given in advance or a histogram created from a set of received values received in the past in the past
  • a second step of determining the likelihood a third step of executing a first likelihood calculation process for calculating a likelihood corresponding to the received value received using the table by receiving the first execution command, 2 fruits
  • a fourth step of executing a second likelihood calculation process for calculating a likelihood corresponding to the received value received using the arithmetic expression by receiving the command, and the reception frequency of the received received value is greater than or equal to the determination frequency
  • the second likelihood calculation process is executed by outputting the second execution instruction and the first likelihood calculation process is not executed by not outputting the first execution instruction, and the second likelihood A seventh step of updating the table in association with the received value received by the likelihood calculated by the calculation process.
  • the circuit to be operated is selected in order to calculate the likelihood according to the reception frequency of the received value, and the circuit that has not been selected is stopped.
  • likelihood generation that can cope with dynamic quality changes of the communication path and can reduce energy consumption while maintaining communication capacity by selecting an appropriate likelihood calculation method for each received value A circuit and a likelihood calculation method can be obtained.
  • FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to Embodiment 1 of the present invention.
  • the optical communication system 10 according to the first embodiment includes a reception frequency determination circuit 11, a table reference type likelihood calculation circuit 12, an arithmetic type likelihood calculation circuit 13, and a selection circuit 14.
  • the reception frequency determination circuit 11 and the selection circuit 14 correspond to a likelihood output control circuit that switches and controls the likelihood calculation method in accordance with the occurrence frequency of the reception value.
  • the optical communication system 10 takes the received value as an input signal and outputs the likelihood as an output signal. Note that a plurality of received values may be input simultaneously as an input signal. In this case, each of the plurality of received values is processed independently, and each calculated likelihood is output.
  • the reception value input to the optical communication system 10 is input to each of the reception frequency determination circuit 11, the table reference type likelihood calculation circuit 12, and the arithmetic type likelihood calculation circuit 13.
  • the reception frequency determination circuit 11 determines which one of the table reference type likelihood calculation circuit 12 and the calculation type likelihood calculation circuit 13 to use based on the reception frequency of the received value. In making this determination, the reception frequency determination circuit 11 can calculate the reception frequency of the received reception value based on the distribution information of the reception value given in advance. Alternatively, the reception frequency determination circuit 11 can estimate the reception frequency of the reception value received this time by creating a histogram from a set of reception values of a certain amount received in the past.
  • the reception frequency determination circuit 11 can make this determination by using addition, multiplication, logical operation, table reference, or the like for the received value.
  • the reception frequency determination circuit 11 may use a value held inside the circuit or a value other than the received value given from the outside. Note that the value held in the circuit can be updated during the operation of the circuit.
  • the reception frequency determination circuit 11 compares the reception frequency of the reception value with a predetermined determination frequency, and when the reception frequency is equal to or higher than the determination frequency, selects the table reference type likelihood calculation circuit 12 and receives the reception frequency. Is less than the determination frequency, the operational likelihood calculation circuit 13 can be selected. Note that the determination frequency is not a fixed value, and can be dynamically changed according to the reception environment.
  • the reception frequency determination circuit 11 outputs a stop signal to the likelihood calculation circuit that is determined not to be used for likelihood calculation, out of the table reference type likelihood calculation circuit 12 or the arithmetic type likelihood calculation circuit 13. Further, the reception frequency determination circuit 11 outputs the determined result to the selection circuit 14 as a likelihood selection signal.
  • the stop signal and the selection signal described above are generated and output in association with each of the plurality of reception values.
  • the table reference type likelihood calculation circuit 12 has a table in which the address corresponding to the received value and the likelihood are associated with each other. Then, the table reference likelihood calculation circuit 12 generates an address for referring to the table using the received value, and extracts the likelihood corresponding to the address from the table. At this time, the table reference type likelihood calculation circuit 12 may use the received value as an address as it is, or may use a result obtained by calculating the received value as an address.
  • the table is not limited to data set in advance, and can be updated sequentially. For example, when the reception frequency of the received value changes due to a change in the communication channel or system state, a change in the system operating parameter, etc., the table reference type likelihood calculation circuit 12 calculates the received value and likelihood stored in the table. The content of the degree may be dynamically updated according to the reception frequency after the change.
  • the table reference likelihood calculation circuit 12 calculates the likelihood by calculation inside, and updates the table using the calculated likelihood. be able to. By this update process, received values that can be extracted in a short time with reference to the table in the future can be dynamically tabulated.
  • the table reference type likelihood calculation circuit 12 When the table reference type likelihood calculation circuit 12 receives a stop signal from the reception frequency determination circuit 11, the table reference type likelihood calculation circuit 12 can reduce the energy consumption by stopping the calculation processing operation.
  • the table reference likelihood calculating circuit 12 stops the operation for calculating the likelihood of the received value associated with the stop signal, and the stop signal is input. Likelihood can be calculated only for received values that are not. Such processing can also reduce energy consumption.
  • the arithmetic type likelihood calculating circuit 13 calculates the likelihood by using the input received value, by four arithmetic operations, logical operations, table reference, or the like. In this calculation, the arithmetic likelihood calculating circuit 13 may use a value other than the received value and a value held inside the circuit or a received value given from outside.
  • the operational likelihood calculation circuit 13 can reduce energy consumption by stopping the calculation processing operation when a stop signal is received from the reception frequency determination circuit 11.
  • the arithmetic likelihood calculating circuit 13 stops the operation for calculating the likelihood of the received value associated with the stop signal, and no stop signal is input. Likelihood can be calculated only for received values. Such processing can also reduce energy consumption.
  • the selection circuit 14 has two or more likelihood input terminals and one or more selection signal input terminals, and based on the selection signal from the reception frequency determination circuit 11, the table reference type likelihood calculation circuit 12 and the arithmetic type likelihood. The likelihood output from each of the degree calculation circuits 13 is selected.
  • the table reference type likelihood calculation circuit 12 described above can extract the likelihood held in the table in a short time without performing arithmetic processing.
  • the table reference type likelihood calculation circuit 12 has a feature that the processing time is long because the arithmetic processing is required for the likelihood not held in the table.
  • the table reference type likelihood calculation circuit 12 can incorporate the likelihood once calculated by the arithmetic processing into the table.
  • the arithmetic likelihood calculating circuit 13 calculates the likelihood from the received value by combining arithmetic units such as an adder and a multiplier. Therefore, the arithmetic likelihood calculation circuit 13 can calculate the likelihood with the same processing time for more types of received values than the table reference type likelihood calculation circuit 12, although the calculation processing time is required.
  • the table reference type or the arithmetic type likelihood calculation circuit is selected and selected according to the reception frequency of the received value.
  • the likelihood calculation circuit that has not been performed can be stopped.
  • the table of the table reference type likelihood calculation circuit can be updated according to the dynamic quality change of the communication path.
  • the table reference type likelihood calculation circuit holds, in the table, some likelihoods having a high occurrence frequency among the likelihoods that can be calculated by the arithmetic type likelihood calculation circuit. Therefore, when the correspondence relationship between the likelihood and the received value is tabulated, the likelihood can be calculated with lower energy than when the arithmetic processing by the arithmetic type likelihood calculating circuit is used.
  • the calculation type likelihood calculation circuit is stopped to reduce the energy consumption. Furthermore, the table can be updated dynamically according to the actual reception state of the reception value.
  • Embodiment 2 FIG. In the first embodiment, the case has been described in which the reception frequency determination circuit 11 is provided and the likelihood calculation circuit is selected after the reception frequency of the reception value is directly obtained. On the other hand, in the second embodiment, a communication system that does not have the reception frequency determination circuit 11 and can obtain the same effect as in the first embodiment in consideration of the reception frequency indirectly. explain.
  • FIG. 2 is a diagram showing a configuration example of an optical communication system according to Embodiment 2 of the present invention.
  • the optical communication system 20 according to the second embodiment includes a likelihood search circuit 21, an arithmetic likelihood calculation circuit 22, a table 23, and a selection circuit 24.
  • the likelihood search circuit 21 and the selection circuit 24 correspond to a likelihood output control circuit that performs switching control of the likelihood calculation method in accordance with the occurrence frequency of the received value.
  • the optical communication system 10 takes the received value as an input signal and outputs the likelihood as an output signal.
  • a plurality of received values may be input simultaneously as an input signal. In this case, each of the plurality of received values is processed independently, and each calculated likelihood is output.
  • the received value input to the optical communication system 20 is input to the likelihood search circuit 21 and the operational likelihood calculation circuit 22.
  • the likelihood search circuit 21 searches whether the likelihood corresponding to the received value is held in the table 23 based on the received received value. If the likelihood corresponding to the received value is not held in the table 23, the likelihood search circuit 21 calculates the likelihood corresponding to the received value using the operational likelihood calculation circuit 22. .
  • the likelihood calculated by the operational likelihood calculation circuit 22 is transmitted to the selection circuit 24 and the likelihood search circuit 21.
  • the likelihood search circuit 21 that has received the new likelihood calculated by the operational likelihood calculation circuit 22 deletes the oldest likelihood in the table 23 and uses the received new likelihood as the newest data.
  • the table 23 is updated in association with the received value.
  • the likelihood search circuit 21 extracts the likelihood corresponding to the received value from the table 23, and also calculates the operational likelihood calculating circuit.
  • a stop signal is output to 22 to stop the arithmetic processing.
  • the likelihood search circuit 21 updates the table 23 so that the likelihood found in the table 23 is the newest data in the table 23.
  • the reception frequency is not directly obtained, and the frequently received value is used with the likelihood held in the table 23, and the reception frequency is low.
  • the likelihood calculation is executed using the likelihood calculated by the operational likelihood calculating circuit 22.
  • the optical communication system 20 does not directly obtain the reception frequency of the reception value, but holds a recently received finite number of reception values and the corresponding likelihood as a table. Therefore, the reception frequency is indirectly used. As a result, it is possible to reduce the energy consumption necessary for calculating the likelihood for the frequently received value, and to reduce the average energy consumption necessary for calculating the likelihood.
  • the likelihood search circuit 21 creates a histogram for a finite number of received values received so far, gives priority to frequently received values and dynamically updates the table 23. it can.
  • the likelihood is calculated by referring to the table, and if it is not received most recently, Likelihood calculation can be performed by calculation. Furthermore, the table can be updated with a finite number of received values received most recently. As a result, communication is provided with a likelihood generation circuit that can update the table in response to dynamic quality changes in the communication path, select an appropriate likelihood calculation method for each received value, and save energy. A system can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

受信値と尤度とを関連付けたテーブルを有し、テーブルを参照することで受信値に対する尤度を算出する第1の尤度算出回路と、受信値に基づいて尤度を算出する演算式を有し、演算式を用いることで受信値に対する尤度を算出する第2の尤度算出回路と、受信値の受信頻度に基づいて、受信値毎に第1の尤度算出回路または第2の尤度算出回路のいずれか一方の尤度算出回路を選択し、選択しなかった他方の尤度算出回路の算出処理を停止させ、選択した一方の尤度算出回路で算出された尤度を出力する尤度出力制御回路とを備える。

Description

尤度生成回路および尤度算出方法
 本発明は、受信値を多値判別する軟判定誤り訂正復号時に必要となる尤度生成回路を備えた通信システムに関するものである。
 光通信などの通信システムにおいては、大容量化の実現と、通信容量当たりの消費エネルギーの削減が喫緊の課題である。この中で大容量化の実現に向けては、受信値を多値判別し、その結果に基づいて尤度の算出と誤り訂正を行うことで、大容量・高信頼な通信路が実現されている。
 算出される尤度は、受信値に対して、送信ビットが1となるパターンのすべての送信候補値との誤差(ユークリッド距離)の最小値と、送信ビットが0となるパターンのすべての送信候補値との誤差の最小値とをそれぞれ求め、その差を対数尤度比LLR(Log Likelihood Ratio)とするのが一般的である。
 リアルタイムで動作する回路を構成する場合には、尤度生成回路を並列に実装することでリアルタイム性を確保する。この結果として、パラレル数に応じて回路規模が増加する問題があった。回路規模の増加は、消費エネルギーの増加を引き起こす。すなわち、大容量化を実現するためにパラレル数が増加すると、その結果として、通信システムの消費エネルギーが増加するという問題、および放熱が困難になるという問題が生じる。
 そこで、通信容量の大容量化と消費エネルギーの削減を両立させるために、次のような方法をとる従来技術がある。すなわち、信号品質の低下を招きやすいところには、性能が良いが消費エネルギーが大きい方式を、信号品質に与える影響が小さなところには、性能は劣るが消費エネルギーが低い方式を、回路設計時に選択して用いる従来技術がある(例えば、特許文献1参照)。
 また、別の方法として、大容量化を実現するために、通信路品質を推定し、その結果に基づいて最適な誤り訂正アルゴリズムを動的に選択する従来技術がある(例えば、特許文献2参照)。
 受信値の受信頻度は、一様ではなく、ばらつきを持つ。また、尤度は、受信値が得られると一意に求まる。このため、受信値の受信頻度同様に、算出される尤度の分布にもばらつきが生じる。さらに、受信値が取りうる値の種類が少ないほど、尤度算出回路は、簡易になり、消費エネルギーも低くなるのが一般的である。
 従って、頻繁に受信する値に特化した尤度算出方式と、受信値が取りうるすべての値に対応する尤度算出方式とを用意し、受信値毎に適した尤度算出方式を選択することで、尤度算出に必要な平均消費エネルギーを下げることができる。
国際公開第15/137049号 特開2004-147329号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1は、尤度算出にどの方式を用いるかを回路設計時に静的に選択している。従って、特許文献1は、通信路の動的な品質の変化には対応できていない。また、特許文献2は、尤度算出方式を選択するための通信路品質の推定に、複数の受信値による統計情報を用いている。従って、特許文献2は、受信値毎に最適な尤度算出方式を選択することはできないという問題があった。
 本発明は、前記のような課題を解決するためになされたものであり、通信路の動的な品質の変化に対応できるとともに、受信値毎に適切な尤度算出方式を選択することで、通信容量を保ったまま消費エネルギーを削減することのできる尤度生成回路および尤度算出方法を得ることを目的とする。
 本発明に係る尤度生成回路は、誤り訂正を行う通信装置に適用され、受信値を多値判別した判別結果に基づいて尤度を生成する尤度生成回路であって、受信値と尤度とを関連付けたテーブルを有し、テーブルを参照することで受信値に対する尤度を算出する第1の尤度算出回路と、受信値に基づいて尤度を算出する演算式を有し、演算式を用いることで受信値に対する尤度を算出する第2の尤度算出回路と、受信値の受信頻度に基づいて、受信値毎に第1の尤度算出回路または第2の尤度算出回路のいずれか一方の尤度算出回路を選択し、選択しなかった他方の尤度算出回路の算出処理を停止させ、選択した一方の尤度算出回路で算出された尤度を出力する尤度出力制御回路とを備えるものである。
 また、本発明に係る尤度算出方法は、受信値を多値判別した判別結果に基づいて尤度を生成し、誤り訂正を行う通信装置において実行される尤度算出方法であって、受信頻度があらかじめ設定した判定頻度以上であると予想される受信値に対して尤度を関連付けたテーブル、および受信値に基づいて尤度を算出する演算式を、記憶部にあらかじめ記憶させておく第1ステップと、受信した受信値の受信頻度を、あらかじめ与えられた受信値の分布情報、または過去に受信した一定量の受信値の集合から作成したヒストグラムを元に、判定頻度以上であるか否かを判定する第2ステップと、第1の実行指令を受信することで、テーブルを用いて受信した受信値に対応する尤度を算出する第1尤度算出処理を実行する第3ステップと、第2の実行指令を受信することで、演算式を用いて受信した受信値に対応する尤度を算出する第2尤度算出処理を実行する第4ステップと、受信した受信値の受信頻度が判定頻度以上であり、かつ、受信した受信値に対応する尤度がテーブル内に保持されている場合には、第1の実行指令を出力して第1尤度算出処理を実行させ、第2の実行指令を出力しないことで第2尤度算出処理を非実行状態とする第5ステップと、受信した受信値の受信頻度が判定頻度未満の場合には、第2の実行指令を出力して第2尤度算出処理を実行させ、第1の実行指令を出力しないことで第1尤度算出処理を非実行状態とする第6ステップと、受信した受信値の受信頻度が判定頻度以上であり、かつ、受信した受信値に対応する尤度がテーブル内に保持されていない場合には、第2の実行指令を出力して第2尤度算出処理を実行させ、第1の実行指令を出力しないことで第1尤度算出処理を非実行状態とするとともに、第2尤度算出処理により算出された尤度を受信した受信値と関連付けて、テーブルを更新する第7ステップとを有するものである。
 本発明によれば、受信値の受信頻度に応じて、尤度を算出するために動作させる回路を選択し、選択しなかった回路を停止させる構成を備えている。この結果、通信路の動的な品質の変化に対応できるとともに、受信値毎に適切な尤度算出方式を選択することで、通信容量を保ったまま消費エネルギーを削減することのできる尤度生成回路および尤度算出方法を得ることができる。
本発明の実施の形態1に係る光通信システムの構成例を示す図である。 本発明の実施の形態2に係る光通信システムの構成例を示す図である。
 以下、本発明の尤度生成回路および尤度算出方法の好適な実施の形態につき図面を用いて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る光通信システムの構成例を示す図である。本実施の形態1における光通信システム10は、受信頻度判定回路11、テーブル参照型尤度算出回路12、演算型尤度算出回路13、および選択回路14を備えて構成されている。ここで、受信頻度判定回路11および選択回路14は、受信値の発生頻度に応じて尤度算出方式を切り換え制御する、尤度出力制御回路に相当する。
 光通信システム10は、受信値を入力信号として取り込み、尤度を出力信号として出力する。なお、入力信号としては、複数の受信値が同時に入力されてもよく、その場合には、複数の受信値それぞれに対して独立して処理が行われ、算出されたそれぞれの尤度が出力される。
 光通信システム10に入力された受信値は、受信頻度判定回路11、テーブル参照型尤度算出回路12、および演算型尤度算出回路13のそれぞれに入力される。
 受信頻度判定回路11は、受信値の受信頻度を元に、テーブル参照型尤度算出回路12または演算型尤度算出回路13のどちらの尤度算出回路を用いるかを決定する。この決定を行うに当たって、受信頻度判定回路11は、あらかじめ与えられた受信値の分布情報を元に、受信した受信値の受信頻度を算出することができる。あるいは、受信頻度判定回路11は、過去に受信した一定量の受信値の集合からヒストグラムを作成することで、今回受信した受信値の受信頻度を推定することもできる。
 さらに、受信頻度判定回路11は、受信値に対して加算や乗算、論理演算、表の参照等を用いて、この決定を行うこともできる。また、その際に、受信頻度判定回路11は、受信値に加えて、回路内部に保持されている値や外部から与えられる受信値以外の値を用いてもよい。なお、回路内部に保持されている値は、回路の動作中に更新することもできる。
 そして、受信頻度判定回路11は、受信値の受信頻度とあらかじめ設定した判定頻度とを比較し、受信頻度が判定頻度以上の場合には、テーブル参照型尤度算出回路12を選択し、受信頻度が判定頻度未満の場合には、演算型尤度算出回路13を選択することができる。なお、判定頻度は、固定値ではなく、受信環境に応じて動的に変更することも可能である。
 受信頻度判定回路11は、テーブル参照型尤度算出回路12または演算型尤度算出回路13のうち、尤度算出に用いないことを決定した尤度算出回路に対して、停止信号を出力する。さらに、受信頻度判定回路11は、決定した結果を尤度の選択信号として、選択回路14に対して出力する。
 また、受信頻度判定回路11に複数の受信値が同時に入力された場合には、複数の受信値のそれぞれに対応付けられて、上述した停止信号および選択信号が生成され、出力されることとなる。
 テーブル参照型尤度算出回路12は、受信値に対応したアドレスと尤度とが関連付けられたテーブルを有している。そして、テーブル参照型尤度算出回路12は、受信値を用いてテーブルを参照するためのアドレスを生成し、アドレスに対応する尤度をテーブルから抽出する。この時、テーブル参照型尤度算出回路12は、受信値をそのままアドレスとして使用してもよいし、受信値に対して演算を行った結果をアドレスとして使用してもよい。
 なお、テーブルは、あらかじめ設定されたデータには限定されず、逐次更新することも可能である。例えば、通信路やシステムの状態変化、システムの動作パラメータの変更等により受信値の受信頻度が変化した場合には、テーブル参照型尤度算出回路12は、テーブルに保持している受信値と尤度の内容を、変化後の受信頻度に合わせて動的に更新してもよい。
 テーブル参照型尤度算出回路12は、受信値に対応する尤度がテーブルに保持されていない場合には、内部にて演算により尤度を算出し、算出した尤度を用いてテーブルを更新することができる。この更新処理により、今後、テーブルを参照して尤度を短時間で抽出することができる受信値を、動的にテーブル化することができる。
 テーブル参照型尤度算出回路12は、受信頻度判定回路11より停止信号を受け取った場合には、算出処理動作を停止することで、消費エネルギーの削減を図ることができる。
 なお、テーブル参照型尤度算出回路12は、受信値と停止信号が同時に複数入力された場合には、停止信号に対応付けられた受信値の尤度算出について動作を停止し、停止信号が入力されない受信値についてのみ、尤度を算出することができる。このような処理によっても、消費エネルギーの削減を図ることができる。
 一方、演算型尤度算出回路13は、入力された受信値を用いて、四則演算や論理演算、表の参照等により、尤度を算出する。この算出に当たって、演算型尤度算出回路13は、受信値に加えて、回路内部に保持されている値や外部から与えられる受信値以外の値を用いてもよい。
 演算型尤度算出回路13は、受信頻度判定回路11より停止信号を受け取った場合には、算出処理動作を停止することで、消費エネルギーの削減を図ることができる。
 なお、演算型尤度算出回路13は、受信値と停止信号が同時に複数入力された場合には、停止信号に対応付けられた受信値の尤度算出について動作を停止し、停止信号が入力されない受信値についてのみ、尤度を算出することができる。このような処理によっても、消費エネルギーの削減を図ることができる。
 選択回路14は、2つ以上の尤度入力端子と1つ以上の選択信号入力端子を持ち、受信頻度判定回路11からの選択信号に基づいて、テーブル参照型尤度算出回路12および演算型尤度算出回路13のそれぞれから出力される尤度を選択する。
 上述したテーブル参照型尤度算出回路12は、テーブルに保持されている尤度に関しては、演算処理を行うことなく、短時間で抽出することができる。ただし、テーブル参照型尤度算出回路12は、テーブルに保持されていない尤度については、演算処理が必要なため、処理時間が長くなる特徴がある。しかしながら、テーブル参照型尤度算出回路12は、一度演算処理により算出した尤度については、テーブルに組み込むことができる。
 一方、演算型尤度算出回路13は、加算器や乗算器等の演算器を組み合わせて、受信値から尤度を算出する。従って、演算型尤度算出回路13は、演算処理時間は必要になるものの、テーブル参照型尤度算出回路12よりも多くの種類の受信値に対して、同じ処理時間で尤度を算出できる。
 従って、受信頻度が判定頻度よりも高い受信値に対しては、テーブル化されたデータを利用してテーブル参照型尤度算出回路12により尤度を算出する方が有利である。
 以上のように、実施の形態1によれば、受信値を受信するごとに、受信値の受信頻度に応じて、テーブル参照型または演算型のいずれか一方の尤度算出回路を選択し、選択しなかった尤度算出回路を停止させることができる。また、通信路の動的な品質変化に応じて、テーブル参照型尤度算出回路のテーブルを更新することができる。
 換言すると、テーブル参照型尤度算出回路は、演算型尤度算出回路で算出できる尤度の中で、発生頻度の高い一部の尤度をテーブルに保持している。従って、尤度と受信値との対応関係がテーブル化されている場合には、演算型尤度算出回路による演算処理を用いる場合よりも、低いエネルギーで尤度を算出することができる。
 また、テーブル参照型尤度算出回路により尤度を算出する際には、演算型尤度算出回路を停止させることで消費エネルギーの削減を図っている。さらに、テーブルは、受信値の実際の受信状態に応じて、動的に更新することができる。
 この結果、通信路の動的な品質の変化に対応できるとともに、受信値毎に適切な尤度算出方式を選択し、省エネルギー化を図ることができる尤度生成回路を備えた通信システムを実現できる。
 実施の形態2.
 先の実施の形態1では、受信頻度判定回路11を備え、受信値の受信頻度を直接求めた上で、尤度算出回路を選択する場合について説明した。これに対して、本実施の形態2では、受信頻度判定回路11を有さず、間接的に受信頻度を考慮して、先の実施の形態1と同様の効果を得ることのできる通信システムについて説明する。
 図2は、本発明の実施の形態2に係る光通信システムの構成例を示す図である。本実施の形態2における光通信システム20は、尤度検索回路21、演算型尤度算出回路22、テーブル23、および選択回路24を備えて構成されている。ここで、尤度検索回路21および選択回路24は、受信値の発生頻度に応じて尤度算出方式を切り換え制御する、尤度出力制御回路に相当する。
 そして、光通信システム10は、受信値を入力信号として取り込み、尤度を出力信号として出力する。なお、入力信号としては、複数の受信値が同時に入力されてもよく、その場合には、複数の受信値それぞれに対して独立して処理が行われ、算出されたそれぞれの尤度が出力される。
 光通信システム20に入力された受信値は、尤度検索回路21、および演算型尤度算出回路22のそれぞれに入力される。
 尤度検索回路21は、受け取った受信値を元に、受信値に対応する尤度がテーブル23に保持されているか否かを検索する。もしも、テーブル23中に受信値に対応する尤度が保持されていない場合には、尤度検索回路21は、演算型尤度算出回路22を用いて、受信値に対応する尤度を算出する。
 演算型尤度算出回路22にて算出された尤度は、選択回路24および尤度検索回路21に送信される。演算型尤度算出回路22にて算出された新たな尤度を受信した尤度検索回路21は、テーブル23中の最も古い尤度を削除し、受信した新たな尤度を最も新しいデータとして、受信値と対応付けてテーブル23を更新する。
 一方、もしも、テーブル23中に受信値に対応する尤度が見つかった場合には、尤度検索回路21は、テーブル23から受信値に対応する尤度を抽出するとともに、演算型尤度算出回路22に対して停止信号を出力し、演算処理を中止させる。また、尤度検索回路21は、テーブル23中に見つけた尤度を、そのテーブル23で最も新しいデータとするように、テーブル23を更新する。
 このような構成を備えた本実施の形態2における光通信システム20では、受信頻度を直接求めることなく、頻繁に受信する値についてはテーブル23に保持された尤度を用い、受信頻度が低くテーブル23中に対応する尤度が保持されていない受信値については、演算型尤度算出回路22にて算出した尤度を用いて、尤度算出が実行される。
 換言すると、本実施の形態2に係る光通信システム20は、受信値の受信頻度を直接求めるのではなく、直近に受信した有限個の受信値と、それに対応する尤度をテーブルとして保持しておくことで、間接的に受信頻度を用いる構成を備えている。その結果、頻繁に受信する値に対する尤度算出に必要な消費エネルギーを削減でき、尤度算出に必要な平均消費エネルギーを下げることができる。
 なお、上述した例では、直近に受信した有限個の受信値に対応する尤度をテーブル23として保持するように更新する場合について説明したが、テーブル23は、これ以外の構成とすることも可能である。例えば、尤度検索回路21は、今までに受信した有限個の受信値に関してヒストグラムを作成し、発生頻度の高い受信値を優先して、動的に特定して、テーブル23を更新することもできる。
 以上のように、実施の形態2によれば、受信値を受信するごとに、直近に受信されていた場合には、テーブル参照により尤度算出を行い、直近に受信されていない場合には、演算により尤度算出を行うができる。さらに、直近に受信した有限個の受信値により、テーブルを更新することができる。この結果、通信路の動的な品質の変化に対応してテーブルを更新し、受信値毎に適切な尤度算出方式を選択し、省エネルギー化を図ることができる尤度生成回路を備えた通信システムを実現できる。

Claims (8)

  1.  誤り訂正を行う通信装置に適用され、受信値を多値判別した判別結果に基づいて尤度を生成する尤度生成回路であって、
     受信値と尤度とを関連付けたテーブルを有し、前記テーブルを参照することで前記受信値に対する前記尤度を算出する第1の尤度算出回路と、
     受信値に基づいて尤度を算出する演算式を有し、前記演算式を用いることで前記受信値に対する前記尤度を算出する第2の尤度算出回路と、
     受信値の受信頻度に基づいて、受信値毎に前記第1の尤度算出回路または前記第2の尤度算出回路のいずれか一方の尤度算出回路を選択し、選択しなかった他方の尤度算出回路の算出処理を停止させ、選択した前記一方の尤度算出回路で算出された前記尤度を出力する尤度出力制御回路と
     を備える尤度生成回路。
  2.  前記尤度出力制御回路は、
      あらかじめ与えられた受信値の分布情報を元に、受信した受信値ごとに受信頻度を特定し、
      受信頻度があらかじめ設定した判定頻度以上の場合には、前記一方の尤度算出回路として前記第1の尤度算出回路を選択し、選択しなかった前記第2の尤度算出回路に対して尤度算出処理を停止させる制御信号を出力し、
      受信頻度が前記判定頻度未満の場合には、前記一方の尤度算出回路として前記第2の尤度算出回路を選択し、選択しなかった前記第1の尤度算出回路に対して尤度算出処理を停止させる制御信号を出力する
     請求項1に記載の尤度生成回路。
  3.  前記尤度出力制御回路は、
      過去に受信した一定量の受信値の集合から作成したヒストグラムを元に、受信した受信値ごとに受信頻度を動的に特定し、
      受信頻度があらかじめ設定した判定頻度以上の場合には、前記一方の尤度算出回路として前記第1の尤度算出回路を選択し、選択しなかった前記第2の尤度算出回路に対して尤度算出処理を停止させる制御信号を出力し、
      受信頻度が前記判定頻度未満の場合には、前記一方の尤度算出回路として前記第2の尤度算出回路を選択し、選択しなかった前記第1の尤度算出回路に対して尤度算出処理を停止させる制御信号を出力する
     請求項1に記載の尤度生成回路。
  4.  前記第1の尤度算出回路は、前記尤度出力制御回路により前記一方の尤度算出回路として選択され、かつ、受信した前記受信値に対応する尤度が前記テーブル内に存在しない場合には、演算式により尤度を算出し、算出結果を用いて前記テーブルを動的に更新する
     請求項2または3に記載の尤度生成回路。
  5.  前記尤度出力制御回路は、
      受信した受信値に対応する尤度が、前記第1の尤度算出回路内の前記テーブルに保持されているか否かを検索し、
      受信した前記受信値に対応する前記尤度が前記テーブルに保持されている場合には、前記一方の尤度算出回路として前記第1の尤度算出回路を選択し、選択しなかった前記第2の尤度算出回路に対して尤度算出処理を停止させる制御信号を出力し、
      受信した前記受信値に対応する前記尤度が前記テーブルに保持されていない場合には、前記一方の尤度算出回路として前記第2の尤度算出回路を選択し、選択しなかった前記第2の尤度算出回路に対して尤度算出処理を停止させる制御信号を出力するとともに、前記第2の尤度算出回路で算出された尤度を用いて前記テーブルを動的に更新する
     請求項1に記載の尤度生成回路。
  6.  前記尤度出力制御回路は、前記テーブルを動的に更新するに当たって、直近に受信した有限個の受信値に対応する尤度を前記テーブル内に保持するように更新処理を行う
     請求項5に記載の尤度生成回路。
  7.  前記尤度出力制御回路は、前記テーブルを動的に更新するに当たって、過去に受信した一定量の受信値の集合から作成したヒストグラムに基づいて、発生頻度が高いものを優先して前記テーブル内に保持するように更新処理を行う
     請求項5に記載の尤度生成回路。
  8.  受信値を多値判別した判別結果に基づいて尤度を生成し、誤り訂正を行う通信装置において実行される尤度算出方法であって、
     受信頻度があらかじめ設定した判定頻度以上であると予想される受信値に対して尤度を関連付けたテーブル、および受信値に基づいて尤度を算出する演算式を、記憶部にあらかじめ記憶させておく第1ステップと、
     受信した受信値の受信頻度を、あらかじめ与えられた受信値の分布情報、または過去に受信した一定量の受信値の集合から作成したヒストグラムを元に、前記判定頻度以上であるか否かを判定する第2ステップと、
     第1の実行指令を受信することで、前記テーブルを用いて前記受信した受信値に対応する尤度を算出する第1尤度算出処理を実行する第3ステップと、
     第2の実行指令を受信することで、前記演算式を用いて前記受信した受信値に対応する尤度を算出する第2尤度算出処理を実行する第4ステップと、
     前記受信した受信値の前記受信頻度が前記判定頻度以上であり、かつ、前記受信した受信値に対応する尤度が前記テーブル内に保持されている場合には、前記第1の実行指令を出力して前記第1尤度算出処理を実行させ、前記第2の実行指令を出力しないことで前記第2尤度算出処理を非実行状態とする第5ステップと、
     前記受信した受信値の前記受信頻度が前記判定頻度未満の場合には、前記第2の実行指令を出力して前記第2尤度算出処理を実行させ、前記第1の実行指令を出力しないことで前記第1尤度算出処理を非実行状態とする第6ステップと、
     前記受信した受信値の前記受信頻度が前記判定頻度以上であり、かつ、前記受信した受信値に対応する尤度が前記テーブル内に保持されていない場合には、前記第2の実行指令を出力して前記第2尤度算出処理を実行させ、前記第1の実行指令を出力しないことで前記第1尤度算出処理を非実行状態とするとともに、前記第2尤度算出処理により算出された尤度を前記受信した受信値と関連付けて、前記テーブルを更新する第7ステップと
     を有する尤度算出方法。
PCT/JP2016/059924 2016-03-28 2016-03-28 尤度生成回路および尤度算出方法 WO2017168520A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/059924 WO2017168520A1 (ja) 2016-03-28 2016-03-28 尤度生成回路および尤度算出方法
US16/063,656 US10439653B2 (en) 2016-03-28 2016-03-28 Likelihood generation circuit and likelihood calculation method
CN201680083922.0A CN108886371B (zh) 2016-03-28 2016-03-28 似然度生成电路和似然度计算方法
JP2017547014A JP6242555B1 (ja) 2016-03-28 2016-03-28 尤度生成回路および尤度算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059924 WO2017168520A1 (ja) 2016-03-28 2016-03-28 尤度生成回路および尤度算出方法

Publications (1)

Publication Number Publication Date
WO2017168520A1 true WO2017168520A1 (ja) 2017-10-05

Family

ID=59962734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059924 WO2017168520A1 (ja) 2016-03-28 2016-03-28 尤度生成回路および尤度算出方法

Country Status (4)

Country Link
US (1) US10439653B2 (ja)
JP (1) JP6242555B1 (ja)
CN (1) CN108886371B (ja)
WO (1) WO2017168520A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040128592A1 (en) * 2002-12-31 2004-07-01 Young-Seo Park Method and device for adaptive quantization of soft bits
JP2012010122A (ja) * 2010-06-25 2012-01-12 Fujitsu Ltd 歪補償装置、歪補償方法及び無線通信装置
JP2013535912A (ja) * 2010-07-23 2013-09-12 クゥアルコム・インコーポレイテッド 無線通信における判定メトリクスの選択的な量子化
JP2015010838A (ja) * 2013-06-26 2015-01-19 村田機械株式会社 位置推定システム及び位置推定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414158A1 (en) 2002-10-24 2004-04-28 STMicroelectronics N.V. Method of decoding an incident turbo-code encoded signal in a receiver, and corresponding receiver, in particular for mobile radio systems
JP4739266B2 (ja) * 2007-03-30 2011-08-03 Kddi株式会社 復調装置および復調方法
JP4980121B2 (ja) * 2007-04-11 2012-07-18 三菱電機株式会社 受信装置
EP2950493B1 (en) * 2013-01-25 2019-05-15 Mitsubishi Electric Corporation Bit likelihood calculation device and bit likelihood calculation method
WO2015056342A1 (ja) * 2013-10-18 2015-04-23 三菱電機株式会社 尤度生成回路および尤度生成方法
WO2015137049A1 (ja) 2014-03-13 2015-09-17 三菱電機株式会社 尤度生成装置およびその方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040128592A1 (en) * 2002-12-31 2004-07-01 Young-Seo Park Method and device for adaptive quantization of soft bits
JP2012010122A (ja) * 2010-06-25 2012-01-12 Fujitsu Ltd 歪補償装置、歪補償方法及び無線通信装置
JP2013535912A (ja) * 2010-07-23 2013-09-12 クゥアルコム・インコーポレイテッド 無線通信における判定メトリクスの選択的な量子化
JP2015010838A (ja) * 2013-06-26 2015-01-19 村田機械株式会社 位置推定システム及び位置推定方法

Also Published As

Publication number Publication date
CN108886371A (zh) 2018-11-23
US20180367165A1 (en) 2018-12-20
JPWO2017168520A1 (ja) 2018-04-05
JP6242555B1 (ja) 2017-12-06
US10439653B2 (en) 2019-10-08
CN108886371B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
US20110182347A1 (en) Adaptive equalizer and adaptive equalizing method
US9632708B2 (en) Method, apparatus, and system for reading and writing data
EP3432157A1 (en) Data table joining mode processing method and apparatus
JP2004282757A (ja) 無線通信用球面復号器
US7574467B2 (en) Adaptive equalizer and method for the same
WO2019080685A1 (zh) 视频图像分割方法及装置、存储介质、电子设备
KR101583139B1 (ko) 높은 처리량과 낮은 복잡성을 갖는 연속 제거 극 부호 복호 장치 및 그 방법
US8812569B2 (en) Digital filter implementation for exploiting statistical properties of signal and coefficients
JP6242555B1 (ja) 尤度生成回路および尤度算出方法
KR20210002817A (ko) 패리티 검사 연접 극 부호의 설계 방법 및 그 장치
JP2000295145A (ja) 決定帰還等化器及び決定帰還等化方法
US10320523B2 (en) Method for detecting sent sequence, receiver, and receiving device
WO2014090121A1 (zh) 一种信号检测的方法及装置
US8644400B2 (en) Apparatus and method for operating valid bit in a wireless communication system
CN105634517B (zh) 多接收器装置及接收方法
KR101372409B1 (ko) 다중 입력 다중 출력 시스템의 연판정 심볼 검파 방법
US20160315638A1 (en) Iterative decoding device, iterative signal detection device and information update method for the same
CN113778528B (zh) 指令发送方法、装置、电子设备及存储介质
US11604751B1 (en) Optimizing hardware design throughput by latency aware balancing of re-convergent paths
US20200344000A1 (en) Apparatus and method for selecting candidates in a k-best algorithm of a multiple input multiple output decoder
KR19990066518A (ko) 적응등화기의 모드변환제어장치
JP4216743B2 (ja) ビタビ等化器
JP6562460B2 (ja) 等化装置及び等化方法
JP2005223668A (ja) 軟判定装置
US20170257181A1 (en) Method and Computer System for Reducing Inter-Cell Interference and Inter-Antenna Interference in Wireless Communication System

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017547014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896740

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896740

Country of ref document: EP

Kind code of ref document: A1