WO2017166852A1 - 2d与3d可切换的柱状透镜单元及其显示器 - Google Patents

2d与3d可切换的柱状透镜单元及其显示器 Download PDF

Info

Publication number
WO2017166852A1
WO2017166852A1 PCT/CN2016/108874 CN2016108874W WO2017166852A1 WO 2017166852 A1 WO2017166852 A1 WO 2017166852A1 CN 2016108874 W CN2016108874 W CN 2016108874W WO 2017166852 A1 WO2017166852 A1 WO 2017166852A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
lens unit
lenticular
lower electrode
lenticular lens
Prior art date
Application number
PCT/CN2016/108874
Other languages
English (en)
French (fr)
Inventor
丁清华
王煜
Original Assignee
张家港康得新光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610181542.2A external-priority patent/CN105676518A/zh
Priority claimed from CN201610181729.2A external-priority patent/CN105676471A/zh
Application filed by 张家港康得新光电材料有限公司 filed Critical 张家港康得新光电材料有限公司
Publication of WO2017166852A1 publication Critical patent/WO2017166852A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a 2D and 3D switchable lenticular lens unit and a display thereof, and a method of controlling a display for 2D and 3D switching.
  • the common 3D display on the market uses a PDLC cylindrical lens element.
  • the basic principle of 2D and 3D switching is to deflect the liquid crystal by an external driving voltage, thereby adjusting the optical refractive index of the lenticular lens element to realize 2D and 3D image switching display.
  • Patent CN200780007667.2 discloses a lens unit comprising a lens unit array having a birefringent electro-optic material (23). Wherein, the refractive index of the birefringent electro-optic material is switched by selective application of an electric field.
  • the optically transparent layer (21) has the same ordinary and extraordinary refractive indices as the electro-optic material (23).
  • a refractive index change occurs at a lenticular boundary between the optically transparent layer (21) and the electro-optic material (23).
  • Patent CN201410332212.X discloses a lenticular unit for switching 2D and 3D images, comprising an upper transparent substrate and an upper ITO electrode layer, a polymer plano-convex lens, a PDLC plano-concave lens, a lower ITO electrode layer and a lower transparent substrate,
  • the PDLC plano-concave lens consists of a plurality of liquid crystal droplets and a polymeric material.
  • the principle is that the optical refractive index of the DFD-PDLC lenticular lens element is changed by the external driving voltage V(f), and the 2D and 3D image switching display is realized on the screen of the image display.
  • Patent CN201510259371.6 discloses a 2D and 3D switchable display comprising a 2D screen and a 2D screen outer surface liquid crystal cell, the liquid crystal cell comprising an upper part and a lower part, the lower part being connected to the 2D screen, the upper part comprising the upper part a substrate, a lower surface of the upper substrate is coated with a first indium tin oxide conductive film, a first indium tin oxide conductive film has a lenticular film on the other side, a surface of the lenticular film has a first alignment film, and the lower portion includes a lower substrate, a second indium tin oxide conductive film is attached on the upper surface of the lower substrate, and a second alignment film is attached on the upper surface of the second indium tin oxide conductive film; the upper portion and the lower portion are connected together by a sealant; the first alignment film and the second layer The gap between the alignment films is filled with liquid crystal.
  • the principle is also that after the voltage is applied, the liquid crystal is in a standing state under the action of the voltage. At this time, the refractive index of the polarized light passing through the liquid crystal cell is smaller than the refractive index of the cylindrical mirror film, and therefore, the polarized light is deflected after exiting the liquid crystal cell. , to achieve the modulation of light, to achieve 3D display effect.
  • An object of the present invention is to provide an economical, environmentally-friendly, and efficient 2D and 3D switchable lenticular unit, which achieves the purpose of 2D and 3D image switching by transparent electrophoretic particles moving under the action of an electric field.
  • Another object of the present invention is to provide a 2D and 3D switchable display including the above-described lenticular unit.
  • Another object of the present invention is to provide a method of controlling 2D and 3D switching of the above display.
  • a 2D and 3D switchable lenticular lens unit comprising:
  • a lenticular film layer attached to a lower surface of the upper electrode layer
  • a gap between the cylindrical film layer and the lower electrode layer is filled with a liquid solvent in which transparent electrophoretic particles are dispersed;
  • the refractive index of the cylindrical lens layer is n 1
  • the refractive index of the liquid solvent is n 2
  • Another 2D and 3D switchable lenticular lens unit includes:
  • a lenticular film layer attached to a lower surface of the upper electrode layer; the lenticular film layer is provided with a lenticular lens.
  • a gap between the cylindrical film layer and the lower electrode layer is filled with a liquid solvent in which transparent electrophoretic particles are dispersed;
  • the refractive index of the cylindrical lens layer is n 1
  • the refractive index of the liquid solvent is n 2
  • a plurality of barrier spacers are disposed between the cylindrical mirror layer and the lower electrode layer for separating the transparent electrophoretic particles between the respective cells.
  • baffles are arranged in parallel along the extending direction or the arrangement direction of the lenticular lens.
  • baffle plates are vertically arranged in a grid shape along the extending direction and the arrangement direction of the lenticular lens.
  • both ends of the barrier plate are respectively connected to the upper surfaces of the cylindrical mirror layer and the lower electrode layer.
  • the height of the baffle plate is h
  • the height of the lenticule is h 1 , where h>h 1 .
  • the barrier spacer has a thickness of w
  • the cylindrical mirror has a width w 1 , wherein w 1 /100 ⁇ w ⁇ w 1 /10.
  • the arrangement direction of the cylindrical mirror is the X direction
  • the extension direction of the cylindrical mirror is the Y direction
  • the X direction and the Y direction are the same plane
  • the height direction of the cylinder mirror is the Z direction of the other plane
  • the height direction of the barrier plate and the column The height of the mirror is the same.
  • an external power source is further connected to the upper electrode layer and the lower electrode layer, and the transparent electrophoretic particles are driven by the electric field applied by the voltage V to achieve the purpose of switching between the 2D mode and the 3D mode.
  • the transparent electrophoretic particles migrate toward one side of the lenticular film layer until the recess between the lenticular film layers is filled, and the transparent electrophoretic particles and the lenticular film layer form a Plane layer
  • the transparent electrophoretic particles migrate toward the side of the lower electrode layer until deposition on the upper surface of the lower electrode layer.
  • the upper electrode layer and the lower electrode layer are transparent conductive layers.
  • the transparent electrophoretic particles are electrophoretic particles of a nanometer size.
  • the upper electrode layer and the lower electrode layer are connected together by a sealant, and the sealant can serve to connect the upper electrode layer and the lower electrode layer, and can also function to seal the liquid solvent.
  • a 2D and 3D switchable display comprising a lenticular lens unit as described above.
  • the voltage V applies a first electric field-driven transparent electrophoretic particle to migrate toward one side of the lenticular film layer until the recess between the lenticular film layers is filled, the transparent electrophoretic particle and the lenticule
  • the voltage V applies a second electric field to drive the transparent electrophoretic particles to migrate toward the side of the lower electrode layer until deposition on the upper surface of the lower electrode layer, the light passes through the lenticular film layer and the liquid solvent, due to n 1 ⁇ n 2 , the light will be deflected to achieve the modulation of light, this time is the 3D display state;
  • the first electric field and the second electric field are opposite to each other.
  • the upper electrode layer and the lower electrode layer are transparent conductive layers, and the transparent electrophoretic particles are nanometer-sized electrophoretic particles; the upper electrode layer and the lower electrode layer are connected together by a sealant.
  • the present invention provides a 2D and 3D switchable lenticular lens unit, a display thereof and a control method thereof, which have a simple structure, a non-toxic environment, and a liquid crystal conversion refractive index scheme compared with the prior art.
  • FIG. 1 is a schematic structural view of a lenticular lens unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of the lenticular lens unit shown in FIG. 1 in a 2D mode;
  • FIG. 3 is a schematic view showing the structure of the lenticular lens unit shown in FIG. 1 in a 3D mode;
  • FIG. 4 is a schematic structural view of a lenticular lens unit according to another embodiment of the present invention.
  • FIG. 5 is a schematic view showing the structure of the lenticular lens unit shown in FIG. 4 in a 2D mode;
  • FIG. 6 is a view showing the structure of the lenticular lens unit shown in FIG. 4 in a 3D mode
  • FIG. 7 is a schematic structural view of a lenticular film layer provided by still another embodiment of the present invention.
  • the liquid crystal display device provided by the prior art is not environmentally friendly and costly.
  • a 2D and 3D switchable columnar is provided.
  • the lenticular lens unit includes an upper electrode layer 1, a lower electrode layer 5, and a lenticular film layer 2, the lenticular film layer 2 is attached to the lower surface of the upper electrode layer 1, and the lenticular film layer 2
  • the gap between the lower electrode layer 5 and the lower electrode layer 5 is filled with a liquid solvent 3, and the liquid electrolyte 3 is dispersed with transparent electrophoretic particles 4;
  • the refractive index of the lenticular film layer 2 is n 1
  • the refractive index of the liquid solvent 3 is n 2 , transparent electrophoresis
  • the present application replaces the liquid crystal molecules of the prior art with the liquid solvent 3 and the transparent electrophoretic particles 4 to realize the switching between 2D and 3D. Since the liquid solvent 3 and the transparent electrophoretic particles 4 are relatively low in cost and non-toxic with respect to the liquid crystal molecules, the phase is Compared with the prior art, the liquid crystal conversion refractive index is used to realize 2D and 3D switching.
  • the lenticular lens unit of the present application has the advantages of simple structure, non-toxic environmental protection, and low manufacturing cost.
  • the upper electrode layer 1 and the lower electrode layer 5 are relatively parallel and spaced apart, and the surface of the lenticular film layer 2 having the lenticular lens 21 is a lenticular surface, and the lenticular surface is disposed toward the lower electrode layer 5. .
  • the lenticular lens unit further includes one or more barrier plates 7 spaced apart from the lenticular film layer 2 and the lower electrode layer 5.
  • the adjacent barrier plates 7 are formed between a plurality of cells, and a liquid solvent 3 and transparent electrophoretic particles 4 are distributed between the cells.
  • the transparent electrophoretic particles 4 are disposed in the respective cells by the barrier plates 7 provided, thereby restricting the movement of the electrophoretic particles in the entire space, thereby preventing the electrophoretic particles in the local regions from being dense and affecting the display effect.
  • the plurality of the baffle plates 7 are arranged in parallel, and the baffle plates 7 are arranged in parallel along the extending direction of the lenticular lens 21 or in parallel in the direction in which the lenticular mirrors 21 are arranged.
  • the baffle plate 7 of the present application may have another arrangement, that is, a plurality of baffles 7 are arranged, and the baffle plates 7 are vertically arranged along the extending direction and the arrangement direction of the lenticular mirror 21, and are formed in plurality.
  • a liquid solvent 3 and transparent electrophoretic particles 4 are distributed in each grid.
  • the both ends of the barrier ribs 7 are respectively connected to the lenticular surface of the lenticular film layer 2 and the upper surface of the lower electrode layer 5.
  • the height of the baffle plate 7 is h
  • the height of the lenticule 21 is h 1 , where h>h 1
  • the baffle plate 7 The height and the height of the lenticule 21 are both in a direction perpendicular to the lower surface of the upper electrode layer.
  • the technician can reduce the thickness of the baffle plate as much as possible, the thickness of the baffle plate 7 is w, and the width of the lenticule 21 is w 1 , where w 1 / 100 ⁇ w ⁇ w 1 /10, the width of the cylindrical mirror 21 is in the direction in which the cylindrical mirrors 21 are arranged.
  • the lenticular lens unit further includes an external power source electrically connected to the upper electrode layer 1 and the lower electrode layer 5, and the electric field is driven by the voltage V to drive the transparent
  • the electrophoretic particles 4 are migrated to achieve the purpose of switching between the 2D mode and the 3D mode.
  • the movement of the transparent particles is controlled by the above external power source.
  • the transparent electrophoretic particles 4 migrate toward the side of the lenticular film layer 2 until the lenticular lens of the cylindrical mirror layer 2 is filled. Between the depressions, the transparent electrophoretic particles 4 and the lenticular surface of the lenticular film layer 2 form a planar layer; as shown in FIGS. 3 and 6, in the 3D mode, the transparent electrophoretic particles 4 migrate to the side of the lower electrode layer 5 Until deposition on the upper surface of the lower electrode layer 5.
  • the upper electrode layer 1 and the lower electrode layer 5 are transparent conductive layers.
  • the transparent electrophoretic particles 4 are electrophoretic particles having a size of nanometers.
  • the transparent electrophoretic particles 4 which can be used in the present application include, but are not limited to, charged nanoparticles via a surface-modified organic or inorganic system, wherein the organic system may be nanoparticles such as acrylic resin, epoxy resin, polyester, etc., inorganic
  • the system can be a silica nanoparticle, and the liquid solvent that can be used in the present application is a commonly used electrophoresis buffer such as TAE buffer, TBE buffer, TPE buffer, and MOPS buffer.
  • the upper electrode layer 1 and the lower electrode layer 5 are joined together by a sealant 6.
  • the sealant 6 can function to connect the upper electrode layer 1 and the lower electrode layer 5, and can also function to seal the liquid solvent, thereby improving the sealing effect of the lenticular lens.
  • another exemplary embodiment of the present application also provides a 2D and 3D switchable display comprising the lenticular lens unit of any of the above configurations. Since the lenticular lens unit of the present application has the above advantages, the display also has the advantages of simple structure, non-toxic environmental protection, and low manufacturing cost.
  • Still another exemplary embodiment of the present application further provides a method of controlling a display for 2D and 3D switching, the display comprising the lenticular lens unit of any of the above, the method comprising: applying a first voltage V in a 2D mode
  • the electric field-driven transparent electrophoretic particles 4 migrate toward the side of the lenticular film layer 2 until the recess between the cylindrical mirrors of the cylindrical mirror layer 2 is filled, and the surface of the lenticular surface of the transparent electrophoretic particles 4 and the lenticular film layer 2 is formed integrally.
  • a 2D and 3D switchable lenticular lens unit comprising:
  • the sealant 6 can serve to connect the upper electrode layer 1 and the lower electrode layer 5, and can also function to seal the liquid solvent 3.
  • the refractive index of the cylindrical mirror layer 2 is n 1
  • the refractive index of the liquid solvent 3 is n 2
  • the utility model further comprises an external power source electrically connected to the upper electrode layer 1 and the lower electrode layer 5, and the transparent electrophoretic particles 4 are driven by an electric field applied by the voltage V to migrate, so as to switch between the 2D mode and the 3D mode.
  • the transparent electrophoretic particles 4 migrate toward the side of the lenticular film layer 2 until the filling is completed
  • the transparent electrophoretic particles 4 and the lenticular film layer 2 form a planar layer
  • the transparent electrophoretic particles 4 migrate toward the side of the lower electrode layer 5 until deposition on the upper surface of the lower electrode layer 5.
  • the upper electrode layer 1 and the lower electrode layer 5 are transparent ITO conductive layers.
  • the transparent electrophoretic particles 4 are nanometer-sized electrophoretic particles having a particle diameter of 20 nm.
  • a method of controlling a display to perform 2D and 3D switching comprising:
  • the voltage V applies a first electric field to drive the transparent electrophoretic particles 4 to migrate toward the side of the lenticular film layer 2 until the recess between the lenticular film layers 2 is filled.
  • the display state; the meaning of the first electric field is that the upper electrode layer 1 is a positive electrode, and the lower electrode layer 5 is a negative electrode.
  • the voltage V applies a second electric field to drive the transparent electrophoretic particles 4 to migrate toward the side of the lower electrode layer 5 until deposition on the upper surface of the lower electrode layer 5, and the light passes through the lenticule
  • the second electric field is that the upper electrode layer 1 is a negative electrode and the lower electrode layer 5 is a positive electrode.
  • a 2D and 3D switchable lenticular lens unit comprising:
  • the upper electrode layer 1 and the lower electrode layer 5 are connected together by a sealant 6; the lenticular film layer 2, the lenticular film layer 2 is provided with a lenticule 21, attached to the
  • the lower surface of the electrode layer 1 is provided with a lenticular lens 21 on the lenticular film layer 2; a gap between the lenticular film layer 2 and the lower electrode layer 5 is filled with a liquid solvent 3, which is dispersed in the liquid solvent 3.
  • the sealant 6 can serve to connect the upper electrode layer 1 and the lower electrode layer 5, and can also function to seal the liquid solvent 3.
  • the refractive index of the cylindrical mirror layer 2 is n 1
  • the refractive index of the liquid solvent 3 is n 2
  • a plurality of barrier ribs 7 are disposed between the lenticular film layer 2 and the lower electrode layer 5 for separating the transparent electrophoretic particles 4 between the respective cells.
  • barrier plates 7 are arranged in parallel along the extending direction or the arrangement direction of the cylindrical mirror 21.
  • the baffle plates 7 are vertically arranged in a grid shape along the extending direction and the arrangement direction of the lenticular lens 21.
  • both ends of the barrier plate 7 are respectively connected to the upper surfaces of the cylindrical mirror layer 2 and the lower electrode layer 5.
  • the arrangement direction of the lenticular lens is the X direction
  • the extension direction of the lenticular lens is the Y direction
  • the X direction and the Y direction are the same plane
  • the height direction of the lenticule is another plane.
  • the Z direction; the height direction of the baffle plate coincides with the height direction of the lenticule.
  • the utility model further comprises an external power source electrically connected to the upper electrode layer 1 and the lower electrode layer 5, and the transparent electrophoretic particles 4 are driven by an electric field applied by the voltage V to migrate, so as to switch between the 2D mode and the 3D mode.
  • the transparent electrophoretic particles 4 migrate toward the side of the lenticular film layer 2 until the filling is completed
  • the transparent electrophoretic particles 4 and the lenticular film layer 2 form a planar layer
  • the transparent electrophoretic particles 4 migrate toward the side of the lower electrode layer 5 until deposition on the upper surface of the lower electrode layer 5.
  • the upper electrode layer 1 and the lower electrode layer 5 are transparent ITO conductive layers.
  • the transparent electrophoretic particles 4 are nanometer-sized electrophoretic particles having a particle diameter of 20 nm.
  • a method of controlling a display to perform 2D and 3D switching comprising:
  • the voltage V applies a first electric field to drive the transparent electrophoretic particles 4 to migrate toward the side of the lenticular film layer 2 until the recess between the lenticular film layers 2 is filled.
  • the display state; the meaning of the first electric field is that the upper electrode layer 1 is a positive electrode, and the lower electrode layer 5 is a negative electrode.
  • the voltage V applies a second electric field to drive the transparent electrophoretic particles 4 to migrate toward the lower electrode layer 5 side until deposition on the upper surface of the lower electrode layer 5, and the light passes through the lenticule
  • the second electric field is that the upper electrode layer 1 is a negative electrode and the lower electrode layer 5 is a positive electrode.
  • the transparent electrophoretic particles 4 are separated by the barrier plate 7 in the respective cells, and can be mutually undisturbed during migration, and the deposition speed is fast, so that the conversion speed of the 2D mode and the 3D mode can be accelerated.

Abstract

2D与3D可切换的柱状透镜单元及其显示器以及控制方法,所述柱状透镜单元包括:上电极层(1)和下电极层(5),所述上电极层(1)和下电极层(5)通过框胶(6)连接在一起;柱镜膜层(2),附着于所述上电极层(1)的下表面,;所述柱镜膜层(2)与下电极层(5)之间的空隙灌注有液态溶剂(3),所述液态溶剂(3)中分散有透明电泳粒子(4)。相比于采用液晶变换折射率的方案,具有结构简单、无毒环保、制造成本较低的优点。

Description

2D与3D可切换的柱状透镜单元及其显示器 技术领域
本发明涉及显示技术领域,具体涉及一种2D与3D可切换的柱状透镜单元及其显示器,以及一种控制显示器进行2D和3D切换的方法。
背景技术
目前市场上常见的3D显示器采用的是PDLC柱状透镜元件,2D与3D切换的基本原理是利用外部驱动电压使液晶偏转,进而调控柱状透镜元件的光学折射率,来实现2D与3D影像切换显示。
专利CN200780007667.2揭示了一种透镜单元,包括具有双折射电光材料(23)的透镜单元阵列。其中,双折射电光材料的折射率通过电场的有选择施加来切换。在2D模式中,光学透明层(21)具有与电光材料(23)相同的寻常折射率和非常折射率。在3D模式中,光学透明层(21)与电光材料(23)之间的透镜状边界处出现折射率变化。
专利CN201410332212.X揭示了一种2D与3D影像切换的柱镜单元,包括上透明基材和上ITO电极层,聚合物平凸透镜,PDLC平凹透镜,下ITO电极层和下透明基材,所述PDLC平凹透镜由复数个液晶微滴与聚合物材料构成。原理是由外部驱动电压V(f)驱动改变DFD-PDLC柱状透镜元件的光学折射率,在影像显示器的屏幕上实现2D与3D影像切换显示。
专利CN201510259371.6揭示了一种2D与3D可切换的显示器,包括2D屏和2D屏外表面的液晶盒,所述的液晶盒包括上部和下部,下部与2D屏连接,所述的上部包括上基底,上基底下表面覆有第一氧化铟锡导电膜,第一氧化铟锡导电膜另一侧面上有柱镜膜,柱镜膜表面有第一配向膜;所述的下部包括下基底,下基底上表面附有第二氧化铟锡导电膜,第二氧化铟锡导电膜上表面附有第二配向膜;上部和下部通过框胶连接在一起;所述的第一配向膜和第二配向膜之间的空隙灌注液晶。其原理也是通过施加电压后,液晶在电压的作用下处于站直状态,这时偏振光经过液晶盒的折射率小于柱镜膜的折射率,因此,偏振光在出液晶盒后会产生偏折,实现对光的调制,达到3D显示效果。
但是由于液晶分子本身有毒,或多或少都会有部分残留在表面,不够环保,而且液晶价格较高,由此制备的显示装置成本较高,因此寻找一种既环保又经济的可替代液晶的3D显示方案成为急需解决的问题。
发明内容
本发明的一个目的提供一种经济、环保、高效的2D与3D可切换的柱镜单元,通过透明电泳粒子在电场作用下迁移达到2D与3D影像切换的目的。
本发明的另一目的,提供一种2D与3D可切换的含有上述柱镜单元的显示器,
本发明的另一目的,提供一种控制上述显示器进行2D和3D切换的方法。
为实现上述目的,本发明具体的技术方案为:
一种2D与3D可切换的柱状透镜单元,包括:
上电极层和下电极层;
柱镜膜层,附着于所述上电极层的下表面;
所述柱镜膜层与下电极层之间的空隙灌注有液态溶剂,所述液态溶剂中分散有透明电泳粒子;
所述柱镜膜层的折射率为n1,所述液态溶剂的折射率为n2,所述透明电泳粒子的折射率为n3,其中,n1=n3,n1≠n2
另一种2D与3D可切换的柱状透镜单元,包括:
上电极层和下电极层;
柱镜膜层,附着于所述上电极层的下表面;所述柱镜膜层设置有柱镜。
所述柱镜膜层与下电极层之间的空隙灌注有液态溶剂,所述液态溶剂中分散有透明电泳粒子;
所述柱镜膜层的折射率为n1,所述液态溶剂的折射率为n2,所述透明电泳粒子的折射率为n3,其中,n1=n3,n1≠n2
若干阻隔板,设置在所述柱镜膜层和所述下电极层之间,用于将所述透明电泳粒子分隔在各个小区间内。
进一步的,所述阻隔板沿所述柱镜的延伸方向或排列方向成平行排列。
进一步的,所述阻隔板沿所述柱镜的延伸方向和排列方向垂直交叉成栅格状排列。
进一步的,所述阻隔板两端分别连接于所述柱镜膜层和所述下电极层的上表面。
优选的,所述阻隔板的高度为h,所述柱镜的高度为h1,其中h>h1
优选的,所述阻隔板的厚度为w,所述柱镜的宽度为w1,其中w1/100≤w≤w1/10。
设柱镜的排列方向为X方向,柱镜的延伸方向为Y方向,X方向和Y方向为同一个平面,则柱镜的高度方向为另一个平面的Z方向;阻隔板的高度方向与柱镜的高度方向一致。
进一步的,还包括外部电源,电性连接至所述上电极层和下电极层,藉由电压V施加电场驱动所述透明电泳粒子进行迁移,达到切换2D模式与3D模式的目的。
进一步的,在2D模式中,透明电泳粒子向所述柱镜膜层一侧迁移,直至填平所述柱镜膜层之间的凹陷,所述透明电泳粒子和所述柱镜膜层形成一个平面层;
在3D模式中,透明电泳粒子向所述下电极层一侧迁移,直至沉积在所述下电极层的上表面。
进一步的,所述上电极层和下电极层为透明的导电层。
进一步的,所述透明电泳粒子为纳米级大小的电泳粒子。
进一步的,所述上电极层和下电极层通过框胶连接在一起,框胶既可以起到连接上电极层和下电极层,也可以起到密封液态溶剂的作用。
一种2D与3D可切换的显示器,包括如上所述的柱状透镜单元。
一种控制显示器进行2D和3D切换的方法,所述显示器包括上述的柱状透镜单元,该方法包括:
在2D模式下,电压V施加第一电场驱动透明电泳粒子向所述柱镜膜层一侧迁移,直至填平所述柱镜膜层之间的凹陷,所述透明电泳粒子和所述柱镜膜层形成一个整体的透明的平面层,由于n1=n3,光线不会产生偏折,此时为2D显示状态;
在3D模式下,电压V施加第二电场驱动透明电泳粒子向所述下电极层一侧迁移,直至沉积在所述下电极层的上表面,光线经过柱镜膜层和液态溶剂,由于n1≠n2,光线会产生偏折,实现对光的调制,此时为3D显示状态;
所述第一电场和第二电场的正负极相反。
进一步的,所述上电极层和下电极层为透明的导电层,所述透明电泳粒子为纳米级大小的电泳粒子;所述上电极层和下电极层通过框胶连接在一起。
应用本发明的技术方案,本发明提供的一种2D与3D可切换的柱状透镜单元及其显示器以及控制方法,相较于现有技术采用液晶变换折射率的方案,具有结构简单、无毒环保、制造成本较低的优点。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明一种实施例提供的柱状透镜单元的结构示意图;
图2示出了图1所示的柱状透镜单元在2D模式下的结构示意图;
图3示出了图1所示的柱状透镜单元在3D模式下的结构示意图;
图4示出了本发明另一种实施例提供的柱状透镜单元的结构示意图;
图5示出了图4所示的柱状透镜单元在2D模式下的结构示意图;
图6示出了图4所示的柱状透镜单元在3D模式下的结构示意图;以及
图7示出了本发明再一种实施例提供的柱镜膜层的结构示意图。
其中,上述附图包括以下附图标记:
1、上电极层,2、柱镜膜层,3、液态溶剂,4、透明电泳粒子,5、下电极层,6、框胶,21、柱镜。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如背景技术所记载的,现有技术的提供的液晶显示装置不够环保且成本较高,为了解决该问题,在本申请一种典型的实施方式中,提供了一种2D与3D可切换的柱状透镜单元,如图1所示,该柱状透镜单元包括上电极层1、下电极层5和柱镜膜层2,柱镜膜层2附着于上电极层1的下表面;柱镜膜层2与下电极层5之间的空隙灌注有液态溶剂3,液态溶剂3中分散有透明电泳粒子4;柱镜膜层2的折射率为n1,液态溶剂3的折射率为n2,透明电泳粒子4的折射率为n3,其中,n1=n3,n1≠n2
本申请以液态溶剂3和透明电泳粒子4替代现有技术的液晶分子,实现2D和3D之间的切换,由于液态溶剂3和透明电泳粒子4相对于液晶分子成本较低且无毒,因此相较于现有技术采用液晶变换折射率实现2D与3D切换的方案,本申请的柱状透镜单元具有结构简单、无毒环保、制造成本较低的优点。
如图1至图6所示,优选上电极层1和下电极层5相对平行且间隔设置,柱镜膜层2具有柱镜21的表面为柱镜表面,柱镜表面朝向下电极层5设置。
在本申请另一种优选的实施例中,优选如图4所示,上述柱状透镜单元还包括一个或多个阻隔板7,阻隔板7间隔设置在柱镜膜层2和下电极层5之间且相邻阻隔板7形成多个小区间,各小区间内分布有液态溶剂3和透明电泳粒子4。利用所设置的阻隔板7将透明电泳粒子4分隔设置在各个小区间内,进而限制电泳粒子于整个空间内移动,防止局部区域电泳粒子较为密集而影响显示效果。
进一步地,优选上述阻隔板7为多个,阻隔板7沿柱镜21的延伸方向平行排列或沿柱镜21的排列方向平行排列。
除了上述的设置方式,本申请的阻隔板7还可以具有另外一种设置方式,即阻隔板7为多个,阻隔板7沿柱镜21的延伸方向和排列方向垂直交叉排列,并形成多个栅格,各栅格内分布有液态溶剂3和透明电泳粒子4。
为了利用阻隔板7实现更好地的阻隔作用,优选如图5和6所示,上述阻隔板7两端分别连接于柱镜膜层2的柱镜表面和下电极层5的上表面。
此外,为了阻隔板能有效限定电泳粒子活动范围,优选如图4至6所示,上述阻隔板7的高度为h,柱镜21的高度为h1,其中h>h1,阻隔板7的高度与柱镜21的高度所在方向均为与上电极层的下表面垂直的方向。
进一步地,为了减小阻隔板对3D状态下左右眼光线的干扰,技术人员可以尽可能减小阻隔板的厚度,上述阻隔板7的厚度为w,柱镜21的宽度为w1,其中w1/100≤w≤w1/10,柱镜21的宽度所在方向为柱镜21的排列方向。
为了更好地控制柱状透镜单元在2D和3D之间转换,优选上述柱状透镜单元还包括外部电源,该外部电源电性连接至上电极层1和下电极层5,藉由电压V施加电场驱动透明电泳粒子4进行迁移,达到切换2D模式与3D模式的目的。
利用上述外部电源,控制透明粒子的运动,如图2和图5所示,在2D模式中,透明电泳粒子4向柱镜膜层2一侧迁移,直至填平柱镜膜层2的柱镜之间的凹陷,透明电泳粒子4和柱镜膜层2的柱镜表面形成一个平面层;如图3和图6所示,在3D模式中,透明电泳粒子4向下电极层5一侧迁移,直至沉积在下电极层5的上表面。
另外,为了更好地使用显示设备的要求,优选上述上电极层1和下电极层5为透明的导电层。
进一步地,为了使透明电泳粒子4在外部电源作用下更灵敏地运动,优选上述透明电泳粒子4为纳米级大小的电泳粒子。可用于本申请的透明电泳粒子4包括但不限于经由表面修饰的有机物体系或无机物体系即可得带电性纳米粒子,其中有机物体系可以为丙烯酸树脂、环氧树脂、聚酯等纳米粒子,无机物体系可以为二氧化硅纳米粒子,可用于本申请的液态溶剂为常用的电泳缓冲液,例如TAE缓冲液、TBE缓冲液、TPE缓冲液和MOPS缓冲液。
在本申请另一种优选的实施例中,如图1至6所示,上述上电极层1和下电极层5通过框胶6连接在一起。框胶6既可以起到连接上电极层1和下电极层5的作用,也可以起到密封液态溶剂的作用,进而提高柱状透镜的密封效果。
此外,本申请的另一种典型的实施方式还提供了一种2D与3D可切换的显示器,该显示器包括上述任一种结构的柱状透镜单元。由于本申请的柱状透镜单元具有上述优势,因此该显示器也具有结构简单、无毒环保、制造成本较低的优点。
本申请再一种典型的实施方式还提供了一种控制显示器进行2D和3D切换的方法,该显示器包括上述任一种的柱状透镜单元,该方法包括:在2D模式下,电压V施加第一电场驱动 透明电泳粒子4向柱镜膜层2一侧迁移,直至填平柱镜膜层2的柱镜之间的凹陷,透明电泳粒子4和柱镜膜层2的柱镜表面形成一个整体的透明的平面层,由于n1=n3,光线不会产生偏折,此时为2D显示状态;在3D模式下,电压V施加第二电场驱动透明电泳粒子4向下电极层5一侧迁移,直至沉积在下电极层5的上表面,光线经过柱镜膜层2和液态溶剂3,由于n1≠n2,光线会产生偏折,实现对光的调制,此时为3D显示状态;第一电场和第二电场的正负极相反。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例
如图1所示:一种2D与3D可切换的柱状透镜单元,包括:
上电极层1和下电极层5,所述上电极层1和下电极层5通过框胶6连接在一起;柱镜膜层2,附着于所述上电极层1的下表面;所述柱镜膜层2与下电极层5之间的空隙灌注有液态溶剂3,所述液态溶剂3中分散有透明电泳粒子4;
框胶6既可以起到连接上电极层1和下电极层5,也可以起到密封液态溶剂3的作用。
所述柱镜膜层2的折射率为n1,所述液态溶剂3的折射率为n2,所述透明电泳粒子4的折射率为n3,其中,n1=n3,n1≠n2
还包括外部电源,电性连接至所述上电极层1和下电极层5,藉由电压V施加电场驱动所述透明电泳粒子4进行迁移,达到切换2D模式与3D模式的目的。
在2D模式中,透明电泳粒子4向所述柱镜膜层2一侧迁移,直至填平所述
柱镜膜层2之间的凹陷,所述透明电泳粒子4和所述柱镜膜层2形成一个平面层;
在3D模式中,透明电泳粒子4向所述下电极层5一侧迁移,直至沉积在所述下电极层5的上表面。
优选的,所述上电极层1和下电极层5为透明的ITO导电层。
优选的,所述透明电泳粒子4为纳米级大小的电泳粒子,粒径为20nm。
实施例中控制显示器进行2D和3D切换的方法,所述显示器包括上述的柱状透镜单元,该方法包括:
如图2所示:在2D模式下,电压V施加第一电场驱动透明电泳粒子4向所述柱镜膜层2一侧迁移,直至填平所述柱镜膜层2之间的凹陷,所述透明电泳粒子4和所述柱镜膜层2形成一个整体的透明的平面层,由于n1=n3,光线经过一个整体为平面的柱镜单元时不会产生偏折,此时为2D显示状态;第一电场的含义为上电极层1为正极,下电极层5为负极。
如图3所示:在3D模式下,电压V施加第二电场驱动透明电泳粒子4向所述下电极层5一侧迁移,直至沉积在所述下电极层5的上表面,光线经过柱镜膜层2和液态溶剂3时,由于n1≠n2,光线会产生偏折,实现对光的调制,此时为3D显示状态。第二电场的含义为上电极层1为负极,下电极层5为正极。
实施例
如图4~图7所示:一种2D与3D可切换的柱状透镜单元,包括:
上电极层1和下电极层5,所述上电极层1和下电极层5通过框胶6连接在一起;柱镜膜层2,柱镜膜层2上设有柱镜21,附着于所述上电极层1的下表面,柱镜膜层2上设有柱镜21;所述柱镜膜层2与下电极层5之间的空隙灌注有液态溶剂3,所述液态溶剂3中分散有透明电泳粒子4;
框胶6既可以起到连接上电极层1和下电极层5,也可以起到密封液态溶剂3的作用。
所述柱镜膜层2的折射率为n1,所述液态溶剂3的折射率为n2,所述透明电泳粒子4的折射率为n3,其中,n1=n3,n1≠n2
若干阻隔板7,设置在所述柱镜膜层2和所述下电极层5之间,用于将所述透明电泳粒子4分隔在各个小区间内。
进一步的,所述阻隔板7沿所述柱镜21的延伸方向或排列方向成平行排列。
在本发明另一优选实施例中,所述阻隔板7沿所述柱镜21的延伸方向和排列方向垂直交叉成栅格状排列。
进一步的,所述阻隔板7两端分别连接于所述柱镜膜层2和所述下电极层5的上表面。
优选的,所述柱镜21的高度h1=30μm,宽度w1=100μm,所述阻隔板7的高度为h=40μm,所述阻隔板7的厚度为w=1μm。
在本发明另一优选实施例中,所述柱镜21的高度h1=50μm,宽度w1=100μm,所述阻隔板7的高度为h=80μm,所述阻隔板7的厚度为w=10μm。
在本发明另一优选实施例中,所述柱镜21的高度h1=50μm,宽度w1=100μm,所述阻隔板7的高度为h=100μm,所述阻隔板7的厚度为w=50μm。
如图7所示:上述各实施例中,柱镜的排列方向为X方向,柱镜的延伸方向为Y方向,X方向和Y方向为同一个平面,则柱镜的高度方向为另一个平面的Z方向;阻隔板的高度方向与柱镜的高度方向一致。
还包括外部电源,电性连接至所述上电极层1和下电极层5,藉由电压V施加电场驱动所述透明电泳粒子4进行迁移,达到切换2D模式与3D模式的目的。
在2D模式中,透明电泳粒子4向所述柱镜膜层2一侧迁移,直至填平所述
柱镜膜层2之间的凹陷,所述透明电泳粒子4和所述柱镜膜层2形成一个平面层;
在3D模式中,透明电泳粒子4向所述下电极层5一侧迁移,直至沉积在所述下电极层5的上表面。
优选的,所述上电极层1和下电极层5为透明的ITO导电层。
优选的,所述透明电泳粒子4为纳米级大小的电泳粒子,粒径为20nm。
实施例中控制显示器进行2D和3D切换的方法,所述显示器包括上述的柱状透镜单元,该方法包括:
如图5所示:在2D模式下,电压V施加第一电场驱动透明电泳粒子4向所述柱镜膜层2一侧迁移,直至填平所述柱镜膜层2之间的凹陷,所述透明电泳粒子4和所述柱镜膜层2形成一个整体的透明的平面层,由于n1=n3,光线经过一个整体为平面的柱镜单元时不会产生偏折,此时为2D显示状态;第一电场的含义为上电极层1为正极,下电极层5为负极。
如图6所示:在3D模式下,电压V施加第二电场驱动透明电泳粒子4向所述下电极层5一侧迁移,直至沉积在所述下电极层5的上表面,光线经过柱镜膜层2和液态溶剂3时,由于n1≠n2,光线会产生偏折,实现对光的调制,此时为3D显示状态。第二电场的含义为上电极层1为负极,下电极层5为正极。
透明电泳粒子4被阻隔板7分隔在各自的小区间内,在迁移的时候可以互相不受干扰,沉积速度快,从而可以加快2D模式和3D模式的转换速度。
以上所述仅为发明的较佳实施例,并不限制本发明,凡在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围之内。
企图据以对本发明作任何形式上之限制,是以,凡有在相同之发明精神下所作有关本发明之任何修饰或变更,皆仍应包括在本发明意图保护之范畴。

Claims (17)

  1. 一种2D与3D可切换的柱状透镜单元,其特征在于,包括:
    上电极层(1)和下电极层(5);
    柱镜膜层(2),附着于所述上电极层(1)的下表面;
    所述柱镜膜层(2)与下电极层(5)之间的空隙灌注有液态溶剂(3),所述液态溶剂(3)中分散有透明电泳粒子(4);
    所述柱镜膜层(2)的折射率为n1,所述液态溶剂(3)的折射率为n2,所述透明电泳粒子(4)的折射率为n3,其中,n1=n3,n1≠n2
  2. 根据权利要求1所述的柱状透镜单元,其特征在于,所述上电极层(1)和下电极层(5)相对平行且间隔设置,所述柱镜膜层(2)具有柱镜(21)的表面为柱镜表面,所述柱镜表面朝向所述下电极层(5)设置。
  3. 根据权利要求2所述的柱状透镜单元,其特征在于,所述柱状透镜单元还包括一个或多个阻隔板(7),所述阻隔板(7)间隔设置在所述柱镜膜层(2)和所述下电极层(5)之间且相邻所述阻隔板(7)形成多个小区间,各所述小区间内分布有所述液态溶剂(3)和所述透明电泳粒子(4)。
  4. 根据权利要求3所述的柱状透镜单元,其特征在于,所述阻隔板(7)为多个,所述阻隔板(7)沿所述柱镜(21)的延伸方向平行排列或沿所述柱镜(21)的排列方向平行排列。
  5. 根据权利要求3所述的柱状透镜单元,其特征在于,所述阻隔板(7)为多个,所述阻隔板(7)沿所述柱镜(21)的延伸方向和排列方向垂直交叉排列,并形成多个栅格,各所述栅格内分布有所述液态溶剂(3)和所述透明电泳粒子(4)。
  6. 根据权利要求3所述的柱状透镜单元,其特征在于,所述阻隔板(7)两端分别连接于所述柱镜膜层(2)的柱镜表面和所述下电极层(5)的上表面。
  7. 根据权利要求3所述的柱状透镜单元,其特征在于,所述阻隔板(7)的高度为h,所述柱镜(21)的高度为h1,其中h>h1,所述阻隔板(7)的高度与所述柱镜(21)的高度所在方向均为与所述上电极层的下表面垂直的方向。
  8. 根据权利要求3所述的柱状透镜单元,其特征在于,所述阻隔板(7)的厚度为w,所述柱镜(21)的宽度为w1,其中w1/100≤w≤w1/10,所述柱镜(21)的宽度所在方向为所述柱镜(21)的排列方向。
  9. 根据权利要求1所述的柱状透镜单元,其特征在于,所述柱状透镜单元还包括外部电源,电性连接至所述上电极层(1)和下电极层(5),藉由电压V施加电场驱动所述透明电泳粒子(4)进行迁移,达到切换2D模式与3D模式的目的。
  10. 根据权利要求9所述的柱状透镜单元,其特征在于,
    在2D模式中,透明电泳粒子(4)向所述柱镜膜层(2)一侧迁移,直至填平所述柱镜膜层(2)的柱镜之间的凹陷,所述透明电泳粒子(4)和所述柱镜膜层(2)的柱镜表面形成一个平面层;
    在3D模式中,透明电泳粒子(4)向所述下电极层(5)一侧迁移,直至沉积在所述下电极层(5)的上表面。
  11. 根据权利要求1所述的2D与3D可切换的柱状透镜单元,其特征在于,
    所述上电极层(1)和下电极层(5)为透明的导电层。
  12. 根据权利要求1所述的2D与3D可切换的柱状透镜单元,其特征在于,
    所述透明电泳粒子(4)为纳米级大小的电泳粒子。
  13. 根据权利要求1所述的2D与3D可切换的柱状透镜单元,其特征在于,所述上电极层(1)和下电极层(5)通过框胶(6)连接在一起。
  14. 一种2D与3D可切换的显示器,其特征在于,包括权利要求1~13任一项所述的柱状透镜单元。
  15. 一种控制显示器进行2D和3D切换的方法,其特征在于,所述显示器包括权利要求1至13中任一项所述的柱状透镜单元,该方法包括:
    在2D模式下,电压V施加第一电场驱动透明电泳粒子(4)向所述柱镜膜层(2)一侧迁移,直至填平所述柱镜膜层(2)的柱镜之间的凹陷,所述透明电泳粒子(4)和所述柱镜膜层(2)的柱镜表面形成一个整体的透明的平面层,由于n1=n3,光线不会产生偏折,此时为2D显示状态;
    在3D模式下,电压V施加第二电场驱动透明电泳粒子(4)向所述下电极层(5)一侧迁移,直至沉积在所述下电极层(5)的上表面,光线经过柱镜膜层(2)和液态溶剂(3),由于n1≠n2,光线会产生偏折,实现对光的调制,此时为3D显示状态;
    所述第一电场和第二电场的正负极相反。
  16. 根据权利要求15所述控制显示器进行2D和3D切换的方法,其特征在于,所述上电极层(1)和下电极层(5)为透明的导电层,所述透明电泳粒子(4)为纳米级大小的电泳粒子。
  17. 根据权利要求15所述控制显示器进行2D和3D切换的方法,所述上电极层(1)和下电极层(5)通过框胶(6)连接在一起。
PCT/CN2016/108874 2016-03-28 2016-12-07 2d与3d可切换的柱状透镜单元及其显示器 WO2017166852A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610181542.2A CN105676518A (zh) 2016-03-28 2016-03-28 2d与3d可切换的柱状透镜单元及其显示器
CN201610181542.2 2016-03-28
CN201610181729.2 2016-03-28
CN201610181729.2A CN105676471A (zh) 2016-03-28 2016-03-28 2d与3d可切换的柱状透镜单元及其显示器

Publications (1)

Publication Number Publication Date
WO2017166852A1 true WO2017166852A1 (zh) 2017-10-05

Family

ID=59963420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108874 WO2017166852A1 (zh) 2016-03-28 2016-12-07 2d与3d可切换的柱状透镜单元及其显示器

Country Status (1)

Country Link
WO (1) WO2017166852A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187753A1 (ja) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 光学デバイス
CN114356273A (zh) * 2021-12-30 2022-04-15 纵深视觉科技(南京)有限责任公司 一种独立驱动位置确定方法、装置、存储介质及电子设备
WO2022118726A1 (ja) * 2020-12-01 2022-06-09 哲也 榑林 電磁波変調素子、空間電磁波変調器及び空間電磁波変調システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540616A (zh) * 2010-12-31 2012-07-04 瀚宇彩晶股份有限公司 显示装置
JP2013015613A (ja) * 2011-07-01 2013-01-24 Sony Corp レンズモジュールおよび表示装置
CN105676518A (zh) * 2016-03-28 2016-06-15 张家港康得新光电材料有限公司 2d与3d可切换的柱状透镜单元及其显示器
CN105676471A (zh) * 2016-03-28 2016-06-15 张家港康得新光电材料有限公司 2d与3d可切换的柱状透镜单元及其显示器
CN205608309U (zh) * 2016-03-28 2016-09-28 张家港康得新光电材料有限公司 一种2d与3d可切换的柱状透镜单元及其显示器
CN205608345U (zh) * 2016-03-28 2016-09-28 张家港康得新光电材料有限公司 一种2d与3d可切换的柱状透镜单元及其显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540616A (zh) * 2010-12-31 2012-07-04 瀚宇彩晶股份有限公司 显示装置
JP2013015613A (ja) * 2011-07-01 2013-01-24 Sony Corp レンズモジュールおよび表示装置
CN105676518A (zh) * 2016-03-28 2016-06-15 张家港康得新光电材料有限公司 2d与3d可切换的柱状透镜单元及其显示器
CN105676471A (zh) * 2016-03-28 2016-06-15 张家港康得新光电材料有限公司 2d与3d可切换的柱状透镜单元及其显示器
CN205608309U (zh) * 2016-03-28 2016-09-28 张家港康得新光电材料有限公司 一种2d与3d可切换的柱状透镜单元及其显示器
CN205608345U (zh) * 2016-03-28 2016-09-28 张家港康得新光电材料有限公司 一种2d与3d可切换的柱状透镜单元及其显示器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187753A1 (ja) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 光学デバイス
WO2022118726A1 (ja) * 2020-12-01 2022-06-09 哲也 榑林 電磁波変調素子、空間電磁波変調器及び空間電磁波変調システム
CN114356273A (zh) * 2021-12-30 2022-04-15 纵深视觉科技(南京)有限责任公司 一种独立驱动位置确定方法、装置、存储介质及电子设备
CN114356273B (zh) * 2021-12-30 2023-10-17 纵深视觉科技(南京)有限责任公司 一种独立驱动位置确定方法、装置、存储介质及电子设备

Similar Documents

Publication Publication Date Title
JP5390136B2 (ja) 電気泳動表示素子およびその駆動方法
US8089686B2 (en) Electronic display device providing static grayscale image
US9217906B2 (en) In-plane electro-optical display
JP5516616B2 (ja) 懸濁粒子装置及びこれを用いた調光装置並びにその駆動方法
WO2017166852A1 (zh) 2d与3d可切换的柱状透镜单元及其显示器
WO2010110820A1 (en) In-plane electro-optical display
JP2007219526A5 (zh)
JP2011142065A5 (zh)
JP2011119210A5 (zh)
US20070268446A1 (en) Liquid crystal device and method for forming the same
CN105676518A (zh) 2d与3d可切换的柱状透镜单元及其显示器
KR101672392B1 (ko) 광결정 표시 장치
JP2015038535A (ja) 液晶光学素子及び画像表示装置
CN105676471A (zh) 2d与3d可切换的柱状透镜单元及其显示器
CN103913879A (zh) 液晶透镜、立体显示装置和该液晶透镜的形成方法
CN203858434U (zh) 液晶透镜、立体显示装置
CN205608345U (zh) 一种2d与3d可切换的柱状透镜单元及其显示器
CN205608309U (zh) 一种2d与3d可切换的柱状透镜单元及其显示器
WO2023273721A1 (zh) 一种光调制模组及可切换式立体显示装置
CN107924096B (zh) 制造光学装置的方法
CN204009310U (zh) 3d分光器及立体显示装置
JP5054958B2 (ja) 表示装置
WO2022267545A1 (zh) 可切换液晶光学器件
JP5320986B2 (ja) 光透過調整装置
JP2013222021A (ja) 電気泳動表示装置及び電子機器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896620

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896620

Country of ref document: EP

Kind code of ref document: A1