WO2017166342A1 - 一种盾构搭载的非接触式频域电法实时超前探测系统与方法 - Google Patents

一种盾构搭载的非接触式频域电法实时超前探测系统与方法 Download PDF

Info

Publication number
WO2017166342A1
WO2017166342A1 PCT/CN2016/079826 CN2016079826W WO2017166342A1 WO 2017166342 A1 WO2017166342 A1 WO 2017166342A1 CN 2016079826 W CN2016079826 W CN 2016079826W WO 2017166342 A1 WO2017166342 A1 WO 2017166342A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
contact
power supply
shield
cutter head
Prior art date
Application number
PCT/CN2016/079826
Other languages
English (en)
French (fr)
Inventor
李术才
聂利超
刘斌
刘海东
任玉晓
宋杰
刘征宇
郭谦
王传武
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to DE112016000078.2T priority Critical patent/DE112016000078B4/de
Priority to US15/323,284 priority patent/US10260345B2/en
Publication of WO2017166342A1 publication Critical patent/WO2017166342A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/06Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using ac
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • E21D9/004Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines using light beams for direction or position control
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0621Shield advancing devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0692Cutter drive shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
    • G08C15/10Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division the signals being represented by frequencies or phase of current or voltage in transmission link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared

Definitions

  • the invention relates to a non-contact frequency domain electrical real-time advanced detection system and method carried by a shield.
  • the earth pressure balance shield construction belongs to the construction of full-face tunnel boring machine, which is mainly used for the construction of urban underground soft soil layer. Due to shallow burial depth and severe changes in geological units, the unfavorable geological conditions are more complicated. At the same time, the city's ground buildings are dense, and it is difficult to comprehensively check the unfavorable geological conditions along the route. In the process of excavation, once encountering unfavorable geological bodies such as rich water flow sand layer, water-containing dissolution cavity and boulder, it often leads to engineering accidents such as landslide, inrush water and surface settlement, which may cause mechanical damage of the shield, delay the construction period, and heavy This caused the formation to collapse, leading to major safety incidents.
  • the BEAM method is a kind of tunnel boring machine advanced detection technology developed in Germany. It uses the shield and the cutter as the power supply electrode and the measuring electrode for real-time detection. However, the tool selected as the electrode on the cutter head is in contact with the conductive surface. There is a problem that the grounding resistance is large. At the same time, the positioning of BEAM relies too much on experience, and the positioning accuracy is poor, and it is impossible to three-dimensional imaging.
  • the earth pressure balance shield cutter head is close to the soil of the face and can not be recycled, and there is no available detection space in front of the cutter head.
  • the observation mode or method available for use in front of the shield cutter is the primary problem to be solved;
  • the general electrical detection uses a contact electrode, it is in contact with the face of the face.
  • the exposed electrode and propulsion device in front of the cutter head are easily damaged by the tunneling construction. It is difficult to work with the contact electrode under the rotation of the cutter head. Therefore, how to use the non-contact electrode to realize real-time advanced detection in the cutter disc rotation mode is an important problem.
  • the rotating wiring device and the electrode positioning device are also problems to be solved.
  • the present invention proposes a non-contact frequency domain electrical real-time advanced detection system and method carried by a shield.
  • the present invention utilizes a capacitive coupling emission by mounting a non-contact electrode on a shield of a shield machine.
  • the receiving current is connected to the host through a multi-way rotary joint, real-time inversion and interpretation of the measured data, and the prediction result is transmitted to the shield machine control system to provide technical support for the safe construction of the shield machine.
  • a non-contact frequency domain electrical real-time advanced detection system equipped with a shield comprising a non-contact electrode unit, a multi-way rotary joint, an electrode positioning unit, a power supply and measurement unit and a control unit, the non-contact electrode unit,
  • the utility model comprises a plurality of non-contact electrodes arranged on the front panel of the cutter head for performing array type multi-path information collection, wherein the electrode positioning unit is arranged at an intermediate position of the rear panel of the cutter head to determine a rotation position of the non-contact electrode, and real-time Positioning
  • the multi-way rotary joint is disposed at the rear end of the cutter head, and the connection cable of each non-contact electrode is aggregated into a multi-core cable, and the multi-channel frequency domain current output and signal acquisition are performed by the power supply and measurement unit, and the control unit
  • the power supply and measurement unit is connected, and the non-contact electrode data and the position of the cutter head electrode are collected according to different set frequency domains, thereby performing three-dimensional inversion processing and interpretation.
  • the power supply and measurement unit is further connected with a fixed electrode, and the multi-frequency current emission and the measurement signal are collected under the control of the control unit, and the potential difference between the non-contact electrode and the fixed electrode is obtained.
  • the fixed electrode is disposed behind the shield machine and is considered to be infinite.
  • the non-contact electrode is evenly arranged on the front panel of the shield machine cutter.
  • the non-contact electrode comprises a non-contact power supply electrode and a non-contact power supply electrode
  • the non-contact power supply electrode is arranged outside the cutter head, and is connected to the power supply and measurement unit to realize multi-channel frequency domain current.
  • the non-contact measuring electrode is arranged inside the power supply electrode to realize the measuring electrode collection of the array.
  • the non-contact electrode comprises an electrode plate, the surface of the electrode plate is covered by a metal oxide film, the electrode plate is located in a frame casing composed of an insulating wear-resistant material, and the back surface of the electrode plate is provided A cable fixing column is provided with a rubber plug around the cable fixing column.
  • the electrode plate is a circular metal copper plate, and a metal oxide film is disposed to prevent corrosion from affecting performance due to long-term operation after the electrode is mounted.
  • the non-contact electrode is embedded and fixed on the surface of the cutter head by the insulating and wear-resistant material, but the metal copper plate is not in direct contact with the cutter head, the back side of the metal copper plate is fixedly connected by the cable fixing column, and the dense rubber stopper is used around the fixed column for cushioning, Fixed, while the dense rubber plug also isolates the metal copper plate from the cutter head.
  • the electrode positioning unit is a rotary encoder
  • the rotary encoder comprises a grating type transparent code disc and an optoelectronic processing circuit
  • the photoelectric processing circuit realizes an angular displacement and an angular velocity of the grating type translucent code disc.
  • the recording of the rotational displacement of the cutter head determines the position of the non-contact electrode, thereby realizing the positioning of the non-contact electrode on the cutter head.
  • the electrode positioning unit is disposed in the middle of the cutter head, and the center of the electrode positioning unit is a hollow structure or a hole is left, and a connecting cable of the non-contact electrode passes through the hollow portion or the hole portion.
  • a rotating shaft is disposed at a center of the grating-type transparent code disc, and a light-transmitting grating is evenly distributed at an edge of the grating-type transparent code disc, and is disposed at one side of the grating-type transparent code disc
  • the light emitting device, the light emitting device and the non-contact electrode both rotate with the cutter head of the shield machine, and the auxiliary grating and the photosensitive device are disposed on the other side of the grating type transparent code disc; the light emitted by the light emitting device A grating passing through the grating type translucent code disk and the sub-grating is received by the photosensor.
  • the light-emitting device is mounted on the back surface of the cutter head, and the photoelectric processing circuit and the sub-grating are not mounted on the cutter head, and the rotation is not generated.
  • the rotating shaft is a hollow structure, and a connecting cable for all non-contact electrodes is placed inside.
  • the connecting cable is a single core cable.
  • the multi-core cable includes a plurality of metal wires, and each of the metal wires includes an insulating layer on the outside, and all of the metal wires are wrapped with a braid on the outside and a sheath is wrapped on the outer layer.
  • the metal wire is a copper wire.
  • the laying of the multi-core cable inside the shield is not only long, but also the installation and fixed engineering environment is very complicated, the three-layer protection of the multi-core cable sheath, the braid layer and the insulating layer is better protected the cable in the cutter head. It is not easy to be worn out, and to some extent, it reduces the interference of the shield machine on the copper AC.
  • the multi-way swivel joint comprises a rotor and a stator, wherein the rotor is movably connected to the stator, and the rotor is distributed with a plurality of passages along a central circumference thereof, and the connecting cable of the non-contact electrode is arranged in the passage.
  • a cable passage for carrying a multi-core cable is disposed at a center of the stator, and the connecting cable is respectively in one-to-one correspondence with the metal wires of the multi-core cable through the slip ring inside the stator.
  • the power supply and measurement unit comprises a multi-frequency power supply output module, a multi-channel acquisition and reception module and a control module, wherein the control module controls the operation of the multi-frequency power supply output module and the multi-channel acquisition and reception module, and is connected with a display. Module.
  • the multi-frequency power supply output module comprises a sine wave oscillator and a single chip microcomputer, and the single chip microcomputer controls the sine wave oscillator to output an alternating current of a corresponding waveform, and supplies power to the power supply electrode to realize output of a plurality of frequency points current.
  • the sine wave oscillator is connected to a circuit amplifier.
  • control module is further connected with a voltage and current measurement module, an overvoltage and overcurrent protection module, and a data acquisition module.
  • the multi-channel acquisition and reception module comprises a data sampling module, an input protection module, a trap, a rectification filter and an A/D converter, wherein the input protection module is connected to the measurement electrode of the fixed electrode and the non-contact electrode. And sequentially measuring, by the data sampling module, the trap, the rectifying filter, and the A/D converter, the potential of each measuring electrode, and obtaining a potential difference between the non-contact electrode and the measuring electrode of the fixed electrode; the A/D The converter is connected to the control module.
  • the control unit includes a control host and a reversal module, and the control host is connected to the control module and the multi-channel acquisition and reception module, and receives a potential difference between the non-contact electrode and the measurement electrode of the fixed electrode, and receives the knife transmitted by the electrode positioning unit. Disk location information, the control host sets an acquisition frequency domain; and the inversion module performs inversion work on the collected data.
  • a shield machine comprising the above-mentioned non-contact frequency domain electrical real-time advanced detection system, wherein the non-contact electrode is mounted on a working surface of a shield cutter disc and rotates with a cutter disc, the fixed electrode It is fixedly laid at the shield tail of the shield machine.
  • a non-contact electric method real-time advanced detection method for shield tunnel construction includes the following steps:
  • a plurality of non-contact measuring electrodes and non-contact power supply electrodes are disposed on the surface of the cutter cutter disc, and a power supply electrode and a measuring electrode of the fixed electrode are disposed behind the shield machine;
  • the specific method is: installing a non-contact power supply electrode and a non-contact measurement electrode on the cutter head in the manufacturing process of the shield machine, the non-contact power supply electrode and the non-contact measurement
  • the electrodes are arranged in an annular shape on the working surface of the cutter head, and the annular ring formed by the non-contact power supply electrode is sleeved on the outer side of the ring formed by the non-contact measuring electrode, and the poles of the plurality of non-contact power supply electrodes
  • a plurality of non-contact measuring electrodes constitute an array type non-contact measuring electrode system; at the same time, the fixed power supply electrode and the fixed measuring electrode are fixedly mounted at the shield tail of the shield machine.
  • the method further comprises: installing an electrode positioning device on the center line of the cutter head, so that the rotating portion of the electrode positioning device is disposed on the back surface of the cutter head, and the stationary portion is disposed behind the cutter head, in the cutter A rotary joint is installed on the rear side of the disc, and a multi-core cable and a single-core cable are laid, so that one end of the single-core cable is connected to the non-contact electrode on the cutter disc, and the other end of the single-core cable passes through the hollow portion of the electrode positioning device and rotates Connector connection.
  • the multi-core cable is connected between the rotary joint and the power supply and measurement device, and the fixed power supply electrode and the fixed measurement electrode are respectively connected to the power supply by using a single-core cable.
  • the measuring device controls the host to connect the electrode positioning device and the power supply and measurement device to complete the connection of the non-contact frequency domain electrical real-time advanced detection system.
  • the alternating current supplies power to the surrounding rock of the face through the capacitive coupling effect of the non-contact power supply electrode, and the surrounding rock generates an electric potential to make the non-contact measurement electrode system
  • the contact measuring electrode generates a current, and obtains a potential difference between each of the non-contact measuring electrodes and the fixed measuring electrode, and at the same time, the electrode positioning device transmits the spatial position information of each non-contact electrode to the control host, and completes Correspondence between measurement data and position data.
  • the present invention is directed to a non-contact electric method real-time advanced geological detection system proposed by a shield machine, and a non-contact electrode is mounted on a shield cutterhead, thereby avoiding the problem that the conventional contact electrode is difficult to couple;
  • real-time advanced detection of geology in front of the face can be realized in the process of shield tunneling, which meets the rapid demand of shield construction and greatly improves the efficiency of advanced geological detection of shield machine;
  • the present invention installs a plurality of non-contact electrodes of the same polarity power supply and array type measurement on the shield, and proposes an observation mode usable for the advanced detection of the shield geological electric method, and only the electrodes are mounted on the cutter head.
  • the system can effectively avoid the interference of the rear metal objects, improve the forward detection capability to the front, and more importantly, overcome the problem that the space between the cutter head and the face is extremely narrow;
  • the transmitting and measuring module of the detecting system proposed by the invention has the functions of multi-frequency transmission and multi-channel acquisition,
  • the data is acquired by sequentially modulating different frequencies to obtain rich data, and the multi-channel acquisition in the cutter rotation mode can simultaneously collect the information of the measurement electrode system, thereby avoiding problems caused by the position change of the power supply electrode;
  • the method for real-time detection of shield tunneling proposed by the present invention can obtain the multi-solution property in the inversion process and improve the accuracy of the three-dimensional inversion by acquiring the detection data of different mileages with the shield tunneling. , thereby improving the accuracy of the advance detection in the complex environment of the shield.
  • FIG. 1 is a schematic diagram of an overall structure of a detection system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a non-contact electrode according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a rotary joint according to an embodiment of the present invention.
  • Figure 4 is a schematic structural view of the rotor side of the swivel joint of Figure 3;
  • Figure 5 is a schematic structural view of the stator side of the swivel joint of Figure 3;
  • FIG. 6 is a circuit diagram of a multi-line connection of a rotary joint according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a multi-core cable according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of an electrode positioning device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a host system according to an embodiment of the present invention.
  • Figure 10 is a layout view of a non-contact electrode in a cutter head according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a multi-frequency power supply output device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a multi-channel acquisition and reception device according to an embodiment of the present invention.
  • a non-contact frequency domain electrical real-time advanced detection system includes a non-contact electrode 1, an electrode positioning device 5, a power supply and measurement device, and a host system 32; the non-contact electrode 1 is disposed at On the front panel of the cutter head, each non-contact electrode 1 has a single-core cable that is converged through the swivel joint to the multi-core cable 7 to be connected to the power supply and measuring device.
  • the swivel joint 6 is mounted in the middle of the cutter head, the electrode positioning device 5 is only installed in the middle of the cutter disc, and the electrode positioning device 5 is empty in the middle, and the single-core cable connecting the electrodes can pass through the middle.
  • the electrode positioning device 5 is only electrically connected to the host system 32.
  • the electrode positioning device 5 is installed in the center of the rear panel of the cutter head, and the rotary joint is installed behind the electrode positioning device 5.
  • the host system 32 is electrically connected to the electrode positioning device 5 and the power supply and measurement device, the power supply and measurement device is also electrically connected to the fixed electrode 8;
  • the power supply and measurement device realizes collection of a multi-frequency current emission and measurement signal under the control of the host system 32, and acquires a potential difference between the non-contact electrode 1 and the fixed electrode 8;
  • the positioning device 5 transmits the spatial position information of the non-contact electrode 1 to the host system 32 in real time, and the power supply and measurement device transmits the measurement signal to the host system 32 in real time, and the host system 32 is equipped with a counter
  • the software processes and interprets the data.
  • the power and measurement device can be built into the host system 32.
  • the host computer 32 operates the multi-frequency power supply device 34 through the display terminal 37 and the control module 33.
  • the single-chip microcomputer 47 built in the multi-frequency power supply device 34 stores the waveform, which is set by the host 32 and then receives the current input through the power drive module 38 through the sine wave oscillator. 39 sends a signal of the corresponding frequency, accesses the A and B electrodes for power supply, and detects the output current by the voltage and current measuring module 41 at the same time, and is fed back to the host 32 via the first data collecting module 43 for display on the display terminal 37.
  • the signals output by the A and B power electrodes are received by the M, N measuring electrodes through the capacitive coupling effect at the contact surface, and the signal processing is performed by the ground compensation, the power frequency signal suppression and the noise processing module 49, and the multiplexed signals are in the differential amplification module 50.
  • the data is sampled by a multi-stage notch filter, specifically including a first stage 50 Hz notch filter 52, a second stage 100 Hz notch filter 53, and a third stage 150 Hz notch filter 54 to further eliminate interference of unwanted signals, and finally After the filter rectification, the voltage/current signal is converted into a digital signal by the A/D converter 55, and is recorded into the host system 32 by the second data acquisition module 56 for display.
  • the non-contact electrode 1 includes four non-contact power supply electrodes and eight non-contact measurement electrodes
  • the fixed electrode 8 includes a fixed power supply electrode and a fixed measurement electrode
  • the power supply and measurement device emits an alternating current Supplying the non-contact power supply electrode and the fixed power supply electrode, the potential difference being a non-contact measurement electrode and fixing The potential difference between the electrodes is measured.
  • the structure of the non-contact electrode 1 is as shown in FIG. 2, and includes a metal copper plate 13 which is a circular electrode plate.
  • the surface of the metal copper plate 13 is covered by a metal oxide film 10 to prevent corrosion after long-term operation after electrode installation. Affect performance.
  • the insulating wear-resistant material 9 is a frame outer casing of the non-contact electrode 1, and the metal copper plate 13 is wrapped in the insulating wear-resistant material 9, while the non-contact electrode 1 is embedded and fixed on the surface of the cutter head 2 by the insulating wear-resistant material 9, but The metal copper plate 13 is not in direct contact with the cutter head 2.
  • the back side of the metal copper plate 13 is connected to the single-core cable by the cable winding fixing column 12, and the dense rubber stopper 11 is used around the cable winding fixing column 12 for cushioning and fixing, and the dense rubber stopper 11 is simultaneously
  • the metal copper plate 13 is also isolated from the cutter head 2.
  • four non-contact power supply electrodes are arranged on the large radius of the cutter head 2 to realize multi-channel frequency domain current output, and the non-contact measurement electrodes are arranged on the cutter head 2 On the small radius, the measurement electrode acquisition of the array can improve the depth of detection and suppression interference, thus providing data for three-dimensional inversion imaging.
  • a swivel joint 6 is composed of a rotor and a stator.
  • the rotor side of the swivel joint 6 is connected to the non-contact electrode 1, and the stator side of the swivel joint 6 is connected to the main body system 32.
  • the swivel joint housing 16 is provided with a swivel joint fixing nut 20, and a metal fixing hoop 14 and a rotor side cable conducting port are provided on the rotor side of the swivel joint 6.
  • 15 and the rotor holder 18, the rotor side cable opening 15 is provided with a rotor wire 17;
  • the stator side of the swivel joint 6 is provided with a stator side cable conducting port 21, and the stator side cable conducting port 21 is provided with a stator wire 19.
  • the rotating end of the swivel joint 6 is connected to the non-contact electrode mounted on the cutter head, thereby realizing the real-time transmission of the current and the measurement signal when the electrode on the cutter head rotates while the rear main unit does not rotate, and the non-contact electrode does not need to be surrounded by the face.
  • the multi-way swivel joint 6 is an electrical component that connects the single-core cable in the rotary cutter head to the multi-core cable after the shield.
  • the swivel joint is installed in the center of the rotary shaft of the cutter head, and is mainly composed of two parts, a rotating and a stationary part.
  • the rotating part is connected to a plurality of single-core cables in the cutter head, and the stationary part is connected to the multi-core cable behind the shield.
  • the single-core cable is respectively in one-to-one correspondence with the multi-core cable through the slip ring inside the swivel joint, and the single-core cable mounted on the non-contact electrode of the cutter head is gathered here and the multi-core cable is transferred through the swivel joint, and is connected to the host system 32. .
  • connection circuit diagram of the multi-line inside the swivel joint 6 is as shown in FIG. 6, and the non-contact electrode 1 and the swivel joint 6 are connected by a single-core cable, the swivel joint 6 and the The host systems 32 are connected by a multi-core cable 7; the single-core cable is respectively in one-to-one correspondence with the multi-core cable through the slip ring inside the swivel joint 6, and is mounted on the non-contact electrode of the cutter head 2
  • the single-core cable of 1 is here converge and the multi-core cable 7 is transferred through the swivel joint 6 and connected to the host system 32.
  • the structure of the multi-core cable 7 is as shown in FIG. 7.
  • the central portion of the multi-core cable 7 is a copper wire 25, and the outer side of the copper wire 25 is sequentially wrapped with an insulating layer 24, a braiding layer 23, and a sheath 22. Since the laying of the multi-core cable 7 inside the shield is not only long, but also the installation and fixing engineering environment is very complicated, the three-layer protection of the multi-core cable sheath 22, the braid layer 23 and the insulating layer 24 is better protected.
  • the multi-core cable 7 is not easily worn in the cutter head 2, and to some extent, the interference of the shield machine on the copper alternating current is alleviated.
  • the structure of the electrode positioning device is as shown in FIG. 8.
  • the electrode positioning device 5 is a rotary encoder, and the rotary encoder includes a grating-type transparent code disk 30, and the center of the grating-type transparent code disk 30 is provided.
  • the rotating shaft 29 has a hollow structure in the middle of the rotating shaft 29, or a hole is left, so that the single-core cable of the non-contact electrode 1 passes through the middle without making electrical connection and mechanical connection with the electrode positioning device 5.
  • a light-transmitting grating 31 is uniformly distributed at an edge of the grating-type transparent code disk 30, and a light-emitting device 26, a light-emitting device 26 and the non-contact electrode are disposed on one side of the grating-type light-transmissive code disk 30. 1 is rotated with the cutter 2 of the shield machine, on the other side of the grating type transparent code disc 30 is provided with a sub-grating 27 and a photosensitive device 28;
  • the light emitting device 26 is disposed on the back surface of the cutter head 2 and rotates as the cutter head 2 rotates.
  • the light-transmitting grating emitted by the light-emitting device 26 is received by the photosensitive device 28 and transmitted to the rotary encoder, and the rotary encoder determines the non-contact electrode position by angular displacement and angular velocity of the photoelectric conversion output shaft. Thereby, the recording of the rotational displacement of the cutter head 2 is realized, thereby realizing the positioning work of the cutter head electrode.
  • the electrode positioning device is mounted on an extension line in the middle of the cutter head 2, and the single-core cable of the non-contact electrode 1 passes through the middle of the electrode positioning device and is then connected to the swivel joint.
  • the structure of the host system 32 is as shown in FIG. 9.
  • the host system 32 includes a control module 33, a first data collection module 43, an inversion interpretation module 36, and a display terminal 37.
  • the control module 33 controls the power supply. And the sampling time of the measurement system is set, and the sampling rate is set, the first data acquisition module 43 completes the data collection operation of the non-contact electrode 1 and the electrode positioning device 5, and the data collection operation is completed and transmitted to the
  • the inversion interpretation module 36 is provided with the inversion software to perform inversion work on the collected data; the setting operation of the control module 33, the data presentation by the data acquisition module, and The data inversion work of the inversion interpretation module 36 is performed by the display terminal 37.
  • the power supply and measurement system includes a multi-frequency power supply output device 34 and a multi-channel acquisition and reception device 35.
  • the structure of the multi-frequency power supply output device 34 is as shown in FIG. 11.
  • the multi-frequency power supply output device 34 mainly includes a sine wave oscillator 39 and a single-chip microcomputer 47.
  • the power supply is connected to the multi-frequency power supply output device 34 through the power drive module 38, and the sine is connected.
  • a circuit amplifier 40 is connected to the wave oscillator 39, and the chip of the single chip microcomputer 47 is stored and output through the data storage module 45.
  • the program code of the waveform is operated by the control module 33, and an alternating current is supplied through the sine wave oscillator 39 like the detection system to realize output of a plurality of frequency points.
  • the alternating current provided by the sine wave oscillator 39 reaches the first data acquisition module 43 through the voltage and current measurement module 41, and the overvoltage and overcurrent protection module 42 is disposed between the voltage current measurement module 41 and the first data acquisition module 43; There are a digital display module 44, a data storage module 45 and a data communication module 46.
  • the structure of the multi-channel acquisition and reception device 35 is as shown in FIG. 12, and the multi-channel acquisition and reception device 35 includes a trap, a rectification filter and an A/D converter 55.
  • the trap is a kind of elimination of some unwanted signals.
  • a filter for reducing interference to a useful signal, the current of the output 34 of the multi-frequency power supply output device is filtered by a notch filter and then reaches a rectifying filter 55, which converts the alternating current into direct current and further eliminates interference,
  • a The /D converter 55 converts the voltage and current signals into digital signals for transmission to the host system 32, enabling simultaneous acquisition of multiple signals.
  • the multi-channel acquisition and receiving device 35 is further provided with an input protection module 48, a ground compensation, a power frequency signal suppression and noise processing module 49, a differential input amplification module 50 and a data sampling module 51, and the current passes through the protection module 48, ground compensation, and power frequency.
  • the signal suppression and noise processing module 49, the differential input amplification module 50 and the data sampling module 51 enter the trap, and the trap includes a first stage 50 Hz notch 52, a second stage 100 Hz notch 53 and a third stage 150 Hz. Notch 54.
  • a shield machine of the present embodiment includes the aforementioned non-contact frequency domain electrical real-time advanced detection system. As shown in FIG. 1, the non-contact electrode 1 is mounted on the shield cutter 2 of the shield machine. The working surface is rotated with the cutter head 2, and the fixed electrode 8 is fixedly disposed at the shield tail of the shield machine.
  • the shield machine includes the soil pressure balance shield soil chamber 3 and the earth pressure balance shield soil structure.
  • the arrangement of the non-contact electrode 1 on the cutter head 2 is as shown in FIG. 10.
  • the non-contact electrode 1 includes four power supply electrodes and eight measurement electrodes, and the power supply electrodes are mounted on the large radius of the cutter head 2 to constitute a plurality of identical A non-contact power supply electrode of polarity; and the measuring electrode is mounted on a small radius of the cutter head 2 to form an array non-contact measuring electrode system.
  • the electrodes are respectively arranged in an annular shape on the working surface of the cutter head 2, and the annular ring formed by the non-contact power supply electrode is sleeved on the outer side of the ring formed by the non-contact measuring electrode (ie: non-contact power supply electrode mounting)
  • the non-contact measuring electrode is mounted on the small radius of the cutter head 2), the polarity of the plurality of non-contact power supply electrodes is the same, and the plurality of non-contact measuring electrodes constitute the array non-contact measurement
  • the electrode system at the same time, a fixed power supply electrode and a fixed measuring electrode are fixedly mounted at the infinity behind the shield.
  • Step (2) installing a rotary joint 6 and an electrode positioning device 5 on the shield machine and laying a multi-core cable 7 and a single-core cable.
  • One end of the single-core cable is connected to the non-contact electrode on the cutter head 2, and the other end of the single-core cable is connected to the swivel joint 6 through a hollow position of the electrode positioning device 5; the multi-core cable 7 is connected Between the swivel joint 6 and the power supply and measurement device, the fixed power supply electrode and the fixed measurement electrode are respectively connected to the power supply and measurement device by a single-core cable, and the host system 32 is connected to the electrode positioning device 5 and The power supply and measurement device completes the connection of the non-contact frequency domain electrical real-time advanced detection system.
  • Step (3) setting a fixed frequency alternating current by using the host system 32 to supply power to the non-contact power supply electrode located at the working surface and the remote fixed power supply electrode, and the capacitive coupling of the alternating current through the non-contact power supply electrode
  • the effect is to supply power to the surrounding rock of the face, and the potential of the surrounding rock causes the non-contact measuring electrode in the array non-contact measuring electrode to generate current, which is non-contacted by rectification filtering and A/D converter measurement.
  • Measuring the potential of the electrode, and obtaining a potential difference between each of the non-contact measuring electrode and the fixed measuring electrode, while the electrode positioning device 5 transmits the spatial position information of each non-contacting electrode 1 to the host System 32 completes the correspondence of the measurement data to the location data.
  • Step (4) sequentially changing the fixed frequency domain set by the host system 32, repeating the step (3), and measuring data at different frequencies.
  • Step (5) With the advancement of the cutter head 2 of the shield machine on the face of the face, the next work face is sequentially selected for detection, and the steps (3) and (4) are repeated to realize real-time detection data. collection.
  • Step (6) the host system 32 iteratively processes the collected data, inverts the potential difference data measured by the array non-contact measuring electrode system, and obtains a three-dimensional resistivity image distribution in front of the working surface, and then Interpretation of the geological conditions in front of the sub-surface.
  • the non-contact electrode 1 is arranged on the earth pressure balance shield cutter head 2, and the main system is arranged in the main control room of the earth pressure balance shield.
  • the multi-frequency power supply output device 26, the multi-channel collecting and receiving device 27 and the multi-core cable 7 are arranged on the rear side of the main body of the shield body; the non-contact electrode 1 and the single-core cable 7 are arranged on the surface and inside of the cutter head, and are rotated by the rotary joint Connection; the fixed power supply electrode B and the fixed measurement electrode N8 are fixedly arranged at the tail of the shield.
  • the main operations of the non-contact electric method real-time detection process are completed in the main control room of the shield.
  • the overall structure of the non-contact electrical real-time detection system carried by the shield machine is shown in Figure 1.
  • the signal obtained by the electrode positioning device first locates the non-contact electrode 1, and the earth pressure balance shield main control indoor host system sets the detection request, sets the acquisition frequency, the sampling rate, etc., issues an instruction, and is controlled by
  • the module 33 controls the multi-frequency power supply output device 34 to start operation and output an alternating current of a frequency and a size set by the host system.
  • the output AC power is transmitted through the multi-core cable 7, and is transferred at the rear side swivel joint 6 of the shield main cutter head, and the shunting of the multi-channel alternating current is completed, and the alternating current is transmitted to the cutter head through the corresponding single-core cable 7.
  • the metal copper plate 13 inside the non-contact electrode 1 at two places.
  • the metal copper plate 13 and the cutter 2 metal in the non-contact electrode 1 pass through the wear-resistant insulating material 9, the metal oxide film 10 and the dense rubber stopper 11 The isolation and interference are completed, and the stability of the alternating current and the metal copper plate 13 is effectively ensured.
  • the metal copper plate 13 and the tunnel face are separated by an insulating material, and the tunnel face is regarded as another electrode plate of the capacitor.
  • the tunnel face and the metal copper plate 13 After the power supply electrode conducts the alternating current, the tunnel face and the metal copper plate 13 generate capacitive coupling under the action of alternating current. Effect, the alternating current is interacted between the power supply electrode and the face of the face, and the face 1 as the other electrode of the capacitor causes a capacitive coupling effect between the face 1 and the measuring electrode to generate an alternating current, and the alternating current generated by the measuring electrode is received.
  • the summation is completed at the swivel joint 6, uniformly transmitted from the multi-core cable 7 to the multi-channel acquisition and receiving device 35, and the alternating current is converted into direct current by A/D conversion and filtering and completes a power supply measurement work.
  • the arrangement diagram of the non-contact electrode 1 in the cutter head as the measuring/power supply electrode is as shown in Fig. 9.
  • the power supply electrode and the measurement electrode are mounted on the cutter head, the power supply electrode is on a large radius, and the measurement electrode is on a small radius.
  • the non-contact electrode 1 and the cutter head 2 are embedded and mounted with an insulating and wear-resistant material.
  • each measurement result is collected by the multiple acquisition receiving device 35, and the measurement data file is output, and the data is processed by the inversion interpretation module 36, and the processing result is obtained and output to the host 32 by the display terminal. 37 presents.
  • inversion software the trap, the timing software, and the single chip microcomputer mentioned in the present invention are all prior art, and are not described herein again. Those skilled in the art can select parts according to specific construction conditions and site conditions. Some minor adjustments made by the device are also within the scope of protection of the present invention.

Abstract

本发明公开了一种盾构搭载的非接触式频域电法实时超前探测系统与方法,本发明在盾构机刀盘上安装非接触式电极,利用电容耦合发射和接收电流,通过多路回转接头连接到主机,对测量数据实时反演和解释,并将预报结果传输到盾构机控制系统中,为盾构机的安全施工提供技术支撑;在盾构刀盘上安装非接触式电极,避免了传统接触电极耦合困难的问题;同时不需要盾构停机在盾构掘进过程中可实现掌子面前方地质的实时超前探测,满足盾构施工的快速化的需求,大大提高了盾构机超前地质探测的效率,仅在刀盘上安装电极系可有效避免后方金属物的干扰,提高对前方的超前探测能力,更为重要的是克服了刀盘与掌子面空间极为狭小的问题。

Description

一种盾构搭载的非接触式频域电法实时超前探测系统与方法 技术领域
本发明涉及一种盾构搭载的非接触式频域电法实时超前探测系统与方法。
背景技术
目前,世界上约40多个国家已经开通了城市地铁线路,发达国家均拥有高度发达的城市地铁设施。地铁在许多城市交通中已担负起主要的乘客运输任务,诸如莫斯科、纽约、北京等城市的居民生活已经离不开地铁。由于轨道交通的优势和便利,越来越多的国家和城市开始发展自己的轨道交通。随着世界范围内轨道交通的迅速发展,各国在轨道交通领域将修建越来越多的隧道工程。盾构施工方法相比传统的明挖法、浅埋暗挖法等隧道施工工法,具有“掘进速度快、生产效率高、施工环境文明、技术经济优越性好”等优点,目前国际上越来越多的地铁隧道工程采用盾构施工工法进行修建,而土压平衡盾构是盾构施工中较为常见的一种盾构型式。
土压平衡盾构施工属于全断面隧道掘进机施工,主要用于城市地下软土地层施工,由于埋深较浅、地质单元变化剧烈,不良地质情况更为复杂。同时城市地面建筑物密集,地面勘察难以全面查清沿线的不良地质情况。在开挖过程中一旦遇到富水流砂层、含水溶蚀腔体、孤石等不良地质体,经常导致塌方、突涌水、地表沉降等工程事故,轻则造成盾构机械损毁,延迟工期,重则造成地层塌陷,导致重大安全事故。提前探明不良地质体的位置、规模等信息可有效避免施工灾害的发生。因此在土压平衡盾构搭载超前预报系统并开展全程实时超前探测是十分必要的。然而盾构施工隧道整个空间被盾构机这一庞然大物所占据,未有地球物理探测可用的探测空间,同时盾构机械施工震动、庞大金属体、配套机电设备等对电场、波场等地球物理场形成严重的干扰,导致钻爆法常用的地震波法、电磁法等地球物理探测方法无法适用。频域电法对水体响应敏感,且聚焦电法具有屏蔽后方干扰的特性,用于盾构施工隧道复杂环境中具有优势。BEAM法是德国研发的一种隧道掘进机超前探测技术,是利用护盾与刀具作为供电电极与测量电极进行实时探测的,然而刀盘上被选作电极的刀具与掌子面是接触导电的,存在接地电阻较大的问题。同时BEAM的定位过多的依靠经验,定位精度较差,无法三维成像。
因此,将电法勘探装置搭载在盾构机上仍然面临着很多问题,其主要问题如下:
(1)由于盾构机施工环境中由于要保持掌子面土压平衡,土压平衡盾构刀盘时刻与掌子面土体紧贴且不可回收,刀盘前方未有可用的探测空间,适用于盾构刀盘前方可用的观测模式或方法是需要解决的首要问题;
(2)由于一般的电法探测均采用接触式电极,与掌子面进行接触耦合。刀盘前方外露的电极和推进装置容易受到掘进施工的影响容易损坏,在刀盘旋转下接触电极是难以工作的,因此刀盘旋转模式下如何采用非接触电极实现实时超前探测是一个重要问题。另外,为实现盾构实时探测,旋转接线装置以及电极定位装置也是需要解决的问题。
(3)由于采用非接触电极,频域电法探测所需的电流发射与接收仪器也亟待研制,同时为应对盾构快速化施工的需求,如何实现探测系统的实时自动化探测是面临的一个难题,需具有用于控制电流发射、信号采集、电极定位与快速解译的系统。
发明内容
本发明为了解决上述问题,提出了一种盾构搭载的非接触式频域电法实时超前探测系统与方法,本发明通过在盾构机刀盘上安装非接触式电极,利用电容耦合发射和接收电流,通过多路回转接头连接到主机,对测量数据实时反演和解释,并将预报结果传输到盾构机控制系统中,为盾构机的安全施工提供技术支撑。
为了实现上述目的,本发明采用如下技术方案:
一种盾构搭载的非接触式频域电法实时超前探测系统,包括非接触式电极单元、多路回转接头、电极定位单元、供电与测量单元和控制单元,所述非接触式电极单元,包括多个布设于刀盘前面板上的非接触式电极,进行阵列式多路信息采集,所述电极定位单元设置于刀盘后面板的中间位置,确定非接触式电极的旋转位置,进行实时定位;
所述多路回转接头设置于刀盘后端,将每个非接触式电极的连接电缆汇聚为多芯电缆,通过供电与测量单元进行多路频域电流的输出与信号采集,所述控制单元连接供电与测量单元,根据不同的设定频域采集非接触式电极数据与刀盘电极的位置,进而进行三维反演处理与解译。
进一步的,所述供电与测量单元还连接有固定电极,在控制单元的控制下进行多频电流的发射与测量信号的采集,获取所述非接触式电极与所述固定电极之间的电势差。
所述固定电极设置于盾构机后方,被认为是无穷远处。
进一步的,所述非接触式电极均匀布设于盾构机刀盘前面板上。
优选的,所述非接触式电极包括非接触式供电电极和非接触式测量电极,所述非接触式供电电极,布置在刀盘的外侧,连接供电与测量单元,实现多路频域电流的输出,所述非接触式测量电极布置在供电电极内侧,实现阵列的测量电极采集。
优选的,所述非接触式电极包括电极板,所述电极板的表面由金属氧化膜包裹,所述电极板位于由绝缘耐磨材料构成的框架外壳内,在所述电极板的背面设有电缆固定柱,所述电缆固定柱的周围设置橡胶塞。
所述电极板为圆形的金属铜板,设置金属氧化膜防止电极安装后因长时间工作而腐蚀影响性能。同时非接触式电极由绝缘耐磨材料嵌装固定在刀盘表面,但金属铜板不与刀盘直接接触,金属铜板背面由电缆固定柱固定连接电缆,固定柱周围采用致密橡胶塞进行缓震、固定,同时致密橡胶塞也将金属铜板与刀盘隔绝。
优选的,所述电极定位单元为旋转编码器,所述旋转编码器包括光栅式透光码盘和光电处理电路,所述光电处理电路通过光栅式透光码盘的角位移、角速度,实现对刀盘旋转位移的记录,从而确定非接触式电极位置,进而实现对刀盘上非接触式电极的定位工作。
所述电极定位单元设置在刀盘中间,且电极定位单元的中心为中空结构或留有孔洞,非接触式电极的连接电缆从中空部分或孔洞部分中间穿过。
具体的,所述光栅式透光码盘中心处设有转轴,所述光栅式透光码盘的边缘处均匀分布有透光式光栅,在所述光栅式透光码盘的一侧设有发光器件,发光器件和所述非接触式电极均随盾构机的刀盘旋转,在所述光栅式透光码盘的另一侧设有副光栅和光敏器件;所述发光器件发出的光透过光栅式透光码盘、副光栅的光栅被所述光敏器件接收。
优选的,所述发光器件装设于刀盘背面,随刀盘转动,光电处理电路、副光栅不装设于刀盘上,并不产生旋转。
优选的,所述转轴为中空结构,内部放置所有非接触式电极的连接电缆。
优选的,所述连接电缆为单芯电缆。
进一步的,所述多芯电缆包括多根金属导线,每根金属导线外部包括有绝缘层,所有金属导线的外部包裹有编织层,编织层外包裹有护套。
优选的,所述金属导线为铜线。
由于多芯电缆在盾构内部的铺设不仅距离长,而且安装固定的工程环境也非常复杂,因此设计多芯电缆护套、编织层和绝缘层的三层保护更好的保护了电缆在刀盘中不容易被磨损,并在一定程度上减轻了盾构机对铜线交流电的干扰。
优选的,所述多路回转接头,包括转子和定子,其中,转子活动连接于定子上,所述转子上沿其中心圆周分布有若干个通道,通道内布设非接触式电极的连接电缆,所述定子中心处设有用于承载多芯电缆的电缆通道,所述连接电缆在定子内部通过滑环分别与多芯电缆的金属导线一一对应。
优选的,所述供电与测量单元包括多频供电输出模块、多路采集接收模块和控制模块,其中,所述控制模块控制多频供电输出模块、多路采集接收模块的工作,并连接有显示模块。
所述多频供电输出模块包括正弦波振荡器和单片机,所述单片机控制正弦波振荡器输出相应波形的交流电,向供电电极提供电能,实现多个频点电流的输出。
优选的,所述正弦波振荡器连接有电路放大器。
优选的,所述控制模块还连接有电压电流测量模块、过压过流保护模块和数据采集模块。
优选的,所述多路采集接收模块具体包括数据采样模块、输入保护模块、陷波器、整流滤波器和A/D转换器,其中,输入保护模块连接固定电极、非接触式电极的测量电极,依次通过数据采样模块、陷波器、整流滤波器和A/D转换器,测量得到各个测量电极的电势,获取非接触式电极和固定电极的测量电极之间的电势差;所述A/D转换器连接控制模块。
所述控制单元包括控制主机和反演模块,所述控制主机连接控制模块和多路采集接收模块,接收非接触式电极和固定电极的测量电极之间的电势差,同时接收电极定位单元传输的刀盘位置信息,所述控制主机设置采集频域;所述反演模块对采集的数据进行反演工作。
一种盾构机,包括上述的非接触式频域电法实时超前探测系统,所述的非接触式电极安装在盾构机刀盘的工作面上并随刀盘旋转,所述的固定电极在所述盾构机的盾尾处固定布设。
一种盾构施工隧道非接触式电法实时超前探测方法,包括以下步骤:
(1)在盾构机刀盘表面设置多个非接触式测量电极和非接触式供电电极,在盾构机后方设置固定电极的供电电极和测量电极;
(2)设置电极定位装置以确定刀盘位置和非接触式测量电极的空间位置,利用控制主机设置固定频率的交流电,向各个供电电极进行供电;
(3)采集设定频域时非接触式测量电极与固定电极的测量电极的电势,计算两者的电势差,同时确定每个非接触式电极的空间位置信息,完成测量数据与位置数据的对应;
(4)改变设定频域,重复步骤(3),得到不同频率下的电势与位置数据;
(5)随着所述盾构机的刀盘在掌子面的推进,依次选择不同的工作面进行探测,重复所述步骤(3)和步骤(4),实现探测数据的实时采集;
(6)对采集的数据进行迭代处理,将所述阵列式非接触测量电极系测得的电势差数据进行反演,得到工作面前方三维电阻率图像分布,进而对掌子面前方的地质情况进行解译。
进一步的,所述步骤(1)中,具体方法为:在盾构机的制造过程中在刀盘上安装非接触式供电电极和非接触式测量电极,非接触式供电电极和非接触式测量电极分别在刀盘的工作面上呈圆环状分布,非接触式供电电极所构成的圆环套置在非接触式测量电极所构成的圆环的外侧,多个非接触式供电电极的极性相同,多个非接触式测量电极构成阵列式非接触测量电极系;同时,将固定供电电极和固定测量电极固定安装于盾构机的盾尾处。
优选的,所述步骤(2)中,具体包括:在刀盘的中心线上安装电极定位装置,使电极定位装置的转动部分设置在刀盘背面,静止部分装设于刀盘后方,在刀盘后侧安装回转接头,并敷设多芯电缆与单芯电缆,使得单芯电缆一端连接刀盘上的非接触式电极,所述单芯电缆的另一端穿过电极定位装置的中空部分与回转接头连接。
所述步骤(2)中,所述多芯电缆连接在所述回转接头与供电与测量装置之间,同时采用单芯电缆分别连接所述固定供电电极和所述固定测量电极到所述供电与测量装置,控制主机连接所述电极定位装置和所述供电与测量装置,完成非接触式频域电法实时超前探测系统的连接。
所述步骤(3)中,具体为:交流电通过所述非接触式供电电极的电容耦合效应对掌子面围岩进行供电,围岩产生电势使所述阵列式非接触测量电极系中的非接触式测量电极产生电流,获取各个非接触式测量电极和所述固定测量电极之间的电势差,与此同时所述电极定位装置将每个非接触式电极的空间位置信息传输到控制主机,完成测量数据与位置数据的对应。
本发明的有益效果为:
(1)本发明针对盾构机提出的一种非接触式电法实时超前地质探测系统,在盾构刀盘上安装非接触式电极,避免了传统接触电极耦合困难的问题;在不需要盾构停机的前提下,在盾构掘进过程中可实现掌子面前方地质的实时超前探测,满足盾构施工的快速化的需求,大大提高了盾构机超前地质探测的效率;
(2)本发明在盾构上安装多个相同极性供电与阵列式测量的非接触式电极,提出了一种盾构不良地质电法超前探测可用的观测模式,仅在刀盘上安装电极系可有效避免后方金属物的干扰,提高对前方的超前探测能力,更为重要的是克服了刀盘与掌子面空间极为狭小的问题;
(3)本发明提出的探测系统的发射与测量模块具有多频发射与多通道采集的功能,可 以依次调制不同的频率进行探测而获取丰富的数据,同时刀盘旋转模式下多通道采集可以将测量电极系的信息同时采集,避免因供电电极位置变化带来的问题;
(4)本发明提出的随着盾构掘进实时探测的方法,随着盾构掘进获取不同里程上的探测数据,可以较好的压制反演过程中的多解性,提高三维反演的精度,从而提高了盾构复杂环境中超前探测的准确率。
附图说明
图1为本发明实施例的探测系统的整体结构示意图;
图2为本发明实施例非接触式电极的结构示意图;
图3为本发明实施例回转接头的结构示意图;
图4为图3中回转接头转子侧的结构示意图;
图5为图3中回转接头定子侧的结构示意图;
图6为本发明实施例回转接头多线路连接电路图;
图7为本发明实施例多芯电缆的结构示意图;
图8为本发明实施例电极定位装置的结构示意图;
图9为本发明实施例主机系统的结构原理示意图;
图10为本发明实施例非接触式电极在刀盘的布置图;
图11为本发明实施例多频供电输出装置的结构原理示意图;
图12为本发明实施例多路采集接收装置的结构原理示意图。
图中:1-非接触式电极,2-刀盘,3-土压平衡盾构土仓内土体,4-土压平衡盾构土仓外结构,5-电极定位装置,6-回转接头,7-多芯电缆,8-固定电极,9-耐磨绝缘材料,10-金属氧化膜,11-致密橡胶塞,12-电缆绕线固定柱,13-金属铜板,14-金属固定箍,15-转子侧电缆导通口,16-回转接头外壳,17-转子导线,18-转子固定器,19-定子导线,20-回转接头固定螺母,21-定子侧电缆导通口,22-护套,23-编织层,24-绝缘层,25-铜线,26-发光器件,27-副光栅,28-光敏器件,29-转轴,30-光栅式透光码盘,31-透光式光栅,32-主机系统,33-控制模块,34-多频供电输出装置,35-多路采集接收装置,36-反演解译模块,37-显示终端,38-功率驱动模块,39-正弦波振荡器,40-电路放大器,41-电压电流测量模块,42-过压过流保护模块,43-第一数据采集模块,44-数字显示模块,45-数据存储模块,46-数据通信模块,47-单片机,48-输入保护模块,49-接地补偿、工频信号抑制与噪声处理模块,50-差分输入放大模块,51-数据采样模块,52-第一级50Hz陷波器,53-第二级100Hz陷波器,54- 第三级150Hz陷波器,55-A/D转换器,56-第二数据采集模块。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
如图1所示,一种非接触式频域电法实时超前探测系统,包括非接触式电极1、电极定位装置5、供电与测量装置和主机系统32;所述非接触式电极1设置在刀盘的前面板上,每个非接触式电极1有一根单芯电缆通过回转接头汇聚到多芯电缆7在连接至供电与测量装置。
回转接头6安装在刀盘中间,电极定位装置5只装在刀盘中间位置,且电极定位装置5中间是空的,连接电极的单芯电缆可以从中间穿过。所述电极定位装置5只和主机系统32电连接。
刀盘后面板中心先装电极定位装置5,电极定位装置5后面再装回转接头。所述主机系统32电性连接所述电极定位装置5和所述供电与测量装置,所述供电与测量装置还电性连接有固定电极8;
所述供电与测量装置在所述主机系统32的控制下实现多频电流的发射与测量信号的采集,并获取所述非接触式电极1与所述固定电极8之间的电势差;所述电极定位装置5将所述非接触式电极1的空间位置信息实时传输至所述主机系统32,所述供电与测量装置将测量信号实时传输至所述主机系统32,所述主机系统32搭载有反演软件对数据进行处理并解译。
供电与测量装置可以内置到主机系统32内。
主机32通过显示终端37和控制模块33对多频供电装置34进行操作,多频供电装置34内置的单片机47存储波形,由主机32设定后通过功率驱动模块38接受电流输入经过正弦波振荡器39发出相应频率的信号,接入A,B电极进行供电,并在输出同时由电压电流测量模块41检测输出电流,经第一数据采集模块43反馈至主机32在显示终端37显示。
A,B供电电极输出的信号,在接触面通过电容耦合效应由M,N测量电极接收,经过接地补偿、工频信号抑制与噪声处理模块49的信号处理,多路的信号在差分放大模块50进行分路,数据采样后由多级陷波器,具体包括第一级50Hz陷波器52,第二级100Hz陷波器53,第三级150Hz陷波器54进一步排除无用信号的干扰,最后滤波整流后由A/D转换器55将电压电流信号转换成数字信号由第二数据采集模块56录入主机系统32,进行显示。
所述的非接触式电极1包括四个非接触式供电电极和八个非接触式测量电极,所述的固定电极8包括一个固定供电电极和一个固定测量电极;所述供电与测量装置发出交流电对所述非接触式供电电极和所述固定供电电极进行供电,所述电势差为非接触式测量电极和固定 测量电极之间的电势差。
非接触式电极1的结构如图2所示,包括金属铜板13,金属铜板13为圆形的电极板,金属铜板13的表面由金属氧化膜10包裹,防止电极安装后因长时间工作而腐蚀影响性能。绝缘耐磨材料9是非接触式电极1的框架外壳,金属铜板13被包裹在绝缘耐磨材料9之中,同时非接触式电极1由绝缘耐磨材料9嵌装固定在刀盘2表面,但金属铜板13不与刀盘2直接接触,金属铜板13背面由电缆绕线固定柱12连接单芯电缆,电缆绕线固定柱12周围采用致密橡胶塞11进行缓震、固定,同时致密橡胶塞11也将金属铜板13与刀盘2隔绝。同时,为发挥聚焦频域电法的优势,将四个非接触式供电电极布置在刀盘2的大半径上,实现多路频域电流的输出,将非接触式测量电极布置在刀盘2的小半径上,实现阵列的测量电极采集,可提高探测深度与压制干扰,从而也为三维反演成像提供数据。
为了实现刀盘2上的非接触式电极1旋转而后方的主机系统32不转的情况下电流与测量信号的实时传输,所述的电极定位装置5和所述的主机系统32之间设有回转接头6,所述回转接头6由转子和定子构成,所述回转接头6的转子侧连接非接触式电极1,所述回转接头6的定子侧连接所述主机系统32。
回转接头6的结构如图3、图4及图5所示,回转接头外壳16上设有回转接头固定螺母20,在回转接头6的转子侧设有金属固定箍14、转子侧电缆导通口15和转子固定器18,转子侧电缆导通口15中设有转子导线17;在回转接头6的定子侧设有定子侧电缆导通口21,定子侧电缆导通口21中设有定子导线19。回转接头6旋转的一端连接安装在刀盘上的非接触电极,从而实现了刀盘上电极旋转而后方主机不转情况下电流与测量信号的实时传输,且非接触电极无需与掌子面围岩接触,从而实现频域电流与测量信号的传输。多路回转接头6是连接旋转刀盘中的单芯电缆与护盾后多芯电缆的电气部件。回转接头安装在刀盘旋转转轴的中心,主要由旋转与静止两部分组成。旋转部分连接刀盘中多个单芯电缆,静止部分连接护盾后方的多芯电缆。单芯电缆在回转接头内部通过滑环分别与多芯电缆一一对应,安装在刀盘的非接触式电极的单芯电缆在此汇聚并通过回转接头转接多芯电缆,连入主机系统32。
多线路在回转接头6内部的连接电路图如图6所示,所述的非接触式电极1和所述的回转接头6之间通过单芯电缆相连接,所述的回转接头6和所述的主机系统32之间通过多芯电缆7相连接;所述单芯电缆在所述回转接头6的内部通过滑环分别与所述多芯电缆一一对应,安装在刀盘2的非接触式电极1的单芯电缆在此汇聚并通过回转接头6转接多芯电缆7,连入主机系统32。
多芯电缆7的结构如图7所示,所述多芯电缆7的中心部位为铜线25,所述铜线25的外侧依次包裹有绝缘层24、编制层23和护套22。由于多芯电缆7在盾构内部的铺设不仅距离长,而且安装固定的工程环境也非常复杂,因此设计多芯电缆护套22、编织层23和绝缘层24的三层保护更好的保护了多芯电缆7在刀盘2中不容易被磨损,并在一定程度上减轻了盾构机对铜线交流电的干扰。
电极定位装置的结构如图8所示,所述的电极定位装置5为旋转编码器,所述旋转编码器包括光栅式透光码盘30,所述光栅式透光码盘30中心处设有转轴29,转轴29中间为中空结构,或者留有孔洞,使非接触式电极1的单芯电缆从中间穿过,而不与电极定位装置5产生电连接和机械连接。
所述光栅式透光码盘30的边缘处均匀分布有透光式光栅31,在所述光栅式透光码盘30的一侧设有发光器件26,发光器件26和所述非接触式电极1均随盾构机的刀盘2旋转,在所述光栅式透光码盘30的另一侧设有副光栅27和光敏器件28;
发光器件26设置在刀盘2背面,随着刀盘2的旋转而转动。所述发光器件26发出的光透过光栅被所述光敏器件28接收并传输至所述旋转编码器,所述旋转编码器通过光电转换输出轴的角位移、角速度,确定非接触式电极位置,从而实现对刀盘2旋转位移的记录,进而实现对刀盘电极的定位工作。
所述电极定位装置安装在刀盘2中间的延长线上,非接触式电极1的单芯电缆从电极定位装置中间穿过,然后连接到回转接头。
主机系统32的结构原理如图9所示,所述的主机系统32包括控制模块33、第一数据采集模块43、反演解译模块36和显示终端37,所述控制模块33控制所述供电与测量系统的采样时间并设定采样率,所述第一数据采集模块43完成对所述非接触式电极1和所述电极定位装置5的数据采集工作,数据采集工作完成后传输至所述反演解译模块36,所述反演解译模块36内设有反演软件对采集的数据进行反演工作;所述控制模块33的设定工作、所述数据采集模块采集的数据呈现以及所述反演解译模块36的数据反演工作均通过所述显示终端37进行显示操作。
所述的供电与测量系统包括多频供电输出装置34和多路采集接收装置35。
多频供电输出装置34的结构原理如图11所示,所述的多频供电输出装置34主要包括正弦波振荡器39和单片机47,电源通过功率驱动模块38连接多频供电输出装置34,正弦波振荡器39上连接有电路放大器40,所述单片机47的芯片通过数据存储模块45存储输出 波形的程序代码,由控制模块33进行操作,通过正弦波振荡器39像探测系统内提供交流电,从而实现多个频点电流的输出。
正弦波振荡器39提供的交流电通过电压电流测量模块41到达第一数据采集模块43,电压电流测量模块41和第一数据采集模块43之间设有过压过流保护模块42;单片机47上设有数字显示模块44、数据存储模块45和数据通信模块46。
多路采集接收装置35的结构原理如图12所示,所述多路采集接收装置35包括陷波器、整流滤波器和A/D转换器55,陷波器是一种消除某些无用信号以减小对有用信号的干扰的滤波器,所述多频供电输出装置输出34的电流经陷波器滤波后到达整流滤波器55,整流滤波器55将交流电转换为直流电并进一步消除干扰,A/D转换器55将电压电流信号转化为数字信号传输至所述主机系统32,实现多路信号的同步采集。
多路采集接收装置35上还设有输入保护模块48、接地补偿、工频信号抑制与噪声处理模块49、差分输入放大模块50和数据采样模块51,电流经过保护模块48、接地补偿、工频信号抑制与噪声处理模块49、差分输入放大模块50和数据采样模块51后进入陷波器,陷波器包括第一级50Hz陷波器52、第二级100Hz陷波器53和第三级150Hz陷波器54。
本实施例的一种盾构机,包括前面提到的非接触式频域电法实时超前探测系统,如图1所示,所述的非接触式电极1安装在盾构机刀盘2的工作面上并随刀盘2旋转,所述的固定电极8在所述盾构机的盾尾处固定布设。盾构机包括土压平衡盾构土仓内土体3和土压平衡盾构土仓外结构。
非接触式电极1在刀盘2上的布置如图10所示,非接触式电极1包括四个供电电极和八个测量电极,供电电极安装在刀盘2的大半径上,构成多个相同极性的非接触式供电电极;而测量电极安装在刀盘2的小半径上,构成阵列式非接触测量电极系。
本实施例的探测方法,包括以下步骤:
步骤(1):在盾构机的制造过程中在刀盘上安装四个非接触式供电电极和八个非接触式测量电极,如图10所示,非接触式供电电极和非接触式测量电极分别在刀盘2的工作面上呈圆环状分布,非接触式供电电极所构成的圆环套置在非接触式测量电极所构成的圆环的外侧(即:非接触式供电电极安装在刀盘2的大半径上,非接触式测量电极安装在刀盘2的小半径上),多个非接触式供电电极的极性相同,多个非接触式测量电极构成阵列式非接触测量电极系;同时,将一个固定供电电极和一个固定测量电极固定安装于盾构后方无穷远处。
步骤(2):在盾构机上安装回转接头6、电极定位装置5并敷设多芯电缆7与单芯电缆, 所述单芯电缆一端连接所述刀盘2上的非接触式电极,所述单芯电缆的另一端穿过电极定位装置5的中空位置连接到回转接头6;所述多芯电缆7连接在所述回转接头6与供电与测量装置之间,同时采用单芯电缆分别连接所述固定供电电极和所述固定测量电极到所述供电与测量装置,主机系统32连接所述电极定位装置5和所述供电与测量装置,完成非接触式频域电法实时超前探测系统的连接。
步骤(3):利用所述主机系统32设定固定频率交流电,对位于工作面的非接触式供电电极和远方的固定供电电极进行供电,所述交流电通过所述非接触式供电电极的电容耦合效应对掌子面围岩进行供电,围岩产生电势使所述阵列式非接触测量电极系中的非接触式测量电极产生电流,通过整流滤波和A/D转换器后测量得出非接触式测量电极的电势,并获取各所述非接触式测量电极和所述固定测量电极之间的电势差,与此同时所述电极定位装置5将每个非接触式电极1的空间位置信息传输到主机系统32,完成测量数据与位置数据的对应。
步骤(4):依次改变所述主机系统32设定的固定频域,重复所述步骤(3),测得不同频率下的数据。
步骤(5):随着所述盾构机的刀盘2在掌子面的推进,依次选择下一工作面进行探测,重复所述步骤(3)和步骤(4),实现探测数据的实时采集。
步骤(6):所述主机系统32对采集的数据进行迭代处理,将所述阵列式非接触测量电极系测得的电势差数据进行反演,得到工作面前方三维电阻率图像分布,进而对掌子面前方的地质情况进行解译。
非接触式电极1布置于土压平衡盾构刀盘2上,主机系统布置于土压平衡盾构主控室。多频供电输出装置26,多路采集接收装置27和多芯电缆7布置于盾构主体刀盘后侧;非接触式电极1和单芯电缆7布置于刀盘表面和内部,通过回转接头进行连接;固定供电电极B和固定测量电极N8在盾尾处固定布设。非接触式电法实时探测全过程主要操作都在盾构主控室内完成。盾构机搭载的非接触式电法实时探测系统整体结构如图1所示。
探测时首先由电极定位装置获得的信号对非接触式电极1的进行定位,由土压平衡盾构主控室内主机系统设定探测要求,设定采集频率、采样率等,发出指令,由控制模块33控制多频供电输出装置34开始工作并输出主机系统设定频率、大小的交流电。输出的交流电通过多芯电缆7传输,在盾构主机刀盘后侧回转接头6处进行转接,并完成多路交流电的分流,各路交流电通过相应的单芯电缆7输送到安装在刀盘2处的非接触式电极1内部的金属铜板13。其中非接触式电极1中金属铜板13与刀盘2金属通过耐磨绝缘材料9、金属氧化膜10和致密橡胶塞11 完成隔离、干扰,有效保证了导通交流电和金属铜板13的稳定性。
金属铜板13和隧道掌子面通过绝缘材料隔绝,将隧道掌子面视为电容的另一个电极板,供电电极导通交流电后,隧道掌子面和金属铜板13在交流电的作用下产生电容耦合效应,交流电由供电电极和掌子面之间相互作用,掌子面1作为电容另一电极使得掌子面1和测量电极之间也发生电容耦合效应,产生交流电,测量电极接收产生的交流电流,经过多芯电缆7,在回转接头6处完成汇总,统一由多芯电缆7输至多路采集接受装置35,交流电通过A/D转换和滤波转换成直流电并完成一次供电测量工作。
非接触式电极1在作为测量/供电电极时在刀盘的布置图如图9所示,供电电极与测量电极都在刀盘上安装,供电电极在大的半径上,测量电极在小半径上。非接触式电极1与刀盘2采用绝缘耐磨材料进行嵌入安装,
主机系统按照预定探测计划完成测量后,由多路采集接收装置35收集每次测量结果,输出测量数据文件,交由反演解译模块36进行数据处理,获得处理结果输至主机32由显示终端37呈现。
进一步的,在本发明中提到的反演软件、陷波器、定时软件和单片机等均为现有技术,在此不再赘述,本领域技术人员可以根据具体的施工条件和现场状况对部分器械进行的些微调整,也应属于本发明的保护范围。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (17)

  1. 一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:包括非接触式电极单元、多路回转接头、电极定位单元、供电与测量单元和控制单元,所述非接触式电极单元,包括多个布设于刀盘前面板上的非接触式电极,进行阵列式多路信息采集,所述电极定位单元设置于刀盘后面板中间位置,确定非接触式电极的旋转位置,进行实时定位;
    所述多路回转接头设置于刀盘后端,将每个非接触式电极的连接电缆汇聚为多芯电缆,通过供电与测量单元进行多路频域电流的输出与信号采集,所述控制单元连接供电与测量单元,根据不同的设定频域采集非接触式电极数据与刀盘电极的位置,进而进行三维反演处理与解译。
  2. 如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述供电与测量单元还连接有固定电极,在控制单元的控制下进行多频电流的发射与测量信号的采集,获取所述非接触式电极与所述固定电极之间的电势差。
  3. 如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述非接触式电极包括非接触式供电电极和非接触式测量电极,所述非接触式供电电极,布置在刀盘的外侧,连接供电与测量单元,实现多路频域电流的输出,所述非接触式测量电极布置在供电电极内侧,实现阵列的测量电极采集。
  4. 如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述非接触式电极包括电极板,所述电极板的表面由金属氧化膜包裹,所述电极板位于由绝缘耐磨材料构成的框架外壳内,在所述电极板的背面设有电缆固定柱,所述电缆固定柱的周围设置橡胶塞。
  5. 如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述电极定位单元为旋转编码器,所述旋转编码器包括光栅式透光码盘和光电处理电路,所述光电处理电路通过光栅式透光码盘的角位移、角速度,确定非接触式电极位置,从而实现对刀盘旋转位移的记录,进而实现对刀盘非接触式电极的定位工作。
  6. 如权利要求5所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述光栅式透光码盘中心处设有转轴,所述光栅式透光码盘的边缘处均匀分布有透光式光栅,在所述光栅式透光码盘的一侧设有发光器件,发光器件和所述非接触式电极均随盾构机的刀盘旋转,在所述光栅式透光码盘的另一侧设有副光栅和光敏器件;所述发光器件发出的光透过光栅式透光码盘、副光栅的光栅被所述光敏器件接收。
  7. 如权利要求6所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是: 所述转轴内部放置所有非接触式电极的连接电缆。
  8. 如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述多芯电缆包括多根金属导线,每根金属导线外部包括有绝缘层,所有金属导线的外部包裹有编织层,编织层外包裹有护套。
  9. [根据细则91更正 03.11.2016] 
    如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述多路回转接头,包括转子和定子,其中,转子活动连接于定子上,所述转子上沿其中心圆周分布有若干个通道,通道内布设非接触式电极的连接电缆,所述定子中心处设有用于承载多芯电缆的电缆通道,所述连接电缆在定子内部通过滑环分别与多芯电缆的金属导线一一对应。
  10. [根据细则91更正 03.11.2016]
    如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述供电与测量单元包括多频供电输出模块、多路采集接收模块和控制模块,其中,所述控制模块控制多频供电输出模块、多路采集接收模块的工作,并连接有显示模块;
    所述多频供电输出模块包括正弦波振荡器和单片机,所述单片机控制正弦波振荡器输出相应波形的交流电,向供电电极提供电能,实现多个频点电流的输出;所述正弦波振荡器连接有电路放大器,所述控制模块还连接有电压电流测量模块、过压过流保护模块和数据采集模块。
  11. [根据细则91更正 03.11.2016] 
    如权利要求11所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述多路采集接收模块具体包括数据采样模块、输入保护模块、陷波器、整流滤波器和A/D转换器,其中,输入保护模块连接固定电极、非接触式电极的测量电极,依次通过数据采样模块、陷波器、整流滤波器和A/D转换器,测量得到各个测量电极的电势,获取非接触式电极和固定电极的测量电极之间的电势差;所述A/D转换器连接控制模块。
  12. [根据细则91更正 03.11.2016] 
    如权利要求1所述的一种盾构搭载的非接触式频域电法实时超前探测系统,其特征是:所述控制单元包括控制主机和反演模块,所述控制主机连接控制模块和多路采集接收模块,接收非接触式电极和固定电极的测量电极之间的电势差,同时接收电极定位单元传输的刀盘位置信息,所述控制主机设置采集频域;所述反演模块对采集的数据进行反演工作。
  13. [根据细则91更正 03.11.2016]
    一种盾构施工隧道非接触式电法实时超前探测方法,其特征是:包括以下步骤:
    (1)在盾构机刀盘表面设置多个非接触式测量电极和非接触式供电电极,在盾构机后方设置固定电极的供电电极和测量电极;
    (2)设置电极定位装置以确定刀盘位置和非接触式测量电极的空间位置,利用控制主机设置固定频率的交流电,向各个供电电极进行供电;
    (3)采集设定频域时非接触式测量电极与固定电极的测量电极的电势,计算两者的电势差,同时确定每个非接触式电极的空间位置信息,完成测量数据与位置数据的对应;
    (4)改变设定频域,重复步骤(3),得到不同频率下的电势与位置数据;
    (5)随着所述盾构机的刀盘在掌子面的推进,依次选择不同的工作面进行探测,重复所述步骤(3)和步骤(4),实现探测数据的实时采集;
    (6)对采集的数据进行迭代处理,将所述阵列式非接触测量电极系测得的电势差数据进行反演,得到工作面前方三维电阻率图像分布,进而对掌子面前方的地质情况进行解译。
  14. [根据细则91更正 03.11.2016] 
    如权利要求14中所述的一种盾构施工隧道非接触式电法实时超前探测方法,其特征是:所述步骤(1)中,具体方法为:在盾构机的制造过程中在刀盘上安装非接触式供电电极和非接触式测量电极,非接触式供电电极和非接触式测量电极分别在刀盘的工作面上呈圆环状分布,非接触式供电电极所构成的圆环套置在非接触式测量电极所构成的圆环的外侧,多个非接触式供电电极的极性相同,多个非接触式测量电极构成阵列式非接触测量电极系;同时,将固定供电电极和固定测量电极固定安装于盾构机的盾尾处。
  15. [根据细则91更正 03.11.2016] 
    如权利要求14中所述的一种盾构施工隧道非接触式电法实时超前探测方法,其特征是:所述步骤(2)中,具体包括:在刀盘的中心线上安装电极定位装置,使电极定位装置的转动部分设置在刀盘背面,静止部分装设于刀盘后方,在刀盘后侧安装回转接头,并敷设多芯电缆与单芯电缆,使得单芯电缆一端连接刀盘上的非接触式电极,所述单芯电缆的另一端穿过电极定位装置的中空部分与回转接头连接。
  16. [根据细则91更正 03.11.2016] 
    如权利要求14中所述的一种盾构施工隧道非接触式电法实时超前探测方法,其特征是:所述步骤(2)中,所述多芯电缆连接在所述回转接头与供电与测量装置之间,同时采用单芯电缆分别连接所述固定供电电极和所述固定测量电极到所述供电与测量装置,控制主机连接所述电极定位装置和所述供电与测量装置,完成非接触式频域电法实时超前探测系统的连接。
  17. [根据细则91更正 03.11.2016] 
    如权利要求14中所述的一种盾构施工隧道非接触式电法实时超前探测方法,其特征是:所述步骤(3)中,具体为:交流电通过所述非接触式供电电极的电容耦合效应对掌子面围岩进行供电,围岩产生电势使所述阵列式非接触测量电极系中的非接触式测量电极产生电流,获取各个非接触式测量电极和所述固定测量电极之间的电势差,与此同时所述电极定位装置将每个非接触式电极的空间位置信息传输到控制主机,完成测量数据与位置数据的对应。
PCT/CN2016/079826 2016-03-31 2016-04-21 一种盾构搭载的非接触式频域电法实时超前探测系统与方法 WO2017166342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016000078.2T DE112016000078B4 (de) 2016-03-31 2016-04-21 Auf eine Schildvortriebsmaschine geladenes kontaktfreies elektrisches Frequenzbereichechtzeitvorauserkundungssystem und -verfahren
US15/323,284 US10260345B2 (en) 2016-03-31 2016-04-21 Shield-carried noncontact frequency-domain electrical real-time advanced detection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610202312.X 2016-03-31
CN201610202312.XA CN105891890B (zh) 2016-03-31 2016-03-31 一种盾构搭载的非接触式频域电法实时超前探测系统与方法

Publications (1)

Publication Number Publication Date
WO2017166342A1 true WO2017166342A1 (zh) 2017-10-05

Family

ID=57013287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079826 WO2017166342A1 (zh) 2016-03-31 2016-04-21 一种盾构搭载的非接触式频域电法实时超前探测系统与方法

Country Status (4)

Country Link
US (1) US10260345B2 (zh)
CN (1) CN105891890B (zh)
DE (1) DE112016000078B4 (zh)
WO (1) WO2017166342A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799541A (zh) * 2021-03-02 2021-05-14 深圳市华星光电半导体显示技术有限公司 显示面板的驱动电路及驱动方法
CN113224556A (zh) * 2021-05-07 2021-08-06 广东电网有限责任公司梅州供电局 一种接地组件

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646623B (zh) * 2016-12-27 2017-09-05 山东大学 用于tbm的滚动接触式电法实时超前探测搭载装置及方法
CN107219558B (zh) * 2017-08-08 2023-07-14 山东省煤田地质规划勘察研究院 一种可用于物探测量的快速电极布设装置及方法
CN108303742A (zh) * 2018-01-05 2018-07-20 中南大学 新型高密度电法或超高密度电法勘探装置及勘探方法
CN108469581A (zh) * 2018-03-22 2018-08-31 哈尔滨理工大学 用于局部放电测量的多电极观测系统及其观测方法
CN109026021B (zh) * 2018-08-13 2024-02-27 中国电子科技集团公司第二十二研究所 盾构机的聚焦系统及方法
CN109387685B (zh) * 2018-11-01 2024-04-30 华南理工大学 一种差分探头及非接触式电压测量装置
CN110824568B (zh) * 2019-11-14 2021-10-08 山东大学 一种搭载于盾构机刀盘-内置聚焦式电法探水系统及方法
JP7316235B2 (ja) * 2020-02-27 2023-07-27 大成建設株式会社 地山探査装置および地山探査方法
CN111577304A (zh) * 2020-05-07 2020-08-25 中铁隧道局集团有限公司 一种能够延长刀具使用寿命的盾构机及其使用方法
CN111580154B (zh) * 2020-06-05 2023-04-18 中铁工程装备集团有限公司 一种可控震源声波法地质预报系统
CN111954453B (zh) * 2020-06-29 2022-11-29 西安电子科技大学 一种非接触式可旋转宽带电磁屏蔽结构、设计方法及应用
CN113031082B (zh) * 2021-03-18 2022-11-22 中国科学院地理科学与资源研究所 盾构施工隧道使用的激电测深法超前预报系统及方法
CN113311487B (zh) * 2021-05-18 2022-08-09 山东大学 隧道掌子面发射的频率域激发极化超前探水方法与装置
CN114278330B (zh) * 2021-12-31 2023-08-15 四川省铁路建设有限公司 一种隧道圆盘锯挖掘预警装置
CN114386290A (zh) * 2022-01-27 2022-04-22 青岛理工大学 基于双模盾构施工引起地表沉降五维空间效应试验系统的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018025A1 (en) * 1996-10-24 1998-04-30 Echotec, Inc. Earthquake forecast method and apparatus
CN105068128A (zh) * 2015-07-30 2015-11-18 山东大学 土压平衡盾构搭载的三维激电法超前预报系统及探测方法
CN105096563A (zh) * 2015-07-30 2015-11-25 山东大学 一种可用于盾构掘进机分布式无线通讯测量装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103291A (ja) * 2000-09-29 2002-04-09 Kyocera Mita Corp 穿孔装置
JP3821435B2 (ja) 2002-10-18 2006-09-13 松下電器産業株式会社 超音波探触子
US8172006B2 (en) * 2004-08-20 2012-05-08 Sdg, Llc Pulsed electric rock drilling apparatus with non-rotating bit
GB2420358B (en) * 2004-11-17 2008-09-03 Schlumberger Holdings System and method for drilling a borehole
US7554329B2 (en) 2006-04-07 2009-06-30 Baker Hughes Incorporated Method and apparatus for determining formation resistivity ahead of the bit and azimuthal at the bit
US8322462B2 (en) * 2008-12-22 2012-12-04 Halliburton Energy Services, Inc. Proximity detection system for deep wells
WO2011090481A1 (en) * 2010-01-22 2011-07-28 Halliburton Energy Services, Inc. Method and apparatus for making resistivity measurements in a wellbore
EP2498105B1 (en) 2010-12-20 2014-08-27 Services Pétroliers Schlumberger Apparatus and method for measuring electrical properties of an underground formation
CN102768369B (zh) * 2012-06-05 2015-06-03 武汉长盛煤安科技有限公司 巷道掘进钻孔激发极化超前探水预报方法、装置及探头
CN103076635B (zh) * 2013-01-07 2013-12-04 山东大学 Tbm施工隧道前向三维激发极化法超前探测装置系统及方法
CN203037864U (zh) * 2013-01-07 2013-07-03 山东大学 Tbm施工隧道前向三维激发极化法超前探测装置系统
US9256003B2 (en) * 2013-01-15 2016-02-09 Shan Dong University Three-dimensional focusing induced polarization equipment for advanced geological prediction of water inrush disaster source in underground engineering
US9500077B2 (en) 2014-01-07 2016-11-22 Shandong University Comprehensive advanced geological detection system carried on tunnel boring machine
CN204790023U (zh) * 2015-07-30 2015-11-18 山东大学 土压平衡盾构搭载的三维激电法超前预报系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018025A1 (en) * 1996-10-24 1998-04-30 Echotec, Inc. Earthquake forecast method and apparatus
CN105068128A (zh) * 2015-07-30 2015-11-18 山东大学 土压平衡盾构搭载的三维激电法超前预报系统及探测方法
CN105096563A (zh) * 2015-07-30 2015-11-25 山东大学 一种可用于盾构掘进机分布式无线通讯测量装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799541A (zh) * 2021-03-02 2021-05-14 深圳市华星光电半导体显示技术有限公司 显示面板的驱动电路及驱动方法
CN112799541B (zh) * 2021-03-02 2023-09-26 深圳市华星光电半导体显示技术有限公司 显示面板的驱动电路及驱动方法
CN113224556A (zh) * 2021-05-07 2021-08-06 广东电网有限责任公司梅州供电局 一种接地组件
CN113224556B (zh) * 2021-05-07 2022-09-30 广东电网有限责任公司梅州供电局 一种接地组件

Also Published As

Publication number Publication date
US20170306757A1 (en) 2017-10-26
DE112016000078T5 (de) 2018-02-08
DE112016000078B4 (de) 2022-05-05
CN105891890A (zh) 2016-08-24
CN105891890B (zh) 2017-09-05
US10260345B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2017166342A1 (zh) 一种盾构搭载的非接触式频域电法实时超前探测系统与方法
CN103713335B (zh) 隧道掘进机搭载的综合超前地质探测系统
CN105068128B (zh) 土压平衡盾构搭载的三维激电法超前预报系统及探测方法
CN108776354A (zh) 一种tbm搭载的聚焦测深型三维激发极化超前探测系统及方法
WO2015103721A1 (zh) 隧道掘进机搭载的综合超前地质探测系统
CN203658603U (zh) 隧道掘进机搭载的综合超前地质探测系统
CN101706585A (zh) 一种用于地下掘进工程中的隐患电法超前预报方法
CN102798895B (zh) 基于zigbee的无线井地伪随机监测装置及监测方法
WO2021227236A1 (zh) 基于盾构机施工噪声的多波场地震探测方法与系统
CN110824568B (zh) 一种搭载于盾构机刀盘-内置聚焦式电法探水系统及方法
CN105301645B (zh) 一种盾构法施工超前地质预报方法以及系统
CN204790023U (zh) 土压平衡盾构搭载的三维激电法超前预报系统
CN105510982A (zh) 基于激发极化法的tbm施工隧道聚焦型前向三维多电极在线探测系统
CN206833669U (zh) 一种边坡地质灾害监测预警系统
CN202093655U (zh) 水下地质灾害监测系统
CN106646623B (zh) 用于tbm的滚动接触式电法实时超前探测搭载装置及方法
CN102662191A (zh) 面向地下空间开发的地下管线层析成像系统
CN103995286B (zh) 一种声波接收换能器及井下方位噪声检漏装置和检漏方法
CN111929741A (zh) 5g+cmft—r时域电磁场勘探系统与方法
CN103643948B (zh) 一种双电方位成像测井仪器与方法
CN202256507U (zh) 接地电阻监测装置
CN102841266A (zh) 竖直地电场仪及其观测方法
CN104820247B (zh) 矿井分布式三维电法仪及其观测方法
CN210720761U (zh) 一种用于深层资源勘探的激电仪
CN102645668A (zh) 钻爆法施工中利用爆破信号超前地质预报装置及使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112016000078

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15323284

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896120

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896120

Country of ref document: EP

Kind code of ref document: A1