WO2017167038A1 - 数据处理和传输方法、以及用户终端和基站 - Google Patents

数据处理和传输方法、以及用户终端和基站 Download PDF

Info

Publication number
WO2017167038A1
WO2017167038A1 PCT/CN2017/077231 CN2017077231W WO2017167038A1 WO 2017167038 A1 WO2017167038 A1 WO 2017167038A1 CN 2017077231 W CN2017077231 W CN 2017077231W WO 2017167038 A1 WO2017167038 A1 WO 2017167038A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission signal
superimposed
transmission
user terminal
Prior art date
Application number
PCT/CN2017/077231
Other languages
English (en)
French (fr)
Inventor
李安新
蒋惠玲
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to JP2018547934A priority Critical patent/JP2019514247A/ja
Priority to CN201780011258.3A priority patent/CN108702263A/zh
Publication of WO2017167038A1 publication Critical patent/WO2017167038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes

Definitions

  • the present invention relates to the field of communications, and more particularly to a data processing and transmission method, and a user terminal and a base station.
  • multiple transmission signals may be carried in one data packet and sent to the corresponding user terminal through the base station.
  • This type of data packet may also be referred to as a superimposed signal.
  • the plurality of transmission signals may be transmission signals to a plurality of user terminals, each transmission signal corresponding to one user terminal.
  • the plurality of transmission signals may be transmission signals of a plurality of receiving antennas addressed to one user terminal. For the user terminal, after receiving the superimposed signal, it is necessary to obtain a corresponding transmission signal from the signal detection. Since the superimposed signal carries a plurality of transmission signals, it is likely to be affected by inter-user interference or inter-signal interference when detecting a certain transmission signal, thereby causing detection errors and affecting the performance of data transmission.
  • Embodiments of the present invention provide a data processing and transmission method, a program, and a non-transitory machine-readable storage medium, and a user terminal and a base station, aiming at improving performance of data transmission.
  • a data processing method includes:
  • the first user terminal sends a feedback report to the base station;
  • the first user terminal receives a second superimposed signal, and the second superimposed signal carries at least the second transmission signal and a first correction signal related to the first transmission signal;
  • the first user terminal obtains the second transmission signal according to the first superimposed signal and the second superimposed signal.
  • a data transfer method includes:
  • the base station After receiving the negative feedback report from the first user terminal, the base station constructs a second superimposed signal and the second superimposed signal carries at least the second transmission signal and is associated with the first transmission signal First correction signal;
  • the negative feedback report is used to indicate that the second transmission signal cannot be detected.
  • a user terminal includes:
  • Non-volatile machine readable storage medium
  • the program module is used to:
  • the second superimposed signal carries at least the second transmission signal and a first correction signal associated with the first transmission signal.
  • a base station includes:
  • Non-volatile machine readable storage medium
  • program module is used to:
  • the negative feedback report is used to indicate that the second transmission signal cannot be detected
  • the transmitting unit is configured to: emit the first superimposed signal and the second superimposed signal.
  • a program for causing a computer to:
  • the first user terminal When the second transmission signal cannot be detected, the first user terminal sends a negative feedback report to the base station;
  • the first user terminal receives a second superimposed signal, and the second superimposed signal carries at least the second transmission signal and a first correction signal related to the first transmission signal;
  • the first user terminal obtains the second transmission signal according to the first superimposed signal and the second superimposed signal.
  • a non-transitory machine-readable storage medium is provided, the machine readable instructions being stored in a storage medium, the machine readable instructions being executable by a processor to:
  • the first user terminal receives the first superimposed signal, and the first superimposed signal carries the first Transmitting a signal and a second transmission signal of the first user terminal;
  • the first user terminal When the second transmission signal cannot be detected, the first user terminal sends a negative feedback report to the base station;
  • the first user terminal receives a second superimposed signal, and the second superimposed signal carries at least the second transmission signal and a first correction signal related to the first transmission signal;
  • the first user terminal obtains the second transmission signal according to the first superimposed signal and the second superimposed signal.
  • a program for causing a computer to:
  • the base station After receiving the negative feedback report from the first user terminal, the base station constructs a second superimposed signal and the second superimposed signal carries at least the second transmission signal and is associated with the first transmission signal First correction signal;
  • the negative feedback report is used to indicate that the second transmission signal cannot be detected.
  • a non-transitory machine-readable storage medium is provided, the machine readable instructions being stored in a storage medium, the machine readable instructions being executable by a processor to:
  • the base station After receiving the negative feedback report from the first user terminal, the base station constructs a second superimposed signal and the second superimposed signal carries at least the second transmission signal and is associated with the first transmission signal First correction signal;
  • the negative feedback report is used to indicate that the second transmission signal cannot be detected.
  • a user terminal includes:
  • An initial transmission detecting unit configured to receive a first superimposed signal, and detect the first overlapping Transmitting a first transmission signal carried in the signal and a second transmission signal of the first user terminal, and transmitting a negative feedback report to the base station when the second transmission signal cannot be detected;
  • a retransmission detecting unit configured to receive a second superimposed signal, and obtain the second transmission signal according to the first superimposed signal and the second superimposed signal
  • the second superimposed signal carries at least the second transmission signal and a first correction signal associated with the first transmission signal.
  • a base station includes:
  • a first superposition constructing unit configured to generate a first superimposed signal carrying the first transmission signal and the second transmission signal of the first user terminal
  • a second superposition constructing unit after receiving the negative feedback report from the first user terminal, constructing a second superimposed signal carrying at least the second transmission signal and the first correction signal related to the first transmission signal Wherein the negative feedback report is used to indicate that the second transmission signal cannot be detected;
  • a transmitting unit configured to send the first superimposed signal and the second superimposed signal.
  • FIG. 1(a) and 1(b) are schematic diagrams showing a system for signal transmission in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a data processing method 200 according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a system for signal transmission in an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a data processing method 400 according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a data transmission method 500 according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a data transmission method 600 according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a data transmission method 700 according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a user terminal 800 according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a user terminal 900 according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station 1000 according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station 1100 according to an embodiment of the present invention.
  • the base station When a detection error of the transmission signal occurs, the base station will initiate data retransmission for the transmission signal.
  • the base station may perform a data retransmission using a Hybrid Automatic Repeat reQuest (HARQ) mechanism.
  • the HARQ mechanism is a technology formed by combining Forward Error Correction (FEC) and Automatic Repeat ReQuest (ARQ).
  • FEC Forward Error Correction
  • ARQ Automatic Repeat ReQuest
  • the recipient saves the received data in the event of a decoding failure and requests the sender to retransmit the data, and the receiver combines the retransmitted data with the previously received data and then decodes.
  • the HARQ mechanism can be applied to Non-Orthogonal Multiple Access (NOMA), and can also be applied to Orthogonal Multiple Access (OMA).
  • NOMA adopts non-orthogonal transmission at the transmitting end, actively introduces interference information, and implements correct demodulation by serial interference cancellation at the receiving end. That is, NOMA utilizes complex receiver designs in exchange for higher spectral efficiency.
  • Figure 1 (a) and Figure 1 (b) show the process of NOMA HARQ transmission.
  • the base station 101 transmits a superimposed signal of two transmission signals S1 and S2 (hereinafter referred to as a first superimposition signal 102), and both S1 and S2 in the first superimposed signal are initial transmissions.
  • S1 is a transmission signal of UE2, and the transmission power is P1.
  • S2 is the transmission signal of UE1, and the transmission power is P2.
  • P 1 0.8P BS
  • P 2 0.2P BS
  • P BS is the total transmit power of the base station.
  • the UE2 may detect S1 from the first superimposed signal 102 because the value of P1 is large. It should be noted that UE2 treats S2 as interference when detecting S1. For UE1, since the value of P2 is small, S1 needs to be detected first, and S1 is removed by interference cancellation, and then S2 is detected. Due to changes in transmission conditions (such as channel changes, etc.), UE1 may not detect S1, and interference cancellation may not be performed, and accordingly, an S2 detection error may occur. In this case, UE1 sends a negative feedback report (such as a NACK feedback report) to base station 101, indicating that UE1's detection result for S2 is an error.
  • a negative feedback report such as a NACK feedback report
  • the base station 101 after receiving the NACK feedback report of UE1, the base station 101 has various processing modes.
  • base station 101 is only retransmitted for S2.
  • the unique processing capability of the Serial Interference Cancellation (SIC) receiver for HARQ transmission cannot be fully utilized.
  • the base station 101 combines the transmission signals of other users and the S2 to be retransmitted into a new superimposed signal (hereinafter referred to as a second superimposed signal 103), and S2 in the second superimposed signal 103 is re transmission.
  • the transmission signal of other users is S3 of UE3, and this S3 is the initial transmission.
  • the transmission power of S3 is P3, and the transmission power of S2 is P4.
  • the UE1 After receiving the second superimposed signal 103, the UE1 first considers S2 as the interference detection S3, and then removes S3 from the second superimposed signal 103 by using an interference cancellation technique such as SIC. Thereafter, the first superimposed signal 102 and the SIC-processed signal are HARQ combined, and S2 is detected therefrom.
  • an interference cancellation technique such as SIC.
  • SNR Signal to Noise Ratio
  • MCS Modulation and Coding Scheme
  • the method 200 includes the following operations.
  • the first user terminal receives the first superimposed signal.
  • the first superimposed signal carries a first transmission signal and a second transmission signal of the first user terminal.
  • the second transmission signal is the actual signal of the first user terminal and the first transmission signal is not the actual signal of the first user terminal. Therefore, for the first user terminal, the first transmission signal that is superimposed with the second transmission signal and transmitted to the first user terminal may be an inter-user interference.
  • the first transmission signal is the actual signal of UE2 in the wireless network, as shown in Figure 1(a).
  • the first transmission signal is a signal transmitted to the antenna 1 of the first user terminal
  • the second transmission signal is a signal transmitted to the antenna 2 of the first user terminal.
  • the first transmission signal constitutes inter-signal interference.
  • step 202 when the first user terminal cannot detect the second transmission signal, the first user terminal sends a “negative feedback report” to the base station.
  • the negative feedback report is used to indicate that the first user terminal detects the actual signal of the first user terminal. error.
  • the first user terminal receives a second superimposed signal.
  • the second superimposed signal carries at least a first modified signal and a second transmitted signal associated with the first transmitted signal.
  • the base station since the first user terminal provides a negative feedback report to the base station in step 202, the base station is notified that the second transmission signal cannot be detected, and the base station will initiate retransmission of the second transmission signal to construct the second superimposed signal. Sended to the first user terminal. It should be noted that, before sending the second superimposed signal, the base station will notify the first user terminal of the retransmission of the second transmission signal through the control signaling.
  • the first user terminal obtains the second transmission signal according to the first superimposed signal and the second superimposed signal.
  • the first user terminal may extract the second transmission signal from the combined result of the first superimposed signal and the second superimposed signal.
  • the initial transmission and retransmission are relative to the second transmission signal, with the second transmission signal as a reference. That is, the initial transmission refers to the first transmission of the second transmission signal, and the retransmission refers to the retransmission of the second transmission signal or the third, fourth transmission, and the like.
  • step 202 the first user terminal detects the first transmission signal and the second transmission signal from the first superimposed signal, respectively.
  • step 202 includes the following steps: when the first transmission signal is detected, and the second transmission signal cannot be detected, sending a first feedback report to the base station; when the first transmission signal and When the second transmission signal cannot be detected, the second feedback report is sent to the base station.
  • the first feedback report is used to indicate a detection error caused by signal fading
  • the second feedback report is used to indicate a detection error caused by interference between users. That is, the first user terminal distinguishes between detection errors caused by signal fading and detection errors caused by inter-user interference.
  • Table 1 shows the first user end Signal detection at the end. It should be noted that the first feedback report and the second feedback report in Table 1 are both negative feedback reports.
  • FIG. 3 is a schematic structural diagram of a second superimposed signal according to step 203 in the embodiment of the present invention.
  • the base station After the base station completes the initial transmission shown in FIG. 1(a), if the second feedback report is received, the first transmission signal S1 is inverted to obtain the first modified signal (- S1). Then, the base station constructs the second superimposed signal 301 according to the third transmission signal S3, the first correction signal (-S1) and the second transmission signal (S2), and sends the second superimposed signal 301 to the first user terminal (UE1) and other user terminals (such as UE3).
  • the third transmission signal S3 is a transmission signal of the UE3, and is also an inter-user interference for the UE1. Accordingly, step 204 includes the following operations.
  • the first user terminal combines the first superimposed signal and the second superimposed signal. Since the second superimposed signal includes the first modified signal, the interference self-cancellation of S1 can be realized after the combination. Subsequently, the first user terminal detects S3 and deletes S3 by SIC processing. Finally, the first user terminal detects S2 and obtains the correct detection result.
  • the base station may also multiply the first transmission signal S1 by a twiddle factor to obtain a first correction signal.
  • the first superimposed signal y 1 in step 201 is as shown in formula (1)
  • the second superimposed signal y 2 in step 203 is as shown in formula (2).
  • the formulas (1) and (3) are combined to obtain the formula (4)
  • the H matrix in the formula (4) is as shown in the formula (5).
  • h 1 is the channel transmission function of the initial transmission
  • n 1 is the noise of the initial transmission
  • h 2 is the channel transmission function of retransmission
  • n 2 is the noise of retransmission
  • is the rotation factor.
  • P 1 is the transmission power of the first transmission signal s 1 at the time of initial transmission
  • P 2 is the transmission power of the second transmission signal s 2 at the time of initial transmission.
  • P 1 ' is the transmission power of the first correction signal (s 1 e j ⁇ in the present example) at the time of retransmission
  • P' 2 is the transmission power of the second transmission signal s 2 at the time of retransmission
  • P 3 is the third transmission The transmission power of signal s 3 at the time of retransmission.
  • the H matrix is full rank, and the first transmission signal s 1 and the second transmission can be obtained by zero forcing (ZF) detection or Minimum Mean Squared Error (MMSE) detection in step 204.
  • Signal s 2 Generally, the H matrix is full rank, and the first transmission signal s 1 and the second transmission can be obtained by zero forcing (ZF) detection or Minimum Mean Squared Error (MMSE) detection in step 204.
  • ZF zero forcing
  • MMSE Minimum Mean Squared Error
  • the inverse matrix H -1 of the H matrix can be obtained. Then, H -1 is applied to both ends of the formula (4) to obtain the formulas (6) and (7). Processing such as demodulation and estimation of s 1 and s 2 is performed according to the formula (7).
  • FIG. 4 is a schematic flowchart diagram of a data processing method 400 according to an embodiment of the present invention.
  • the method 400 includes the following operations.
  • the first user terminal receives the first superimposed signal carrying the first transmission signal and the second transmission signal, and determines the transmission power of the first transmission signal.
  • the second transmission signal is an actual signal of the first user terminal, and is the first transmission in the first superimposed signal.
  • step 402 the first user terminal detects the first transmission signal and the second transmission signal respectively in the first superimposed signal, and gives a corresponding feedback report according to the detection result.
  • the first user terminal if the first user terminal detects the second transmission signal, the first user terminal provides a positive feedback report to the base station regardless of whether the first transmission signal is detected. If the first user terminal does not detect the second transmission signal but the first transmission signal is detected, the first user terminal feeds back the first feedback report to the base station. If the first user terminal neither detects the second transmission signal nor detects the first transmission signal, the first user terminal feeds back the second feedback report to the base station.
  • the base station determines the type of feedback report received. If it is a positive feedback report, step 404 is performed. If it is the first feedback report, step 405 is performed. If it is a second feedback report, step 406 is performed.
  • step 404 the base station superimposes the transmission signals of the next group of user terminals, and the process ends.
  • the next set of user terminals is different from the user corresponding to the first superimposed signal terminal.
  • the user terminals corresponding to the first superimposed signal are UE1 and UE2
  • the next group of user terminals may be UE3 and UE4.
  • the base station constructs a retransmission superimposed signal and issues, and the process ends.
  • the retransmission superposition signal carries at least the second transmission signal.
  • the retransmission superimposed signal is as shown in Figure 1(b), where S2 is retransmission and S3 is the initial transmission.
  • the base station notifies the first user terminal by using control signaling. It should be noted that the retransmission superposition signal does not include the first correction signal.
  • the base station constructs a second superimposed signal and issues.
  • step 406 specifically includes: the base station obtaining a first correction signal from the first transmission signal; and the first transmission signal and the second transmission signal in the first superimposed signal according to the first transmission signal Setting a transmission power of the first correction signal and the second transmission signal; acquiring a third transmission signal of another user terminal and setting a transmission power of the third transmission signal; according to the third transmission signal, the A correction signal and the second transmission signal construct the second superimposed signal and send the signal to the first user terminal.
  • step 406 specifically includes: the base station obtaining a first correction signal from the first transmission signal; and the first transmission signal and the second transmission signal in the first superimposed signal according to the first transmission signal Determining a transmit power of the first modified signal and the second transmit signal; constructing the second superimposed signal according to the first modified signal and the second transmit signal, and transmitting the second superimposed signal to the first user terminal.
  • the first modified signal may be inverted to obtain the first modified signal, or the first transmitted signal may be multiplied by a twiddle factor to obtain the first modified signal.
  • the first correction signal is a modification of the first transmission signal, so that after the first user terminal jointly processes the first superimposed signal and the second superimposed signal, the first transmission signal can be eliminated to the second transmission signal. The interference caused by the detection.
  • step 407 after receiving the second superimposed signal, the first user terminal determines a transmit power of the first modified signal in the second superimposed signal.
  • the first user terminal determines a power scaling factor according to the transmit power of the first transmission signal and the transmit power of the first modified signal, and the total transmit power of the first superimposed signal is according to the power.
  • the scaling factor is scaled.
  • the transmit power of the first modified signal is P 1 '
  • the transmit power of the first transmit signal is P 1
  • the power scaling factor is ⁇ .
  • step 409 the first user terminal adds the second superimposed signal and the power-scaled first superimposed signal to obtain a de-interference signal.
  • the first user terminal obtains the second transmission signal from the de-interference signal, and the process ends.
  • the de-interference signal in step 410 includes the third transmission signal S3, and the first user terminal detects S3 by using SIC processing or the like (in this case, S2 is regarded as interference first), and further uses the detected S3 detects S2.
  • FIG. 5 is a schematic flowchart of a data transmission method 500 according to an embodiment of the present invention.
  • the method 500 includes the following operations.
  • step 501 the base station generates a first superimposed signal, where the first superimposed signal carries a first transmission signal and a second transmission signal of the first user terminal.
  • the The base station constructs a second superimposed signal and sends out.
  • the negative feedback report is used to indicate that the second transmission signal cannot be detected, and the second superposition signal carries at least the second transmission signal and a first correction related to the first transmission signal. signal.
  • the base station when receiving the negative feedback report of the first user terminal, the base station combines the modified superimposed signal with the transmission signals of other users to form a new superimposed signal (hereinafter referred to as a second superimposed signal) for retransmission.
  • the modified superimposed signal is an addition of the first modified signal and S2.
  • the modified superimposed signal is an superimposed signal of (-S1) and S2.
  • the modified superimposed signal is the superimposed signal of S1 by the twiddle factor and S2. It is assumed that the transmission signal of other users is S3 of UE3. At this time, the transmission power of S3 is P3, and the transmission power of the modified superposition signal is P4.
  • the transmission signal of other users is S3 of UE3.
  • the transmission power of S3 is P3
  • the transmission power of the modified superposition signal is P4.
  • P 2 ' ⁇ P 2 may be required.
  • the power ratios of S1 and S2 in retransmission are not changed compared to the initial transmission.
  • P 1 ', P 2 ', P 1 , and P 2 can also be independently set in value, without considering the constraint relationship between them.
  • the first superimposed signal y 1 is as shown in equation (8) and the second superimposed signal y 2 is as shown in equation (9).
  • h 1 is the channel transmission function of the initial transmission
  • n 1 is the noise of the initial transmission
  • P 1 is the transmission power of the first transmission signal s 1 at the time of initial transmission
  • P 2 is the second transmission signal s 2 Transmit power at initial transmission.
  • h 2 is the retransmitted channel transfer function
  • n 2 is the retransmitted noise
  • P' 1 is the transmit power of the first modified signal (-s 1 in this example) at the time of retransmission
  • P' 2 is the transmission power of the second transmission signal s 2 at the time of retransmission
  • P 3 is the transmission power of the third transmission signal s 3 at the time of retransmission.
  • FIG. 6 is a schematic flowchart of a data transmission method 600 according to an embodiment of the present invention.
  • the method 600 includes the following operations.
  • step 601 after receiving the negative feedback report, the base station inverts the first transmission signal to obtain a first correction signal.
  • step 602 the base station sets the transmit powers of the first modified signal and the second transmitted signal according to the power of the first transmission signal and the second transmission signal in the first superimposed signal.
  • step 603 the base station constructs the second superimposed signal according to the first modified signal and the second transmission signal, and then sends the second superimposed signal to the first user terminal.
  • FIG. 7 is a schematic flowchart diagram of a data transmission method 700 according to an embodiment of the present invention.
  • the method 700 includes the following operations.
  • step 701 after receiving the negative feedback report, the base station inverts the first transmission signal to obtain the first correction signal.
  • step 702 the base station sets the transmit powers of the first modified signal and the second transmitted signal according to the power of the first transmission signal and the second transmission signal in the first superimposed signal.
  • step 703 the base station acquires a third transmission signal of another user terminal and sets a transmission power of the third transmission signal.
  • step 704 the base station constructs a second superimposed signal according to the third transmission signal, the first correction signal, and the second transmission signal, and sends the signal to the first user terminal. end.
  • the superimposed signals contain transmission signals for different user terminals. It should be noted that the above embodiments are equally applicable to the case where the superimposed signals contain transmission signals for different receiving antennas.
  • the first transmission signal is the signal of the antenna 1 of the first user terminal
  • the second transmission signal is the signal of the antenna 2 of the first user terminal
  • the data processing and transmission may also be performed by the method described in FIG. 2-7.
  • the present application also discloses a program for causing a computer to perform the method of FIGS. 2-7 and a non-transitory machine-readable storage medium storing the program.
  • FIG. 8 is a schematic structural diagram of a user terminal 800 according to an embodiment of the present invention.
  • the user terminal 800 includes a processor 801, a non-volatile machine readable storage medium 802.
  • the user terminal 800 includes a program module 803 that is stored in the non-transitory machine readable storage medium 802 and executed by the processor 801.
  • the program module 803 is configured to: receive a first superimposed signal, and detect a first transmission signal carried in the first superimposed signal and a second transmission signal of the first user terminal; when the second transmission signal cannot Sending a negative feedback report to the base station when detecting; receiving the second superimposed signal, and obtaining the second transmission signal according to the first superimposed signal and the second superimposed signal.
  • the second superimposed signal carries at least the second transmission signal and a first correction signal associated with the first transmission signal.
  • the first transmission signal is not the actual signal of the first user terminal.
  • the second transmission signal is a signal transmitted to one of the antennas of the first user terminal, and the first transmission signal is a signal transmitted to another antenna of the first user terminal. It should be noted that the operation of the user terminal 800 can refer to the process of FIG. 2-4.
  • FIG. 9 is a schematic structural diagram of a user terminal 900 according to an embodiment of the present invention.
  • the user terminal 900 includes a processor 801 and a non-volatile machine readable storage medium 802.
  • the user terminal 900 includes a program module 803 stored in the non-transitory machine readable storage medium 802 for execution by the processor 801 for implementing the functions described in FIG.
  • the program module 803 includes:
  • the initial transmission detecting unit 913 is configured to detect a second transmission signal in the first superimposed signal, and provide a corresponding feedback report according to the detection result.
  • the self-interference cancellation unit 923 is configured to determine a transmit power of the first modified signal in the second superimposed signal, and determine a power scaling ratio according to a transmit power of the first transmit signal and a transmit power of the first modified signal, And scaling the total transmit power of the first superimposed signal according to the power scaling; adding the second superimposed signal and the power-scaled first superimposed signal to obtain a de-interference signal; The second transmission signal is detected from the de-interference signal.
  • FIG. 10 is a schematic structural diagram of a base station 1000 according to an embodiment of the present invention.
  • the base station 1000 includes a processor 1001, a non-volatile machine readable storage medium 1002, and a transmitting unit 1004.
  • the base station 1000 includes a program module 1003 that is stored in the non-transitory machine readable storage medium 1002 and executed by the processor 1001.
  • the program module 1003 is configured to: generate a first superimposed signal that carries the first transmission signal and the second transmission signal of the first user terminal; after receiving the negative feedback report from the first user terminal, constructing at least And a second superimposed signal carrying the second transmission signal and the first correction signal associated with the first transmission signal; wherein the negative feedback report is used to indicate that the second transmission signal cannot be detected.
  • the transmitting unit 1004 is configured to: issue the first superimposed letter And the second superimposed signal. It should be noted that the operation of the base station 1000 can refer to the processes of FIG. 5-7.
  • FIG. 11 is a schematic structural diagram of a base station 1100 according to an embodiment of the present invention.
  • the program module 1003 in the base station 1100 includes a correction signal generation unit 1113, a transmission power setting unit 1123, and a modified superposition construction unit 1133.
  • the correction signal generating unit 1113 performs correction on the first transmission signal to obtain a first correction signal.
  • the transmission power setting unit 1123 sets the transmission powers of the first correction signal and the second transmission signal according to the power of the first transmission signal and the second transmission signal in the first superposition signal.
  • the correction superposition constructing unit 1133 constructs the second superimposed signal according to the first correction signal and the second transmission signal.
  • the transmit power setting unit 1123 further acquires a third transmission signal of another user terminal and sets a transmit power of the third transmission signal.
  • the correction superposition constructing unit 1133 constructs the second superimposed signal according to the third transmission signal, the first correction signal, and the second transmission signal.
  • the program module 1003 further includes a feedback report processing unit 1143.
  • the feedback report processing unit 1143 determines the type of the received negative feedback report, triggers the retransmission superposition constructing unit 1153 if it is the first feedback report, and triggers the modified superposition constructing unit 1133 if it is the second feedback report.
  • the retransmission superposition constructing unit 1153 is configured to construct a retransmission superposition signal, and the retransmission superposition signal carries at least the second transmission signal.
  • the modified superposition constructing unit 1133 is configured to construct the second superimposed signal.
  • the first feedback report is used to indicate that the first transmission signal is detected by the first user terminal, but the second transmission signal cannot be terminated by the first user.
  • the second feedback report is configured to indicate that neither the first transmission signal nor the second transmission signal can be detected by the first user terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供了一种数据处理和传输方法、以及用户终端和基站。该数据处理方法包括:第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号;当该第二传输信号无法检出时,该第一用户终端发送反馈报告给基站;所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。本发明实施例旨在提高数据传输的性能。

Description

数据处理和传输方法、以及用户终端和基站 技术领域
本发明涉及通信领域,尤指一种数据处理和传输方法、以及用户终端和基站。
发明背景
在无线通信系统中,为了提高数据传输效率,可以在一个数据包中同时携带多个传输信号,通过基站下发给对应的用户终端,这种类型的数据包又可称为迭加信号。在一个示例中,所述多个传输信号可以是发给多个用户终端的传输信号,每个传输信号对应一个用户终端。在一个示例中,所述多个传输信号可以是发给一个用户终端的多根接收天线的传输信号。对于用户终端而言,接收到迭加信号后,需要通过信号检测从中获得对应的传输信号。由于迭加信号携带有多个传输信号,在检测某个传输信号时很可能受到用户间干扰或信号间干扰的影响,从而导致检测错误,影响数据传输的性能。
发明内容
本发明实施例提供了一种数据处理和传输方法、程序和非易失性机器可读存储介质、以及用户终端和基站,旨在提高数据传输的性能。
在一个示例中,一种数据处理方法包括:
第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号;
当该第二传输信号无法检出时,该第一用户终端发送反馈报告给基站;
所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。
在一个示例中,一种数据传输方法包括:
基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号;
从所述第一用户终端接收到否定反馈报告后,所述基站构造第二迭加信号并发出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
其中,所述否定反馈报告用于指示该第二传输信号无法检出。
在一个示例中,一种用户终端包括:
处理器;
非易失性机器可读存储介质;
存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;
所述程序模块用于:
接收第一迭加信号,并检测所述第一迭加信号中携带的第一传输信号和该第一用户终端的第二传输信号;
当该第二传输信号无法检出时发送否定反馈报告给基站;
接收第二迭加信号,并根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号;
其中,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号。
在一个示例中,一种基站包括:
处理器;
非易失性机器可读存储介质;
存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;以及发射单元;
其中,所述程序模块用于:
生成携带有第一传输信号和第一用户终端的第二传输信号的第一迭加信号;
从所述第一用户终端接收到否定反馈报告后,构造至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号的第二迭加信号;
其中,所述否定反馈报告用于指示该第二传输信号无法检出;
所述发射单元用于:发出所述第一迭加信号和所述第二迭加信号。
在一个示例中,提供了一种程序,用于使计算机执行以下操作:
第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号;
当该第二传输信号无法检出时,该第一用户终端发送否定反馈报告给基站;
所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。
在一个示例中,提供了一种非易失性机器可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一 传输信号和该第一用户终端的第二传输信号;
当该第二传输信号无法检出时,该第一用户终端发送否定反馈报告给基站;
所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。
在一个示例中,提供了一种程序,用于使计算机执行以下操作:
基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号;
从所述第一用户终端接收到否定反馈报告后,所述基站构造第二迭加信号并发出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
其中,所述否定反馈报告用于指示该第二传输信号无法检出。
在一个示例中,提供了一种非易失性机器可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号;
从所述第一用户终端接收到否定反馈报告后,所述基站构造第二迭加信号并发出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
其中,所述否定反馈报告用于指示该第二传输信号无法检出。
在一个示例中,一种用户终端包括:
初始传输检测单元,用于接收第一迭加信号,并检测所述第一迭 加信号中携带的第一传输信号和该第一用户终端的第二传输信号,当该第二传输信号无法检出时发送否定反馈报告给基站;以及
重新传输检测单元,用于接收第二迭加信号,并根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号,
其中,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号。
在一个示例中,一种基站包括:
第一迭加构造单元,用于生成携带有第一传输信号和第一用户终端的第二传输信号的第一迭加信号;
第二迭加构造单元,从所述第一用户终端接收到否定反馈报告后,构造至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号的第二迭加信号,其中,所述否定反馈报告用于指示该第二传输信号无法检出;以及
发射单元,用于发出所述第一迭加信号和所述第二迭加信号。
附图简要说明
图1(a)和图1(b)为本发明实施例中信号传输的系统示意图;
图2为本发明实施例中数据处理方法200的流程示意图;
图3为本发明实施例中信号传输的系统示意图;
图4为本发明实施例中数据处理方法400的流程示意图;
图5为本发明实施例中数据传输方法500的流程示意图;
图6为本发明实施例中数据传输方法600的流程示意图;
图7为本发明实施例中数据传输方法700的流程示意图;
图8为本发明实施例中用户终端800的组成示意图;
图9为本发明实施例中用户终端900的组成示意图;
图10为本发明实施例中基站1000的组成示意图;
图11为本发明实施例中基站1100的组成示意图。
实施本发明的方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。
在出现传输信号的检测错误时,基站将针对该传输信号发起数据重传。在一个示例中,基站可以采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)机制进行数据重传。所述HARQ机制是一种将前向纠错编码(Forward Error Correction,FEC)和自动重传请求(Automatic Repeat reQuest,ARQ)相结合而形成的技术。在一个示例中,接收方在解码失败的情况下,保存接收到的数据,并要求发送方重传数据,接收方将重传的数据和先前接收到的数据进行合并后再解码。
在一个示例中,该HARQ机制可以应用于非正交多址接入技术(Non-Orthogonal Multiple Access,NOMA)中,也可以应用于正交多址接入技术(Orthogonal Multiple Access,OMA)中。其中,所述NOMA在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除实现正确解调。也即,NOMA利用复杂的接收机设计换取更高的频谱效率。
图1(a)和图1(b)示出NOMA HARQ传输的过程。在图1(a)中,基站101发出S1和S2这两个传输信号的迭加信号(以下称为第一迭加信号102),该第一迭加信号中的S1和S2均为初次传输。其中,S1是UE2的传输信号,发射功率为P1。S2是UE1的传输信号, 发射功率为P2。在一个示例中,P1=0.8PBS,P2=0.2PBS,其中PBS是基站的总发射功率。UE2接收到该第一迭加信号102后,由于P1的取值较大,UE2可以从该第一迭加信号102中检出S1。需要指出,在检测S1时UE2是将S2当作干扰处理的。对于UE1而言,由于P2的取值较小,需要先检测S1,通过干扰消除去除S1后再对S2进行检测。由于传输条件的变化(比如信道变化等),UE1可能检不出S1,无法进行干扰消除,相应地会出现S2检测错误。这种情况下,UE1会向基站101发送否定反馈报告(比如NACK反馈报告),表明UE1对于S2的检测结果是错误。在图1(b)中,基站101接收到UE1的NACK反馈报告后,有多种处理方式。在一个示例中,基站101只针对S2重传。这种情况下,由于不存在用户间干扰,串行干扰删除(Successive Interference Cancellation,SIC)接收机针对HARQ传输的特有处理能力无法得到充分发挥。在一个示例中,基站101将其他用户的传输信号和待重传的S2组成一个新的迭加信号(以下称为第二迭加信号103),该第二迭加信号103中的S2是重新传输。比如,其他用户的传输信号是UE3的S3,该S3是初次传输。此时,S3的发射功率是P3,S2的发射功率是P4。UE1接收到该第二迭加信号103后,先将S2当作干扰检出S3,再利用干扰消除技术比如SIC等从该第二迭加信号103中去除S3。之后,将第一迭加信号102和经过SIC处理后的信号进行HARQ合并,从中检出S2。但是,由于初次传输中存在用户间干扰,即使S2通过“第二迭加信号103”重新传输,也很可能恢复不出正确的S2。比如,如果UE1检出S1,则用于调制与编码策略(Modulation and Coding Scheme,MCS)选择的信噪比(Signal Noise Ratio,SNR)为
Figure PCTCN2017077231-appb-000001
但是,如 果UE1无法检出S1,S1也将成为噪声的一部分,这种情况下
Figure PCTCN2017077231-appb-000002
可以看出,用户间干扰会带来较大程度的SNR劣化。如果仅依靠重传来弥补这一状况,将导致很高的重传次数从而降低频谱效率。也即,某个用户终端接收到迭加信号后,如果无法检出该迭加信号中携带的其他用户终端的传输信号,并且该用户终端自身的传输信号也无法检出,那么,即使通过新的迭加信号重新传输该用户终端自身的传输信号,也无法补偿该SNR劣化带来的影响。
图2为本发明实施例中数据处理方法200的流程示意图,该方法200包括以下操作。
在步骤201,第一用户终端接收第一迭加信号。在一个示例中,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号。
在一个示例中,第二传输信号是该第一用户终端的实际信号,而第一传输信号并不是该第一用户终端的实际信号。因此,对于第一用户终端而言,和所述第二传输信号迭加在一起传输给第一用户终端的该第一传输信号可能是一种用户间干扰。在一个示例中,第一传输信号是无线网络中UE2的实际信号,如图1(a)所示。在一个示例中,第一传输信号是发送给该第一用户终端的天线1的信号,第二传输信号是发送给该第一用户终端的天线2的信号。对于检测第二传输信号而言,第一传输信号就对其构成了信号间干扰。
在步骤202,当第一用户终端无法检出该第二传输信号时,所述第一用户终端发送“否定反馈报告”给所述基站。在一个示例中,所述否定反馈报告用于指示第一用户终端对自身实际信号的检测出现 错误。
在步骤203,所述第一用户终端接收第二迭加信号。在一个示例中,所述第二迭加信号至少携带有与所述第一传输信号相关的第一修正信号和该第二传输信号。
在一个示例中,由于步骤202中第一用户终端提供否定反馈报告给基站,通知基站第二传输信号无法检出,基站将发起第二传输信号的重传,构造出所述第二迭加信号发送给所述第一用户终端。需要指出,基站在发出第二迭加信号之前,将通过控制信令知会第一用户终端接收第二传输信号的重传。
在步骤204,所述第一用户终端根据该第一迭加信号和所述第二迭加信号得到所述第二传输信号。在一个示例中,第一用户终端可从第一迭加信号和第二迭加信号的合并结果中提取出第二传输信号。
可以看出,本发明实施例能够提供更好的传输信号检测性能。在一个示例中,初始传输和重新传输是相对第二传输信号而言的,以第二传输信号为参照。也即,初始传输是指第二传输信号的首次传输,重新传输是指第二传输信号的再次传输或者第三次、第四次传输等。
在步骤202的一个实现示例中,第一用户终端分别从第一迭加信号中检测所述第一传输信号和所述第二传输信号。具体地,步骤202包括如下操作:当所述第一传输信号被检出,而所述第二传输信号无法检出时,发送第一反馈报告给所述基站;当所述第一传输信号和所述第二传输信号均无法检出时,发送第二反馈报告给所述基站。其中,第一反馈报告用于指示信号衰落造成的检测错误,第二反馈报告用于指示用户间干扰造成的检测错误。也即,第一用户终端区分信号衰落造成的检测错误和用户间干扰造成的检测错误。表1示出第一用户终 端的信号检测情况。需要指出,表1中的第一反馈报告和第二反馈报告均为否定反馈报告。
第一传输信号(S1) 第二传输信号(S2) 反馈报告
检出 检出 肯定反馈报告(ACK)
未检出 检出 肯定反馈报告(ACK)
检出 未检出 第一反馈报告(NACK)
未检出 未检出 第二反馈报告(NACK-IUI)
表1
图3为本发明实施例中步骤203所述的第二迭加信号的构造示意图。在一个示例中,基站在完成图1(a)所示的初始传输后,如果接收到所述第二反馈报告,会将所述第一传输信号S1取反得到所述第一修正信号(-S1)。然后,基站根据第三传输信号S3、第一修正信号(-S1)和第二传输信号(S2)构造第二迭加信号301发送给第一用户终端(UE1)和其他用户终端(比如UE3)。其中,所述第三传输信号S3为UE3的传输信号,对于UE1而言也是一种用户间干扰。相应地,步骤204包括如下操作。首先,第一用户终端将第一迭加信号和第二迭加信号合并,由于第二迭加信号中包括第一修正信号,合并后可实现S1的干扰自消除。随后,第一用户终端检测S3,并通过SIC处理删除S3。最后,第一用户终端检测S2,得到正确的检测结果。
在一个示例中,基站也可以给第一传输信号S1乘一个旋转因子得到第一修正信号。具体地,步骤201所述的第一迭加信号y1如公式(1)所示,步骤203所述的第二迭加信号y2如公式(2)所示。去除 第三传输信号s3后的修正迭加信号y′2如公式(3)所示。将公式(1)和(3)合并得到公式(4),公式(4)中的H矩阵如公式(5)所示。在下述公式中,h1是初始传输的信道传输函数,n1是初始传输的噪声,h2是重新传输的信道传输函数,n2是重新传输的噪声,θ是旋转因子。P1是第一传输信号s1在初始传输时的发射功率,P2是第二传输信号s2在初始传输时的发射功率。P1'是第一修正信号(本示例中为s1e)在重新传输时的发射功率,P′2是第二传输信号s2在重新传输时的发射功率,P3是第三传输信号s3在重新传输时的发射功率。
Figure PCTCN2017077231-appb-000003
Figure PCTCN2017077231-appb-000004
Figure PCTCN2017077231-appb-000005
Figure PCTCN2017077231-appb-000006
Figure PCTCN2017077231-appb-000007
通常情况下,H矩阵是满秩的,步骤204中可通过迫零(zero forcing,ZF)检测或者最小均方误差(Minimum Mean Squared Error,MMSE)检测获得第一传输信号s1和第二传输信号s2
比如,采用ZF检测时,可以求得H矩阵的逆矩阵H-1。再将H-1作用于公式(4)两端,得到公式(6)和(7)。根据公式(7)进行s1和s2的解调和估计等处理。
Figure PCTCN2017077231-appb-000008
Figure PCTCN2017077231-appb-000009
其中,
Figure PCTCN2017077231-appb-000010
图4为本发明实施例中数据处理方法400的流程示意图,该方法400包括以下操作。
在步骤401,第一用户终端接收携带有第一传输信号和第二传输信号的第一迭加信号,确定出第一传输信号的发射功率。其中,第二传输信号是第一用户终端的实际信号,在第一迭加信号中是初次传输。
在步骤402,第一用户终端在该第一迭加信号中分别检测所述第一传输信号和所述第二传输信号,根据检测结果给出相应的反馈报告。
在一个示例中,如果第一用户终端检出第二传输信号,则不论第一传输信号是否检出,该第一用户终端都会向基站提供肯定反馈报告。如果第一用户终端未检出第二传输信号但是第一传输信号被检出,则第一用户终端向基站反馈第一反馈报告。如果第一用户终端既未检出第二传输信号也未检出第一传输信号,则第一用户终端向基站反馈第二反馈报告。
在步骤403,基站判断接收到的反馈报告的类型。如果为肯定反馈报告则执行步骤404。如果为第一反馈报告则执行步骤405。如果为第二反馈报告则执行步骤406。
在步骤404,基站将下一组用户终端的传输信号迭加后发出,本流程结束。
在一个示例中,下一组用户终端不同于第一迭加信号对应的用户 终端。比如,第一迭加信号对应的用户终端是UE1和UE2,则下一组用户终端可以是UE3和UE4。
在步骤405,基站构造重传迭加信号并发出,本流程结束。
在一个示例中,所述重传迭加信号至少携带有该第二传输信号。比如,重传迭加信号如图1(b)所示,其中S2是重新传输,S3是初始传输。对于S2的重传,基站会通过控制信令通知第一用户终端。需要指出,重传迭加信号不包括第一修正信号。
在步骤406,基站构造第二迭加信号并发出。
在一个示例中,步骤406具体包括:所述基站从所述第一传输信号得到第一修正信号;根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;获取其他用户终端的第三传输信号并设置该第三传输信号的发射功率;根据所述第三传输信号、所述第一修正信号和所述第二传输信号构造出所述第二迭加信号后发送给所述第一用户终端。
在一个示例中,步骤406具体包括:所述基站从所述第一传输信号得到第一修正信号;根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;根据所述第一修正信号和所述第二传输信号构造出所述第二迭加信号后发送给所述第一用户终端。
在一个示例中,可以对第一传输信号取反得到所述第一修正信号,也可以给第一传输信号乘上一个旋转因子得到所述第一修正信号。可以看出,第一修正信号是对第一传输信号的修正,使得第一用户终端将第一迭加信号和第二迭加信号联合处理后,能够消除第一传输信号给第二传输信号的检测带来的干扰。
在步骤407,第一用户终端接收到该第二迭加信号后,确定所述第二迭加信号中所述第一修正信号的发射功率。
在步骤408,第一用户终端根据所述第一传输信号的发射功率和所述第一修正信号的发射功率确定出功率缩放因子,将所述第一迭加信号的总发射功率按照所述功率缩放因子进行缩放。
在一个示例中,第一修正信号的发射功率为P1′,第一传输信号的发射功率为P1,功率缩放因子为α,则
Figure PCTCN2017077231-appb-000011
经过上述处理,功率缩放后的第一迭加信号中的第一传输信号具有和所述第一修正信号相同的功率。
在步骤409,所述第一用户终端将所述第二迭加信号和所述功率缩放后的所述第一迭加信号相加,得到去干扰信号。
在一个示例中,由于功率缩放后的所述第一迭加信号中的第一传输信号S1的功率是P′1,而第二迭加信号中的第一修正信号(在该示例中为-S1)的功率也是P′1,则二者相加后可实现S1的干扰自消除。
在步骤410,所述第一用户终端从所述去干扰信号中得到所述第二传输信号,本流程结束。在一个示例中,步骤410所述的去干扰信号包括第三传输信号S3,则第一用户终端采用SIC处理等方式检出S3(此时先将S2视为干扰),并进一步利用检出的S3来检出S2。
图5为本发明实施例中数据传输方法500的流程示意图,该方法500包括以下操作。
在步骤501,基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号。
在步骤502,从所述第一用户终端接收到否定反馈报告后,所述 基站构造第二迭加信号并发出。在一个示例中,所述否定反馈报告用于指示该第二传输信号无法检出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号。
在一个示例中,基站接收到第一用户终端的否定反馈报告时,将修正迭加信号与其他用户的传输信号组成一个新的迭加信号(以下称为第二迭加信号)进行重传,所述修正迭加信号是第一修正信号和S2的迭加。在一个示例中,该修正迭加信号是(-S1)和S2的迭加信号。在一个示例中,该修正迭加信号是S1乘旋转因子后和S2的迭加信号。假设其他用户的传输信号是UE3的S3。此时,S3的发射功率是P3,修正迭加信号的发射功率是P4。在图3所示的例子中,第一修正信号为-S1,按照比例分配,(-S1)的发射功率为P1′,S2的发射功率为P2′。在一个示例中,为了保证较好的性能,可要求P2′≥P2。在一个示例中,
Figure PCTCN2017077231-appb-000012
也即S1和S2在重新传输中的功率比值和初始传输相比并没有发生改变。需要指出,P1′、P2′、P1、P2在取值上也可独立设置,而不必考虑它们之间的约束关系。
在一个示例中,第一迭加信号y1如公式(8)所示,第二迭加信号y2如公式(9)所示。
Figure PCTCN2017077231-appb-000013
Figure PCTCN2017077231-appb-000014
在公式(8)中,h1是初始传输的信道传输函数,n1是初始传输的噪声,P1是第一传输信号s1在初始传输时的发射功率,P2是第二传输信号s2在初始传输时的发射功率。在公式(9)中,h2是重新传输的信 道传输函数,n2是重新传输的噪声,P′1是第一修正信号(本示例中为-s1)在重新传输时的发射功率,P′2是第二传输信号s2在重新传输时的发射功率,P3是第三传输信号s3在重新传输时的发射功率。
图6为本发明实施例中数据传输方法600的流程示意图,该方法600包括以下操作。
在步骤601,基站接收到否定反馈报告后,将所述第一传输信号取反得到第一修正信号。
在步骤602,基站根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率。
在步骤603,基站根据所述第一修正信号和所述第二传输信号构造出所述第二迭加信号后发送给第一用户终端。
图7为本发明实施例中数据传输方法700的流程示意图,该方法700包括以下操作。
在步骤701,基站接收到否定反馈报告后,将第一传输信号取反得到第一修正信号。
在步骤702,基站根据所述第一传输信号和第二传输信号在第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率。
在步骤703,基站获取其他用户终端的第三传输信号并设置该第三传输信号的发射功率。
在步骤704,基站根据所述第三传输信号、所述第一修正信号和所述第二传输信号构造出第二迭加信号后,发送给所述第一用户终 端。
在上述图2-7的实施例中,迭加信号内包含的是针对不同用户终端的传输信号。需要指出,上述实施例同样适用于迭加信号内包含针对不同接收天线的传输信号的情况。比如,第一传输信号是第一用户终端的天线1的信号,第二传输信号是第一用户终端的天线2的信号,也可以采用图2-7所述的方法进行数据处理和传输。
此外,本申请还公开了用于使计算机执行图2-7所示方法的程序以及存储该程序的非易失性机器可读存储介质。
图8为本发明实施例中用户终端800的组成示意图。在一个示例中,该用户终端800包括:处理器801、非易失性机器可读存储介质802。在一个示例中,该用户终端800包括:存储在该非易失性机器可读存储介质802中、由该处理器801执行的程序模块803。
所述程序模块803用于:接收第一迭加信号,并检测所述第一迭加信号中携带的第一传输信号和该第一用户终端的第二传输信号;当该第二传输信号无法检出时发送否定反馈报告给基站;接收第二迭加信号,并根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。其中,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号。在一个示例中,所述第一传输信号不是该第一用户终端的实际信号。在一个示例中,第二传输信号是发送给该第一用户终端的其中一根天线的信号,而第一传输信号是发送给该第一用户终端的另一根天线的信号。需要指出,该用户终端800的操作可参考图2-4的流程。
图9为本发明实施例中用户终端900的组成示意图。在一个示例 中,该用户终端900包括:处理器801、非易失性机器可读存储介质802。在一个示例中,该用户终端900包括:存储在该非易失性机器可读存储介质802中、由该处理器801执行的程序模块803,用于实现图8所述的功能。
在一个示例中,该程序模块803包括:
初始传输检测单元913,用于检测该第一迭加信号中的第二传输信号,并根据检测结果给出相应的反馈报告。
自干扰消除单元923,用于确定所述第二迭加信号中所述第一修正信号的发射功率,根据第一传输信号的发射功率和所述第一修正信号的发射功率确定功率缩放比,按照该功率缩放比对所述第一迭加信号的总发射功率进行缩放;将所述第二迭加信号和所述功率缩放后的所述第一迭加信号相加,得到去干扰信号;从所述去干扰信号中检出所述第二传输信号。
图10为本发明实施例中基站1000的组成示意图。在一个示例中,该基站1000包括:处理器1001、非易失性机器可读存储介质1002,以及发射单元1004。在一个示例中,该基站1000包括:存储在该非易失性机器可读存储介质1002中、由该处理器1001执行的程序模块1003。
其中,所述程序模块1003用于:生成携带有第一传输信号和第一用户终端的第二传输信号的第一迭加信号;从所述第一用户终端接收到否定反馈报告后,构造至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号的第二迭加信号;其中,所述否定反馈报告用于指示该第二传输信号无法检出。
在一个示例中,所述发射单元1004用于:发出所述第一迭加信 号和所述第二迭加信号。需要指出,该基站1000的操作可参考图5-7的流程。
图11为本发明实施例中基站1100的组成示意图。在一个示例中,该基站1100中的程序模块1003包括:修正信号生成单元1113、发射功率设置单元1123、修正迭加构造单元1133。
在一个示例中,所述修正信号生成单元1113对所述第一传输信号进行修正得到第一修正信号。所述发射功率设置单元1123根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率。所述修正迭加构造单元1133根据所述第一修正信号和所述第二传输信号构造出所述第二迭加信号。
在一个示例中,所述发射功率设置单元1123进一步获取其他用户终端的第三传输信号并设置该第三传输信号的发射功率。所述修正迭加构造单元1133根据所述第三传输信号、所述第一修正信号和所述第二传输信号构造出所述第二迭加信号。
在一个示例中,所述程序模块1003进一步包括:反馈报告处理单元1143。所述反馈报告处理单元1143判断接收到的否定反馈报告的类型,如果是第一反馈报告则触发重传迭加构造单元1153,如果是第二反馈报告则触发所述修正迭加构造单元1133。
所述重传迭加构造单元1153用于构造重传迭加信号,所述重传迭加信号至少携带有该第二传输信号。所述修正迭加构造单元1133用于构造该第二迭加信号。
需要指出,所述第一反馈报告用于指示:所述第一传输信号被所述第一用户终端检出,但是所述第二传输信号无法被所述第一用户终 端检出。所述第二反馈报告用于指示:所述第一传输信号和所述第二传输信号均无法被所述第一用户终端检出。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (30)

  1. 一种数据处理方法,其特征在于,包括:
    第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号;
    当该第二传输信号无法检出时,该第一用户终端发送否定反馈报告给基站;
    所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
    该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。
  2. 根据权利要求1所述的方法,其特征在于,所述当该第二传输信号无法检出时发送否定反馈报告给基站包括:
    当所述第一传输信号被检出,而所述第二传输信号无法检出时,发送第一反馈报告给所述基站;
    当所述第一传输信号和所述第二传输信号均无法检出时,发送第二反馈报告给所述基站。
  3. 根据权利要求2所述的方法,其特征在于,进一步包括:
    所述基站接收到所述第二反馈报告后,对该第一传输信号进行修正,得到所述第一修正信号;
    根据第三传输信号、所述第一修正信号和所述第二传输信号构造所述第二迭加信号发送给所述第一用户终端;
    其中,所述第三传输信号为其他用户终端的传输信号。
  4. 根据权利要求3所述的方法,其特征在于,所述根据第三传输信号、所述第一修正信号和所述第二传输信号构造所述第二迭加信号包括:
    设置所述第三传输信号的发射功率;
    根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率。
  5. 根据权利要求3所述的方法,其特征在于,所述根据该第一迭加信号和所述第二迭加信号得到所述第二传输信号包括:
    确定所述第一迭加信号中所述第一传输信号的发射功率;
    确定所述第二迭加信号中所述第一修正信号的发射功率;
    根据所述第一修正信号的发射功率和所述第一传输信号的发射功率得到功率缩放因子;
    按照该功率缩放因子对所述第一迭加信号的总发射功率进行缩放;
    将所述第二迭加信号和所述功率缩放后的所述第一迭加信号相加,得到去干扰信号;
    从所述去干扰信号中得到所述第二传输信号。
  6. 根据权利要求3所述的方法,其特征在于,所述对该第一传输信号进行修正,得到所述第一修正信号包括:
    对该第一传输信号取反得到所述第一修正信号,或者为该第一传输信号乘上旋转因子得到所述第一修正信号。
  7. 根据权利要求1所述的方法,其特征在于,进一步包括:
    所述基站接收到所述否定反馈报告后,判断该否定反馈报告的类型;
    如果是第一反馈报告则构造重传迭加信号并发出,所述重传迭加信号至少携带有该第二传输信号,所述第一反馈报告用于指示:所述第一传输信号被所述第一用户终端检出,但是所述第二传输信号无法被所述第一用户终端检出;
    如果是第二反馈报告则构造该第二迭加信号并发出,所述第二反馈报告用于指示:所述第一传输信号和所述第二传输信号均无法被所述第一用户终端检出。
  8. 一种数据传输方法,其特征在于,包括:
    基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号;
    从所述第一用户终端接收到否定反馈报告后,所述基站构造第二迭加信号并发出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
    其中,所述否定反馈报告用于指示该第二传输信号无法检出。
  9. 根据权利要求8所述的方法,其特征在于,所述基站构造该第二迭加信号并发出包括:
    所述基站对所述第一传输信号进行修正得到第一修正信号;
    根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;
    根据所述第一修正信号和所述第二传输信号构造出所述第二迭加信号后发送给所述第一用户终端。
  10. 根据权利要求8所述的方法,其特征在于,所述基站构造该第二迭加信号并发出包括:
    所述基站对所述第一传输信号进行修正得到第一修正信号;
    根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;
    获取其他用户终端的第三传输信号并设置该第三传输信号的发射功率;
    根据所述第三传输信号、所述第一修正信号和所述第二传输信号 构造出所述第二迭加信号后发送给所述第一用户终端。
  11. 根据权利要求9或10所述的方法,其特征在于,所述基站对所述第一传输信号进行修正得到第一修正信号包括:
    所述基站对该第一传输信号取反得到所述第一修正信号,或者为该第一传输信号乘上旋转因子得到所述第一修正信号。
  12. 根据权利要求8所述的方法,其特征在于,进一步包括:
    所述基站接收到所述否定反馈报告后,判断该否定反馈报告的类型;
    如果是第一反馈报告则构造重传迭加信号并发出,所述重传迭加信号至少携带有该第二传输信号,所述第一反馈报告用于指示:所述第一传输信号被所述第一用户终端检出,但是所述第二传输信号无法被所述第一用户终端检出;
    如果是第二反馈报告则构造该第二迭加信号并发出,所述第二反馈报告用于指示:所述第一传输信号和所述第二传输信号均无法被所述第一用户终端检出。
  13. 一种用户终端,其特征在于,包括:
    处理器;
    非易失性机器可读存储介质;
    存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;
    所述程序模块用于:
    接收第一迭加信号,并检测所述第一迭加信号中携带的第一传输信号和该第一用户终端的第二传输信号;
    当该第二传输信号无法检出时发送否定反馈报告给基站;
    接收第二迭加信号,并根据所述第一迭加信号和所述第二迭加信 号得到所述第二传输信号;
    其中,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号。
  14. 根据权利要求13所述的用户终端,其特征在于,所述程序模块用于:
    当所述第一传输信号被检出,而所述第二传输信号无法检出时,发送第一反馈报告给所述基站;
    当所述第一传输信号和所述第二传输信号均无法检出时,发送第二反馈报告给所述基站。
  15. 根据权利要求13所述的用户终端,其特征在于,所述程序模块用于:
    确定所述第一迭加信号中所述第一传输信号的发射功率;
    确定所述第二迭加信号中所述第一修正信号的发射功率;
    根据所述第一修正信号的发射功率和所述第一传输信号的发射功率得到功率缩放因子;
    按照该功率缩放因子对所述第一迭加信号的总发射功率进行缩放;
    将所述第二迭加信号和所述功率缩放后的所述第一迭加信号相加,得到去干扰信号;
    从所述去干扰信号中检出所述第二传输信号。
  16. 一种基站,其特征在于,包括:
    处理器;
    非易失性机器可读存储介质;
    存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;以及发射单元;
    其中,所述程序模块用于:
    生成携带有第一传输信号和第一用户终端的第二传输信号的第一迭加信号;
    从所述第一用户终端接收到否定反馈报告后,构造至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号的第二迭加信号;
    其中,所述否定反馈报告用于指示该第二传输信号无法检出;
    所述发射单元用于:发出所述第一迭加信号和所述第二迭加信号。
  17. 根据权利要求16所述的基站,其特征在于,所述程序模块用于:
    对所述第一传输信号进行修正得到第一修正信号;
    根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;
    根据所述第一修正信号和所述第二传输信号构造出所述第二迭加信号。
  18. 根据权利要求16所述的基站,其特征在于,所述程序模块用于:
    对所述第一传输信号进行修正得到第一修正信号;
    根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;
    获取其他用户终端的第三传输信号并设置该第三传输信号的发射功率;
    根据所述第三传输信号、所述第一修正信号和所述第二传输信号构造出所述第二迭加信号。
  19. 根据权利要求16所述的基站,其特征在于,所述程序模块进一步用于:
    接收到所述否定反馈报告后,判断该否定反馈报告的类型;
    如果是第一反馈报告则构造重传迭加信号,所述重传迭加信号至少携带有该第二传输信号,所述第一反馈报告用于指示:所述第一传输信号被所述第一用户终端检出,但是所述第二传输信号无法被所述第一用户终端检出;
    如果是第二反馈报告则构造该第二迭加信号,所述第二反馈报告用于指示:所述第一传输信号和所述第二传输信号均无法被所述第一用户终端检出。
  20. 一种程序,其特征在于,用于使计算机执行以下操作:
    第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号;
    当该第二传输信号无法检出时,该第一用户终端发送否定反馈报告给基站;
    所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
    该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。
  21. 一种非易失性机器可读存储介质,其特征在于,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
    第一用户终端接收第一迭加信号,所述第一迭加信号携带有第一传输信号和该第一用户终端的第二传输信号;
    当该第二传输信号无法检出时,该第一用户终端发送否定反馈报 告给基站;
    所述第一用户终端接收第二迭加信号,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
    该第一用户终端根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号。
  22. 一种程序,其特征在于,用于使计算机执行以下操作:
    基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号;
    从所述第一用户终端接收到否定反馈报告后,所述基站构造第二迭加信号并发出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
    其中,所述否定反馈报告用于指示该第二传输信号无法检出。
  23. 一种非易失性机器可读存储介质,其特征在于,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
    基站生成第一迭加信号发出,所述第一迭加信号携带有第一传输信号和第一用户终端的第二传输信号;
    从所述第一用户终端接收到否定反馈报告后,所述基站构造第二迭加信号并发出,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号;
    其中,所述否定反馈报告用于指示该第二传输信号无法检出。
  24. 一种用户终端,其特征在于,包括:
    初始传输检测单元,用于接收第一迭加信号,并检测所述第一迭加信号中携带的第一传输信号和该第一用户终端的第二传输信号,当该第二传输信号无法检出时发送否定反馈报告给基站;以及
    重新传输检测单元,用于接收第二迭加信号,并根据所述第一迭加信号和所述第二迭加信号得到所述第二传输信号,
    其中,所述第二迭加信号至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号。
  25. 根据权利要求24所述的用户终端,其特征在于,所述初始传输检测单元进一步用于:
    当所述第一传输信号被检出,而所述第二传输信号无法检出时,发送第一反馈报告给所述基站;
    当所述第一传输信号和所述第二传输信号均无法检出时,发送第二反馈报告给所述基站。
  26. 根据权利要求24所述的用户终端,其特征在于,所述重新传输检测单元进一步用于:
    确定所述第一迭加信号中所述第一传输信号的发射功率;
    确定所述第二迭加信号中所述第一修正信号的发射功率;
    根据所述第一修正信号的发射功率和所述第一传输信号的发射功率得到功率缩放因子;
    按照该功率缩放因子对所述第一迭加信号的总发射功率进行缩放;
    将所述第二迭加信号和所述功率缩放后的所述第一迭加信号相加,得到去干扰信号;
    从所述去干扰信号中检出所述第二传输信号。
  27. 一种基站,其特征在于,包括:
    第一迭加构造单元,用于生成携带有第一传输信号和第一用户终端的第二传输信号的第一迭加信号;
    第二迭加构造单元,从所述第一用户终端接收到否定反馈报告 后,构造至少携带有该第二传输信号和与所述第一传输信号相关的第一修正信号的第二迭加信号,其中,所述否定反馈报告用于指示该第二传输信号无法检出;以及
    发射单元,用于发出所述第一迭加信号和所述第二迭加信号。
  28. 根据权利要求27所述的基站,其特征在于,所述第二迭加构造单元包括:
    修正信号生成单元,用于对所述第一传输信号进行修正得到第一修正信号;
    发射功率设置单元,用于根据所述第一传输信号和所述第二传输信号在所述第一迭加信号中的功率设置所述第一修正信号和所述第二传输信号的发射功率;以及
    修正迭加构造单元,用于根据所述第一修正信号和所述第二传输信号构造出所述第二迭加信号。
  29. 根据权利要求28所述的基站,其特征在于,
    所述发射功率设置单元进一步用于获取其他用户终端的第三传输信号并设置该第三传输信号的发射功率;
    所述修正迭加构造单元进一步用于根据所述第三传输信号、所述第一修正信号和所述第二传输信号构造出所述第二迭加信号。
  30. 根据权利要求28或29所述的基站,其特征在于,进一步包括:
    反馈报告处理单元,用于在接收到所述否定反馈报告后,判断该否定反馈报告的类型,如果是第一反馈报告则触发重传迭加构造单元如果是第二反馈报告则触发所述修正迭加构造单元;以及
    重传迭加构造单元,用于构造重传迭加信号,所述重传迭加信号至少携带有该第二传输信号,
    所述第一反馈报告用于指示:所述第一传输信号被所述第一用户终端检出,但是所述第二传输信号无法被所述第一用户终端检出;
    所述第二反馈报告用于指示:所述第一传输信号和所述第二传输信号均无法被所述第一用户终端检出。
PCT/CN2017/077231 2016-03-29 2017-03-20 数据处理和传输方法、以及用户终端和基站 WO2017167038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018547934A JP2019514247A (ja) 2016-03-29 2017-03-20 データ処理および伝送方法、並びに、ユーザ端末および基地局
CN201780011258.3A CN108702263A (zh) 2016-03-29 2017-03-20 数据处理和传输方法、以及用户终端和基站

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610187270.7 2016-03-29
CN201610187270.7A CN107241170A (zh) 2016-03-29 2016-03-29 数据处理和传输方法、以及用户终端和基站

Publications (1)

Publication Number Publication Date
WO2017167038A1 true WO2017167038A1 (zh) 2017-10-05

Family

ID=59963444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077231 WO2017167038A1 (zh) 2016-03-29 2017-03-20 数据处理和传输方法、以及用户终端和基站

Country Status (3)

Country Link
JP (1) JP2019514247A (zh)
CN (2) CN107241170A (zh)
WO (1) WO2017167038A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534181A (zh) * 2008-01-18 2009-09-16 英特尔公司 通过监听缓解干扰
CN102007793A (zh) * 2008-04-18 2011-04-06 夏普株式会社 无线通信系统、基站设备和中继站设备
CN103023628A (zh) * 2012-12-21 2013-04-03 北京邮电大学 基于网络编码的中继协作harq方法
CN106470094A (zh) * 2015-08-14 2017-03-01 索尼公司 无线通信系统中的装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365560B2 (ja) * 2010-03-17 2013-12-11 富士通株式会社 通信システム、通信局、通信端末及び通信方法
JP5883403B2 (ja) * 2013-01-31 2016-03-15 株式会社Nttドコモ ユーザ端末、無線基地局、及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534181A (zh) * 2008-01-18 2009-09-16 英特尔公司 通过监听缓解干扰
CN102007793A (zh) * 2008-04-18 2011-04-06 夏普株式会社 无线通信系统、基站设备和中继站设备
CN103023628A (zh) * 2012-12-21 2013-04-03 北京邮电大学 基于网络编码的中继协作harq方法
CN106470094A (zh) * 2015-08-14 2017-03-01 索尼公司 无线通信系统中的装置和方法

Also Published As

Publication number Publication date
JP2019514247A (ja) 2019-05-30
CN107241170A (zh) 2017-10-10
CN108702263A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN110149173B (zh) 一种半持续调度传输方法、网络侧设备及用户终端
US9923697B2 (en) Packet data transmitting method and mobile communication system using the same
JP5710795B2 (ja) 無線通信システムでのack情報のバンドリング
WO2020206616A1 (zh) 直连通信的重传反馈方法、装置及存储介质
US9548838B2 (en) Hybrid automatic repeat request in communications
CN103873211B (zh) 一种harq重传和盲检测方法
US9344123B2 (en) Systems and methods for historical signal interference cancellation (SIC)
WO2020223846A1 (en) Sidelink data packet acknowledgment
JP5450809B2 (ja) 否定応答誤解釈時の自動再送要求伝送及び条件付き干渉除去を使用した無線通信システムにおける改良された信号受信
WO2019029719A1 (zh) 数据的确认信息生成和反馈、数据的确认信息的接收方法和装置
WO2016070561A1 (zh) 数据传输处理方法及装置
WO2015106625A1 (zh) 一种混合自动重传请求方法及相关装置
WO2021047657A1 (zh) 重传数据的方法和通信装置
WO2009020336A1 (en) Method and system for retransmitting data in a communication system
EP3244562A1 (en) User equipment, network device, and transmission method for acknowledgement information
CN108781135B (zh) 物联网的传输优化方法、装置和设备
CN109314590A (zh) 上行传输的方法和装置
US11212044B2 (en) Delay and complexify constrained transmission in uplink non-orthogonal multiple access (NOMA) hybrid automatic repeat request (HARQ)
CN102064924A (zh) 一种上行数据重传时的中继方法及移动通信系统
WO2017167038A1 (zh) 数据处理和传输方法、以及用户终端和基站
US10693614B2 (en) Data transmission method, terminal device, and network device
CN109451572B (zh) 基于arq协议的非正交多址接入网络安全传输方法
CN106301701B (zh) 在must系统中用于完善harq进程的方法和装置
WO2019029213A1 (zh) 传输参数获取、数据传输方法和装置
CN104144043A (zh) 一种混合自动重传请求合并的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773068

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773068

Country of ref document: EP

Kind code of ref document: A1