WO2017166919A1 - 一种探测参考信号资源分配方法及装置 - Google Patents

一种探测参考信号资源分配方法及装置 Download PDF

Info

Publication number
WO2017166919A1
WO2017166919A1 PCT/CN2017/072499 CN2017072499W WO2017166919A1 WO 2017166919 A1 WO2017166919 A1 WO 2017166919A1 CN 2017072499 W CN2017072499 W CN 2017072499W WO 2017166919 A1 WO2017166919 A1 WO 2017166919A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antennas
interference
ues
antenna
Prior art date
Application number
PCT/CN2017/072499
Other languages
English (en)
French (fr)
Inventor
李小伟
金磊
彭晶波
阙程晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017166919A1 publication Critical patent/WO2017166919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a sounding reference signal (SRS) resource allocation method and apparatus.
  • SRS sounding reference signal
  • the user equipment can periodically send a sounding reference signal, that is, an SRS, to the base station according to the bandwidth allocated by the base station on the last data symbol of one subframe.
  • the base station performs demodulation and channel condition estimation based on the sounding reference signal, thereby obtaining an uplink channel condition.
  • the base station In order to enable the UE to transmit the uplink SRS on the specified physical resource, the base station must allocate a specific physical resource, that is, an SRS resource, for each UE, and the total amount of the SRS resources is constant, and each UE usually uses code division multiplexing. Frequency division multiplexing or time division multiplexing takes up a certain SRS resource to transmit SRS.
  • the total number of SRS resources can only satisfy a certain number of UEs to obtain SRS resources. Then, when the number of UEs is too large, the total amount of SRS resources can be increased or the SRS transmission period can be extended to ensure the allocation of each UE. Send SRS to the SRS resource. However, increasing the total amount of SRS resources not only needs to modify the existing protocol content, but also occupies the available resources of data transmission, thereby reducing the data transmission speed; while extending the SRS transmission period, the UE cannot be timely. The SRS is reported, thereby affecting the performance of the base station for evaluating the channel condition.
  • An embodiment of the present invention provides an SRS resource allocation method and apparatus. Under the framework of an existing protocol, each UE can be allocated to an SRS resource without increasing the total SRS resource, and the SRS transmission period is not extended.
  • an embodiment of the present invention provides an SRS resource allocation method, including: for each UE of the N UEs, that is, the base station provides services for the N UEs in the cell, and measures the M of the UE and the base station.
  • the channel state between the root antennas obtains a set of channel information until the base station obtains N sets of channel information, N>1, M>1; the base station determines, according to the N sets of channel information, the first UE and the N UEs to be allocated resources.
  • the interference degree between the N-1 UEs except the first UE is obtained, and the N-1 interference degree is obtained.
  • the base station allocates the SRS resource occupied by the second UE to the first UE according to the N-1 interference degrees.
  • the second UE is any one of the UEs whose interference degree between the N-1 UEs and the first UE is less than the interference degree threshold.
  • the base station may measure the M roots of the UE and the base station respectively.
  • the channel state between the antennas obtains a set of channel information, so that the base station can obtain N sets of channel information corresponding to the N UEs respectively, and further, the base station can determine the first UE to be allocated resources and the rest according to the N sets of channel information.
  • the degree of interference between the N-1 UEs is obtained by N-1 interference degrees; and the base station bases the second UE with the interference degree less than the interference degree threshold with the first UE according to the N-1 interference degrees.
  • the occupied SRS resources are allocated to the first UE.
  • the interference degree between the first UE and the second UE is less than the interference degree. Threshold, therefore, the base station does not generate strong interference to each other when the SRS is allocated to the first UE and the second UE by the same SRS resource, so that the first UE is allocated to the SRS resource without increasing the total amount of SRS resources. And does not extend the SRS transmission period. For any UE that needs to allocate SRS resources among the N UEs in the cell, all the UEs may be allocated SRS resources by using the foregoing method, and the SRS transmission period is not extended.
  • the method further includes: the base station acquiring the SRS resource occupancy rate in the cell; wherein the base station is configured according to Allocating the SRS resources occupied by the second UE to the first UE, the base station includes: if the SRS resource occupancy rate is greater than the first threshold, the base station sends the second UE according to the N-1 interference degrees The occupied SRS resources are allocated to the first UE.
  • the SRS resource when the SRS resource occupancy rate is greater than the first threshold, the SRS resource may be allocated to the first UE by using the foregoing method, and when the SRS resource occupancy rate is less than or equal to the first threshold, the current SRS resource is not When the network is very tight, the base station can directly allocate the unoccupied SRS resources to the first UE to be allocated resources.
  • the base station determines the interference degree between the N-1 UEs of the first UE and the N UEs other than the first UE according to the N sets of channel information, and obtains N-1 interference degrees, including: For the first UE to be allocated resources, the base station calculates the interference degree between the first UE and each of the N-1 UEs according to the first interference degree formula, and obtains N-1 interference degrees.
  • the inter-channel response vector, H2 is the channel response vector between any of the N-1 UEs and the M antennas.
  • a first degree of interference (
  • the RSRP vector, R2 is the RSRP vector between any of the N-1 UEs and the M antennas.
  • the channel information includes an RSRP vector
  • the base station determines, according to the N sets of channel information, the interference degree between the first UE and the N UEs other than the first UE among the N UEs, and obtains N -1 interference level, comprising: for each of the N UEs, the base station determines the working antenna set of the UE according to the RSRP vector between the UE and the M antennas, until the base station obtains N working antenna sets, where The working antenna set includes K antennas, and K antennas are any subset of M antennas, M ⁇ K ⁇ 1; the base station determines, according to the N working antenna sets, the first UE and the N-1 UEs respectively.
  • the degree of interference gives N-1 interference levels.
  • the base station determines the interference degree between the first UE and the N-1 UEs according to the N working antenna sets, and obtains N-1 interference degrees, including: the base station according to the second interference
  • the degree formula calculates the interference degree between the first UE and each of the N-1 UEs, and obtains N-1 interference degrees.
  • the first working antenna set is a working antenna set of the first UE, and the second working antenna set is a working antenna set of any one of N-1 UEs.
  • the base station determines the interference degree between the first UE and the N-1 UEs according to the N working antenna sets, and obtains N-1 interference degrees, including: for each of the N UEs. UEs, the base station determines a modified channel response vector between the UE and the M antennas according to the working antenna set of the UE, until the base station obtains N sets of modified channel response vectors; and the base station determines the first UE according to the N sets of modified channel response vectors. With the degree of interference between N-1 UEs, N-1 interference degrees are obtained.
  • the base station determines a modified channel response vector between the UE and the M antenna according to the working antenna set of the UE, where the base station includes the UE and the MK root.
  • the channel response between the antennas is set to 0 to obtain a modified channel response vector between the UE and the M antennas, and the MK antennas are all antennas of the M antennas except the K antennas in the working antenna set of the UE;
  • the base station determines a modified channel response vector between the UE and the M antenna according to the working antenna set of the UE, where the base station measures the K in the working antenna set of the UE and the UE.
  • the channel response between the root antennas and the channel response between the UE and the MK antenna are set to 0, and a modified channel response vector between the UE and the M antennas is obtained.
  • the working antenna set of the UE is a first working antenna set; wherein the base station determines the working antenna set of the UE according to the RSRP vector between the UE and the M antenna, including: In order of large to small, the M RSRPs in the RSRP vector between the UE and the M antennas are sorted; the base station will sort the K antennas corresponding to the preceding K RSRPs as the first working antenna set.
  • the working antenna set of the UE is a second working antenna set; wherein the base station determines the working antenna set of the UE according to the RSRP vector between the UE and the M antenna, including: the base station according to the The RSRP vector between the UE and the M antennas is used to calculate the isolation between the UE and the M antennas.
  • the isolation ratio is the sum of the RSRP between the UE and the K antennas / between the UE and the remaining M-K antennas. The sum of the RSRPs; if the isolation is greater than a preset first threshold, the base station uses the K antennas as the second working antenna set.
  • the working antenna set of the UE is a third working antenna set; wherein the base station determines the working antenna set of the UE according to the RSRP vector between the UE and the M antenna, including: the base station from the M One of the root antennas is determined as a target antenna of the UE; the base station calculates an RSRP between the UE and the target antenna, and a difference between the UE and the candidate antenna, and the candidate antenna is M-1 except the target antenna. Any one of the root antennas; if the difference is less than a preset second threshold, the base station uses the candidate antenna as one of the third working antenna sets until the third working antenna set is obtained.
  • the base station determines one of the M antennas as the target antenna of the UE,
  • the method includes: the base station selects, as the target antenna, an antenna corresponding to the largest RSRP in the RSRP vector between the UE and the M antennas.
  • the base station determines the interference degree between the first UE and the N-1 UEs other than the first UE among the N UEs according to the N sets of channel information, and obtains N-1 interference degrees.
  • the method further includes: for each of the N UEs, the base station measures the SINR between the UE and the M antennas to obtain the SINR vector of the UE; at this time, the base station determines one of the M antennas as the UE.
  • the target antenna includes: the base station selects an antenna corresponding to the largest SINR in the SINR vector of the UE as the target antenna.
  • the working antenna set of the UE is a fourth working antenna set, wherein the fourth working antenna set is any two of the foregoing first working antenna set, the second working antenna set, and the third working antenna set.
  • the base station can determine the working antenna set of each of the N UEs, that is, each subsequent UE can perform interaction with the antenna in the working antenna set when interacting with the base station.
  • the SRS is transmitted to implement space division multiplexing of SRS resources in the same code, the same frequency, and at the same time.
  • the method further includes: if the SRS resource occupancy rate is greater than a preset first occupancy rate threshold The base station adjusts the first threshold to the second threshold, and the second threshold is smaller than the first threshold. If the SRS resource usage is less than the preset second occupancy threshold, the base station adjusts the first threshold to the third threshold. The third threshold is greater than the first threshold, and the second occupancy threshold is less than the first occupancy threshold.
  • the SRS resource when the SRS resource is allocated to the UE, the SRS resource of the UE with less interference is allocated to the UE only when the SRS resource occupancy rate is greater than the third threshold with a large value. Otherwise, the UE can directly be the UE. Allocating unoccupied SRS resources ensures that the SRS resources used by the UE to send SRS are more reliable.
  • an embodiment of the present invention provides a base station, including: a measuring unit, configured to measure a channel state between the UE and a base station M antenna for each of the N UEs, to obtain a set of channels.
  • Information until the base station obtains N sets of channel information, the base station provides services for N UEs in the cell, N>1, M>1;
  • the determining unit is configured to determine, according to the N sets of channel information, the first UE to be allocated resources and The interference degree between the N-1 UEs of the N UEs other than the first UE, obtains N-1 interference degrees, and the allocation unit is configured to detect the second UE occupancy according to the N-1 interference degrees.
  • the reference signal SRS resource is allocated to the first UE, and the second UE is any one of the N-1 UEs that have an interference degree with the first UE that is less than the interference degree threshold.
  • an embodiment of the present invention provides a base station, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute an instruction, and the processor and the memory are connected through a bus, and when the base station is running, the processor executes The memory-stored computer executes instructions to cause the base station to perform the sounding reference signal SRS resource allocation method of any of the first aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects for a base station.
  • the name of the base station does not limit the device itself. In actual implementation, these devices are The device can appear under other names. As long as the functions of the respective devices are similar to the present invention, they are within the scope of the claims and the equivalents thereof.
  • 1 is a schematic diagram of SRS resources divided according to codebook, time, and frequency in the prior art
  • FIG. 2 is a schematic diagram of an application scenario of an SRS resource allocation method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an internal base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an internal BBU of a base station according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart 1 of a method for allocating an SRS resource according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart 2 of a method for allocating an SRS resource according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart 3 of a method for allocating an SRS resource according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram 1 of a base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 2 of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 3 of a base station according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, "a plurality” means two or more unless otherwise stated.
  • the current SRS resource allocation methods such as code division multiplexing, frequency division multiplexing, or time division multiplexing cannot meet the increasing number of UE-to-SRS. Resource needs.
  • the entire SRS resource may be divided into several SRS resource blocks, when these
  • the SRS resource blocks are all occupied by different UEs
  • the base station may extend the SRS transmission period of each UE, that is, the UE sends the UE.
  • the SRS resource block is released by the SRS, and the SRS resource block is allocated to the newly added UE by the base station, which undoubtedly increases the transmission period of the SRS sent by each UE in the cell, so that the UE 12 cannot report its SRS in time. Affecting the performance of the base station 11 for evaluating the channel condition.
  • the size of the entire SRS resource may be increased by modifying the protocol.
  • the entire SRS resource is increased, the available resources when transmitting data are occupied, thereby reducing the data transmission speed.
  • the embodiment of the present invention provides an SRS resource allocation method, which can ensure that SRS resources are allocated to each UE when the SRS resources are certain, and the SRS is not extended. Send cycle.
  • the SRS resource allocation method provided by the embodiment of the present invention can be applied to a communication system such as MIMO (Multiple-Input Multiple-Output).
  • MIMO Multiple-Input Multiple-Output
  • the base station 11 is a N (N in a cell). >1) UE 12 provides service, wherein the base station 11 is provided with M (M>1) antennas in the cell, and the base station 11 can communicate with any UE 12 through one or more of the M antennas.
  • MIMO Multiple-Input Multiple-Output
  • the M antennas may be centrally distributed in the cell, or may be distributed in the cell.
  • the present invention does not limit this.
  • FIG. 3 is a schematic structural diagram of the internal structure of the base station 11 according to the embodiment of the present invention.
  • the base station 11 may specifically include a BBU (Building).
  • BBU Building
  • Baseband Unit baseband processing module
  • RRU Remote Radio Unit
  • antenna feed subsystem 23 and support structure 24, wherein the BBU 21 and the RRU 22 can pass the CPRI (Common Public Radio Interface) , the general public radio interface) is connected; alternatively, the RRU 22 can also be connected to the BBU 21 through the optical fiber.
  • CPRI Common Public Radio Interface
  • the BBU 21 is configured to implement operation and maintenance of the entire base station 11, implement signaling processing, radio resource management, and implement an LTE (Long Term Evolution) physical layer, a MAC (Media Access Control) layer, and an L3. Main control functions such as signaling, operation and maintenance.
  • LTE Long Term Evolution
  • MAC Media Access Control
  • the RRU 22 is configured to implement conversion between a baseband signal, an intermediate frequency signal, and a radio frequency signal, to implement demodulation of an LTE wireless received signal, and modulation and power amplification of the transmitted signal.
  • the antenna feeder subsystem 23 may specifically include an antenna and a feeder connected to the radio remote module 22 of the base station 11, and an antenna and a feeder of a GPS (Global Positioning System) receiving card, which can be used to receive the wireless air interface signal and send.
  • GPS Global Positioning System
  • the support structure 24, which is the support portion of the BBU 21 and the RRU 22, can be used to provide structural, power, and environmental monitoring functions.
  • the number of the BBUs 21 and the RRUs 22 in the base station 11 and the connection relationship are not limited in the embodiment of the present invention.
  • the base station 11 may A plurality of BBUs 21 are included, each BBU 21 is connected to one RRU 22, and each BBU 21 can also be interconnected based on a certain interface; or, the base station 11 can include multiple RRUs 22, each of which is identical A BBU 21 is connected.
  • the internal architecture of the base station 11 can be set according to the actual application scenario, which is not limited by the embodiment of the present invention.
  • the SRS resource allocation method provided by the embodiment of the invention may be specifically performed by the BBU 21 in the base station 11.
  • the base station 11 can obtain the SRS resource occupancy rate in the current cell, that is, the ratio of the occupied SRS resources to the total SRS resources; and, when the SRS resource occupancy rate is greater than the first threshold, then, for the N cells in the cell.
  • the base station 11 can measure the channel state between the UE 12 and the M antennas of the base station 11, respectively, to obtain a set of channel information, for example, due to the letter.
  • the channel response may reflect the channel state. Therefore, the group channel information may specifically be a set of channel response vectors formed by the channel response between the UE and the M antennas.
  • the base station 11 may obtain N groups corresponding to the N UEs 12 respectively.
  • the base station 11 can determine the interference degree between the first UE to be allocated resources and the remaining N-1 UEs according to the N sets of channel information, to obtain N-1 interference degrees; and, the base station 11 according to the N-1 interference levels, the SRS resources occupied by the second UE with the interference degree smaller than the interference degree threshold are allocated to the first UE, and it can be seen that in the case of SRS resources being tight (ie, SRS) When the resource occupancy rate is greater than the first threshold, the interference between the first UE and the second UE is less than the interference threshold. Therefore, the base station 11 does not allocate the same SRS resource to the first UE and the second UE. A strong interference is generated for each other, thereby ensuring that the SRS resource is allocated to the first UE when the SRS resource is certain, and the transmission period of the SRS is not extended.
  • the base station 11 may directly allocate the unoccupied SRS resource to the first UE to be allocated.
  • any of the N UEs in the cell that need to allocate the SRS resource can allocate the SRS resource to each UE by using the foregoing method, and does not extend the SRS transmission period.
  • the structure of the BBU 21 for performing the foregoing SRS resource allocation method may be as shown in FIG. 4, the BBU 21 includes a processor 1101 and an interface circuit 1102, and the memory 1103 and the bus 1104 are also shown in FIG. The interface circuit 1102 and the memory 1103 are connected by the bus 1104 and complete communication with each other.
  • the memory 1103 is configured to store a computer execution instruction
  • the processor 1101 is connected to the memory 1103 via the bus 1104.
  • the processor 1101 executes a computer execution instruction stored in the memory 1103 to enable the base station 01 to execute.
  • the processor 1101 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1103 may be a storage device or a collective name of a plurality of storage elements, and is used to store parameters, data, and the like required for execution of executable program code. And the memory 1103 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 1104 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus 1104 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 4, but it does not mean that there is only one bus or one type of bus.
  • the BBU 21 may also include input and output means connected to the bus 1104 for connection to other parts such as the processor 1101 via a bus.
  • the input and output device can provide an input boundary for the operator In order for the operator to select the control item through the input interface, a plurality of preset base stations can also be selected.
  • an output interface can be provided to display tracking information or results to the operator.
  • an embodiment of the present invention provides an SRS resource allocation method, as shown in FIG. 5, including:
  • the base station acquires an SRS resource occupancy rate in the current cell, where the cell includes N UEs.
  • the base station measures a channel state between the UE and the M antennas of the base station, and obtains a set of channel information, until the base station obtains N.
  • the base station determines, according to the N sets of channel information, an interference degree between the first UE and the remaining N-1 UEs to be allocated resources, to obtain N-1 interference degrees.
  • the base station allocates the SRS resource occupied by the second UE to the first UE according to the N-1 interference degrees, where the second UE is that the interference degree between the N-1 UEs and the first UE is less than the interference degree. Any of the threshold UEs.
  • the base station adjusts the first threshold according to the SRS resource occupancy rate.
  • step 101 since the base station can acquire the SRS resources allocated to the UEs in the cell, the base station can calculate the SRS resource occupancy rate in the current cell according to the SRS resources allocated to the UEs. The ratio of allocated SRS resources to the total SRS resources.
  • the base station may determine the SRS resource occupancy rate and the preset first threshold. When the SRS resource occupancy rate is greater than the first threshold, for example, the SRS resource occupancy rate is greater than 90%, the current SRS resource is relatively tight.
  • the base station may measure the channel state between the UE and the M antennas to obtain a set of channel information, so that for the N UEs, the base station N sets of channel information can be obtained. It can be seen that each set of channel information is used to indicate the channel state between the corresponding UE and the M antennas.
  • the channel information may include a channel response vector.
  • the channel response vector H2 [h 2, 1 h 2, 2 ... h 2, M ] ... arriving at the M antennas until the base station obtains N sets of channel response vectors.
  • the channel information may include a RSRP (Reference Signal Received Power) vector
  • RSRP Reference Signal Received Power
  • the channel information may include an RSRP vector and a channel response vector, which is not limited in this embodiment of the present invention.
  • the base station determines, according to the N sets of channel information, the interference degree between the first UE to be allocated resources and the remaining N-1 UEs, to obtain N-1 interference degrees.
  • the first UE may be a UE that needs SRS resources in any one of the foregoing N UEs.
  • the base station may calculate the first UE and the third UE according to the first interference degree formula described below (ie, any of the above N-1 UEs) The degree of interference between one) until N-1 interference levels are obtained.
  • interference degree (
  • H1 is a channel response vector of the first UE respectively reaching the M antennas, for example, [h 1,1 h 1,2 ... h 1,M ], and H2 is a channel response vector of the third UE respectively reaching the M antennas.
  • H2 H is a conjugate transposed matrix of H2.
  • the base station can calculate N-1 interference degrees between the first UE and the N-1 UEs respectively.
  • degree of interference (
  • R1 is the channel response vector of the first UE respectively reaching the M antennas, for example, [r 1,1 r 1,2 ... r 1,M ], and R2 is the channel response of the third UE reaching the M antennas respectively.
  • a vector such as the above [r 2,1 r 2,2 ... r 2,M ], and R2 H is a conjugate transposed matrix of R2.
  • the base station allocates the SRS resource occupied by the second UE to the first UE according to the N-1 interference degrees, where the second UE is the interference degree between the N-1 UEs and the first UE. Any one of the UEs that is less than the interference threshold.
  • the base station allocates the SRS resource occupied by the second UE to the first One UE.
  • the base station and the first UE have a smaller interference degree between the first UE (ie, with the first UE).
  • the SRS resource of the UE having the interference degree less than the interference threshold is allocated to the first UE, so that when the SRS transmission period of the first UE arrives, the first UE may send the SRS by using the SRS resource of the second UE,
  • the interference degree between the first UE and the second UE is relatively small.
  • the first UE when the first UE sends the SRS by using the SRS resource of the second UE, the first UE does not generate strong interference to the second UE, thereby ensuring that when the SRS resource is constant
  • the first UE is allocated to the SRS resource, and the transmission period of the SRS is not extended.
  • the base station 11 may not be The occupied SRS resources, that is, the remaining 25% of the SRS resources, directly allocate corresponding SRS resources to the first UE.
  • the base station may further dynamically adjust the first threshold according to the SRS resource occupancy rate, that is, the base station may flexibly set the first threshold according to the SRS resource occupancy rate.
  • the SRS resource usage ratio is greater than a preset first occupancy threshold, for example, the first occupancy threshold is 95%, that is, the unoccupied SRS resources are already small.
  • the threshold is adjusted to a second threshold with a smaller value, that is, the second threshold is the first threshold. Therefore, when the SRS resource is allocated to the UE subsequently, the SRS resource occupancy rate exceeds the second threshold, and the UE is the UE.
  • the SRS resource of the UE with less interference is allocated, and the multiplexing rate of the SRS resource is increased.
  • the SRS resource occupancy rate is less than the preset second occupancy threshold, for example, the second occupancy threshold is 65%, that is, The unoccupied SRS resource has some margin.
  • the base station can adjust the first threshold to a third threshold with a larger value, that is, the third threshold > the first threshold, and the second occupancy threshold should be smaller than the above.
  • the first occupancy threshold so that when the SRS resource is allocated to the UE, the SRS resource of the UE with less interference is allocated to the UE only when the SRS resource occupancy rate is greater than the third threshold.
  • the SRS resource that is not occupied by the UE can be directly allocated to ensure that the SRS resource used by the UE to send the SRS is more reliable.
  • the embodiment of the present invention further provides a method for the base station to perform step 103, that is, determining N-1 interference degrees between the first UE and the N-1 UEs according to the N sets of channel information.
  • the channel information includes at least an RSRP vector, and the method specifically includes:
  • the base station determines, according to the RSRP vector between the UE and the M antennas, the working antenna set of the UE, until the base station obtains N working antenna sets, where the working antenna set includes K.
  • the root antenna, K antennas are any subset of the above M antennas, M ⁇ K ⁇ 1.
  • the base station calculates, according to the second set of working antennas, the interference degree between the first UE and the N-1 UEs according to the second interference degree formula, to obtain N-1 interference degrees.
  • the base station determines, according to the N sets of RSRP vectors in the N sets of channel information, a working antenna set of each of the N UEs, that is, one or more antennas used when the UE interacts with the base station, That is to say, the working antenna set of each UE includes K antennas, and the K antennas are any subset of the above M antennas, and M ⁇ K ⁇ 1.
  • the following embodiments of the present invention provide three methods for determining a working antenna set of a UE.
  • the base station determines the working antenna set of the first UE as an example.
  • the working antenna set of the first UE is the first working antenna set.
  • the base station has measured that the first UE reaches the M root respectively.
  • the base station sorts the M RSRPs in the RSRP vector in descending order; further, the base station will sort the K roots corresponding to the preceding K RSRPs.
  • the antenna serves as a working antenna set of the first UE, that is, a first working antenna set.
  • the base station can determine the working antenna set of each of the N UEs.
  • the base station determines the working antenna set of the first UE as an example.
  • the working antenna set of the first UE is the second working antenna set.
  • the base station has measured that the first UE arrives at the M.
  • the base station may calculate the isolation between the first UE and the M antenna according to the RSRP vector R1 corresponding to the first UE.
  • R1 [r 1,1 r 1,2 ... r 1,10 ]
  • the isolation can be calculated as r 1,1 /(r 1,2 +r 1,3 +...+r 1,10 ) If the isolation is less than or equal to the preset first threshold, the RSRP of the first UE reaching the antenna other than the first antenna is sequentially increased in the molecule, for example, r 1 , 2 is added to the numerator.
  • the base station uses the K antennas, antenna 1 and antenna 2, as the working antenna set of the first UE, that is, the second working antenna set.
  • the base station can determine the working antenna set of each of the N UEs.
  • the base station determines the working antenna set of the first UE as an example.
  • the working antenna set of the first UE is the third working antenna set.
  • the base station has measured that the first UE reaches the M respectively.
  • the base station determines one of the M antennas as the target antenna of the first UE, for example, the antenna corresponding to the largest RSRP in the channel response vector R1 is used as the target antenna, for example, h 1 , 3 is in the M RSRPs.
  • the maximum value determines the third antenna as the target antenna.
  • the base station may acquire the SINR (Signal to Interference plus Noise Ratio) of each of the UEs to the M antennas in advance, and obtain N sets of SINR vectors, including the first UE respectively.
  • SINR vector S1 to M antennas, S1 [s 1 , 1 s 1, 2 ... s 1, M ].
  • the base station can use the antenna corresponding to the maximum SINR in the SINR vector S1 as the target antenna. For example, if s 1,3 is the maximum value among the M SINRs, the third antenna is determined as the target antenna.
  • the base station calculates a difference between the RSRP of the first UE to the target antenna and the RSRP of the first UE to the candidate antenna, wherein the candidate antenna is any one of M-1 antennas other than the target antenna;
  • the above difference RSRP of the first UE to the target antenna - RSRP of the first UE to the candidate antenna.
  • the candidate antenna is used as one of the working antenna sets of the first UE until the K working antenna set of the first UE (ie, the third working antenna set) is obtained.
  • the base station can determine the working antenna set of each of the N UEs.
  • the method 4 can jointly use the method for determining the working antenna set of the first UE provided in the foregoing method 1 to method 3, and still take the base station to determine the working antenna set of the first UE as an example. At this time, the working antenna set of the first UE is used. A collection of working antennas for the fourth.
  • the base station may obtain the first working antenna set, the second working antenna set, and the third working antenna set respectively, and then, to determine the working antenna set of the first UE.
  • the intersection of the first working antenna set, the second working antenna set, and the third working antenna set may be calculated, where the intersection is the working antenna set of the first UE, that is, the fourth working antenna set, and the antenna included in the intersection is An antenna used when the first UE interacts with the base station.
  • the first working antenna set and the second working antenna set may be obtained by Method 1 - Method 2, and then the intersection of the first working antenna set and the second working antenna set is used as the working antenna set of the first UE, that is, The fourth working antenna collection. That is, the fourth working antenna set may be an intersection of any two or three working antenna sets in the first working antenna set, the second working antenna set, and the third working antenna set, which is not used by the embodiment of the present invention. Any restrictions.
  • the base station can determine the working antenna set of each of the N UEs, that is, each subsequent UE interacts with the base station, and can respectively perform the antennas in the working antenna set.
  • the SRS is transmitted to implement space division multiplexing of SRS resources in the same code, the same frequency, and at the same time.
  • the base station determines, according to the N sets of working antennas, the interference degree between the first UE and the N-1 UEs, and obtains N-1 interference degrees.
  • the base station may calculate the interference degree between the first UE and each of the N-1 UEs according to the second interference degree formula, and obtain N-1 interference degrees.
  • the second interference degree formula is:
  • the degree of interference the number of intersection antennas of the first working antenna set and the second working antenna set / the number of the first working antenna set and the second working antenna set.
  • the first working antenna set is a working antenna set of the first UE
  • the second working antenna set is a working antenna set of any one of the N-1 UEs.
  • the base station can separately calculate the interference degree between the first UE and each of the N-1 UEs, and obtain N-1 interference degrees.
  • the embodiment of the present invention further provides a method for the base station to perform step 103, that is, determining N-1 interference degrees between the first UE and the N-1 UEs according to the N sets of channel information,
  • the channel information includes at least an RSRP vector, and the method specifically includes:
  • the base station determines, according to an RSRP vector between the UE and the M antennas, a working antenna set of the UE, until the base station obtains N working antenna sets, where the working antenna set includes K.
  • the root antenna, K antennas are any subset of the above M antennas, M ⁇ K ⁇ 1.
  • the base station determines a modified channel response vector between the UE and the M antennas according to the working antenna set of the UE, until the base station obtains N sets of modified channel response vectors.
  • the base station determines, according to the N sets of modified channel response vectors, the interference degree between the first UE and the N-1 UEs, and obtains N-1 interference degrees.
  • step 301 The method for determining the working antenna set of each UE in step 301 is the same as step 201, and therefore is not described here.
  • the base station After the base station obtains the working antenna sets corresponding to the N UEs respectively, as described in step 302, for each of the N UEs, the base station determines the UE and the M according to the working antenna set of the UE.
  • the channel response vector is modified between the root antennas until the base station obtains N sets of modified channel response vectors.
  • the base station determines the modified channel response vector between the UE and the M antenna according to the working antenna set of the UE, which may be further divided into two application scenarios.
  • the channel information obtained in step 102 includes a channel response vector.
  • the channel information obtained in step 102 does not include a channel response vector.
  • the base station modifies the channel response vector between the UE and the M antennas according to the working antenna set of the UE, to obtain a modified channel response vector.
  • the channel response between the two is set to 0, that is, h 1,4 to h 1, and M-1 is 0, and the channel response vector H1' of the modified first UE is obtained, that is, the channel response vector is modified.
  • the base station can obtain Corrected channel response vector for each UE.
  • the base station may directly measure the channel between the UE and the K antennas in the working antenna set of the UE according to the working antenna set of the UE. In response, and setting the channel response between the UE and the remaining MK root antennas to 0, a modified channel response vector between the UE and the M antennas is obtained.
  • the base station can directly according to the working antenna set of the first UE. Measuring the channel response between the first UE and the antenna 1 - antenna 3, and the antenna M, and setting the channel response between the first UE and the MK antenna to 0, that is, let h 1,4 to h 1,M -1 is 0, and finally the modified channel response vector H1' of the first UE is obtained. Similarly, based on the above method, the base station can obtain a modified channel response vector for each UE.
  • the base station determines N-1 interference degrees between the first UE and the N-1 UEs respectively according to the N sets of modified channel response vectors.
  • the base station can still calculate the N-1 interference degrees between the first UE and the N-1 UEs by using the first interference degree formula, except that the first interference degree formula is
  • the channel response vectors used are all the above modified channel response vectors.
  • the base station can calculate the N-1 interference degrees between the first UE and the N-1 UEs, respectively, by using the steps 201-202 or the steps 301-303, so that the base station subsequently adopts the SRS resource occupancy rate as the first.
  • the UE allocates SRS resources.
  • the base station allocates the SRS resource occupied by the second UE with a small degree of interference between the first UE and the first UE to the first UE, although the first UE shares the same SRS resource with the second UE, The two UEs and the first UE are two UEs with less interference after spatial multiplexing multiplexing. Therefore, when the SRS resource space division multiplexing is implemented, the SRS resources are fixed and the SRS transmission period is not extended. Under the condition, how to allocate the available SRS resources to each UE.
  • the embodiment of the present invention provides an SRS resource allocation method, where a base station can acquire an SRS resource occupancy rate in a current cell; and, in addition, the base station measures each of the N UEs in the cell.
  • the channel information of the M antennas of the base station is obtained, and the N sets of channel information are obtained, where the channel information is used to indicate the first UE to be allocated resources (the first UE is any one of N UEs) and the M antennas respectively
  • the channel state between the two channels is determined.
  • the base station can determine, according to the N sets of channel information, N-1 interference degrees between the first UE and the remaining N-1 UEs.
  • the base station may allocate the SRS resource occupied by the second UE to the first UE according to the N-1 interference degree, and the SRS resource occupied by the second UE is allocated to the first UE. Since the interference degree between the first UE and the second UE is the lowest, the base station does not strongly interfere with each other when the SRS is allocated to the first UE and the second UE by using the same SRS resource, thereby ensuring that when the SRS resource is constant
  • the first UE is allocated to the SRS resource, and the SRS transmission period is not extended. Since the first UE is any one of the N UEs, the foregoing method may be adopted for any of the N UEs in the cell. The UE allocates to the SRS resource and does not extend the transmission period of the SRS.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station provided by the embodiment of the present invention may be used to implement the method implemented by the embodiments of the present invention shown in FIG. 2 to FIG. 7 . Portions related to the embodiments of the present invention are shown. Without specific details, please refer to the embodiments of the present invention shown in FIGS. 2-7.
  • the base station includes a measuring unit 31, a determining unit 32, and an allocating unit 33.
  • the measuring unit 31 is configured to measure, for each of the N UEs, a channel state between the UE and the M antennas of the base station, to obtain a set of channel information, until the base station obtains N sets of channel information, where The base station provides services for the N UEs in the cell, N>1, M>1;
  • a determining unit 32 configured to determine, according to the N sets of channel information, an interference degree between a first UE to be allocated resources and N-1 UEs other than the first UE in the N UEs, to obtain N - 1 degree of interference;
  • the allocating unit 33 is configured to allocate, according to the N-1 interference levels, the sounding reference signal SRS resource occupied by the second UE to the first UE, where the second UE is the N-1 UEs
  • the interference degree between the first UEs is less than any one of the UEs of the interference degree threshold.
  • the base station further includes an acquiring unit 34;
  • the acquiring unit 34 is further configured to take an SRS resource occupancy rate in the cell.
  • the allocating unit 33 is configured to allocate the SRS resource occupied by the second UE to the first UE according to the N-1 interference degrees, if the SRS resource usage ratio is greater than the first threshold.
  • the determining unit 32 is specifically configured to calculate interference between the first UE and each of the N-1 UEs according to a first interference degree formula for a first UE to be allocated resources. Degree, get N-1 interference degrees;
  • ); H1 of the first a channel response vector between the UE and the M antennas, H2 is a channel response vector between any of the N-1 UEs and the M antennas; when the channel information includes a reference signal received power when RSRP vector, the first interference level the formula: degree of interference (
  • the channel information includes an RSRP vector
  • the determining unit 32 is specifically configured to determine, according to an RSRP vector between the UE and the M antenna, the UE for each of the N UEs. a working antenna set until the base station obtains N working antenna sets, wherein the working antenna set includes K antennas, and the K antennas are any subset of the M antennas, M ⁇ K ⁇ 1; Determining an interference degree between the first UE and the N-1 UEs according to the N working antenna sets, to obtain N-1 interference degrees.
  • the determining unit 32 is specifically configured to: calculate, according to a second interference degree formula, an interference degree between the first UE and each of the N-1 UEs, to obtain N-1 interferences.
  • the first working antenna set is a working antenna set of the first UE
  • the second working antenna set is a working antenna set of any one of the N-1 UEs.
  • the determining unit 32 is specifically configured to determine, for each of the N UEs, a modified channel response vector between the UE and the M antenna according to the working antenna set of the UE, Up to the base station obtaining N sets of modified channel response vectors; determining interference levels between the first UE and the N-1 UEs according to the N sets of modified channel response vectors, to obtain N-1 interference degrees.
  • the determining unit 32 is specifically configured to: if the channel information includes a channel response vector, set a channel response between the UE and the MK antenna to 0, to obtain a relationship between the UE and the M antenna. Correcting a channel response vector, the MK root antenna being all antennas except the K antennas in the working antenna set of the UE among the M antennas; if the channel information does not include a channel response vector, measuring the UE And a channel response between the K antennas in the working antenna set of the UE, and setting a channel response between the UE and the MK antenna to 0, to obtain a correction between the UE and the M antennas Channel response vector.
  • the working antenna set of the UE is a first working antenna set; the determining unit 32 is specifically configured to: in an RSRP vector between the UE and the M antennas in descending order The M RSRPs are sorted; the K antennas corresponding to the preceding K RSRPs are sorted as the first working antenna set.
  • the working antenna set of the UE is a second working antenna set
  • the determining unit 32 is configured to: calculate the UE and the M antenna according to an RSRP vector between the UE and the M antennas. Isolation, the sum of the RSRP between the UE and the K antennas / the sum of the RSRPs between the UE and the remaining M-K antennas; if the isolation is greater than the preset first For the threshold, the K antennas are used as the second working antenna set.
  • the working antenna set of the UE is a third working antenna set;
  • the determining unit 32 is specifically configured to: determine one of the M antennas as a target antenna of the UE; calculate the UE and the target a difference between the RSRP between the antennas and the RSRP between the UE and the candidate antenna, the candidate antenna being any one of the M-1 antennas except the target antenna; if the difference is less than The second threshold is set in advance, and the candidate antenna is used as one of the third working antenna sets until the third working antenna set is obtained.
  • the determining unit 32 is specifically configured to: select, as the target antenna, an antenna corresponding to the largest RSRP in the RSRP vector between the UE and the M antennas.
  • the measuring unit 31 is further configured to: for each of the N UEs, measure and acquire a signal to interference and noise ratio (SINR) between the UE and the M antennas, and obtain an SINR vector of the UE. ;
  • SINR signal to interference and noise ratio
  • the determining unit 32 is specifically configured to: select an antenna corresponding to a maximum SINR in the SINR vector of the UE as the target antenna.
  • the base station further includes: an adjusting unit 35, configured to: if the SRS resource occupancy rate is greater than a preset first occupancy threshold, adjust the first threshold to a second And the second threshold is smaller than the first threshold; if the SRS resource occupancy is less than a preset second occupancy threshold, the first threshold is adjusted to a third threshold, and the third threshold is greater than The first threshold, the second occupancy threshold is less than the first occupancy threshold.
  • an adjusting unit 35 configured to: if the SRS resource occupancy rate is greater than a preset first occupancy threshold, adjust the first threshold to a second And the second threshold is smaller than the first threshold; if the SRS resource occupancy is less than a preset second occupancy threshold, the first threshold is adjusted to a third threshold, and the third threshold is greater than The first threshold, the second occupancy threshold is less than the first occupancy threshold.
  • the above-mentioned measuring unit 31, determining unit 32, allocating unit 33, obtaining unit 34, and adjusting unit 35 can all be implemented by the processor 1101 shown in FIG. 4 by calling the instruction in the memory 1103.
  • the embodiment of the present invention provides a base station, which can obtain N sets of channel information by measuring channel information of each of the N UEs in the cell that respectively reach the M antenna of the base station, where the channel information is used to indicate to be Determining, by the first UE (the first UE is any one of N UEs), a channel state between the M and the M antennas; thus, the base station may determine, according to the N sets of channel information, the first UE and the remaining N respectively. - N-1 interference degrees between 1 UEs; then, when the SRS resource occupancy rate is greater than the first threshold, the base station may minimize the interference degree with the first UE according to the N-1 interference degrees.
  • the SRS resources occupied by the two UEs are allocated to the first UE.
  • the base station is the first UE and the second UE.
  • the UE does not generate strong interference to each other, so as to ensure that the SRS resource is allocated to the first UE when the SRS resource is certain, and the SRS transmission period is not extended, because the first UE is N UEs. Any one of them, therefore, for any of the N UEs in the cell, The method described above may be employed for each SRS resources allocated to the UE, the SRS transmission period is not extended.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into Another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供一种探测参考信号资源分配方法及装置,涉及通信技术领域,可在不增加SRS资源总量的同时保证各个UE分配到SRS资源,且不延长SRS的发送周期,该方法包括:对于N个UE中的每个UE,基站测量该UE与基站的M根天线之间的信道状态,得到一组信道信息,直至基站得到N组信道信息;基站根据这N组信道信息,确定待分配资源的第一UE与N个UE中除第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度;基站根据这N-1个干扰度,将第二UE占用的SRS资源分配给第一UE,该第二UE为N-1个UE中与第一UE之间的干扰度小于干扰度阈值的UE中的任一个。

Description

一种探测参考信号资源分配方法及装置
本申请要求于2016年03月29日提交中国专利局、申请号为201610188166.X、发明名称为“一种探测参考信号资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种探测参考信号(Sounding reference signal,SRS)资源分配方法及装置。
背景技术
在LTE(Long Term Evolution,长期演进)系统中,UE(User Equipment,用户设备)可以周期性地在一个子帧的最后一个数据符号上按照基站分配的带宽向基站发送探测参考信号,即SRS,基站基于该探测参考信号进行解调和信道状况评估,由此获得上行信道状况。
为了使UE能够在指定的物理资源上发射上行SRS,基站必须为每一个UE分配特定的物理资源,即SRS资源,而SRS资源的总量是一定的,每个UE通常使用码分复用、频分复用或时分复用等方式占据一定的SRS资源发送SRS。
可以看出,SRS资源的总量只能满足一定数量的UE得到SRS资源,那么,当UE数量太多时,可以采用增加SRS资源的总量或延长SRS的发送周期等方式,以保证各个UE分配到SRS资源发送SRS,但是,增加SRS资源的总量不仅需要修改现有协议内容,还会占用数据传输的可用资源,从而降低数据的传输速度;而延长SRS的发送周期,会导致UE不能及时上报SRS,从而影响基站对信道状况的评估性能。
发明内容
本发明的实施例提供一种SRS资源分配方法及装置,在现有协议的框架下,可在不增加SRS资源总量的同时保证各个UE分配到SRS资源,且不延长SRS的发送周期。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明的实施例提供一种SRS资源分配方法,包括:对于N个UE中的每个UE,基站(即基站为小区内的N个UE提供服)测量该UE与基站的M根天线之间的信道状态,得到一组信道信息,直至基站得到N组信道信息,N>1,M>1;基站根据这N组信道信息,确定待分配资源的第一UE与N个UE中除第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度;基站根据这N-1个干扰度,将第二UE占用的SRS资源分配给第一UE,该第二UE为N-1个UE中与第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
对于小区内N个UE中每个UE,基站可以测量该UE分别与基站的M根 天线之间的信道状态,得到一组信道信息,这样,基站可以得到N个UE分别对应的N组信道信息,进而,基站可以根据这N组信道信息确定待分配资源的第一UE与其余的N-1个UE之间的干扰度,得到N-1个干扰度;并且,基站根据这N-1个干扰度,将与第一UE之间的干扰度小于干扰度阈值的第二UE所占用的SRS资源分配给第一UE,可以看出,在SRS资源紧张的情况下(即SRS资源占用率大于第一门限时),由于第一UE与第二UE之间的干扰度小于干扰度阈值,因此,基站为第一UE与第二UE分配相同的SRS资源发送SRS时不会对彼此产生强烈的干扰,从而保证在SRS资源总量不增的情况下第一UE分配到SRS资源,且不延长SRS的发送周期。而对小区内N个UE中任意需要分配SRS资源的UE,都可以采用上述方法为所有UE分配到SRS资源,且不延长SRS的发送周期。
在一种可能的设计中,在基站根据N-1个干扰度,将第二UE占用的SRS资源分配给第一UE之前,还包括:基站获取小区内的SRS资源占用率;其中,基站根据N-1个干扰度,将第二UE占用的SRS资源分配给第一UE,包括:若SRS资源占用率大于第一门限值,则基站根据上述N-1个干扰度,将第二UE占用的SRS资源分配给第一UE。
这样,只有在SRS资源占用率大于第一门限值时,可以采用上述方法为第一UE分配SRS资源,而当SRS资源占用率小于或等于上述第一门限时,即当前的SRS资源并不是很紧张时,基站可以直接将未占用的SRS资源分配给待分配资源的第一UE。
在一种可能的设计中,基站根据N组信道信息确定第一UE与N个UE中除第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度,包括:对于待分配资源的第一UE,基站根据第一干扰度公式计算第一UE与N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度。
其中,当信道信息包括信道响应向量时,第一干扰度公式为:干扰度=(|H1*H2H|)/(|H1|*|H2|);H1为第一UE与M根天线之间的信道响应向量,H2为N-1个UE中的任意UE与M根天线之间的信道响应向量。
当信道信息包括参考信号接收功率RSRP向量时,第一干扰度公式为:干扰度=(|R1*R2H|)/(|R1|*|R2|);R1为第一UE与M根天线的RSRP向量,R2为N-1个UE中的任意UE与M根天线之间的RSRP向量。
在一种可能的设计中,信道信息包括RSRP向量,其中,基站根据N组信道信息确定第一UE与N个UE中除第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度,包括:对于N个UE中的每个UE,基站根据该UE与M根天线之间RSRP向量,确定该UE的工作天线集合,直至基站得到N个工作天线集合,其中,该工作天线集合包括K根天线,K根天线为M根天线的任意子集,M≥K≥1;基站根据这N个工作天线集合,确定第一UE分别与N-1个UE之间的干扰度,得到N-1个干扰度。
在一种可能的设计中,基站根据N个工作天线集合,确定第一UE分别与N-1个UE之间的干扰度,得到N-1个干扰度,包括:基站根据第二干扰 度公式计算第一UE与N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度。
其中,第二干扰度公式为:干扰度=第一工作天线集合与第二工作天线集合的交集中天线的根数/第一工作天线集合与第二工作天线集合的并集中天线的根数;第一工作天线集合为第一UE的工作天线集合,第二工作天线集合为N-1个UE中任一个UE的工作天线集合。
在一种可能的设计中,基站根据N个工作天线集合,确定第一UE分别与N-1个UE之间的干扰度,得到N-1个干扰度,包括:对于N个UE中的每个UE,基站根据该UE的工作天线集合,确定该UE与M根天线之间的修正信道响应向量,直至基站得到N组修正信道响应向量;基站根据N组修正信道响应向量,确定第一UE与N-1个UE之间的干扰度,得到N-1个干扰度。
在一种可能的设计中,若信道信息包括信道响应向量,则基站根据该UE的工作天线集合,确定该UE与M根天线之间的修正信道响应向量,包括:基站将该UE与M-K根天线之间的信道响应置0,得到该UE与M根天线之间的修正信道响应向量,M-K根天线为M根天线中除该UE的工作天线集合内的K根天线之外的所有天线;若信道信息不包括信道响应向量,则基站根据该UE的工作天线集合,确定该UE与M根天线之间的修正信道响应向量,包括:基站测量该UE与该UE的工作天线集合内的K根天线之间的信道响应,并将该UE与M-K根天线之间的信道响应设置为0,得到该UE与M根天线之间的修正信道响应向量。
在一种可能的设计中,该UE的工作天线集合为第一工作天线集合;其中,基站根据该UE与M根天线之间的RSRP向量,确定该UE的工作天线集合,包括:基站按照由大到小的顺序,对该UE与M根天线之间的RSRP向量内的M个RSRP进行排序;基站将排序在前的K个RSRP所对应的K根天线,作为第一工作天线集合。
在一种可能的设计中,该UE的工作天线集合为第二工作天线集合;其中,基站根据该UE与M根天线之间的RSRP向量,确定该UE的工作天线集合,包括:基站根据该UE与M根天线之间的RSRP向量,计算该UE与M根天线的隔离度,隔离度=该UE与K根天线之间的RSRP之和/该UE与剩余的M-K根天线之间的RSRP之和;若隔离度大于预先设置的第一阈值,则基站将K根天线作为第二工作天线集合。
在一种可能的设计中,该UE的工作天线集合为第三工作天线集合;其中,基站根据该UE与M根天线之间的RSRP向量,确定该UE的工作天线集合,包括:基站从M根天线中确定一根为该UE的目标天线;基站计算该UE与目标天线之间的RSRP,与该UE与候选天线之间的RSRP的差值,候选天线为除目标天线外的M-1根天线中的任一个;若差值小于预先设置的第二阈值,则基站将候选天线作为第三工作天线集合中的一根,直至得到第三工作天线集合为止。
在一种可能的设计中,基站从M根天线中确定一根为该UE的目标天线, 包括:基站选择该UE与M根天线之间的RSRP向量中最大的RSRP所对应的天线作为目标天线。
在一种可能的设计中,在基站根据N组信道信息确定第一UE与N个UE中除第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度之前,还包括:对于N个UE中的每个UE,基站测量获取该UE分别与M根天线之间的SINR,得到该UE的SINR向量;此时,基站从M根天线中确定一根为该UE的目标天线,包括:基站选择该UE的SINR向量内最大的SINR所对应的天线作为目标天线。
在一种可能的设计中,该UE的工作天线集合为第四工作天线集合,其中,第四工作天线集合为上述第一工作天线集合、第二工作天线集合以及第三工作天线集合中任意两个或三个工作天线集合的交集。
至此,通过上述四种可能的设计,基站可以确定N个UE中每个UE的工作天线集合,也就是说,后续每个UE与基站进行交互时,可以分别与自身工作天线集合中的天线进行SRS发送,从而实现在同码、同频以及同时的情况下SRS资源的空分复用。
在一种可能的设计中,在基站根据N-1个干扰度,将第二UE占用的SRS资源分配给第一UE之后,还包括:若SRS资源占用率大于预设的第一占用率阈值,则基站将第一门限调整为第二门限,该第二门限小于第一门限;若SRS资源占用率小于预设的第二占用率阈值,则基站将第一门限调整为第三门限,该第三门限大于第一门限,该第二占用率阈值小于第一占用率阈值。
这样,在后续为UE分配SRS资源时,只有当SRS资源占用率大于数值较大的第三门限时,才会为UE分配与其干扰度较小的UE的SRS资源,否则,则可直接为UE分配未占用的SRS资源,保证UE发送SRS时使用的SRS资源更加可靠。
第二方面,本发明的实施例提供一种基站,包括:测量单元,用于对于N个UE中的每个UE,测量该UE与基站的M根天线之间的信道状态,得到一组信道信息,直至基站得到N组信道信息,基站为小区内的N个UE提供服,N>1,M>1;确定单元,用于根据这N组信道信息,确定待分配资源的第一UE与N个UE中除第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度;分配单元,用于根据这N-1个干扰度,将第二UE占用的探测参考信号SRS资源分配给第一UE,该第二UE为N-1个UE中与第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
第三方面,本发明的实施例提供一种基站,包括:处理器、存储器、总线和通信接口;存储器用于存储计算机执行指令,处理器与存储器通过总线连接,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行如第一方面中任一项所述的探测参考信号SRS资源分配方法。
第四方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面为基站所设计的程序。
本发明中,基站的名字对设备本身不构成限定,在实际实现中,这些设 备可以以其他名称出现。只要各个设备的功能和本发明类似,属于本发明权利要求及其等同技术的范围之内。
另外,第二方面至第四方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为现有技术中按照码本、时间以及频率进行划分的SRS资源示意图;
图2为本发明实施例提供的SRS资源分配方法的应用场景示意图;
图3为本发明实施例提供的一种基站内部的架构示意图;
图4为本发明实施例提供的一种基站内部BBU的结构示意图;
图5为本发明实施例提供的一种SRS资源分配方法的流程示意图一;
图6为本发明实施例提供的一种SRS资源分配方法的流程示意图二;
图7为本发明实施例提供的一种SRS资源分配方法的流程示意图三;
图8为本发明实施例提供的一种基站的结构示意图一;
图9为本发明实施例提供的一种基站的结构示意图二;
图10为本发明实施例提供的一种基站的结构示意图三。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述。
另外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
由于SRS资源的总量是有限的,而随着小区内UE数量的增长,目前的码分复用、频分复用或时分复用等SRS资源分配方式已经不能满足数量日益增长的UE对SRS资源的需求。
具体的,如图1所示,按照不同码本(即x轴)、不同时间(即y轴)以及不同频率(即z轴),可以将整个SRS资源划分为若干个SRS资源块,当这些SRS资源块都被不同的UE占用时,新增加的UE(例如刚接入小区的UE)想要分配到SRS资源块时,基站可以延长各个UE的SRS的发送周期,即某个UE发送完SRS后释放其自身的SRS资源块,再由基站将该SRS资源块分配给该新增加的UE,这样无疑增加了小区内各个UE发送SRS的发送周期,从而使UE 12不能及时上报自身的SRS,影响基站11对信道状况的评估性能。
又或者,可以通过修改协议的方式增加整个SRS资源的大小,但是,当整个SRS资源增加时,会占用传输数据时的可用资源,从而降低数据的传输速度。
对此,本发明的实施例提供一种SRS资源分配方法,可在现有协议的框架下,保证当SRS资源一定时为各个UE分配到SRS资源,且不延长SRS的 发送周期。
具体的,本发明实施例提供的SRS资源分配方法,可应用于MIMO(Multiple-Input Multiple-Output,多输入多输出)等通信系统,如图2所示,基站11为小区内的N(N>1)个UE 12提供服务,其中,该基站11在小区内设置有M(M>1)根天线,基站11可以通过这M根天线中的一根或多根与任意UE 12进行通信,例如,当某一个UE 12的SRS发送周期到来时,UE 12通过基站11为其分配好的SRS资源向这M根天线发送SRS。
需要说明的是,这M根天线可以是集中分布在小区内的,也可以是分布式设置在小区内的,本发明对此不作限制。
具体的,本发明实施例提供的SRS资源分配方法可由小区内的基站11执行,其中,图3为本发明实施例提供的一种基站11内部的架构示意图,该基站11具体可包括BBU(Building Baseband Unit,基带处理模块)21、RRU(Remote Radio Unit,射频拉远模块)22、天馈子系统23和支撑结构24,其中,该BBU 21与RRU 22之间可以通过CPRI(Common Public Radio Interface,通用公共无线电接口)连接;或者,该RRU 22也可以通过光纤拉远与BBU 21连接。
其中,BBU 21,用于实现整个基站11的操作维护,实现信令处理、无线资源管理以及实现LTE(Long Term Evolution,长期演进)物理层、MAC(Media Access Control,媒体访问控制)层、L3信令、操作维护等主控功能。
RRU 22,用于实现基带信号、中频信号和射频信号之间的转换,实现LTE无线接收信号的解调,以及发送信号的调制和功率放大。
天馈子系统23,具体可包括连接到基站11射频拉远模块22的天线和馈线,以及GPS(Global Positioning System,全球定位系统)接收卡的天线和馈线,可用于实现无线空口信号的接收和发送。
支撑结构24,是BBU 21与RRU 22的支撑部分,可用于提供结构、供电和环境监控功能。
需要说明的是,图3示出的仅以一种可能的基站11的内部架构,本发明实施例对基站11内BBU 21和RRU 22的个数以及连接关系不做限定,例如,基站11可以包括多个BBU 21,每一个BBU 21与一个RRU 22相连,并且,各个BBU 21之间也可基于一定的接口互联;又或者,基站11可以包括多个RRU 22,每一个RRU 22均与同一个BBU 21连接,可以理解的是,本领域技术人员可以根据实际应用场景对基站11的内部架构进行设置,本发明实施例对此不做限定。
进一步地,发明实施例提供的SRS资源分配方法,具体可由基站11内的BBU 21执行。
具体的,基站11可以获取当前小区内的SRS资源占用率,即已占用的SRS资源与SRS资源总量的比值;进而,当SRS资源占用率大于第一门限时,那么,对于小区内N个UE 12中每个UE 12,基站11可以测量该UE 12分别与基站11的M根天线之间的信道状态,得到一组信道信息,例如,由于信 道响应可以反映信道状态,因此,该组信道信息具体可以为该UE与M根天线之间的信道响应构成的一组信道响应向量;这样,基站11可以得到N个UE 12分别对应的N组信道信息,进而,基站11可以根据这N组信道信息确定待分配资源的第一UE与其余的N-1个UE之间的干扰度,得到N-1个干扰度;并且,基站11根据这N-1个干扰度,将与第一UE之间的干扰度小于干扰度阈值的第二UE所占用的SRS资源分配给第一UE,可以看出,在SRS资源紧张的情况下(即SRS资源占用率大于第一门限时),由于第一UE与第二UE之间的干扰度小于干扰度阈值,因此,基站11为第一UE与第二UE分配相同的SRS资源发送SRS时不会对彼此产生强烈的干扰,从而保证当SRS资源一定时为第一UE分配到SRS资源,且不延长SRS的发送周期。
当然,当SRS资源占用率小于或等于上述第一门限时,即当前的SRS资源并不是很紧张时,基站11可以直接将未占用的SRS资源分配给待分配资源的第一UE。
可以看出,对小区内N个UE中任意需要分配SRS资源的UE,都可以采用上述方法为各个UE分配到SRS资源,且不延长SRS的发送周期。
进一步地,执行上述SRS资源分配方法的BBU 21的结构可以如图4所示,该BBU 21包括处理器1101和接口电路1102,图4中还示出了存储器1103和总线1104,该处理器1101、接口电路1102和存储器1103通过总线1104连接并完成相互间的通信。
其中,存储器1103用于存储计算机执行指令,处理器1101与该存储器1103通过该总线1104连接,当基站11运行时,该处理器1101执行该存储器1103内存储的计算机执行指令,以使基站01执行上述SRS资源分配方法。
需要说明的是,这里的处理器1101可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器1103可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码运行所需要参数、数据等。且存储器1103可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线1104可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线1104可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该BBU 21还可以包括输入输出装置,连接于总线1104,以通过总线与处理器1101等其它部分连接。该输入输出装置可以为操作人员提供一输入界 面,以便操作人员通过该输入界面选择布控项,还可以选择预设的多个基站。此外,还可以提供一输出界面,向操作人员显示跟踪信息或结果。
基于图1-图4所示的通信系统,本发明实施例提供一种SRS资源分配方法,如图5所示,包括:
101、基站获取当前小区内的SRS资源占用率,该小区内包括N个UE。
102、若SRS资源占用率大于第一门限,则对于N个UE中的每个UE,基站测量该UE分别与基站的M根天线之间的信道状态,得到一组信道信息,直至基站得到N组信道信息,M>1。
103、基站根据上述N组信道信息确定待分配资源的第一UE与剩余的N-1个UE之间的干扰度,得到N-1个干扰度。
104、基站根据该N-1个干扰度,将第二UE占用的SRS资源分配给第一UE,该第二UE为上述N-1个UE中与第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
105、(可选)基站根据SRS资源占用率调整上述第一门限。
在步骤101中,由于基站可以获取到为小区内各个UE分配的SRS资源的情况,因此,基站可以根据其为各个UE分配的SRS资源的情况,计算出当前小区内的SRS资源占用率,即已分配的SRS资源与整个SRS资源的比例。
示例性的,如图2所示,整个SRS资源可以分为多个SRS资源块,那么,SRS资源占用率=已占用的SRS资源块的数量/SRS资源块的总数量,其中,SRS资源占用率越高,即表示被占用的SRS资源越多。
进一步地,基站可以判断该SRS资源占用率与预先设置的第一门限的大小,当SRS资源占用率大于第一门限时,例如SRS资源占用率大于90%,则说明当前的SRS资源比较紧张,此时,如步骤102所述,对于N个UE中的每个UE,基站可以测量该UE分别与M根天线之间的信道状态,得到一组信道信息,这样,对于N个UE,基站便可以得到N组信道信息,可以看出,每一组信道信息用于指示对应UE分别与M根天线之间的信道状态。
其中,该信道信息可以包括信道响应向量,那么,基站测量得到UE 1到达M根天线的信道响应向量H1=[h1,1 h1,2 ... h1,M],基站测量得到UE 2到达M根天线的信道响应向量H2=[h2,1 h2,2 ... h2,M]……直至基站得到N组信道响应向量为止。
又或者,该信道信息可以包括RSRP(Reference signal received power,参考信号接收功率)向量,那么,基站测量得到UE 1到达M根天线的RSRP向量R1=[r1,1 r1,2 ... r1,M],基站测量得到UE 2到达M根天线的RSRP向量R2=[r2,1 r2,2 ... r2,M]……直至基站得到N组RSRP向量为止。
当然,该信道信息可以即包括RSRP向量,又包括信道响应向量,本发明实施例对此不做限定。
进而,在步骤103中,基站根据上述N组信道信息,确定待分配资源的第一UE分别与剩余的N-1个UE之间的干扰度,得到N-1个干扰度。其中,第一UE可以为上述N个UE中任一个需要SRS资源的UE。
仍以上述步骤102中的例子进行说明,当信道信息包括信道响应向量时,基站可以根据下述第一干扰度公式,计算第一UE与第三UE(即上述N-1个UE中的任一个)之间的干扰度,直至得到N-1个干扰度为止。
其中,第一干扰度公式为:干扰度=(|H1*H2H|)/(|H1|*|H2|)
H1为第一UE分别到达M根天线的信道响应向量,例如上述[h1,1 h1,2 ... h1,M],H2为第三UE分别到达M根天线的信道响应向量,例如上述[h2,1 h2,2 ... h2,M],H2H为H2的共轭转置矩阵。
根据上述干扰度公式,基站可以计算出第一UE分别与N-1个UE之间的N-1个干扰度。
类似的,当上述信道信息包括RSRP向量时,此时,第一干扰度公式为:干扰度=(|R1*R2H|)/(|R1|*|R2|)。
其中,R1为第一UE分别到达M根天线的信道响应向量,例如上述[r1,1 r1,2 ... r1,M],R2为第三UE分别到达M根天线的信道响应向量,例如上述[r2,1 r2,2 ... r2,M],R2H为R2的共轭转置矩阵。
在步骤104中,基站根据上述N-1个干扰度,将第二UE占用的SRS资源分配给第一UE,该第二UE为上述N-1个UE中与第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
例如,当第一UE与第二UE之间的干扰度小于上述干扰度阈值,且第一UE与第二UE之间的干扰度最小时,基站将该第二UE占用的SRS资源分配给第一UE。
具体的,当SRS资源占用率大于第一门限时,为保证第一UE可以分配到SRS资源,基站将与第一UE之间干扰度比较小的第二UE(即与第一UE之间的干扰度小于干扰度阈值的UE中的任一个)的SRS资源分配给第一UE,这样,当第一UE的SRS发送周期到达时,第一UE可使用第二UE的SRS资源发送SRS,由于第一UE与第二UE之间的干扰度比较小,因此,第一UE使用该第二UE的SRS资源发送SRS时,不会对第二UE产生强烈的干扰,从而保证当SRS资源一定时为第一UE分配到SRS资源,且不延长SRS的发送周期。
当然,当SRS资源占用率小于或等于上述第一门限时,例如SRS资源占用率为75%,小于上述第一门限90%,即当前的SRS资源并不是很紧张时,基站11可以在未被占用的SRS资源,即剩余的25%的SRS资源中,直接为第一UE分配相应的SRS资源。
进一步地,在步骤105中,基站还可以根据SRS资源占用率,动态调整上述第一门限,也就是说,基站可以根据SRS资源占用率的大小,灵活设置上述第一门限。
具体的,若该SRS资源占用率大于预设的第一占用率阈值,例如,第一占用率阈值为95%,即未占用的SRS资源已经很少了,此时,基站可以将上述第一门限调整为数值较小的第二门限,即第二门限<第一门限,这样,在后续为UE分配SRS资源时,一旦SRS资源占用率超过第二门限,便为UE 分配与其干扰度较小的UE的SRS资源,提高SRS资源的复用率;相应的,若SRS资源占用率小于预设的第二占用率阈值,例如,第二占用率阈值为65%,即未被占用的SRS资源还有一些余量,此时,基站可以将第一门限调整为数值较大的第三门限,即第三门限>第一门限,同时,第二占用率阈值应小于上述第一占用率阈值,这样,在后续为UE分配SRS资源时,只有当SRS资源占用率大于数值较大的第三门限时,才会为UE分配与其干扰度较小的UE的SRS资源,否则,则可直接为UE分配未占用的SRS资源,保证UE发送SRS时使用的SRS资源更加可靠。
如图6所示,本发明实施例还提供一种基站执行步骤103,即根据N组信道信息确定第一UE与N-1个UE之间的N-1个干扰度的方法,此时,该信道信息至少包括RSRP向量,该方法具体包括:
201、对于N个UE中的每个UE,基站根据该UE与M根天线之间RSRP向量,确定该UE的工作天线集合,直至基站得到N个工作天线集合,其中,该工作天线集合包括K根天线,K根天线为上述M根天线的任意子集,M≥K≥1。
202、基站根据上述N个工作天线集合,按照第二干扰度公式计算第一UE分别与N-1个UE之间的干扰度,得到N-1个干扰度。
具体的,在步骤201中,基站根据N组信道信息中的N组RSRP向量,确定N个UE中每个UE的工作天线集合,即UE与基站进行交互时使用的一根或多根天线,也就是说,每个UE的工作天线集合包括K根天线,K根天线为上述M根天线的任意子集,M≥K≥1。
示例性的,以下本发明实施例提供3种确定UE的工作天线集合的方法。
方法1
以基站确定第一UE的工作天线集合为例,例如,此时该第一UE的工作天线集合为第一工作天线集合,由于在步骤102中,基站已经测量得到了第一UE分别到达M根天线的信道响应向量H1和RSRP向量R1。
其中,H1=[h1,1 h1,2 ... h1,M],R1=[r1,1 r1,2 ... r1,M]。
那么,在与第一UE对应的RSRP向量R1中,基站按照由大到小的顺序对该RSRP向量内的M个RSRP进行排序;进而,基站将排序在前的K个RSRP所对应的K根天线,作为第一UE的工作天线集合,即第一工作天线集合。
这样,重复上述步骤,基站便可以确定N个UE中每个UE的工作天线集合。
方法2
仍以基站确定第一UE的工作天线集合为例,例如,此时该第一UE的工作天线集合为第二工作天线集合,由于在步骤102中,基站已经测量得到了第一UE分别到达M根天线的信道响应向量H1和RSRP向量R1。
其中,H1=[h1,1 h1,2 ... h1,M],R1=[r1,1 r1,2 ... r1,M]。
此时,基站可以根据与第一UE对应的RSRP向量R1,计算第一UE与M根天线的隔离度。
其中,隔离度=第一UE到达K根天线的RSRP之和/第一UE到达剩余的M-K根天线的RSRP之和;例如,基站内包括10根天线,即M=10,此时,R1=[r1,1 r1,2 ... r1,10],可以计算隔离度=r1,1/(r1,2+r1,3+...+r1,10),若上述隔离度小于或等于预先设置的第一阈值,则在分子依次增加第一UE到达除第1根天线外的其他天线的RSRP,例如,在分子上增加r1,2,此时,隔离度=(r1,1+r1,2)/(r1,3+r1,4+...+r1,10),若此时得到的隔离度大于上述第一阈值,则基站将这K根天线,即天线1和天线2作为第一UE的工作天线集合,即第二工作天线集合。
这样,重复上述步骤,基站便可以确定N个UE中每个UE的工作天线集合。
方法3
仍以基站确定第一UE的工作天线集合为例,例如,此时该第一UE的工作天线集合为第三工作天线集合,由于在步骤102中,基站已经测量得到了第一UE分别到达M根天线的信道响应向量H1和RSRP向量R1。
其中,H1=[h1,1 h1,2 ... h1,M],R1=[r1,1 r1,2 ... r1,M]。
此时,基站从M根天线中确定一根为第一UE的目标天线,例如,将信道响应向量R1中最大RSRP所对应的天线作为目标天线,例如,h1,3为M个RSRP中的最大值,则将第3根天线确定为目标天线。
又或者,基站在执行步骤103之前,还可以提前获取每个UE分别到M根天线的SINR(Signal to Interference plus Noise Ratio,信号干扰噪声比),得到N组SINR向量,其中包括第一UE分别到M根天线的SINR向量S1,S1=[s1,1 s1,2 ... s1,M]。
这样,基站可以将SINR向量S1中最大SINR所对应的天线作为目标天线,例如,s1,3为M个SINR中的最大值,则将第3根天线确定为目标天线。
进而,基站计算第一UE到目标天线的RSRP,与第一UE到候选天线的RSRP之间的差值,其中,该候选天线为除目标天线外的M-1根天线中的任一个;即:上述差值=第一UE到目标天线的RSRP-第一UE到候选天线的RSRP。
若上述差值小于预先设置的第二阈值,则将候选天线作为第一UE的工作天线集合中的一根,直至得到第一UE的K根工作天线集合(即第三工作天线集合)为止。
这样,重复上述步骤,基站便可以确定N个UE中每个UE的工作天线集合。
方法4
该方法4可联合使用上述方法1-方法3中提供的确定第一UE的工作天线集合的方法,仍以基站确定第一UE的工作天线集合为例,此时,第一UE的工作天线集合为第四工作天线集合。
具体的,通过方法1-方法3,基站可以分别得到第一工作天线集合、第二工作天线集合和第三工作天线集合,那么,为确定第一UE的工作天线集 合,可以计算第一工作天线集合、第二工作天线集合和第三工作天线集合的交集,该交集即为第一UE的工作天线集合,即第四工作天线集合,该交集内包含的天线即为第一UE与基站交互时使用的天线。
当然,也可以通过方法1-方法2得到第一工作天线集合、第二工作天线集合,进而将第一工作天线集合和第二工作天线集合的交集,作为为第一UE的工作天线集合,即第四工作天线集合本。也就是说,该第四工作天线集合可以为上述第一工作天线集合、第二工作天线集合以及第三工作天线集合中任意两个或三个工作天线集合的交集,本发明实施例对此不作任何限制。
至此,通过上述方法1-方法4,基站可以确定N个UE中每个UE的工作天线集合,也就是说,后续每个UE与基站进行交互时,可以分别与自身工作天线集合中的天线进行SRS发送,从而实现在同码、同频以及同时的情况下SRS资源的空分复用。
进而,在步骤202中,基站根据上述N个工作天线集合,确定第一UE分别与N-1个UE之间的干扰度,得到N-1个干扰度。
具体的,基站可以根据第二干扰度公式,计算第一UE与N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度。
该第二干扰度公式为:
干扰度=第一工作天线集合与第二工作天线集合的交集中天线的根数/第一工作天线集合与第二工作天线集合的并集中天线的根数。
其中,第一工作天线集合为第一UE的工作天线集合,第二工作天线集合为N-1个UE中任一个UE的工作天线集合。
这样,基于上述第二干扰度公式,基站可以分别计算第一UE与N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度。
又或者,如图7所示,本发明实施例还提供一种基站执行步骤103,即根据N组信道信息确定第一UE与N-1个UE之间的N-1个干扰度的方法,此时,该信道信息至少包括RSRP向量,该方法具体包括:
301、对于N个UE中的每个UE,基站根据该UE与M根天线之间RSRP向量,确定该UE的工作天线集合,直至基站得到N个工作天线集合,其中,该工作天线集合包括K根天线,K根天线为上述M根天线的任意子集,M≥K≥1。
302、对于N个UE中的每个UE,基站根据该UE的工作天线集合,确定该UE与M根天线之间的修正信道响应向量,直至基站得到N组修正信道响应向量。
303、基站根据N组修正信道响应向量,确定第一UE与N-1个UE之间的干扰度,得到N-1个干扰度。
其中,步骤301中确定每个UE的工作天线集合的方法与步骤201相同,故此处不再赘述。
当基站得到N个UE分别对应的工作天线集合后,如步骤302所述,对于N个UE中的每个UE,基站根据该UE的工作天线集合,确定该UE与M 根天线之间的修正信道响应向量,直至基站得到N组修正信道响应向量。
此时,基站根据该UE的工作天线集合,确定该UE与M根天线之间的修正信道响应向量,具体可以分为两种应用场景,一种是步骤102中得到的信道信息包括信道响应向量,另一种是步骤102中得到的信道信息不包括信道响应向量。
当信道信息包括信道响应向量时,对于N个UE中的每个UE,基站根据该UE的工作天线集合,修改该UE分别与M根天线之间的信道响应向量,得到修正信道响应向量。
以第一UE与M根天线之间的信道响应向量H1为例,其中,H1=[h1,1 h1,2 ... h1,M],基站根据第一UE的工作天线集合,例如,该工作天线集合为:天线1-天线3、以及天线M(即K=4),将第一UE分别与M根天线中除该工作天线集合中的K根天线之外的M-K根天线之间的信道响应置0,即令h1,4至h1,M-1为0,得到修改后的第一UE的信道响应向量H1’,即修正信道响应向量,基于上述方法,基站可以得到每个UE的修正信道响应向量。
当信道信息不包括信道响应向量时,对于N个UE中的每个UE,基站根据该UE的工作天线集合,可以直接测量该UE与该UE的工作天线集合内的K根天线之间的信道响应,并将该UE与其余的M-K根天线之间的信道响应设置为0,得到该UE与M根天线之间的修正信道响应向量。
仍以第一UE的工作天线集合为:天线1-天线3、以及天线M(即K=4)为例,由于信道信息不包括信道响应向量,基站可以根据第一UE的工作天线集合,直接测量将第一UE分别与天线1-天线3、以及天线M之间的信道响应,并将第一UE分别与M-K根天线之间的信道响应置0,即令h1,4至h1,M-1为0,最终得到第一UE的修正信道响应向量H1’,同样,基于上述方法,基站可以得到每个UE的修正信道响应向量。
进而,在步骤303中,基站根据N组修正信道响应向量,确定第一UE分别与上述N-1个UE之间的N-1个干扰度。
与步骤103类似的,基站仍可以使用上述第一干扰度公式计算第一UE分别与上述N-1个UE之间的N-1个干扰度,不同的是,此时第一干扰度公式中使用的信道响应向量均为上述修正信道响应向量。
至此,通过步骤201-202或步骤301-303,基站可以计算出第一UE分别与上述N-1个UE之间的N-1个干扰度,以便于基站后续根据SRS资源占用率为第一UE分配SRS资源。
其中,当基站将与第一UE之间的干扰度较小的第二UE所占用的SRS资源分配给第一UE时,虽然第一UE与第二UE共享相同的SRS资源,但是,由于第二UE与第一UE是经过空分复用后干扰度较小的两个UE,因此,可在实现SRS资源空分复用的同时,解决了当SRS资源一定且不延长SRS的发送周期的条件下,如何为各个UE分配到可用的SRS资源的问题。
至此,本发明的实施例提供一种SRS资源分配方法,基站可以获取当前小区内的SRS资源占用率;进而,基站测量小区内N个UE中每个UE分别 到达基站的M根天线的信道信息,得到N组信道信息,其中,该信道信息用于指示待分配资源的第一UE(该第一UE为N个UE中的任一个)分别与M根天线之间的信道状态;这样,基站可以根据这N组信道信息确定第一UE分别与其余的N-1个UE之间的N-1个干扰度;那么,当SRS资源占用率大于第一门限时,基站可以根据这N-1个干扰度,将与第一UE之间的干扰度最低第二UE所占用的SRS资源分配给第一UE,可以看出,在SRS资源紧张的情况下,由于第一UE与第二UE之间的干扰度最低,因此,基站为第一UE与第二UE分配相同的SRS资源发送SRS时不会对彼此产生强烈的干扰,从而保证当SRS资源一定时为第一UE分配到SRS资源,且不延长SRS的发送周期,由于第一UE为N个UE中的任一个,因此,对小区内N个UE中的任意UE,都可以采用上述方法为各个UE分配到SRS资源,且不延长SRS的发送周期。
图8为本发明实施例提供的一种基站的结构示意图,本发明实施例提供的基站可以用于实施上述图2-图7所示的本发明各实施例实现的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图2-图7所示的本发明各实施例。
具体的,如图8所示,该基站包括测量单元31、确定单元32、以及分配单元33。
测量单元31,用于对于N个UE中的每个UE,测量该UE与所述基站的M根天线之间的信道状态,得到一组信道信息,直至所述基站得到N组信道信息,所述基站为小区内的所述N个UE提供服,N>1,M>1;
确定单元32,用于根据所述N组信道信息,确定待分配资源的第一UE与所述N个UE中除所述第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度;
分配单元33,用于根据所述N-1个干扰度,将第二UE占用的探测参考信号SRS资源分配给所述第一UE,所述第二UE为所述N-1个UE中与所述第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
进一步地,如图9所示,所述基站还包括获取单元34;其中,
所述获取单元34,还用于取所述小区内的SRS资源占用率;
所述分配单元33,具体用于若所述SRS资源占用率大于第一门限值,则根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE。
进一步地,所述确定单元32,具体用于对于待分配资源的第一UE,根据第一干扰度公式计算所述第一UE与所述N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度;
其中,当所述信道信息包括信道响应向量时,所述第一干扰度公式为:干扰度=(|H1*H2H|)/(|H1|*|H2|);H1为所述第一UE与所述M根天线之间的信道响应向量,H2为所述N-1个UE中的任意UE与所述M根天线之间的信道响应向量;当所述信道信息包括参考信号接收功率RSRP向量时,所述第一干扰度公式为:干扰度=(|R1*R2H|)/(|R1|*|R2|);R1为所述第一UE与所述M 根天线的RSRP向量,R2为所述N-1个UE中的任意UE与所述M根天线之间的RSRP向量。
进一步地,所述信道信息包括RSRP向量,所述确定单元32,具体用于:对于所述N个UE中的每个UE,根据该UE与所述M根天线之间RSRP向量,确定该UE的工作天线集合,直至所述基站得到N个工作天线集合,其中,所述工作天线集合包括K根天线,所述K根天线为所述M根天线的任意子集,M≥K≥1;根据所述N个工作天线集合,确定所述第一UE分别与所述N-1个UE之间的干扰度,得到N-1个干扰度。
进一步地,所述确定单元32,具体用于:根据第二干扰度公式计算所述第一UE与所述N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度;其中,所述第二干扰度公式为:干扰度=第一工作天线集合与第二工作天线集合的交集中天线的根数/第一工作天线集合与第二工作天线集合的并集中天线的根数;所述第一工作天线集合为所述第一UE的工作天线集合,所述第二工作天线集合为所述N-1个UE中任一个UE的工作天线集合。
进一步地,所述确定单元32,具体用于:对于所述N个UE中的每个UE,根据该UE的工作天线集合,确定该UE与所述M根天线之间的修正信道响应向量,直至所述基站得到N组修正信道响应向量;根据N组修正信道响应向量,确定所述第一UE与所述N-1个UE之间的干扰度,得到N-1个干扰度。
进一步地,所述确定单元32,具体用于:若所述信道信息包括信道响应向量,则将该UE与M-K根天线之间的信道响应置0,得到该UE与所述M根天线之间的修正信道响应向量,所述M-K根天线为所述M根天线中除该UE的工作天线集合内的K根天线之外的所有天线;若所述信道信息不包括信道响应向量,测量该UE与该UE的工作天线集合内的K根天线之间的信道响应,并将该UE与所述M-K根天线之间的信道响应设置为0,得到该UE与所述M根天线之间的修正信道响应向量。
进一步地,该UE的工作天线集合为第一工作天线集合;所述确定单元32,具体用于:按照由大到小的顺序,对该UE与所述M根天线之间的RSRP向量内的M个RSRP进行排序;将排序在前的K个RSRP所对应的K根天线,作为所述第一工作天线集合。
进一步地,该UE的工作天线集合为第二工作天线集合;所述确定单元32,具体用于:根据该UE与所述M根天线之间的RSRP向量,计算该UE与所述M根天线的隔离度,所述隔离度=该UE与K根天线之间的RSRP之和/该UE与剩余的M-K根天线之间的RSRP之和;若所述隔离度大于预先设置的第一阈值,则将所述K根天线作为所述第二工作天线集合。
进一步地,该UE的工作天线集合为第三工作天线集合;所述确定单元32,具体用于:从所述M根天线中确定一根为该UE的目标天线;计算该UE与所述目标天线之间的RSRP,与该UE与候选天线之间的RSRP的差值,所述候选天线为除所述目标天线外的M-1根天线中的任一个;若所述差值小于 预先设置的第二阈值,则将所述候选天线作为所述第三工作天线集合中的一根,直至得到所述第三工作天线集合为止。
进一步地,所述确定单元32,具体用于:择该UE与所述M根天线之间的RSRP向量中最大的RSRP所对应的天线作为所述目标天线。
进一步地,所述测量单元31,还用于对于所述N个UE中的每个UE,测量获取该UE分别与所述M根天线之间的信号干扰噪声比SINR,得到该UE的SINR向量;
此时,所述确定单元32,具体用于:选择该UE的SINR向量内最大的SINR所对应的天线作为所述目标天线。
进一步地,如图10所示,所述基站还包括:调整单元35,用于:若所述SRS资源占用率大于预设的第一占用率阈值,则将所述第一门限调整为第二门限,所述第二门限小于所述第一门限;若所述SRS资源占用率小于预设的第二占用率阈值,则将所述第一门限调整为第三门限,所述第三门限大于所述第一门限,所述第二占用率阈值小于所述第一占用率阈值。
上述测量单元31、确定单元32、分配单元33、获取单元34以及调整单元35均可以通过图4所示的处理器1101调用存储器1103中的指令实现。
至此,本发明的实施例提供一种基站,可以通过测量小区内N个UE中每个UE分别到达基站的M根天线的信道信息,得到N组信道信息,其中,该信道信息用于指示待分配资源的第一UE(该第一UE为N个UE中的任一个)分别与M根天线之间的信道状态;这样,基站可以根据这N组信道信息确定第一UE分别与其余的N-1个UE之间的N-1个干扰度;那么,当SRS资源占用率大于第一门限时,基站可以根据这N-1个干扰度,将与第一UE之间的干扰度最低第二UE所占用的SRS资源分配给第一UE,可以看出,在SRS资源紧张的情况下,由于第一UE与第二UE之间的干扰度最低,因此,基站为第一UE与第二UE分配相同的SRS资源发送SRS时不会对彼此产生强烈的干扰,从而保证当SRS资源一定时为第一UE分配到SRS资源,且不延长SRS的发送周期,由于第一UE为N个UE中的任一个,因此,对小区内N个UE中的任意UE,都可以采用上述方法为各个UE分配到SRS资源,且不延长SRS的发送周期。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到 另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种探测参考信号SRS资源分配方法,其特征在于,包括:
    对于N个UE中的每个UE,基站测量该UE与所述基站的M根天线之间的信道状态,得到一组信道信息,直至所述基站得到N组信道信息,所述基站为小区内的所述N个UE提供服,N>1,M>1;
    所述基站根据所述N组信道信息,确定待分配资源的第一UE与所述N个UE中除所述第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度;
    所述基站根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE,所述第二UE为所述N-1个UE中与所述第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
  2. 根据权利要求1所述的方法,其特征在于,在所述基站根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE之前,还包括:
    基站获取所述小区内的SRS资源占用率;
    其中,所述基站根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE,包括:
    若所述SRS资源占用率大于第一门限值,则所述基站根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基站根据所述N组信道信息确定所述第一UE与所述N个UE中除所述第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度,包括:
    对于待分配资源的第一UE,所述基站根据第一干扰度公式计算所述第一UE与所述N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度;
    其中,当所述信道信息包括信道响应向量时,所述第一干扰度公式为:干扰度=(|H1*H2H|)/(|H1|*|H2|);
    H1为所述第一UE与所述M根天线之间的信道响应向量,H2为所述N-1个UE中的任意UE与所述M根天线之间的信道响应向量;
    当所述信道信息包括参考信号接收功率RSRP向量时,所述第一干扰度公式为:干扰度=(|R1*R2H|)/(|R1|*|R2|);
    R1为所述第一UE与所述M根天线的RSRP向量,R2为所述N-1个UE中的任意UE与所述M根天线之间的RSRP向量。
  4. 根据权利要求1或2所述的方法,其特征在于,所述信道信息包括RSRP向量,
    其中,所述基站根据所述N组信道信息确定所述第一UE与所述N个UE中除所述第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度,包括:
    对于所述N个UE中的每个UE,所述基站根据该UE与所述M根天线之间RSRP向量,确定该UE的工作天线集合,直至所述基站得到N个工作天线集合,其中,所述工作天线集合包括K根天线,所述K根天线为所述M根天线的任意子集,M≥K≥1;
    所述基站根据所述N个工作天线集合,确定所述第一UE分别与所述N-1 个UE之间的干扰度,得到N-1个干扰度。
  5. 根据权利要求4所述的方法,其特征在于,所述基站根据所述N个工作天线集合,确定所述第一UE分别与所述N-1个UE之间的干扰度,得到N-1个干扰度,包括:
    所述基站根据第二干扰度公式计算所述第一UE与所述N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度;
    其中,所述第二干扰度公式为:干扰度=第一工作天线集合与第二工作天线集合的交集中天线的根数/第一工作天线集合与第二工作天线集合的并集中天线的根数;
    所述第一工作天线集合为所述第一UE的工作天线集合,所述第二工作天线集合为所述N-1个UE中任一个UE的工作天线集合。
  6. 根据权利要求4所述的方法,其特征在于,所述基站根据所述N个工作天线集合,确定所述第一UE分别与所述N-1个UE之间的干扰度,得到N-1个干扰度,包括:
    对于所述N个UE中的每个UE,所述基站根据该UE的工作天线集合,确定该UE与所述M根天线之间的修正信道响应向量,直至所述基站得到N组修正信道响应向量;
    所述基站根据N组修正信道响应向量,确定所述第一UE与所述N-1个UE之间的干扰度,得到N-1个干扰度。
  7. 根据权利要求6所述的方法,其特征在于,
    若所述信道信息包括信道响应向量,则所述基站根据该UE的工作天线集合,确定该UE与所述M根天线之间的修正信道响应向量,包括:
    所述基站将该UE与M-K根天线之间的信道响应置0,得到该UE与所述M根天线之间的修正信道响应向量,所述M-K根天线为所述M根天线中除该UE的工作天线集合内的K根天线之外的所有天线;
    若所述信道信息不包括信道响应向量,则所述基站根据该UE的工作天线集合,确定该UE与所述M根天线之间的修正信道响应向量,包括:
    所述基站测量该UE与该UE的工作天线集合内的K根天线之间的信道响应,并将该UE与所述M-K根天线之间的信道响应设置为0,得到该UE与所述M根天线之间的修正信道响应向量。
  8. 根据权利要求4-7中任一项所述的方法,其特征在于,该UE的工作天线集合为第一工作天线集合;
    其中,所述基站根据该UE与所述M根天线之间的RSRP向量,确定该UE的工作天线集合,包括:
    所述基站按照由大到小的顺序,对该UE与所述M根天线之间的RSRP向量内的M个RSRP进行排序;
    所述基站将排序在前的K个RSRP所对应的K根天线,作为所述第一工作天线集合。
  9. 根据权利要求4-7中任一项所述的方法,其特征在于,该UE的工作天 线集合为第二工作天线集合;
    其中,所述基站根据该UE与所述M根天线之间的RSRP向量,确定该UE的工作天线集合,包括:
    所述基站根据该UE与所述M根天线之间的RSRP向量,计算该UE与所述M根天线的隔离度,所述隔离度=该UE与K根天线之间的RSRP之和/该UE与剩余的M-K根天线之间的RSRP之和;
    若所述隔离度大于预先设置的第一阈值,则所述基站将所述K根天线作为所述第二工作天线集合。
  10. 根据权利要求4-7中任一项所述的方法,其特征在于,该UE的工作天线集合为第三工作天线集合;
    其中,所述基站根据该UE与所述M根天线之间的RSRP向量,确定该UE的工作天线集合,包括:
    所述基站从所述M根天线中确定一根为该UE的目标天线;
    所述基站计算该UE与所述目标天线之间的RSRP,与该UE与候选天线之间的RSRP的差值,所述候选天线为除所述目标天线外的M-1根天线中的任一个;
    若所述差值小于预先设置的第二阈值,则所述基站将所述候选天线作为所述第三工作天线集合中的一根,直至得到所述第三工作天线集合为止。
  11. 根据权利要求10所述的方法,其特征在于,所述基站从所述M根天线中确定一根为该UE的目标天线,包括:
    所述基站选择该UE与所述M根天线之间的RSRP向量中最大的RSRP所对应的天线作为所述目标天线。
  12. 根据权利要求10所述的方法,其特征在于,在所述基站根据所述N组信道信息确定所述第一UE与所述N个UE中除所述第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度之前,还包括:
    对于所述N个UE中的每个UE,所述基站测量获取该UE分别与所述M根天线之间的信号干扰噪声比SINR,得到该UE的SINR向量;
    其中,所述基站从所述M根天线中确定一根为该UE的目标天线,包括:
    所述基站选择该UE的SINR向量内最大的SINR所对应的天线作为所述目标天线。
  13. 根据权利要求7-12中任一项所述的方法,其特征在于,该UE的工作天线集合为第四工作天线集合,其中,所述第四工作天线集合为所述第一工作天线集合、所述第二工作天线集合以及所述第三工作天线集合中任意两个或三个工作天线集合的交集。
  14. 根据权利要求2-13中任一项所述的方法,其特征在于,在所述基站根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE之后,还包括:
    若所述SRS资源占用率大于预设的第一占用率阈值,则所述基站将所述第一门限调整为第二门限,所述第二门限小于所述第一门限;
    若所述SRS资源占用率小于预设的第二占用率阈值,则所述基站将所述第一门限调整为第三门限,所述第三门限大于所述第一门限,所述第二占用率阈值小于所述第一占用率阈值。
  15. 一种基站,其特征在于,包括:
    测量单元,用于对于N个UE中的每个UE,测量该UE与所述基站的M根天线之间的信道状态,得到一组信道信息,直至所述基站得到N组信道信息,所述基站为小区内的所述N个UE提供服,N>1,M>1;
    确定单元,用于根据所述N组信道信息,确定待分配资源的第一UE与所述N个UE中除所述第一UE外的N-1个UE之间的干扰度,得到N-1个干扰度;
    分配单元,用于根据所述N-1个干扰度,将第二UE占用的探测参考信号SRS资源分配给所述第一UE,所述第二UE为所述N-1个UE中与所述第一UE之间的干扰度小于干扰度阈值的UE中的任一个。
  16. 根据权利要求15所述的基站,其特征在于,所述基站还包括获取单元;其中,
    所述获取单元,还用于取所述小区内的SRS资源占用率;
    所述分配单元,具体用于若所述SRS资源占用率大于第一门限值,则根据所述N-1个干扰度,将第二UE占用的SRS资源分配给所述第一UE。
  17. 根据权利要求15或16所述的基站,其特征在于,
    所述确定单元,具体用于对于待分配资源的第一UE,根据第一干扰度公式计算所述第一UE与所述N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度;
    其中,当所述信道信息包括信道响应向量时,所述第一干扰度公式为:干扰度=(|H1*H2H|)/(|H1|*|H2|);H1为所述第一UE与所述M根天线之间的信道响应向量,H2为所述N-1个UE中的任意UE与所述M根天线之间的信道响应向量;当所述信道信息包括参考信号接收功率RSRP向量时,所述第一干扰度公式为:干扰度=(|R1*R2H|)/(|R1|*|R2|);R1为所述第一UE与所述M根天线的RSRP向量,R2为所述N-1个UE中的任意UE与所述M根天线之间的RSRP向量。
  18. 根据权利要求15或16所述的基站,其特征在于,所述信道信息包括RSRP向量,
    所述确定单元,具体用于:对于所述N个UE中的每个UE,根据该UE与所述M根天线之间RSRP向量,确定该UE的工作天线集合,直至所述基站得到N个工作天线集合,其中,所述工作天线集合包括K根天线,所述K根天线为所述M根天线的任意子集,M≥K≥1;根据所述N个工作天线集合,确定所述第一UE分别与所述N-1个UE之间的干扰度,得到N-1个干扰度。
  19. 根据权利要求18所述的基站,其特征在于,
    所述确定单元,具体用于:根据第二干扰度公式计算所述第一UE与所述N-1个UE中的每个UE之间的干扰度,得到N-1个干扰度;其中,所述第二干 扰度公式为:干扰度=第一工作天线集合与第二工作天线集合的交集中天线的根数/第一工作天线集合与第二工作天线集合的并集中天线的根数;所述第一工作天线集合为所述第一UE的工作天线集合,所述第二工作天线集合为所述N-1个UE中任一个UE的工作天线集合。
  20. 根据权利要求18所述的基站,其特征在于,
    所述确定单元,具体用于:对于所述N个UE中的每个UE,根据该UE的工作天线集合,确定该UE与所述M根天线之间的修正信道响应向量,直至所述基站得到N组修正信道响应向量;根据N组修正信道响应向量,确定所述第一UE与所述N-1个UE之间的干扰度,得到N-1个干扰度。
  21. 根据权利要求20所述的基站,其特征在于,
    所述确定单元,具体用于:若所述信道信息包括信道响应向量,则将该UE与M-K根天线之间的信道响应置0,得到该UE与所述M根天线之间的修正信道响应向量,所述M-K根天线为所述M根天线中除该UE的工作天线集合内的K根天线之外的所有天线;若所述信道信息不包括信道响应向量,测量该UE与该UE的工作天线集合内的K根天线之间的信道响应,并将该UE与所述M-K根天线之间的信道响应设置为0,得到该UE与所述M根天线之间的修正信道响应向量。
  22. 根据权利要求18-21中任一项所述的基站,其特征在于,该UE的工作天线集合为第一工作天线集合;
    所述确定单元,具体用于:按照由大到小的顺序,对该UE与所述M根天线之间的RSRP向量内的M个RSRP进行排序;将排序在前的K个RSRP所对应的K根天线,作为所述第一工作天线集合。
  23. 根据权利要求18-21中任一项所述的基站,其特征在于,该UE的工作天线集合为第二工作天线集合;
    所述确定单元,具体用于:根据该UE与所述M根天线之间的RSRP向量,计算该UE与所述M根天线的隔离度,所述隔离度=该UE与K根天线之间的RSRP之和/该UE与剩余的M-K根天线之间的RSRP之和;若所述隔离度大于预先设置的第一阈值,则将所述K根天线作为所述第二工作天线集合。
  24. 根据权利要求18-21中任一项所述的基站,其特征在于,该UE的工作天线集合为第三工作天线集合;
    所述确定单元,具体用于:从所述M根天线中确定一根为该UE的目标天线;计算该UE与所述目标天线之间的RSRP,与该UE与候选天线之间的RSRP的差值,所述候选天线为除所述目标天线外的M-1根天线中的任一个;若所述差值小于预先设置的第二阈值,则将所述候选天线作为所述第三工作天线集合中的一根,直至得到所述第三工作天线集合为止。
  25. 根据权利要求24所述的基站,其特征在于,
    所述确定单元,具体用于:择该UE与所述M根天线之间的RSRP向量中最大的RSRP所对应的天线作为所述目标天线。
  26. 根据权利要求24所述的基站,其特征在于,
    所述测量单元,还用于对于所述N个UE中的每个UE,测量获取该UE分别与所述M根天线之间的信号干扰噪声比SINR,得到该UE的SINR向量;
    所述确定单元,具体用于:选择该UE的SINR向量内最大的SINR所对应的天线作为所述目标天线。
  27. 根据权利要求16-26中任一项所述的基站,其特征在于,所述基站还包括:
    调整单元,用于:若所述SRS资源占用率大于预设的第一占用率阈值,则将所述第一门限调整为第二门限,所述第二门限小于所述第一门限;若所述SRS资源占用率小于预设的第二占用率阈值,则将所述第一门限调整为第三门限,所述第三门限大于所述第一门限,所述第二占用率阈值小于所述第一占用率阈值。
  28. 一种基站,其特征在于,包括:处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求1-14中任一项所述的探测参考信号SRS资源分配方法。
PCT/CN2017/072499 2016-03-29 2017-01-24 一种探测参考信号资源分配方法及装置 WO2017166919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610188166.X 2016-03-29
CN201610188166.XA CN107222928B (zh) 2016-03-29 2016-03-29 一种探测参考信号资源分配方法及装置

Publications (1)

Publication Number Publication Date
WO2017166919A1 true WO2017166919A1 (zh) 2017-10-05

Family

ID=59928100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072499 WO2017166919A1 (zh) 2016-03-29 2017-01-24 一种探测参考信号资源分配方法及装置

Country Status (2)

Country Link
CN (1) CN107222928B (zh)
WO (1) WO2017166919A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621813A (zh) * 2009-07-23 2010-01-06 北京航空航天大学 一种面向下行相干协作多点传输的上行信道估计方法
CN102036393A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 多小区信道信息的确定方法和设备
WO2012108643A2 (en) * 2011-02-09 2012-08-16 Pantech Co., Ltd. Apparatus and method for transmitting uplink signal in multiple component carrier system
WO2013042982A1 (en) * 2011-09-23 2013-03-28 Pantech Co., Ltd. Method and apparatus for transmitting and receiving reference signal
CN104737489A (zh) * 2012-10-24 2015-06-24 高通股份有限公司 用于lte-a中的mimo操作的增强型srs传输

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621813A (zh) * 2009-07-23 2010-01-06 北京航空航天大学 一种面向下行相干协作多点传输的上行信道估计方法
CN102036393A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 多小区信道信息的确定方法和设备
WO2012108643A2 (en) * 2011-02-09 2012-08-16 Pantech Co., Ltd. Apparatus and method for transmitting uplink signal in multiple component carrier system
WO2013042982A1 (en) * 2011-09-23 2013-03-28 Pantech Co., Ltd. Method and apparatus for transmitting and receiving reference signal
CN104737489A (zh) * 2012-10-24 2015-06-24 高通股份有限公司 用于lte-a中的mimo操作的增强型srs传输

Also Published As

Publication number Publication date
CN107222928B (zh) 2019-03-26
CN107222928A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
US11153055B2 (en) CSI-RS measurement method and indication method, network device, and terminal
JP7403459B2 (ja) 測定報告方法、端末装置及びネットワーク装置
JP6991221B2 (ja) リソース構成方法および装置
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US10615937B2 (en) Data transmission method, user equipment, and base station
CN108810932A (zh) 信道状态信息处理方法及其装置
US20190089420A1 (en) Method, system and apparatus of beam selection
JP6888880B2 (ja) 大規模なチャネルパラメータの指示方法、特定方法、基地局および端末
CN105900474B (zh) 一种资源配置的方法、用户设备及基站
WO2020063974A1 (zh) 功率指示方法及装置
US20220385384A1 (en) Enhancement of channel state information on multiple transmission/reception points
WO2021168806A1 (zh) 信道状态信息测量的方法和装置
CN107395332B (zh) 一种cqi确定方法、用户设备和基站
US11817929B2 (en) Channel state information measurement method and apparatus and network side device
JP2021530161A (ja) 通信方法及び通信機器
CN107113106A (zh) 一种共小区网络下的多天线传输方法及基站
JP7092897B2 (ja) 時間-周波数リソース割り当て方法および装置
US11206566B2 (en) Method for downlink signal transmission, terminal device and network device
WO2019024786A1 (zh) 通信方法和网络设备
WO2017166919A1 (zh) 一种探测参考信号资源分配方法及装置
CN112054831B (zh) 信道状态信息的反馈方法及装置
CN109474320B (zh) 一种资源分配、信道状态信息上报方法及装置
CN113950071A (zh) 一种通信方法及装置
CN115119282B (zh) Ue配对方法、装置及存储介质
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772950

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17772950

Country of ref document: EP

Kind code of ref document: A1