WO2017166250A1 - 资源配置方法、资源接收方法、装置、基站与用户设备 - Google Patents

资源配置方法、资源接收方法、装置、基站与用户设备 Download PDF

Info

Publication number
WO2017166250A1
WO2017166250A1 PCT/CN2016/078217 CN2016078217W WO2017166250A1 WO 2017166250 A1 WO2017166250 A1 WO 2017166250A1 CN 2016078217 W CN2016078217 W CN 2016078217W WO 2017166250 A1 WO2017166250 A1 WO 2017166250A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
configuration
resource
signaling
ports
Prior art date
Application number
PCT/CN2016/078217
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/078217 priority Critical patent/WO2017166250A1/zh
Priority to CN201680083626.0A priority patent/CN108781144B/zh
Publication of WO2017166250A1 publication Critical patent/WO2017166250A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource configuration method, a resource receiving method, a device, a base station, and a user equipment.
  • reference signals are commonly used in communication systems to measure different service data, wherein one type of reference signal is used to estimate a channel, and a received signal containing control information or data can be coherently demodulated; another type of reference is used for The measurement of the channel state or the channel quality enables the scheduling of the user equipment (User Equipment, UE for short).
  • one type of reference signal is used to estimate a channel, and a received signal containing control information or data can be coherently demodulated; another type of reference is used for The measurement of the channel state or the channel quality enables the scheduling of the user equipment (User Equipment, UE for short).
  • UE User Equipment
  • the modulated reference signal is called a Demodulation Reference Signal (DMRS); the reference signal used for channel state information measurement is called a Channel State Information Reference Signal (CSI-RS). ).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the reference signal further includes a Cell-specific Reference Signal (CRS) that is inherited from the R8/R9 system, and the CRS signal is used for channel estimation by the UE to implement a physical downlink control channel (Physical Downlink Control Channel). , referred to as: PDCCH) and demodulation of other common channels.
  • PDCCH Physical Downlink Control Channel
  • the DMRS signal supports up to 8 antenna ports, the number of antenna ports can be 1 to 8; the CSI-RS signal supports up to 8 antenna ports, and the number of antenna ports can be 1, 2, 4 or 8; 4 antenna ports, the number of antenna ports can be 1, 2 or 4.
  • the CSI-RS resource configuration of the high-dimensional port is generated in the prior art by aggregating the low-dimensional port CSI-RS resources.
  • the CSI-RS resource configuration of the 16-antenna port can be aggregated by using two 8-port CSI-RS resources 1 and CSI-RS resource 2; or, by using two 2-port CSI-RS resources 1-8. to make.
  • each aggregated CSI-RS resource configuration needs to be notified to the UE by 5bi t resources.
  • the number of antenna ports of the CSI-RS resources to be supported increases from 16 to 18, 20 When 22, or even more antenna ports, the configuration overhead of CSI-RS resource aggregation increases accordingly.
  • the embodiment of the present invention provides a resource configuration method, a resource receiving method, a device, a base station, and a user equipment, which solves the configuration overhead of CSI-RS resource aggregation in the prior art as the number of antenna ports of the CSI-RS resource increases. There is also a corresponding increase in the problem.
  • the user equipment can directly perform channel measurement and estimation according to the adaptive change configuration rule and the corresponding reference signal corresponding to the configuration signaling sent by the base station, thereby avoiding the problem of increased configuration overhead when the reference signal is aggregated, and reducing the reference signal aggregation. Configuration overhead.
  • the effect of reducing the configuration overhead of CSI-RS resource aggregation can be achieved in multiple configurations.
  • the reference signal of the N port corresponds to the reference signal of the K M ports.
  • the configuration signaling further includes configuration information of the reference signals of the L P ports and correspondence indication information between the reference signals of the N ports and the reference signals of the L P ports.
  • the method before the base station sends the configuration signaling of the reference signal to the user equipment, the method further includes:
  • the base station determines the correspondence indication information between the reference signal of the N port and the reference signal of the K M ports according to the port number N of the reference signal;
  • Corresponding relationship indication information between the reference signal of the N port and the reference signal of the L P ports is determined.
  • the correspondence relationship indication information corresponds to a 1bi t correspondence relationship indication information field, and the correspondence relationship indication information field is used to indicate that the correspondence relationship is a first mapping relationship or a second mapping relationship.
  • the configuration information of the reference signals of the K M ports or the reference signals of the L P ports includes a mapping of the reference signal to the resource unit and/or a transmission of the reference signal of each M port or P port.
  • the frame is configured to enable the user equipment to receive the reference signal of the N port according to the configuration information.
  • the transmission subframe configuration of the reference signals of at least two M ports or P ports is different.
  • the configuration signaling also includes an overlap factor and/or a sampling factor of the reference signals of the K M ports.
  • the configuration signaling of the reference signals of the K M ports includes group index indication information of the reference signal of the M port and indication information of the reference signal in the resource group;
  • the configuration signaling of the reference signals of the K M ports includes group index indication information of the reference signals of the M ports;
  • the configuration signaling further includes bitmap indication information indicating configuration information of the reference signal of the M port of the reference signal constituting the N port and/or configuration information of the reference signal of the P port. .
  • the reference signal of the M port corresponds to a bitmap indication
  • the reference signal of the P port corresponds to a bitmap indication
  • the bitmap indication of the reference signal of the P port is obtained according to the complement indicated by the bitmap of the reference signal of the M port;
  • the valid bit in the bitmap indication information indicates configuration information of the reference signal of the M or P port used to form the reference signal of the N port.
  • Each of the above configuration modes can reduce the configuration overhead of CSI-RS resource aggregation.
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signals of the N ports and the reference signals of the K M ports;
  • the sending unit is further configured to: send the reference signal of the N port to the user equipment according to the configuration signaling.
  • an embodiment of the present invention provides a base station, where the base station has a function of implementing a behavior of a base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the base station includes a processor and a transmitter, and the processor It is configured to support the base station to perform the corresponding functions in the above methods.
  • the transmitter is for supporting communication between a base station and a user equipment.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a resource receiving method, where the method includes: receiving, by a user equipment, configuration signaling of a reference signal sent by a base station, where the number of ports of the reference signal is N, and the reference signal of the N port corresponds to K.
  • configuration signaling includes configuration information of reference signals of K M ports and reference of N port Corresponding relationship indication information between the signal and the reference signals of the K M ports;
  • the user equipment receives the reference signal of the N port sent by the base station according to the configuration signaling; according to the configuration signaling and the reference signal, the user equipment performs the reference signal receiving based on the N port And channel quality measurements. Since the base station sends the determined configuration signaling and the reference signal to the user equipment, the user equipment can directly perform channel measurement and estimation according to the configuration signaling and the reference signal, thereby avoiding the problem of increased configuration overhead when the reference signal is aggregated. Reduce the configuration overhead of reference signal aggregation.
  • an embodiment of the present invention provides a user equipment, where the user equipment includes: the user equipment has a function of realizing the behavior of the user equipment in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the user equipment includes a processor and a receiver, where
  • the processor is configured to support the user equipment to perform the corresponding functions in the above methods.
  • the receiver is configured to support communication between the user equipment and the base station.
  • the user equipment may also include a memory for coupling with the processor that holds program instructions and data necessary for the user equipment.
  • an embodiment of the present invention provides a resource configuration method, where the method includes: a base station sends a trigger signaling of a reference signal to a user equipment, where the trigger signaling is used to indicate whether the base station performs the sending of the reference signal;
  • the trigger signaling corresponds to a reference signal triggering domain field in the downlink control information, and the base station performs the sending of the reference signal according to the trigger signaling. Since the base station sends the determined reference signal resource to the user equipment, the user equipment can directly perform channel measurement and estimation according to the trigger signaling and the reference signal resource, thereby avoiding the problem of increased configuration overhead when the reference signal is aggregated, and reducing the reference.
  • the configuration overhead of signal aggregation since the base station sends the determined reference signal resource to the user equipment, the user equipment can directly perform channel measurement and estimation according to the trigger signaling and the reference signal resource, thereby avoiding the problem of increased configuration overhead when the reference signal is aggregated, and reducing the reference.
  • the configuration overhead of signal aggregation since the base
  • the trigger signaling is channel state information CSI process specific or reference signal resource specific or reference signal resource group specific;
  • the triggering signaling specific to the CSI process refers to that all reference signal resources in the CSI process are triggered, and the specific triggering signaling of the reference signal resource refers to that each reference signal resource in the CSI process is triggered separately, and the reference signal resource is separately triggered.
  • Group-specific trigger signaling means that reference signal resources within each reference signal resource group in the CSI process are triggered separately.
  • the method further includes: triggering signaling of the reference signal simultaneously indicating triggering of the CSI request; or triggering signaling of the CSI request simultaneously indicating triggering of the reference signal.
  • the trigger of the CSI request is CSI process specific or reference signal specific or reference signal resource group specific.
  • the reference signal trigger field field length is 1 bit or 2 bits.
  • the method further includes: the base station sending a trigger type indication signaling to the user equipment, where the trigger type indication signaling is used to indicate that the current trigger is a reference signal touch Is also a trigger for CSI requests.
  • the triggering of the reference signal corresponds to the first field indication format
  • the trigger of the CSI request corresponds to the second field indication format
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • the reference signal is a non-zero power reference signal and corresponds to a non-zero power reference signal resource pool;
  • the method further includes: the base station uses the same bitmap indication signaling for the non-zero power reference signal pool configuration of the user equipment and the zero power reference signal resource configuration of the user equipment;
  • the valid bit in the bitmap indication signaling corresponding to the non-zero power reference signal resource pool configuration is different from the valid bit in the bitmap indication signaling corresponding to the zero power reference signal resource configuration.
  • the method further includes: the base station transmitting configuration signaling of the zero power reference signal to the user equipment by using downlink control information, where the configuration signaling is used to indicate configuration information of the zero power reference signal sent by the base station .
  • the method before the base station sends the configuration signaling of the zero-power reference signal to the user equipment by using the downlink control information, the method further includes: configuring, by the base station, the zero-power reference signal resource by using the high-layer signaling to the user equipment. information.
  • Each of the above configuration modes can reduce the configuration overhead of CSI-RS resource aggregation.
  • an embodiment of the present invention provides a resource configuration apparatus, where the apparatus includes: a sending unit, configured to send a trigger signaling of a reference signal to a user equipment, where the trigger signaling is used to indicate a base Whether the station performs the transmission of the reference signal;
  • the trigger signaling corresponds to a reference signal resource triggering domain field in the downlink control information
  • the sending unit is further configured to: send the reference signal resource according to the trigger signaling.
  • an embodiment of the present invention provides a base station, where the base station has a function of implementing a base station behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the base station includes a processor and a transmitter configured to support the base station to perform the corresponding functions in the above methods.
  • the transmitter is for supporting communication between a base station and a user equipment.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • the embodiment of the present invention provides a resource receiving method, where the method includes: receiving, by a user equipment, trigger signaling of a reference signal sent by a base station, where the triggering signaling is used to indicate whether the base station sends a reference signal;
  • the triggering signaling corresponds to a reference signal triggering domain field in the downlink control information;
  • the user equipment receives the reference signal sent by the base station according to the trigger signaling; and the channel quality of the reference signal by the user equipment according to the trigger signaling and the reference signal measuring.
  • the base station sends the determined reference signal resource to the user equipment, the user equipment can directly perform channel measurement and estimation of the reference signal according to the trigger signaling and the reference signal resource, thereby avoiding the problem of increased configuration overhead when the reference signal is aggregated. , reduce the configuration overhead of reference signal aggregation.
  • the user equipment receives the triggering signaling of the reference signal sent by the base station, and the method further includes:
  • the triggering signaling of the reference signal simultaneously indicates the triggering of the CSI request; or the triggering signaling of the CSI request simultaneously indicates the triggering of the reference signal; the user equipment performs the corresponding CSI reporting according to the trigger signaling. .
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • an embodiment of the present invention provides a resource receiving apparatus, where the apparatus includes: a receiving unit, configured to receive trigger signaling of a reference signal sent by a base station, where the trigger signaling is used to indicate whether the base station performs a reference signal.
  • the triggering signaling corresponds to a reference signal triggering domain field in the downlink control information;
  • the receiving unit is further configured to: receive a reference signal sent by the base station according to the trigger signaling; and the channel measuring unit is configured to use the trigger signaling And the reference signal, performing channel quality measurement of the reference signal.
  • the embodiment of the present invention provides a user equipment, where the user equipment includes: the user equipment has a function of realizing the behavior of the user equipment in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the user equipment includes a processor and a receiver configured to support the user equipment to perform the corresponding functions in the above methods.
  • the receiver is configured to support communication between the user equipment and the base station.
  • the user equipment may also include a memory for coupling with the processor that holds program instructions and data necessary for the user equipment.
  • FIG. 1 is a schematic diagram of a system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a resource configuration method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a resource configuration apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a resource configuration apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of another resource configuration method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another resource configuration apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another resource configuration apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the base station and the UE perform wireless communication, and when the UE sends information to the base station, the uplink transmission is used; when the base station sends the command/information to the UE, the downlink transmission is adopted.
  • LTE Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • frequency division multiple access time division multiple access
  • orthogonal frequency division multiple access single carrier frequency division multiple access and other access technology systems.
  • LTE system such as the fifth generation 5G system and the like.
  • 5G system fifth generation 5G system and the like.
  • only the LTE system is taken as an example here.
  • the terminal involved in the embodiment of the present invention may include various types of A device with wireless communication capabilities or other processing device connected to a wireless modem.
  • a base station (BS) is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. In a system using different radio access technologies, the name of a device having a base station function may be different.
  • an evolved Node B (evolved Node B: eNB or eNodeB) is in the third.
  • Node B In the 3G network, it is called Node B and so on.
  • the above-mentioned devices that provide wireless communication functions for the UE are collectively referred to as a base station or a BS.
  • the base station performs the configuration of the reference signal for multiple UEs, and the first UE in the wireless network is taken as an example for description.
  • the base station sends the configuration signaling of the reference signal to the UE, where the configuration signaling includes the configuration information of the reference signals of the K M ports corresponding to the reference signal of the N port, and the reference signal of the N port and the reference signal of the K M ports.
  • the base station further sends a reference signal of the N port to the UE according to the configuration information, and the UE performs channel measurement and estimation of the reference signal according to the received configuration signaling and the reference signal.
  • the base station can configure the reference signal of the UE in multiple configurations, and the following provides a detailed description of the solution provided by the embodiment of the present invention, and FIG. 2 is the present invention.
  • a flow chart of a resource configuration method is provided in the embodiment.
  • the implementation entity is a base station. As shown in FIG. 2, the embodiment specifically includes the following steps:
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signal of the N port and the reference signal of the K M ports.
  • the base station determines the number of ports N of the reference signal of each UE according to factors such as the network environment and location of each UE, for example, the number of ports N of the base station determining the reference signal of the first UE is 24; The base station determines that the number N of ports of the reference signal of the second UE is 30 or the like.
  • the base station further determines, according to the number of ports N, the configuration information of the reference signal of the N port and the reference signal of the K M ports, and the correspondence between the reference signal of the N port and the reference signal of the K M ports.
  • the K M ports are specifically the number of ports aggregated by the UE side into N ports. For example, 24 ports are aggregated through 6 4-ports.
  • the reference signal of the N port corresponds to the reference signal of the K M ports
  • the configuration signaling further includes configuration information of the reference signals of the L P ports and a correspondence relationship between the reference signals of the N ports and the reference signals of the L P ports. information.
  • the base station further determines, according to the number of ports N, configuration information of the reference signals of the L P ports corresponding to the reference signals of the N ports, and reference signals of the N ports and reference signals of the L P ports. Correspondence relationship indication information.
  • the K M ports are specifically K resources used by the base station and the UE side to generate CSI-RS resources of the N port.
  • K resources used by the base station and the UE side to generate CSI-RS resources of the N port.
  • a 24-port CSI-RS resource is aggregated through three 8-port CSI-RS resources.
  • the configuration signaling may be specifically high-layer signaling, such as RRC signaling, or physical layer dynamic signaling, and downlink control information (DCI) signaling.
  • RRC signaling or physical layer dynamic signaling
  • DCI downlink control information
  • Step 220 The base station sends a reference signal of the N port to the user equipment according to the configuration signaling.
  • the base station sends a reference signal to the first UE, so that the first UE performs reception and channel measurement of the corresponding reference signal according to the received configuration signaling and the reference signal.
  • the base station determines the reference signal of the N port and the reference signal of the K M ports and/or determines the reference signal of the N port and the reference signal of the L P ports.
  • the corresponding relationship indication information is further specifically: the base station determines the correspondence according to whether the number of ports N exceeds a preset port threshold, and the base station determines different mapping relationships according to the determined values of different port numbers, so as to implement configuration for saving reference signal aggregation. The purpose of the overhead.
  • the base station determines whether the port number N exceeds a preset port threshold.
  • the preset port threshold may be set according to an inherent attribute of each base station, and different base stations may set different port thresholds, for example, a port.
  • the threshold can be 20, 24, and so on. If the port number N exceeds the port threshold, the corresponding relationship is the first mapping relationship; if the port number N does not exceed the port threshold, the corresponding relationship is the second mapping relationship.
  • the corresponding relationship indication information is specifically a 1-bit correspondence indication information field, where the correspondence indication information field is used to indicate that the correspondence relationship is the first mapping relationship or the second mapping relationship; that is, the base station determines the first mapping according to the port number N. After the relationship and the second mapping relationship, the corresponding relationship indication information field is generated, where the corresponding information indication information field is used to indicate the first mapping relationship or the second mapping relationship corresponding to the first UE.
  • the corresponding relationship indication information field is 0 or 1, when it is 0, it corresponds to the first mapping relationship; when it is 1, it corresponds to the second mapping relationship; the first UE selects the corresponding first according to the correspondence relationship indication information field.
  • the first mapping relationship is specifically a descending configuration rule, that is, when the number of ports N exceeds a port threshold, the base station determines a preset value or a predefined CSI-RS resource ensemble and an N-port CSI- A complement of the RS resource, and the complement is used as a CSI-RS resource to be configured by the first UE.
  • the second mapping relationship is specifically an ordering configuration rule, that is, when the number of ports N does not exceed the port threshold, The base station uses the number of ports N as a CSI-RS resource port to be configured by the first UE.
  • the first UE performs configuration of the N port reference signal on the reference signals of the K M ports of the first UE according to the first mapping relationship or the second mapping relationship.
  • the port threshold is 20, each CSI-RS port corresponds to one resource unit, and the total number of resource elements of the predefined CSI-RS resource is 40; the number of CSI-RS ports to be transmitted of the base station is assumed to be 32.
  • the base station determines, according to the total number of resource units of the predefined CSI-RS resources and the complement 8 of the port number N, that the correspondence is the first mapping relationship, and the base station sends configuration signaling to the UE, where the configuration signaling includes the first mapping relationship.
  • the UE parses the configuration signaling to obtain the first mapping relationship, and the base station sends the 8-port CSI-RS resource based on the configuration signaling, so that the UE according to the 8-port CSI-RS resource and the predefined
  • the total number of CSI-RS resources (40 CSI-RS resource units) determines the 32-port CSI-RS resources to be transmitted.
  • the configuration signaling does not include the corresponding relationship indication information, that is, the configuration information of the reference signal including only the K M ports in the configuration signaling, and does not include the first mapping relationship and the first An indication of the second mapping relationship.
  • the total number of resource units of the predefined CSI-RS resource is the number of CSI-RS resource units that can be used to perform CSI-RS resource configuration in each resource block (Resource Block, RB for short), for example, current In the LTE standard, the total number of CSI-RS resource units that each RB is fixed for CSI-RS resource configuration is 40.
  • the configuration information of the reference signals of the K M ports or the reference signals of the L P ports includes a mapping of the reference signal to the resource unit and/or a reference signal of each M port or P port.
  • the transmission subframe is configured such that the first UE performs reception of the reference signal of the N port according to the configuration information.
  • the transmission subframe configuration of the reference signal of at least two M ports or P ports is different.
  • the resource aggregation configuration of the 32-port reference signal is composed of a frequency domain resource location configuration and a time domain subframe configuration combination (the resource aggregation may be multiple subframes)
  • the aggregated reference signal resources are generated, for example, the resources of the 32-port reference signal are composed of a 16-port reference signal resource transmitted on subframe 1 and a 16-port reference signal resource transmitted on subframe 2. More specifically, the frequency domain resource configuration of the first 16-port reference signal resource is 4, and the frequency domain configuration of the second 16-port reference signal resource is 8.
  • the time domain resource configuration information is sub-time domain
  • the frame configuration combination (I CSI-RS , T CSI-RS ) is configured.
  • the T CSI-RS takes the same value in one configuration.
  • reference on multiple subframes can be implemented.
  • the aggregation of signal resources, wherein the values of the subframe configuration parameters (I CSI-RS , T CSI-RS ) can be as follows:
  • the foregoing subframe is specifically a DwPTS subframe or a Normal subframe.
  • the base station further determines an overlap factor of the reference signal resource and/or an oversampling of the reference signal according to the port number N corresponding to the reference signal resource; the base station sends the first UE to the first UE. Transmitting configuration signaling, the configuration signaling including configuration information, the configuration information including an overlap factor and/or a sampling factor of reference signals of the K M ports, such that the first UE performs according to the overlap factor and/or the sampling factor Corresponding to the configuration of the reference signal resource.
  • the base station sends the configuration signaling to the first UE, Overlapping factor and/or corresponding to the reference signal resource of the N port
  • the oversampling factor is carried in the configuration signaling.
  • the overlapping factor is specifically 2 or 4, indicating that there are overlapping 2 or 4 identical reference signal resources between the K sets of reference signal resources used to generate the N-port reference signal resources, the overlapping 2 Or the four reference signal resources may be reference signal resources located in different subframes but having the same frequency domain location; or indicating that the same two or four constituent reference signal resources exist between any two N-port reference signal resources.
  • the oversampling factor may also be specifically 2 or 4, indicating that the sampling granularity of the N-port reference signal resource is 2 or 4 ports, that is, one port is extracted for every 2 or 4 ports of the N ports, and then only corresponding The reference signal resource is sent on the extracted port.
  • the total number of CSI-RS resource units per RB is 40, and there are two 24-port reference signal resource configurations in the 40 resource units, wherein the first 24-port reference signal resource consists of a 12-port.
  • the reference signal resource configuration one and one 12-port reference signal resource configuration are generated by the second aggregation, and the second 24-port reference signal resource is configured by a 12-port reference signal resource configuration 2 and a 12-port reference signal resource configuration.
  • the 12-port reference signal resource configuration 2 is a reference signal resource that overlaps between two 24-port reference signal resource configurations. Its overlap factor is 1/2.
  • the foregoing base station may separately send an overlapping factor or an oversampling factor for reference signal resource configuration to the UE, and the base station may also send an overlapping factor and an oversampling factor to the UE at the same time, that is, a combination configuration of an overlapping factor and an oversampling factor, for example, (O 1 , S 1 ), wherein O 1 and S 1 represent an overlay factor and an oversampling factor, respectively.
  • a combination configuration of an overlapping factor and an oversampling factor for example, (O 1 , S 1 )
  • the configuration information may further include an overlap factor and/or a sampling factor of the reference signals of the L P ports, and since the process is similar, it will not be repeated again.
  • the method further includes: a step of performing, by the base station, a low-dimensional reference signal, where the base station uses a grouping of the low-dimensional reference signals to generate a high-dimensional reference signal configuration.
  • the configuration information of the reference signals of the K M ports includes the reference of the M port.
  • the indication information of the signal group and the indication information of the selected reference signal resource in the resource group; wherein the reference signals of all candidate M ports are divided into T (T> 1) groups, and each group of reference signals is composed of at least one reference Signal composition; or
  • Each set of reference signals consists of at least K reference signals.
  • a 2-port reference signal configuration is used as an example.
  • PRB Physical Resource Block
  • the base station groups 20 2-port reference signal resources. That is, each of the four 2-port reference signal resources is a group, and five reference signal resource groups are obtained. It is assumed that the 2-port reference signal resource numbers in the five reference signal resource groups are: ⁇ 0, 1, 2, 3 ⁇ , ⁇ 4, 5, 6, 7 ⁇ , ⁇ 8, 9, 10, 11 ⁇ , ⁇ 12, 13, 14, 15 ⁇ and ⁇ 16, 17, 18, 19 ⁇ , wherein each reference signal resource configuration in each group corresponds to a 2-port reference signal resource.
  • the base station determines the indication information of the reference signal group and the indication information of the selected reference signal in the resource group according to the number N of reference signal resource ports to be sent (for example, the number of ports is 18), and both the reference signal resource group and the reference signal resource group are determined.
  • the number is determined by the number of the reference signal resource configuration selected in each resource group.
  • the configuration information may only include the reference signal group indication information, that is, the base station only needs to determine the indication information of the reference signal resource group.
  • the selected reference signal resource group is the first and two reference signal resource groups. Then, the indication information of the reference signal resource group is 1 and 2.
  • the configuration signaling further includes bitmap indication information indicating configuration information and/or a P port of the reference signal resource of the M port of the reference signal resource constituting the N port. Configuration information of the reference signal resource.
  • the reference signal resource of the M port corresponds to a bitmap indication
  • the reference signal resource of the P port corresponds to a bitmap indication
  • the bitmap of the reference signal resource of the P port The complement is indicated according to the bitmap indication of the reference signal resource of the M port; wherein the bitmap indicates that the valid bit in the information indicates configuration information of the M or P port reference signal used to form the reference signal of the N port.
  • the base station determines a port base for performing reference signal resource configuration; the reference signal resource under the port base is a low-latitude reference signal resource. For example, a 2-port reference signal resource and a 4-port reference signal resource. Determining, according to the port base, the length of the bitmap indication information of the reference signal resource based on the port base, where each bit in the bitmap indication information corresponds to the same port base; in the embodiment of the present invention, the bitmap The length of the information corresponds to the port base, that is, the lower the dimension, the longer the bitmap information corresponding to the port base. For example, in the 20-bit bitmap information, each bit corresponds to a 2-port reference signal resource; in a 10-bit bitmap information, each bit corresponds to a 4-port reference signal resource.
  • the base station sets a partial bit in the bitmap information as a valid bit, optionally, "1" is a valid bit; "0" is an invalid bit, wherein each bit in the bitmap indication corresponds to one of the port bases
  • a reference signal resource configuration the valid bit indicates that the reference signal resource configuration corresponding to the bit is used to generate the reference signal resource of the N port; the invalid bit represents that the reference signal resource configuration corresponding to the bit is not used to generate Reference signal resource for the N port.
  • the base station sends configuration signaling to the first UE, where the configuration signaling includes bitmap indication information, so that the first UE performs aggregation configuration of the N-port reference signal resource according to the valid bit pair in the bitmap indication information.
  • the bitmap information is specifically “001100010101010101”.
  • the total length of the bitmap indication information is 20 bits, where each bit corresponds to a 2-port reference signal resource.
  • the above bitmap indication information indicates that the aggregate configuration of the reference signal resources of the 18 ports is configured by the reference signal resource allocation of the 2, 4, 8, 10, 12, 14, 16, 18, 20 bit bits corresponding to the 2 ports. Health.
  • the bitmap indication information is specifically “0011000101”, and the bitmap indicates that the total length of the information is 10 bits, wherein each bit corresponds to a 4-port reference signal resource.
  • the above bitmap indication information indicates that the aggregation configuration of the 16-port reference signal resource is generated by the 4-port reference signal resource configuration aggregation indicated by the 3, 4, 8, and 10 bits.
  • M is 8, that is, the reference signal resource of the M port is an 8-port reference signal resource
  • P is 4, that is, when the reference signal resource of the P port is a 4-port reference signal resource
  • the 4-port is The bitmap indication of the reference signal resource is derived from the complement indicated by the bitmap of the 8-port reference signal resource.
  • the base station may configure multiple bitmap indication information to the UE. For example, the base station may configure a bitmap indication of an 8-port reference signal resource, and configure a bitmap indication of a 4-port reference signal resource and a bit of the reference signal resource of the 2-port. Figure indication.
  • the bitmap of the reference signal resource of the low-dimensional port indicates a bitmap indication based on the reference signal resource of the high-dimensional port.
  • the base station sends the configuration signaling of the reference signal to the UE by applying the foregoing multiple resource configuration methods, where the configuration signaling includes the configuration information of the reference signals of the K M ports corresponding to the reference signal of the N port and the N port. Corresponding relationship indication information between the reference signal and the reference signals of the K M ports; the base station further sends a reference signal of the N port to the UE according to the configuration information, and the UE performs channel quality measurement of the corresponding reference signal according to the received configuration signaling and the reference signal. .
  • the problem of increased configuration overhead reduces the configuration overhead of reference signal aggregation.
  • the method in the foregoing embodiment is described by using a base station as an execution entity, and the user equipment is used as an execution subject to briefly describe a resource receiving method.
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signals of the N ports and the reference signals of the K M ports;
  • the embodiment of the present invention further provides a resource configuration device, which is used to implement the resource configuration method provided in the foregoing embodiment, as shown in FIG.
  • the device includes: a transmitting unit 310.
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signal of the N port and the reference signal of the K M ports;
  • the sending unit is further configured to perform, by using the configuration signaling, the N-port reference signal to the user equipment.
  • the configuration signaling further includes configuration information of the reference signals of the L P ports and correspondence indication information between the reference signals of the N ports and the reference signals of the L P ports.
  • the device further includes:
  • the determining unit 320 is configured to determine correspondence relationship indication information between the reference signal of the N port and the reference signal of the K M ports according to the port number N of the reference signal;
  • the determining unit 320 is further configured to determine correspondence relationship indication information between the reference signal of the N port and the reference signal of the L P ports.
  • the corresponding relationship indication information included in the configuration signaling that is sent by the sending unit 310 corresponds to a 1-bit correspondence indication information field, and the corresponding relationship indication information field is used to indicate that the corresponding relationship is a first mapping relationship or The second mapping relationship.
  • the configuration information of the reference signals of the K M ports or the reference signals of the L P ports includes a mapping of the reference signal to the resource unit and/or transmission of a reference signal of each of the M ports or P ports
  • the subframe is configured to enable the user equipment to perform reception of the reference signal of the N port according to the configuration information.
  • the transmission subframe configuration of the reference signals of at least two M ports or P ports is different.
  • the configuration signaling sent by the sending unit 310 further includes an overlap factor and/or a sampling factor of the reference signals of the K M ports.
  • configuration signaling of the reference signals of the K M ports includes group index indication information of reference signals of the M ports and indication information of reference signals in the resource group;
  • the configuration signaling of the reference signals of the K ports includes the group index indication information of the reference signals of the M ports;
  • the configuration signaling sent by the sending unit 310 further includes bitmap indication information indicating configuration information of a reference signal of an M port constituting the reference signal of the N port and/or Configuration information of the reference signal of the P port.
  • the reference signal of the M port corresponds to a bitmap indication
  • the reference signal of the P port corresponds to a bitmap indication
  • a bitmap indication of the reference signal of the P port is obtained according to a complement indicated by a bitmap of the reference signal of the M port;
  • the valid bit in the bitmap indication information indicates configuration information of a reference signal of an M or P port used to form a reference signal of the N port.
  • an embodiment of the present invention further provides a resource receiving apparatus for implementing the foregoing implementation.
  • the resource receiving method provided in the example is as shown in FIG. 4, and the device includes: a receiving unit 410 and a configuration unit 420.
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signals of the N ports and reference signals of the K M ports;
  • the receiving unit 410 is further configured to receive a reference signal of the N port that is sent by the base station according to the configuration signaling;
  • the channel measurement unit 420 is configured to perform N-port based channel quality measurement according to the configuration signaling and the reference signal.
  • the resource configuration apparatus transmits the configuration signaling of the reference signal to the resource receiving apparatus by using the resource configuration apparatus and the resource receiving apparatus, where the configuration signaling includes the K M ports corresponding to the reference signals of the N port.
  • the resource configuration device further sends a reference signal of the N port to the resource receiving device according to the configuration information, and the resource receiving device is configured according to the resource
  • the received configuration signaling performs reception of the N-port reference signal and corresponding channel quality measurement.
  • the resource configuration apparatus transmits the configuration signaling to the resource receiving apparatus, so that the resource receiving apparatus can perform the reference signal reception and the corresponding channel quality measurement according to the adaptive configuration rule indicated by the configuration signaling, thereby avoiding When the reference signal is aggregated, the configuration overhead is increased, and the configuration overhead of the reference signal aggregation is reduced.
  • the resource configuration apparatus provided by the embodiment of the present invention may be implemented as follows to implement the resource configuration method in the foregoing embodiment of the present invention.
  • the base station includes: a transmitter 510, and a processor. 520, and a memory 530.
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signals of the N ports and reference signals of the K M ports;
  • the transmitter 510 is further configured to perform, by using the configuration signaling, the N-port reference signal to the user equipment.
  • the memory 530 is used to store program codes and data of the terminal.
  • Figure 5 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • the configuration signaling sent by the transmitter further includes configuration information of a reference signal of the L P ports and correspondence indication information between the reference signal of the N port and a reference signal of the L P ports.
  • the processor 520 is configured to determine correspondence relationship indication information between the reference signal of the N port and the reference signal of the K M ports according to the port number N of the reference signal;
  • Corresponding relationship indication information between the reference signal of the N port and the reference signal of the L P ports is determined.
  • the correspondence relationship indication information that is sent by the transmitter 510 is corresponding to a 1-bit correspondence indication information field, and the corresponding relationship indication information field is used to indicate that the correspondence is a first mapping relationship or The second mapping relationship.
  • the configuration information of the reference signals of the K M ports or the reference signals of the L P ports includes a mapping of the reference signal to the resource unit and/or a reference of each of the M ports or P ports
  • the transmission subframe of the test signal is configured to enable the user equipment to perform reception of the reference signal of the N port according to the configuration information.
  • the transmission subframe configuration of the reference signals of at least two M ports or P ports is different.
  • the configuration signaling sent by the transmitter 510 further includes an overlap factor and/or a sampling factor of the reference signals of the K M ports.
  • configuration signaling of the reference signals of the K M ports includes reference signal group indication information of the M port and indication information of the reference signal in the resource group;
  • the configuration signaling of the reference signals of the K ports includes the group index indication information of the reference signals of the M ports;
  • the configuration signaling sent by the transmitter 510 further includes bitmap indication information indicating configuration information of a reference signal of an M port constituting a reference signal of the N port and/or Configuration information of the reference signal of the P port.
  • the reference signal of the M port corresponds to a bitmap indication
  • the reference signal of the P port corresponds to a bitmap indication
  • a bitmap indication of the reference signal of the P port is obtained according to a complement indicated by a bitmap of the reference signal of the M port;
  • the valid bit in the bitmap indication information indicates configuration information of a reference signal of an M or P port used to form a reference signal of the N port.
  • the resource receiving apparatus provided by the embodiment of the present invention may be implemented as follows to implement the resource receiving method in the foregoing embodiment of the present invention.
  • the user equipment includes: a receiver 610, and processing. And a memory 630.
  • the configuration signaling includes configuration information of a reference signal of the K M ports and correspondence indication information between the reference signals of the N ports and reference signals of the K M ports;
  • the receiver 610 is further configured to receive a reference signal of the N port that is sent by the base station according to the configuration signaling;
  • the processor 620 is configured to perform channel quality measurement based on the N port reference signal according to the configuration signaling and the reference signal.
  • the memory 630 is used to store program codes and data of the terminal.
  • Figure 6 only shows a simplified design of the user equipment.
  • the user equipment may include any number of transmitters, receivers, processors, controllers, memories, etc., and all user equipments that can implement the present invention are within the scope of the present invention.
  • the controller/processor for performing the above-described base station or user equipment of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array ( FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the base station sends the configuration signaling of the reference signal to the UE by using the foregoing base station and the user equipment, where the configuration signaling includes the configuration information of the reference signals of the K M ports corresponding to the reference signal of the N port and the reference of the N port. Corresponding relationship between the signal and the reference signals of the K M ports indicates information; the base station sends a reference signal of the N port to the UE according to the configuration information, and the UE performs channel quality measurement of the reference signal according to the received configuration signaling and the reference signal. Since the base station sends configuration signaling to the user equipment, so that the user equipment can be adaptively configured according to the configuration signaling indication The rule performs the reception of the reference signal and the corresponding channel quality measurement. Therefore, the problem of increased configuration overhead when the reference signal is aggregated is avoided, and the configuration overhead of the reference signal aggregation is reduced.
  • the present invention also provides another resource configuration method, and an apparatus based on the method.
  • the base station performs the configuration of the reference signal for multiple UEs, and the first UE in the wireless network is taken as an example for description.
  • the base station sends the trigger signal of the reference signal to the first UE, where the trigger signaling corresponds to a reference signal resource triggering field in the uplink or downlink DCI format of the downlink control channel.
  • the trigger signaling is used. Instructing the base station to transmit the reference signal resource; the base station sends the reference signal resource to the UE according to the trigger signaling, and the first UE receives the reference signal according to the received reference signal resource.
  • the base station can configure the reference signal of the UE in multiple configurations, and the following provides a detailed description of the solution provided by the embodiment of the present invention with reference to FIG.
  • Another flow chart of the resource configuration method provided by the embodiment is implemented in the embodiment of the present invention. As shown in FIG. 7, the embodiment specifically includes the following steps:
  • Step 710 The base station sends a trigger signaling of the reference signal to the user equipment, where the trigger signaling is used to indicate whether the base station performs the sending of the reference signal.
  • the trigger signaling corresponds to a reference signal resource triggering domain field in the downlink control information.
  • the trigger signaling may also correspond to one CSI request field field in the downlink control information.
  • a reference signal for example, a CSI-RS resource
  • a reference signal for example, a CSI-RS resource
  • different users have their own specific reference signal resources, and the number of users having an activation packet in the cell is large, the entire cell needs The reference signal resource configuration and the corresponding time-frequency resource overhead will be large.
  • the CSI-RS resource is sent in a non-periodic triggering manner (that is, the triggering is performed only when needed, and is not triggered when not needed).
  • the aperiodic triggering of the CSI-RS resource in the embodiment of the present invention, is implemented by adding a reference signal resource trigger field in the uplink or downlink DCI format of the downlink control channel.
  • the base station sends trigger signaling to the first UE, where the trigger signaling is used to indicate whether the base station performs the sending of the reference signal.
  • Step 720 The base station performs sending of the reference signal according to the trigger signaling.
  • the base station after generating the trigger signaling, the base station sends a reference signal to the first UE according to the trigger signaling, so that the first UE performs channel quality measurement of the corresponding reference signal according to the received trigger signaling and the reference signal.
  • the trigger signaling is specific to a channel state information CSI process or specific to a reference signal resource or a reference signal resource group;
  • the triggering signaling specific to the CSI process refers to that all reference signal resources in the CSI process are triggered, and the specific triggering signaling of the reference signal resource refers to that each reference signal resource in the CSI process is triggered separately, and the reference signal resource is separately triggered.
  • Group-specific trigger signaling means that reference signal resources within each reference signal resource group in the CSI process are triggered separately.
  • the method of the embodiment of the present invention further includes: triggering signaling of the reference signal simultaneously indicating triggering of the CSI request; or triggering signaling of the CSI request simultaneously indicating triggering of the reference signal; wherein, the CSI request
  • the trigger is specific to the CSI process or reference signal resource specific or reference signal resource group specific.
  • the triggering of the reference signal indicates that the triggering of the CSI request indicates that the triggering signaling of the reference signal also implies the triggering of the reporting of the CSI corresponding to the reference signal resource. Therefore, when the trigger signaling of the reference signal is sent to the UE, the UE may obtain the transmission information of the reference signal resource and the trigger information of the CSI reported by the transmitted reference signal resource, based on the interpretation of the trigger signaling.
  • the trigger signaling of the CSI request simultaneously indicates that the triggering of the reference signal refers to the The triggering of the CSI request also implies the triggering of the reference signal transmission corresponding to the CSI request.
  • the UE may obtain the trigger of the CSI request and the trigger information of the reference signal corresponding to the CSI request, based on the interpretation of the trigger signaling.
  • the reference signal trigger field field length is 1 bit or 2 bits.
  • the method further includes: the base station sends a trigger type indication signaling to the UE, where the trigger type indication signaling is used to indicate whether the current trigger is a trigger of the reference signal or a trigger of the CSI request.
  • the triggering of the reference signal corresponds to the first field indication format
  • the trigger of the CSI request corresponds to the second field indication format
  • the first field indication format corresponds to a field value description of a signaling indication
  • the second field indication format corresponds to a field value description of another signaling indication.
  • each of the field indication formats may correspond to a table of signaling interpretations.
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ; n CQI_ref is satisfied to make reference
  • the measurement reference signal transmission time nn CQI_ref is the same downlink subframe as the trigger of the CSI request or the reference signal transmission; or n CQI_ref is satisfied after the transmission subframe after the reference measurement reference signal transmission time nn CQI_ref is the trigger of the CSI request or the reference signal
  • the reference signal may also be a non-zero power reference signal, and corresponding to a non-zero power reference signal resource pool;
  • the method of the embodiment of the present invention further includes: the base station uses the same bitmap indication signaling for the non-zero power reference signal resource pool configuration of the UE and the zero power reference signal resource configuration of the UE;
  • the valid bit in the bitmap indication signaling corresponding to the non-zero power reference signal resource pool configuration is different from the valid bit in the bitmap indication signaling corresponding to the zero power reference signal resource configuration.
  • the method further includes: the base station sends a zero power reference to the UE by using downlink control information.
  • Signal configuration signaling which is used to indicate configuration information of a zero-power reference signal transmitted by the base station.
  • the method further includes: the base station sending, by using the high-layer signaling, configuration information of the zero-power reference signal resource to the UE.
  • the trigger signaling is included in the CSI request field field of the uplink DCI of the downlink control channel.
  • Table 1 The details are shown in Table 1 below.
  • Reference signal resource field value Field value description '00' No acyclic CSI report is triggered '01' Aperiodic CSI reporting of the CSI process set of serving cell C is triggered.
  • '10' Aperiodic CSI reporting of the first CSI process set is triggered '11' Aperiodic CSI reporting of the second CSI process set is triggered
  • the triggering of the existing aperiodic CSI report is specific to the CSI process or is specific to the serving cell. That is, when the aperiodic CSI report is triggered, the CSI reported by the UE in the CSI of the serving cell C is reported as aperiodic CSI. Furthermore, when two sets of restricted measurement subframes are configured, the UE's aperiodic CSI reporting on the two measurement subframe sets is triggered separately.
  • the trigger signaling of the aperiodic CSI-RS resource should be a resource. Specific signaling.
  • the CSI-RS resources are divided into two groups, and each group corresponds to trigger signaling of one aperiodic CSI-RS resource.
  • the trigger signaling of an aperiodic CSI-RS is as shown in Table 2, and the trigger signaling in Table 2 is only an exemplary trigger signaling design. Trigger signaling for aperiodic CSI-RS is not excluded for other design forms.
  • the trigger signaling of another optional aperiodic CSI-RS is as shown in Table 3, and the trigger signaling in Table 3 is only an example.
  • Trigger signaling for aperiodic CSI-RS is not excluded to have other design forms.
  • the aperiodic CSI reporting and the aperiodic CSI-RS resource triggering have a certain coupling relationship.
  • the aperiodic CSI-RS resource is transmitted, the aperiodic CSI reporting is also implied. That is, the trigger of the aperiodic CSI-RS is bound to the trigger reported by the aperiodic CSI.
  • the triggering of the aperiodic CSI-RS implies the triggering of the corresponding aperiodic CSI reporting, or the triggering of the aperiodic CSI reporting implies the triggering of the corresponding aperiodic CSI-RS.
  • the base station binds the trigger of the aperiodic CSI-RS resource transmission and the trigger of the aperiodic CSI reporting, so that the trigger of the aperiodic reporting is also extended to the CSI-RS resource-specific.
  • the triggering of the aperiodic CSI-RS resource may also be CSI-RS resource group specific.
  • a CSI-RS resource pool can be customized, and the base station divides the resources in the resource pool into T groups. Corresponding to T CSI processes respectively.
  • the trigger signaling is a CSI-RS trigger domain field in an uplink or downlink DCI format of a PDCCH/Enhanced Physical Downlink Control Channel (EPDCCH).
  • the number of bits in the CSI-RS trigger field field is 1 bit.
  • another trigger signaling for aperiodic CSI-RS triggering is shown in Table 4 below. The trigger signaling in Table 4 is just an exemplary trigger signaling design. Trigger signaling for aperiodic CSI-RS is not excluded for other design forms.
  • the base station may also trigger the aperiodic transmission of each CSI-RS resource in the resource pool.
  • the aperiodic CSI-RS trigger domain field corresponding to each CSI-RS resource is 1 bi t.
  • An optional aperiodic CSI-RS trigger signaling design is shown in Table 5 below. The trigger signaling in Table 5 is just an exemplary trigger signaling design. Trigger signaling for aperiodic CSI-RS is not excluded for other design forms.
  • Table 5 trigger signaling and description of a non-periodic CSI-RS triggering according to an embodiment of the present invention
  • the base station decouples the triggering of the aperiodic CSI-RS resource from the aperiodic CSI reporting, that is, the aperiodic CSI reporting may be CSI process-specific, rather than periodic.
  • the triggering of CSI-RS resources is CSI-RS resource specific, so that the corresponding trigger signaling will be different.
  • the trigger signaling of the non-periodic CSI-RS resource is one CSI-RS trigger field in the uplink or downlink DCI format of the 2-bit downlink control channel
  • the trigger signaling reported by the non-periodic CSI is the 2-bit downlink control channel.
  • the above two types of DCI signaling may be formatted based on DCI signaling of the same or similar format, and the specific trigger signaling is as shown in Table 6 and Table 7 below.
  • the base station indicates, by using the 1-bit type signaling in the DCI signaling, that the current DCI signaling format is the trigger signaling shown in Table 6 or Table 7.
  • Table 6 corresponds to the trigger signaling of the aperiodic CSI-RS
  • Table 7 corresponds to the trigger signaling reported by the aperiodic CSI.
  • the trigger signaling in Table 6 or Table 7 is just an exemplary trigger signaling design. It is not excluded that trigger signaling for aperiodic CSI-RS or trigger signaling for aperiodic CSI reporting may have other design forms.
  • the trigger signaling is included in an uplink or downlink DCI format of the PDCCH/EPDCCH.
  • the trigger signaling of the aperiodic CSI-RS is a CSI process-specific or CSI-RS resource or a CSI-RS resource group. specific.
  • Table 6 shows another trigger signaling and description provided by the embodiment of the present invention
  • Table 7 further trigger signaling and description provided by the embodiment of the present invention
  • the CQI calculation in the periodic or aperiodic CSI reporting and the CSI measurement behavior of the UE are affected.
  • the CQI reporting time is the subframe n
  • the time domain subframe position of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref .
  • Nn CQI_ref refers to the reference signal transmission time nn CQI_ref assumed or based on the CQI calculation reported at time n.
  • the reference measurement reference signal resource corresponding to the aperiodic CSI reporting is an aperiodic CSI-RS resource, nn CQI_ref is satisfied.
  • the reference measurement reference signal transmission time nn CQI_ref be the same downlink subframe as the transmission of the aperiodic CSI request in the uplink control information indication; or nn CQI_ref is satisfied such that the reference measurement reference signal transmission time nn CQI_ref is in the downlink control information indication
  • the size of T depends on the CQI measurement processing time of the UE.
  • the CQI calculation in the aperiodic CSI reporting may be based on the aperiodic CSI-RS resources on consecutive T subframes after the downlink subframe transmitted by the aperiodic CSI request.
  • the reference measurement reference signal resource on which the aperiodic CSI report is based may also be a periodically transmitted CSI-RS resource.
  • the periodic CSI-RS transmission and the aperiodic CSI-RS are simultaneously supported, it is required to define whether the reference measurement reference signal resource on which the CQI in the aperiodic CSI reporting is based is periodic or aperiodic.
  • the periodic CSI reporting is triggered by the high layer signaling, and the CQI calculation in the periodic CSI reporting may be based on the aperiodic CSI-RS resource. If the periodic CSI-RS resource and the aperiodic CSI-RS resource coexist, the period The CSI-RS resource has a long transmission period, and the CQI in the periodic CSI reporting may be based on a periodic CSI-RS or an aperiodic CSI-RS. Similarly, it is necessary to define whether the reference measurement reference signal resource on which the CQI in the periodic CSI report is based is periodic or aperiodic.
  • Nn CQI_ref satisfies a downlink subframe in which the reference measurement reference signal transmission time nn CQI_ref is a trigger of a nearest aperiodic CSI-RS before the periodic CSI reporting time n.
  • n CQI_ref is a valid downlink subframe greater than or equal to M.
  • n CQI_ref is a downlink subframe greater than or equal to N or a CSI reporting time n The most recent one is a valid downlink subframe greater than or equal to P.
  • the nn CQI_ref satisfies a downlink subframe that causes the reference measurement reference signal transmission time nn CQI_ref to be the transmission of the aperiodic CSI request or the trigger of the aperiodic CSI-RS in the latest downlink control information indication.
  • triggering and dynamic indication of aperiodic CSI-RS resources may be as follows:
  • the CSI-RS resources of the periodically configured CSI-RS resources are shared and dynamically switched between different users at each CSI-RS transmission timing in the transmission timing of the periodic CSI-RS.
  • the number of predefined CSI-RS ports sent periodically is 8.
  • the number of CSI-RS ports in the actual transmission is 1, 2, 4, or 8
  • the number of ports actually used by the current CSI-RS transmission can be indicated by 2-bit DCI signaling.
  • other users can transmit data of the dedicated traffic channel on the vacant CSI-RS resource location.
  • the dynamic change of the CSI-RS resource (such as the port number, the time-frequency resource location, and the like) is limited to the predefined or preset CSI-RS resource range or the predefined or preset CSI-RS resource implied.
  • the range of the CSI-RS resource includes information such as a port number and a time-frequency position of the CSI-RS resource.
  • the implicit CSI-RS resource range refers to the resource range after the predefined or preset CSI-RS resource is expanded.
  • the number of pre-defined CSI-RS ports is 8, and the number of actually used CSI-RS ports is 4, it is necessary to further notify the four-port CSI-RS resources as two of the predefined 8-port CSI-RS resources. Which of the 4-port CSI-RS resources is available. If the number of CSI-RS ports actually used is 2, it is further notified that the CSI-RS resource of the 2-port is one of the four 2-port CSI-RS resources in the predefined 8-port CSI-RS resource. .
  • the number of actually used CSI-RS ports is 1, it is necessary to further notify the single-port CSI-RS resource to be among the eight single-port CSI-RS resources in the predefined 8-port CSI-RS resource. which one.
  • the number of bits of the dynamic notification signaling of the CSI-RS resource that is finally required is determined. For 5.
  • the base station sends the first level configuration information of the CSI-RS resource to the user equipment by using the high layer signaling, and performs the second level dynamic notification of the CSI-RS resource based on the first level configuration information.
  • the CSI-RS resource in the first-level configuration information is a CSI-RS resource that is sent in a pre-defined or pre-set period, and the number of ports of the CSI-RS resource that is periodically sent is fixed.
  • the CSI-RS resource in the second-level dynamic notification is a periodically used or non-periodic CSI-RS resource.
  • the signaling of the second level dynamic notification may be layer 1 downlink control signaling.
  • the signaling of the second-level dynamic notification includes a port number status indication of the CSI-RS resource, and a configuration indication of the CSI-RS resource under the indicated port number.
  • the time-frequency domain resource configuration of the shared periodic CSI-RS is phased for all users. The same.
  • triggering of corresponding CSI-RS resources of different users is performed.
  • the transmission of the CSI-RS resource of the user one is performed at the transmission time point one
  • the transmission of the CSI-RS resource of the user two is performed at the transmission time point two. If the number of ports of the CSI-RS resource that is actually transmitted by the user or the user 2 is not equal to the number of ports of the configured periodic CSI-RS resource, further notify the other users by DCI signaling to make other users perform corresponding Rate matching when data is transmitted.
  • the transmission of the CSI-RS resource of the user 3 and the user 4 is performed at time 2, and if the dynamic change of the CSI-RS resource actually transmitted is supported, it is necessary to notify the actual use in the downlink control information.
  • the CSI-RS resource is a set of K sets, and the number of ports of each CSI-RS resource actually used is notified.
  • the required number of DCI bits is (log2(K)+2) bits.
  • the method for binding triggering of the aperiodic CSI-RS transmission and the aperiodic CSI reporting described above may also be applied in this embodiment.
  • the base station defines and configures cell-specific NZP CSI-RS resources and ZPCSI-RS resources.
  • the characteristics of the cell-level NZP CSI-RS resource are as follows: 1) the cell-level NZP CSI-RS resource configuration is semi-statically variable; 2) the cell-level CSI-RS resource is a fixed port. of.
  • the method for configuring the cell-level NZP CSI-RS resource is: the base station performs configuration together with the ZP CSI-RS resource, and notifies the UE.
  • the base station can perform joint configuration with the 16-bit bitmap indication of the 4-port ZP CSI-RS resource.
  • the base station uses the ZP CSI-RS resource configuration to indicate both the cell-level NZP CSI-RS resource configuration of the current cell and the ZP CSI-RS resource configuration.
  • the UE demodulates, the cell-level NZP CSI-RS resource configuration of the current cell is first demodulated, and then the ZP CSI-RS resource configuration is demodulated at other locations.
  • 16-bit configuration signaling uses two-level CRC coding, where 111000 001100 000bit is CRC1 indicating NZP CSI-RS resource configuration; 000000000000 0011bit is CRC2 indicating ZPCSI-RS resource configuration.
  • the base station performs a configuration indication of the CSI-RS resource to the user equipment by means of two-level signaling, where the two-level signaling includes semi-static high-level signaling and dynamic control signaling. Specifically, the base station first notifies the user equipment of the first-level configuration indication of the CSI-RS resource by using the high-level signaling, and then performs the second-level dynamic configuration indication of the CSI-RS resource based on the first-level configuration indication. The user equipment performs rate matching on the data transmission based on the configuration indication information of the two-level CSI-RS resource.
  • the CSI-RS resource in the two-level signaling is a ZP CSI-RS resource or a CSI-IM resource.
  • the base station divides all the CSI-RS resources into M groups, and dynamically indicates which one of the M groups is configured by the CSI-RS resources by using downlink control signaling.
  • the CSI-RS resource is a ZP CSI-RS resource or a CSI-IM resource.
  • the base station is configured to dynamically indicate the configuration of the CSI-RS resource by using the downlink control signaling.
  • the CSI-RS resource is a ZP CSI-RS resource or a CSI-IM resource.
  • the base station sends the trigger signaling of the reference signal to the user equipment by using the foregoing multiple resource configuration methods; wherein the trigger signaling corresponds to a reference signal resource triggering domain field in the uplink or downlink DCI format of the downlink control channel;
  • the reference signal is sent to the user equipment according to the trigger signaling, and the user equipment performs channel measurement and estimation according to the received reference signal.
  • the user equipment performs channel measurement and estimation according to the received trigger signaling for transmitting the reference signal and the corresponding reference signal resource, thereby improving the use efficiency of the reference signal resource.
  • the method in the foregoing embodiment is described by using a base station as an execution entity, and the user equipment is used as an execution subject to briefly describe a resource receiving method.
  • the UE receives the triggering signaling of the reference signal sent by the base station, where the triggering signaling is used to indicate whether the base station sends the reference signal, where the trigger signaling corresponds to a reference signal triggering domain field in the downlink control information; Receiving, by the UE, a reference signal sent by the base station according to the trigger signaling; Receiving the trigger signaling and the reference signal, the UE performs channel quality measurement based on the reference signal.
  • the base station sends the trigger signaling and the reference signal to the UE according to the foregoing multiple configuration manners. After receiving the trigger signaling and the reference signal, the UE performs channel quality measurement based on the reference signal.
  • the user equipment receives the trigger signaling of the reference signal sent by the base station, where the method further includes:
  • the triggering signaling of the reference signal indicates the triggering of the CSI request; or the triggering signaling of the CSI request indicates the triggering of the reference signal; the user equipment performs the corresponding CSI reporting according to the trigger signaling.
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • the embodiment of the present invention further provides a resource configuration device, which is used to implement the resource configuration method provided in the foregoing embodiment, as shown in FIG.
  • the device includes: a transmitting unit 810.
  • the sending unit 810 of the device is configured to send, to the user equipment, trigger signaling of the reference signal, where the trigger signaling is used to indicate whether the base station performs the sending of the reference signal;
  • the trigger signaling corresponds to a reference signal resource triggering domain field in the downlink control information
  • the sending unit 810 is further configured to: send the reference signal resource according to the trigger signaling.
  • the trigger signaling sent by the sending unit 810 is channel state information CSI.
  • the triggering signaling specific to the CSI process refers to that all reference signal resources in the CSI process are triggered, and the specific triggering signaling of the reference signal resource refers to that each reference signal resource in the CSI process is triggered separately, and the reference signal resource is separately triggered.
  • Group-specific trigger signaling means that reference signal resources within each reference signal resource group in the CSI process are triggered separately.
  • the device further includes:
  • the indicating unit 820, the trigger signaling for the reference signal simultaneously indicates the triggering of the CSI request; or the trigger signaling of the CSI request simultaneously indicates the triggering of the reference signal;
  • the trigger of the CSI request is CSI process specific or reference signal specific or reference signal resource group specific.
  • the trigger signal sent by the sending unit 810 includes the reference signal trigger field field length of 1 bit or 2 bits.
  • the sending unit 810 is further configured to send a trigger type indication signaling to the user equipment, where the trigger type indication signaling is used to indicate whether the current trigger is a trigger of the reference signal or a trigger of the CSI request.
  • the triggering of the reference signal sent by the sending unit 810 corresponds to a first field indication format
  • the triggering of the CSI request indicated by the indication unit corresponds to a second field indication format
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • the reference signal is a non-zero power reference signal and corresponds to a non-zero power reference Test signal resource pool;
  • the device further includes: a configuration unit 830, configured to use the same bitmap indication signaling for the non-zero power reference signal resource pool configuration of the user equipment and the zero power reference signal resource configuration of the user equipment;
  • the valid bit in the bitmap indication signaling corresponding to the non-zero power reference signal resource pool configuration is different from the valid bit in the bitmap indication signaling corresponding to the zero power reference signal resource configuration.
  • the sending unit 810 is further configured to send configuration signaling of a zero-power reference signal to the user equipment by using downlink control information, where the configuration signaling is used to indicate configuration of a zero-power reference signal sent by the apparatus. information.
  • the sending unit 810 is further configured to send, by using the high layer signaling, configuration information of the zero power reference signal resource to the user equipment.
  • the embodiment of the present invention further provides a resource receiving apparatus, which is used to implement the resource receiving method provided in the foregoing embodiment.
  • the apparatus includes: a receiving unit 910 and a configuration unit 920.
  • the receiving unit 910 of the device is configured to receive trigger signaling of a reference signal sent by the base station, where the trigger signaling is used to indicate whether the base station sends the reference signal.
  • the trigger signaling corresponds to a reference signal triggering domain field in the downlink control information
  • the receiving unit 910 is further configured to receive, by the base station, the reference signal that is sent according to the trigger signaling.
  • the channel measurement unit 920 is configured to perform channel quality measurement of the reference signal according to the trigger signaling and the reference signal.
  • the trigger signaling of the reference signal received by the receiving unit 910 simultaneously indicates the triggering of the CSI request; or the trigger signaling of the CSI request simultaneously indicates the triggering of the reference signal;
  • the device further includes: a reporting unit 930, configured to perform the corresponding CSI reporting according to the trigger signaling.
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • the apparatus sends the trigger signaling of the reference signal to the user equipment by applying the foregoing multiple resource configuration devices, where the trigger signaling corresponds to a reference signal resource triggering domain field in the uplink DCI format of the downlink control channel;
  • the device then sends reference signal resources to the base station according to the trigger signaling, and the user equipment performs channel measurement and estimation according to the received reference signal resources.
  • the user equipment may perform the reception and channel measurement and estimation of the corresponding reference signal resource according to whether the reference signal resource is sent according to the trigger signaling, thereby improving the use efficiency of the reference signal resource.
  • the resource configuration apparatus provided by the embodiment of the present invention may be implemented as follows to implement the resource configuration method in the foregoing embodiment of the present invention.
  • the base station includes: a transmitter 1010, and processing.
  • the transmitter 1010 of the device is configured to send, to the user equipment, trigger signaling of a reference signal, where the trigger signaling is used to indicate whether the base station performs the sending of the reference signal;
  • the trigger signaling corresponds to a reference signal triggering domain field in the downlink control information
  • the transmitter 1010 is further configured to perform sending of the reference signal according to the trigger signaling.
  • the memory 1030 is used to store program codes and data of the terminal.
  • Figure 10 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • the trigger signaling sent by the transmitter 1010 is channel state information CSI. Specific or reference signal resource specific or reference signal resource group specific;
  • the trigger signaling specific to the CSI process refers to that all reference signal resources in the CSI process are triggered, and the specific trigger signaling of the reference signal resource refers to that each reference signal resource in the CSI process is triggered separately, and reference is made.
  • the signal resource group specific trigger signaling refers to that the reference signal resources in each reference signal resource group in the CSI process are triggered separately.
  • the processor 1020 the trigger signaling for the reference signal simultaneously indicates the triggering of the CSI request; or the trigger signaling of the CSI request simultaneously indicates the triggering of the reference signal;
  • the trigger of the CSI request is CSI process specific or reference signal resource specific or reference signal resource group specific.
  • the trigger signal sent by the transmitter 1010 includes the reference signal trigger field field length of 1 bit or 2 bits.
  • the transmitter 1010 is further configured to send a trigger type indication signaling to the user equipment, where the trigger type indication signaling is used to indicate whether the current trigger is a trigger of a reference signal or a trigger of a CSI request.
  • the triggering of the reference signal sent by the transmitter 1010 corresponds to a first field indication format
  • the trigger of the CSI request indicated by the processor corresponds to a second field indication format
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • the reference signal is a non-zero power reference signal and corresponds to a non-zero power reference signal resource pool;
  • the processor 1020 is further configured to: use the same bitmap indication signaling for the non-zero power reference signal resource pool configuration of the user equipment and the zero power reference signal resource configuration of the user equipment;
  • the valid bit in the bitmap indication signaling corresponding to the non-zero power reference signal resource pool configuration is different from the valid bit in the bitmap indication signaling corresponding to the zero power reference signal resource configuration.
  • the transmitter 1010 is further configured to send configuration signaling of a zero-power reference signal to the user equipment by using downlink control information, where the configuration signaling is used to indicate configuration of a zero-power reference signal sent by the base station. information.
  • the transmitter 1010 is further configured to send configuration information of a zero-power reference signal resource to the user equipment by using high-layer signaling.
  • the resource receiving apparatus provided by the embodiment of the present invention may be implemented as follows to implement the resource receiving method in the foregoing embodiment of the present invention.
  • the user equipment includes: a receiver 1110, and processing.
  • the receiver 1110 of the device is configured to receive trigger signaling of a reference signal sent by the base station, where the trigger signaling is used to indicate whether the base station sends the reference signal.
  • the trigger signaling corresponds to a reference signal triggering domain field in the downlink control information
  • the receiver 1110 is further configured to receive, by the base station, the reference signal that is sent according to the trigger signaling.
  • the processor 1120 is configured to perform reference signal configuration according to the trigger signaling and the reference signal.
  • the memory 1130 is used to store program codes and data of the terminal.
  • Figure 11 only shows a simplified design of the user equipment.
  • the user equipment may include any number of transmitters, receivers, processors, controllers, memories, etc., and all user equipments that can implement the present invention are within the scope of the present invention.
  • the trigger signaling of the reference signal simultaneously indicates the triggering of the CSI request; or the trigger signaling of the CSI request simultaneously indicates the triggering of the reference signal; the processor 1120 is further configured to: according to the The triggering signaling performs the corresponding CSI reporting.
  • the subframe of the reference measurement reference signal resource on which the CQI is based is nn CQI_ref ;
  • the controller/processor for performing the above-described base station or user equipment of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array ( FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the base station and the user equipment provided by the embodiment of the present invention, the base station sends the trigger signaling of the reference signal to the user equipment, where the trigger signaling corresponds to a reference signal resource triggering domain in the uplink or downlink DCI format of the downlink control channel. And the base station sends the reference signal resource to the user equipment according to the trigger signaling, and the user equipment performs the reception, channel measurement, and estimation of the corresponding reference signal resource according to the indication of the trigger signaling. Therefore, the use efficiency of the reference signal resource is greatly improved.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium. of course, The storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment. Of course, the processor and the storage medium can also exist as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种资源配置方法、资源接收方法、装置、基站与用户设备。所述方法包括:基站向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,所述1<=M<N,N为大于等于1的正整数;所述配置信令包括所述N端口的参考信号对应的K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;所述基站根据所述配置信令对所述用户设备进行N端口的参考信号的发送。

Description

资源配置方法、资源接收方法、装置、基站与用户设备 技术领域
本发明涉及通讯技术领域,尤其涉及一种资源配置方法、资源接收方法、装置、基站与用户设备。
背景技术
目前,通信系统中通常使用不同种类的参考信号测量不同的业务数据,其中,一类参考信号用于估计信道,可以对含有控制信息或者数据的接收信号进行相干解调;另一类参考用于信道状态或信道质量的测量,实现对用户设备(User Equipment,简称:UE)的调度。
在第三代合作伙伴项目(the 3rd Generation Partnership Project,简称:3GPP)制定的长期演进(Long Term Evolution,简称:LTE)第10版本(Release 10,简称:R10)下行系统中,用于相干解调的参考信号被称为解调参考信号(Demodulation Reference Signal,简称:DMRS);用于信道状态信息测量的参考信号被称为信道状态信息参考信号(Channel State Information Reference Signal,简称:CSI-RS)。此外,参考信号还包括继承自R8/R9系统的小区特定的参考信号(Cell-specific Reference Signal,简称:CRS),CRS信号用于UE对信道估计,实现对物理下行控制信道(Physical Downlink Control Channel,简称:PDCCH)以及其他公共信道的解调。
上述几种参考信号在LTE系统中支持的天线数量各不相同。在LTE R10中DMRS信号最多支持8个天线端口,天线端口数可以为1至8;CSI-RS信号最多支持8个天线端口,天线端口数可以为1、2、4或8;CRS信号最多支持4个天线端口,天线端口数可以为1、2或4。
为支持更多天线端口的CSI-RS资源配置,现有技术中通过对低维度端口CSI-RS资源的聚合方式来产生高维度端口的CSI-RS资源配置。例如,16天线端口的CSI-RS资源配置可以采用两个8端口的CSI-RS资源1以及CSI-RS资源2聚合而成;或者,采用8个2端口的CSI-RS资源1-8聚合而成。
但是,现有技术中通过对低维度端口CSI-RS资源的聚合方式来产生高维度端口的CSI-RS资源配置的方法存在一些局限性。目前,每个被聚合的CSI-RS资源配置需占用5bi t资源通知给UE,随着天线端口数的增加,如当需支持的CSI-RS资源的天线端口数从16进一步上升到18,20,22……甚至更多天线端口时,CSI-RS资源聚合的配置开销也相应增加。
发明内容
本发明实施例提供了一种资源配置方法、资源接收方法、装置、基站与用户设备,解决了现有技术中随着CSI-RS资源的天线端口数的增加,CSI-RS资源聚合的配置开销也相应增加的问题。
在第一方面,本发明实施例提供了一种资源配置方法,所述方法包括:基站向用户设备发送参考信号的配置信令,参考信号的端口数为N,N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;配置信令包括K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;基站根据配置信令对用户设备进行N端口的参考信号的发送。用户设备可直接根据基站发送的配置信令对应的自适应变化的配置准则和对应的参考信号进行信道测量和估计,因此,避免了参考信号聚合时,配置开销增加的问题,降低了参考信号聚合的配置开销。
在本发明实施例中,提供了多种配置方式均可实现降低CSI-RS资源聚合的配置开销的效果。
在一种可能的设计中,N端口的参考信号对应K个M端口的参考信号之外, N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,1<=P<N,且P不等于所述M,N为大于等于1的正整数;
配置信令还包括L个P端口的参考信号的配置信息和N端口的参考信号与所述L个P端口的参考信号间的对应关系指示信息。
在一种可能的设计中,基站向用户设备发送参考信号的配置信令之前,所述方法还包括:
基站根据参考信号的端口数N,确定N端口的参考信号与K个M端口的参考信号之间的对应关系指示信息;
和/或
确定N端口的参考信号与L个P端口的参考信号之间的对应关系指示信息。
在一种可能的设计中,对应关系指示信息对应一个1bi t的对应关系指示信息字段;所述对应关系指示信息字段用来指示所述对应关系为第一映射关系或第二映射关系。
在一种可能的设计中,K个M端口的参考信号或L个P端口的参考信号的配置信息包括参考信号到资源单元的映射和/或每个M端口或P端口的参考信号的传输子帧配置,以使得用户设备根据所述配置信息进行N端口的参考信号的接收。
在一种可能的设计中,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
在一种可能的设计中,配置信令还包括K个M端口的参考信号的重叠因子和/或抽样因子。
在一种可能的设计中,K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息和资源组内的参考信号的指示信息;
其中,所有M端口的参考信号由T(T>=1)个参考信号组构成,每个参考信号组由至少一个参考信号构成;或
K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息;
其中,所有M端口的参考信号由R(R>=1)个参考信号组构成,每个参考信号组由至少K个参考信号构成。
在一种可能的设计中,配置信令还包括位图指示信息,位图指示信息指示了组成N端口的参考信号的M端口的参考信号的配置信息和/或P端口的参考信号的配置信息。
在一种可能的设计中,M端口的参考信号对应了一个位图指示,P端口的参考信号对应了一个位图指示;
当M大于P时,P端口的参考信号的位图指示根据M端口的参考信号的位图指示的补集得到;
其中,位图指示信息中的有效位指示了用来组成N端口的参考信号的M或P端口的参考信号的配置信息。
上述的每种配置方式均可实现降低CSI-RS资源聚合的配置开销。
在第二方面,本发明实施例提供了一种资源配置装置,所述装置包括:发送单元,用于向用户设备发送参考信号的配置信令,参考信号的端口数为N,N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
配置信令包括K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;
发送单元还用于,根据配置信令对用户设备进行N端口的参考信号的发送。
在第三方面,本发明实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,基站的结构中包括处理器和发射器,所述处理器 被配置为支持基站执行上述方法中相应的功能。所述发射器用于支持基站与用户设备之间的通信。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
在第四方面,本发明实施例提供了一种资源接收方法,所述方法包括:用户设备接收基站发送的参考信号的配置信令,参考信号的端口数为N,N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;配置信令包括K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;用户设备接收基站根据配置信令发送的N端口的参考信号;根据配置信令和参考信号,用户设备进行基于N端口的参考信号接收和信道质量测量。由于基站将已确定的配置信令和参考信号向用户设备下发,用户设备可直接根据配置信令和参考信号进行信道测量和估计,因此,避免了参考信号聚合时,配置开销增加的问题,降低参考信号聚合的配置开销。
在第五方面,本发明实施例提供了一种资源配置装置,所述装置包括:接收单元,用于接收基站发送的参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;所述接收单元还用于,接收所述基站根据所述配置信令发送的N端口的参考信号;信道测量单元,用于根据所述配置信令和所述参考信号,进行基于N端口的参考信号的信道质量测量。
在第六方面,本发明实施例提供了一种用户设备,所述用户设备包括:该用户设备具有实现上述方法实际中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,用户设备的结构中包括处理器和接收器,所述处 理器被配置为支持用户设备执行上述方法中相应的功能。所述接收器用于支持用户设备与基站之间的通信。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,其保存用户设备必要的程序指令和数据。
在第七方面,本发明实施例提供了一种资源配置方法,所述方法包括:基站向用户设备发送参考信号的触发信令,触发信令用来指示基站是否进行所述参考信号的发送;其中,触发信令对应下行控制信息中的一个参考信号触发域字段;基站根据触发信令进行所述参考信号的发送。由于基站将已确定的参考信号资源向用户设备下发,用户设备可直接根据触发信令和参考信号资源进行信道测量和估计,因此,避免了参考信号聚合时,配置开销增加的问题,降低参考信号聚合的配置开销。
在本发明实施例中,提供了多种配置方式均可实现降低CSI-RS资源聚合的配置开销。
在一种可能的设计中,触发信令是信道状态信息CSI进程特定的或参考信号资源特定的或参考信号资源组特定的;
其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号资源被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号资源被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被分别触发。
在一种可能的设计中,所述方法还包括:参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发。
其中,所述CSI请求的触发是CSI进程特定的或参考信号特定的或参考信号资源组特定的。
在一种可能的设计中,参考信号触发域字段长度为1比特或2比特。
在一种可能的设计中,所述方法还包括:所述基站向所述用户设备发送触发类型指示信令,触发类型指示信令用来指示当前的触发为参考信号的触 发还是CSI请求的触发。
在一种可能的设计中,参考信号的触发对应第一字段指示格式,CSI请求的触发对应第二字段指示格式。
在一种可能的设计中,当CSI中的信道质量指示CQI的上报时刻为子帧n时,CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
在一种可能的设计中,参考信号为非零功率参考信号,且对应一个非零功率参考信号资源池;
所述方法还包括:基站对用户设备的非零功率参考信号池配置和对所述用户设备的零功率参考信号资源配置采用相同的位图指示信令;
其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
在一种可能的设计中,所述方法还包括:基站通过下行控制信息向用户设备发送零功率参考信号的配置信令,配置信令用来指示所述基站发送的零功率参考信号的配置信息。
在一种可能的设计中,在基站通过下行控制信息向用户设备发送零功率参考信号的配置信令之前,所述方法还包括:基站通过高层信令向用户设备发送零功率参考信号资源的配置信息。上述的每种配置方式均可实现降低CSI-RS资源聚合的配置开销。
在第八方面,本发明实施例提供了一种资源配置装置,所述装置包括:发送单元,用于向用户设备发送参考信号的触发信令,触发信令用来指示基 站是否进行所述参考信号的发送;
其中,触发信令对应下行控制信息中的一个参考信号资源触发域字段;
发送单元还用于,根据所述触发信令进行所述参考信号资源的发送。
在第九方面,本发明实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,基站的结构中包括处理器和发射器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述发射器用于支持基站与用户设备之间的通信。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
在第十方面,本发明实施例提供了一种资源接收方法,所述方法包括:用户设备接收基站发送的参考信号的触发信令,触发信令用来指示基站是否进行参考信号的发送;其中,触发信令对应下行控制信息中的一个参考信号触发域字段;用户设备接收基站根据所述触发信令发送的参考信号;根据触发信令和所述参考信号,用户设备进行参考信号的信道质量测量。由于基站将已确定的参考信号资源向用户设备下发,用户设备可直接根据触发信令和参考信号资源进行参考信号的信道测量和估计,因此,避免了参考信号聚合时,配置开销增加的问题,降低参考信号聚合的配置开销。
在一种可能的设计中,用户设备接收基站发送的参考信号的触发信令,其特征在于,所述方法还包括:
所述参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;用户设备根据所述触发信令进行对应的所述CSI上报。
在一种可能的设计中,当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请 求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
在第十一方面,本发明实施例提供了一种资源接收装置,所述装置包括:接收单元,用于接收基站发送的参考信号的触发信令,触发信令用来指示基站是否进行参考信号的发送;其中,触发信令对应下行控制信息中的一个参考信号触发域字段;接收单元还用于,接收基站根据所述触发信令发送的参考信号;信道测量单元,用于根据触发信令和所述参考信号,进行参考信号的信道质量测量。
在第十二方面,本发明实施例提供了一种用户设备,所述用户设备包括:该用户设备具有实现上述方法实际中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,用户设备的结构中包括处理器和接收器,所述处理器被配置为支持用户设备执行上述方法中相应的功能。所述接收器用于支持用户设备与基站之间的通信。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,其保存用户设备必要的程序指令和数据。
附图说明
图1为本发明实施例提供的系统示意图;
图2为本发明实施例提供的一种资源配置方法流程图;
图3为本发明实施例提供的一种资源配置装置结构示意图;
图4为本发明实施例提供的一种资源配置装置结构示意图;
图5本发明实施例提供的一种基站结构示意图;
图6为本发明实施例提供的一种用户设备结构示意图;
图7为本发明实施例提供的另一种资源配置方法流程图;
图8为本发明实施例提供的另一种资源配置装置结构示意图;
图9为本发明实施例提供的另一种资源配置装置结构示意图;
图10为本发明实施例提供的另一种基站结构示意图;
图11为本发明实施例提供的另一种用户设备结构示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,基站与UE之间进行无线通信,UE向基站发送信息时采用上行传输;基站向UE发送指令/信息时采用下行传输。本发明实施例描述的技术可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用宽带码分多址(Wideband Code Division Multiple Access,简称:WCDMA),频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。为清楚起见,这里仅以LTE系统为例进行说明。
本发明实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本发明实施例所涉及到的终端可以包括各种具有 无线通信功能的设备或连接到无线调制解调器的其它处理设备。为方便描述,本发明实施例中,上面提到的设备统称为终端。本发明实施例所涉及到的基站(base station,简称BS)是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为基站或BS。
本发明的一个实施例提供一种资源配置方法,和基于这个方法的装置。基站为多个UE进行参考信号的配置,以无线网络中的第一UE为例进行说明。基站向UE发送参考信号的配置信令;其中,配置信令中包括N端口的参考信号对应的K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;基站再根据配置信息向UE发送N端口的参考信号,UE根据接收的配置信令以及参考信号,进行参考信号的信道测量和估计。
需要说明的是,在本发明实施例中,基站可通过多种配置方式对UE的参考信号进行配置,下面结合附图2,详细说明本发明实施例提供的方案进行说明,图2为本发明实施例提供的一种资源配置方法流程图,在本发明实施例中实施主体为基站。如图2所示,该实施例具体包括以下步骤:
步骤210、基站向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
所述配置信令包括K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息。
具体地,基站根据每个UE所处的网络环境,位置等因素,分别确定每个UE的参考信号的端口数N,例如,基站确定第一UE的参考信号的端口数N为 24;基站确定第二UE的参考信号的端口数N为30等等。
在本步骤之前,基站还根据端口数N,确定N端口的参考信号与K个M端口的参考信号的配置信息以及N端口的参考信号与K个M端口的参考信号之间的对应关系。
在本发明实施例中,K个M端口具体为UE侧聚合为N端口的端口数。例如,24端口通过6个4端口聚合而成。
基站向UE发送参考信号的配置信令,参考信号的端口数为N,其中,N端口的参考信号对应K(K>=1)个M端口的参考信号,1<=M<N,N为大于等于1的正整数;其中,配置信令包括K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息
进一步地,N端口的参考信号对应K个M端口的参考信号之外,N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,1<=P<N,且P不等于M,N为大于等于1的正整数;其中,配置信令还包括L个P端口的参考信号的配置信息和N端口的参考信号与L个P端口的参考信号间的对应关系指示信息。
可以理解的是,在本步骤之前,基站还根据端口数N,确定N端口的参考信号对应的L个P端口的参考信号的配置信息以及N端口的参考信号与L个P端口的参考信号之间的对应关系指示信息。
在本发明实施例中,K个M端口具体为基站和UE侧用来产生N端口的CSI-RS资源的K个资源。例如,24端口的CSI-RS资源通过3个8端口的CSI-RS资源聚合而成。
在本发明实施例中,所述配置信令可具体为高层信令,如RRC信令,或物理层动态信令,如下行控制信息(Downlink Control Information,简称:DCI)信令等。
步骤220、所述基站根据所述配置信令对所述用户设备进行N端口的参考信号的发送。
具体地,根据步骤210确定出的配置信令,基站向第一UE发送参考信号,以使得第一UE根据接收的配置信令以及参考信号,进行对应的参考信号的接收和信道测量。
下面通过多种配置方式,详细说明本发明实施例提供的资源配置方法。
进一步地,在第一种配置方式中,在步骤210之前,基站确定N端口的参考信号与K个M端口的参考信号和/或确定N端口的参考信号与L个P端口的参考信号之间的对应关系指示信息进一步具体为:基站根据端口数N是否超过预设的端口阈值,确定该对应关系,基站根据确定的不同端口数的值确定不同的映射关系,以实现节约参考信号聚合的配置开销的目的。
基站确定端口数N是否超过预设的端口阈值,在本发明实施例中,预设的端口阈值可根据每个基站的固有属性进行设定,不同的基站可设置不同的端口阈值,例如,端口阈值可以为20,24等等。如果端口数N超过端口阈值,则该对应关系为第一映射关系;如果端口数N不超过端口阈值,则该对应关系为第二映射关系。
其中,对应关系指示信息具体为1bit的对应关系指示信息字段,该对应关系指示信息字段用来指示对应关系为第一映射关系或第二映射关系;也即根据端口数N,基站确定第一映射关系和第二映射关系后,再生成对应关系指示信息字段,该对应关系指示信息字段用于指示第一UE对应的第一映射关系或第二映射关系。
例如,对应关系指示信息字段为0或1,当为0时,与第一映射关系对应;当为1时,与第二映射关系对应;第一UE根据对应关系指示信息字段选择对应的第一映射关系或第二映射关系。
在本发明实施例中,所述第一映射关系具体为减序配置规则,即,当端口数N超过端口阈值时,基站确定预设值或预定义的CSI-RS资源全集与N端口CSI-RS资源的补集,并将该补集作为第一UE待配置的CSI-RS资源。所述第二映射关系具体为加序配置规则,也即是,当端口数N不超过端口阈值时, 基站将端口数N作为第一UE待配置的CSI-RS资源端口。
第一UE根据第一映射关系或第二映射关系对第一UE的K个M端口的参考信号进行N端口参考信号的配置。
在一个例子中,假设端口阈值为20,每个CSI-RS端口对应一个资源单元,而预定义的CSI-RS资源的资源单元总数为40;假定基站的待传输CSI-RS端口数N为32,则基站根据预定义的CSI-RS资源的资源单元总数与端口数N的补集8,确定对应关系为第一映射关系,基站向UE发送配置信令,该配置信令包括第一映射关系,以使得UE对配置信令进行解析,获得第一映射关系,同时基站基于所述配置信令发送8端口的CSI-RS资源,以使得UE根据所述8端口的CSI-RS资源和预定义的CSI-RS资源的总数(40个CSI-RS资源单元)确定待传输的32端口的CSI-RS资源。
进一步地,在第二种配置方式中,配置信令中不包括对应关系指示信息,也即是配置信令中仅包括K个M端口的参考信号的配置信息,不包括第一映射关系和第二映射关系的指示。
需要说明的是,预定义的CSI-RS资源的资源单元总数为每个资源块(Resource Block,简称:RB)中固定可用于进行CSI-RS资源配置的CSI-RS资源单元数,例如,当前LTE标准中,每个RB固定可用于进行CSI-RS资源配置的CSI-RS资源单元总数为40。
进一步地,在第三种配置方式中,K个M端口的参考信号或L个P端口的参考信号的配置信息包括参考信号到资源单元的映射和/或每个M端口或P端口的参考信号的传输子帧配置,以使得第一UE根据所述配置信息进行N端口的参考信号的接收。
其中,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
例如,假定待配置或传输的参考信号端口数N为32,则所述32端口的参考信号的资源聚合配置由频域资源位置配置以及时域子帧配置联合组成(该 资源聚合可由多个子帧上配置的参考信号资源聚合产生,例如,所述32端口的参考信号的资源由在子帧1上发送的一个16端口参考信号资源和在子帧2上发送的一个16端口参考信号资源组成。更具体地,所述第一个16端口的参考信号资源的频域资源配置为4,而第二个16端口的参考信号资源的频域配置为8。时域资源配置信息由时域的子帧配置组合(ICSI-RS,TCSI-RS)构成,优选地,TCSI-RS在一次配置中取相同的值。通过ICSI-RS的不同取值,可实现多个子帧上的参考信号资源的聚合。其中,所述子帧配置参数(ICSI-RS,TCSI-RS)的取值可如下表所示:
Figure PCTCN2016078217-appb-000001
在本发明实施例中,作为示例而非限定,上述子帧具体为DwPTS子帧或者Normal子帧。
进一步地,在第四种配置方式中,基站根据参考信号资源对应的端口数N,进一步确定参考信号资源的重叠因子(overlapping)和/或参考信号的抽样因子(oversampling);基站向第一UE发送配置信令,该配置信令包括配置信息,所述配置信息包括K个M端口的参考信号的重叠因子和/或抽样因子,以使得第一UE根据所述重叠因子和/或抽样因子进行对应参考信号资源的配置。
例如,假定待发送的参考信号端口数N为24,如果所述24端口的资源配置存在多组参考信号资源的重叠和/或抽样则基站在向第一UE发送配置信令时,将所述N端口的参考信号资源所对应的overlapping因子和/或 oversampling因子携带在配置信令中。其中,作为示例而非限定,overlapping因子具体为2或4,表示用来产生N端口参考信号资源的K套参考信号资源间存在重叠的2或4个相同的参考信号资源,所述重叠的2或4个参考信号资源可以是位于不同子帧内但有相同频域位置的参考信号资源;或表示任意两个N端口参考信号资源间存在相同的2或4个组成参考信号资源。
oversampling因子具体也可为2或4,表示N端口参考信号资源的的抽样粒度为2或4个端口,即在所述N个端口中每2或4个端口抽取一个端口,然后只在对应的抽取端口上进行参考信号资源的发送。
在一个例子中,每RB中CSI-RS资源单元总数为40,在所述40个资源单元中存在两个24端口的参考信号资源配置,其中第一个24端口的参考信号资源由一个12端口的参考信号资源配置一和一个12端口的参考信号资源配置二聚合产生,而第二个24端口的参考信号资源由一个12端口的参考信号资源配置二和一个12端口的参考信号资源配置三聚合产生,所述12端口的参考信号资源配置二即为两个24端口的参考信号资源配置间重叠的一个参考信号资源。其重叠因子为1/2。
前文所述的基站可分别向UE发送用于参考信号资源配置的overlapping因子或oversampling因子,基站也可同时向UE发送overlapping因子和oversampling因子,即overlapping因子和oversampling因子的组合配置,例如(O1,S1),其中,O1和S1分别表示overlapping因子和oversampling因子。通过组合的方式可实现更多种参考信号资源的灵活聚合和配置。
可以理解的是,配置信息还可以包括L个P端口的参考信号的重叠因子和/或抽样因子,由于过程类似,再次不再复述。
进一步地,在第五种配置方式中,还包括基站将低维度的参考信号进行分组处理的步骤,通过该步骤,基站利用对低维度的参考信号的分组来产生高维度的参考信号配置的方法,可实现节约参考信号聚合配置的开销的效果。
在本发明实施例中,K个M端口的参考信号的配置信息包括M端口的参考 信号组的指示信息和资源组内被选择的参考信号资源的指示信息;其中,所有候选的M端口的参考信号被分成T(T>=1)组,所述每组参考信号由至少一个参考信号构成;或
在本发明实施例中,K个M端口的参考信号的配置信息包括M端口的参考信号组的指示信息;其中,所有候选的M端口的参考信号被分成T(T>=1)组,所述每组参考信号由至少K个参考信号组成。
例如,以2端口的参考信号配置为例,每个物理资源块(Physical Resource Block,简称:PRB)中共有20种2端口的参考信号资源配置,基站将20个2端口的参考信号资源进行分组,即每4个2端口的参考信号资源为一组,得到5个参考信号资源组。假定所述5个参考信号资源组内的2端口参考信号资源编号分别为:{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}和{16,17,18,19},其中,每组中的每个参考信号资源配置对应一个2端口的参考信号资源。基站根据待发送的参考信号资源端口数N(例如,端口数为18),确定参考信号组的指示信息和资源组内被选择的参考信号的指示信息,既既要确定出参考信号资源组的编号,又要确定出每个资源组内被选择出的参考信号资源配置的编号。
需要说明的是,配置信息还可仅包括参考信号组指示信息,即,基站仅需确定出参考信号资源组的指示信息。例如,选取的参考信号资源组为第一,二个参考信号资源组。则所述参考信号资源组的指示信息为1和2。
可以理解的是,配置信息还可以包括P端口的参考信号资源组指示信息和资源组内被选择的参考信号资源的指示信息;其中,所有候选的P端口的参考信号被分成T(T>=1)组,所述每组参考信号由至少一个参考信号构成;或
配置信息包括P端口的参考信号资源组的指示信息;其中,所有候选的P端口的参考信号资源被分成T(T>=1)组,所述每组参考信号由至少L个参考信号资源组成。
进一步地,在第六种配置方式中,配置信令还包括位图指示信息,该位图指示信息指示了组成N端口的参考信号资源的M端口的参考信号资源的配置信息和/或P端口的参考信号资源的配置信息。
在本发明实施例中,M端口的参考信号资源对应了一个位图指示,所述P端口的参考信号资源对应了一个位图指示;当M大于P时,P端口的参考信号资源的位图指示根据M端口的参考信号资源的位图指示的补集得到;其中,该位图指示信息中的有效位指示了用来组成N端口的参考信号的M或P端口参考信号的配置信息。
基站确定进行参考信号资源配置的端口基数;所述端口基数下的参考信号资源为低纬度的参考信号资源。例如,2端口的参考信号资源,4端口的参考信号资源。根据所述端口基数,基站确定基于所述端口基数的参考信号资源的位图指示信息的长度,位图指示信息中的每一位对应了相同的端口基数;在本发明实施例中,位图信息的长度与端口基数相对应,即,维度越低的端口基数所对应的位图信息越长。例如,长度为20bit的位图信息中,每一bi t对应的为2端口的参考信号资源;长度为10bit的位图信息中,每一bit对应的为4端口的参考信号资源。基站通过将位图信息中部分位设置为有效位,可选地,“1”为有效位;“0”为无效位,其中,位图指示中的每个bit对应一种所述端口基数下的一种参考信号资源配置,有效位指示了该比特位对应的参考信号资源配置被用来产生N端口的参考信号资源;无效位代表了该比特位对应的参考信号资源配置不被用来产生N端口的参考信号资源。基站向第一UE发送配置信令,该配置信令包括位图指示信息,以使得第一UE根据位图指示信息中的有效位对进行N端口参考信号资源的聚合配置。
在一个例子中,位图信息具体为“00110001010101010101”该位图指示信息的总长度为20bit,其中,每一bit对应一个2端口的参考信号资源。上述位图指示信息给出了18端口的参考信号资源的聚合配置由第3,4,8,10,12,14,16,18,20位bit对应的2端口的参考信号资源配置聚合产 生。在另一个例子中,位图指示信息具体为“0011000101”,该位图指示信息的总长度为10bit,其中,每一bit对应一个4端口的参考信号资源。上述位图指示信息给出了16端口的参考信号资源的聚合配置由第3,4,8,10bit对应指示的4端口的参考信号资源配置聚合产生。
在本发明实施例中,假定M为8,即M端口的参考信号资源为8端口的参考信号资源,P为4,即P端口的参考信号资源为4端口的参考信号资源时,4端口的参考信号资源的位图指示可根据8端口的参考信号资源的位图指示的补集得到。基站可配置多个位图指示信息给UE,例如基站可配置一个8端口的参考信号资源的位图指示,同时配置一个4端口的参考信号资源的位图指示和2端口的参考信号资源的位图指示。所述低维度端口的参考信号资源的位图指示基于高维度端口的参考信号资源的位图指示得到。
因此,通过应用上述多种资源配置方法,基站向UE发送参考信号的配置信令;其中,配置信令中包括N端口的参考信号对应的K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;基站再根据配置信息向UE发送N端口的参考信号,UE根据接收的配置信令以及参考信号,进行对应参考信号的信道质量测量。由于基站通过向用户设备发送配置信令,以使得用户设备可根据所述配置信令指示的自适应的配置规则进行参考信号的接收和对应的信道质量测量,因此,避免了参考信号聚合时,配置开销增加的问题,降低参考信号聚合的配置开销。
上述实施例的方法以基站为执行主体进行描述,下面以用户设备为执行主体简要说明资源接收方法。
具体地,UE接收基站发送的参考信号的配置信令,参考信号的端口数为N,N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;配置信令包括K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;
UE接收基站根据配置信令发送的N端口的参考信号;根据所述配置信令 进行对应的N端口参考信号的接收和信道质量测量。上述实施例描述的方法均可实现资源配置方法,相应地,本发明实施例还提供了一种资源配置装置,用以实现前述实施例中提供的资源配置方法,如图3所示,所述装置包括:发送单元310。
所述装置的发送单元,用于向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中1<=M<N,N为大于等于1的正整数;
所述配置信令包括K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
所述发送单元还用于,根据所述配置信令对所述用户设备进行N端口的参考信号的发送。
进一步地,所述N端口的参考信号对应的K个M端口的参考信号之外,所述发送单元310发送的N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,所述1<=P<N,且所述P不等于所述M,N为大于等于1的正整数;
所述配置信令还包括所述L个P端口的参考信号的配置信息和所述N端口的参考信号与所述L个P端口的参考信号间的对应关系指示信息。
进一步地,所述装置还包括:
确定单元320,用于根据所述参考信号的端口数N,确定所述N端口的参考信号与所述K个M端口的参考信号之间的对应关系指示信息;
和/或
所述确定单元320,还用于确定所述N端口的参考信号与所述L个P端口的参考信号之间的对应关系指示信息。
进一步地,
所述发送单元310发送的所述配置信令包括的所述对应关系指示信息对应一个1bit的对应关系指示信息字段;所述对应关系指示信息字段用来指示所述对应关系为第一映射关系或第二映射关系。
进一步地,所述K个M端口的参考信号或L个P端口的参考信号的配置信息包括所述参考信号到资源单元的映射和/或所述每个M端口或P端口的参考信号的传输子帧配置,以使得所述用户设备根据所述配置信息进行所述N端口的参考信号的接收。
进一步地,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
进一步地,所述发送单元310发送的所述配置信令还包括所述K个M端口的参考信号的重叠因子和/或抽样因子。
进一步地,所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息和所述资源组内的参考信号的指示信息;
其中,所有M端口的参考信号由T(T>=1)个参考信号组构成,所述每个参考信号组由至少一个参考信号构成;或
所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息;
其中,所有M端口的参考信号由R(R>=1)个参考信号组构成,所述每个参考信号组由至少K个参考信号构成。
进一步地,所述发送单元310发送的所述配置信令还包括位图指示信息,所述位图指示信息指示了组成所述N端口的参考信号的M端口的参考信号的配置信息和/或P端口的参考信号的配置信息。
进一步地,所述M端口的参考信号对应了一个位图指示,所述P端口的参考信号对应了一个位图指示;
当M大于P时,所述P端口的参考信号的位图指示根据所述M端口的参考信号的位图指示的补集得到;
其中,所述位图指示信息中的有效位指示了用来组成N端口的参考信号的M或P端口的参考信号的配置信息。
相应地,本发明实施例还提供了一种资源接收装置,用以实现前述实施 例中提供的资源接收方法,如图4所示,所述装置包括:接收单元410和配置单元420。
所述装置的接收单元410,用于接收基站发送的参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
所述接收单元410还用于,接收所述基站根据所述配置信令发送的N端口的参考信号;
信道测量单元420,用于根据所述配置信令和所述参考信号,进行基于N端口的信道质量测量。
因此,通过应用上述的资源配置装置以及资源接收装置,所述资源配置装置向资源接收装置发送参考信号的配置信令;其中,配置信令中包括N端口的参考信号对应的K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;所述资源配置装置再根据配置信息向资源接收装置发送N端口的参考信号,资源接收装置根据接收的配置信令进行N端口参考信号的接收和对应的信道质量测量。由于所述资源配置装置通过向资源接收装置发送配置信令,以使得资源接收装置可根据所述配置信令指示的自适应的配置规则进行参考信号的接收和对应的信道质量测量因此,避免了参考信号聚合时,配置开销增加的问题,降低参考信号聚合的配置开销。
另外,本发明实施例提供的资源配置装置还可以采用的实现方式如下,用以实现前述本发明实施例中的资源配置方法,如图5所示,所述基站包括:发射器510、处理器520、以及存储器530。
所述装置的发射器510,向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应的K(K>=1)个M端口的参考 信号,其中,1<=M<N,N为大于等于1的正整数;
所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
所述发射器510还用于,根据所述配置信令对所述用户设备进行N端口的参考信号的发送。
存储器530用于存储终端的程序代码和数据。
可以理解的是,图5仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器等,而所有可以实现本发明的基站都在本发明的保护范围之内。
进一步地,所述N端口的参考信号对应的K个M端口的参考信号之外,所述N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,所述1<=P<N,且所述P不等于所述M,N为大于等于1的正整数;
所述发射器发送的所述配置信令还包括所述L个P端口的参考信号的配置信息和所述N端口的参考信号与所述L个P端口的参考信号间的对应关系指示信息。
进一步地,所述处理器520,用于根据所述参考信号的端口数N,确定所述N端口的参考信号与所述K个M端口的参考信号之间的对应关系指示信息;
和/或
确定所述N端口的参考信号与所述L个P端口的参考信号之间的对应关系指示信息。
进一步地,
所述发射器510发送的所述配置信令包括的所述对应关系指示信息对应一个1bit的对应关系指示信息字段;所述对应关系指示信息字段用来指示所述对应关系为第一映射关系或第二映射关系。
进一步地,所述K个M端口的参考信号或L个P端口的参考信号的配置信息包括所述参考信号到资源单元的映射和/或所述每个M端口或P端口的参 考信号的传输子帧配置,以使得所述用户设备根据所述配置信息进行所述N端口的参考信号的接收。
进一步地,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
进一步地,所述发射器510发送的所述配置信令还包括所述K个M端口的参考信号的重叠因子和/或抽样因子。
进一步地,所述K个M端口的参考信号的配置信令包括M端口的参考信号组指示信息和资源组内的参考信号的指示信息;
其中,所有M端口的参考信号由T(T>=1)个参考信号组构成,所述每个参考信号组由至少一个参考信号构成;或
所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息;
其中,所有M端口的参考信号由R(R>=1)个参考信号组构成,所述每个参考信号组由至少K个参考信号构成。
进一步地,所述发射器510发送的所述配置信令还包括位图指示信息,所述位图指示信息指示了组成所述N端口的参考信号的M端口的参考信号的配置信息和/或P端口的参考信号的配置信息。
进一步地,所述M端口的参考信号对应了一个位图指示,所述P端口的参考信号对应了一个位图指示;
当M大于P时,所述P端口的参考信号的位图指示根据所述M端口的参考信号的位图指示的补集得到;
其中,所述位图指示信息中的有效位指示了用来组成N端口的参考信号的M或P端口的参考信号的配置信息。
另外,本发明实施例提供的资源接收装置还可以采用的实现方式如下,用以实现前述本发明实施例中的资源接收方法,如图6所示,所述用户设备包括:接收器610、处理器620、以及存储器630。
所述装置的接收器610,用于接收基站发送的参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
所述接收器610还用于,接收所述基站根据所述配置信令发送的N端口的参考信号;
所述处理器620,用于根据所述配置信令和所述参考信号,进行基于N端口的参考信号的信道质量测量。
存储器630用于存储终端的程序代码和数据。
可以理解的是,图6仅仅示出了用户设备的简化设计。在实际应用中,用户设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器等,而所有可以实现本发明的用户设备都在本发明的保护范围之内。
用于执行本发明上述基站或者用户设备的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
因此,通过应用上述基站和用户设备,基站向UE发送参考信号的配置信令;其中,配置信令中包括N端口的参考信号对应的K个M端口的参考信号的配置信息和N端口的参考信号与K个M端口的参考信号间的对应关系指示信息;基站再根据配置信息向UE发送N端口的参考信号,UE根据接收的配置信令以及参考信号,进行参考信号的信道质量测量。由于基站通过向用户设备发送配置信令,以使得用户设备可根据所述配置信令指示的自适应的配置 规则进行参考信号的接收和对应的信道质量测量,因此,避免了参考信号聚合时,配置开销增加的问题,降低参考信号聚合的配置开销。
本发明还提供了另一种资源配置方法,和基于这个方法的装置。基站为多个UE进行参考信号的配置,以无线网络中的第一UE为例进行说明。基站向第一UE发送参考信号的触发信令;其中,触发信令对应下行控制信道的上行或下行DCI格式中的一个参考信号资源触发域字段,在本发明实施例中,触发信令用来指示基站是否进行参考信号资源的发送;基站根据触发信令向UE发送参考信号资源,第一UE根据接收的参考信号资源,进行参考信号的接收。
需要说明的是,在本发明实施例中,基站可通过多种配置方式对UE的参考信号进行配置,下面结合附图7,详细说明本发明实施例提供的方案进行说明,图7为本发明实施例提供的另一种资源配置方法流程图,在本发明实施例中实施主体为基站。如图7所示,该实施例具体包括以下步骤:
步骤710、基站向用户设备发送参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
其中,所述触发信令对应下行控制信息中的一个参考信号资源触发域字段。可选地,所述触发信令也可以对应下行控制信息中的一个CSI请求域字段。
具体地,当参考信号(例如,CSI-RS资源)为用户特定的参考信号资源,且不同用户有自己特定的参考信号资源而小区内同时有激活包的用户个数很多时,整个小区所需要的参考信号资源配置和对应的时频资源开销将会很大。
现有的CSI-RS资源为高层信令半静态配置的周期CSI-RS。也就是,参考信号资源的发射机制不支持CSI-RS资源的动态开关和自适应改变。例如,当一个CSI进程内的K(K>=1)个参考信号资源被配置为周期P时,K个CSI-RS资源分别以周期P进行发送。而在实际数据发射过程中,当K个资源中的L(1<=L<=K)个CSI-RS资源可释放时,由于该K个资源的配置是半静态的, 因此,所述L个CSI-RS资源的关闭不能被及时支持。
为了降低用户特定的参考信号资源的开销,在本发明实施例中,采用非周期触发的方式发送CSI-RS资源(即只在需要时进行触发,不需要时不触发的方式)。为了实现上述CSI-RS资源的非周期触发,在本发明实施例中,通过在下行控制信道的上行或下行DCI格式中增加参考信号资源触发字段的方式实现CSI-RS资源的非周期触发。
在本发明实施例中,基站向第一UE发送触发信令,触发信令用来指示基站是否进行所述参考信号的发送。
步骤720、所述基站根据所述触发信令进行所述参考信号的发送。
具体地,基站生成触发信令后,根据触发信令向第一UE发送参考信号,以使得第一UE根据接收的触发信令和参考信号,进行对应参考信号的信道质量测量。
可选地,在本发明实施例中,该触发信令是信道状态信息CSI进程特定的或参考信号资源特定的或参考信号资源组特定的;
其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号资源被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号资源被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被分别触发。
可选地,本发明实施例方法还包括:参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;其中,CSI请求的触发是CSI进程特定的或参考信号资源特定的或参考信号资源组特定的。参考信号的触发信令同时指示了CSI请求的触发指的是,所述参考信号的触发信令同时暗含了所述参考信号资源对应的CSI的上报的触发。从而当所述参考信号的触发信令被发送给UE时,UE可基于此触发信令的解读同时获得参考信号资源的发送信息和所述发送的参考信号资源对应的CSI的上报的触发信息。CSI请求的触发信令同时指示了参考信号的触发指的是所述 CSI请求的触发同时暗含了所述CSI请求对应的参考信号发送的触发。
从而当所述CSI请求的触发信令被发送给UE时,UE可基于此触发信令的解读同时获得CSI请求的触发和所述CSI请求对应的参考信号发送的触发信息。
可选地,所述参考信号触发域字段长度为1比特或2比特。
可选地,所述方法还包括:基站向UE发送触发类型指示信令,触发类型指示信令用来指示当前的触发为参考信号的触发还是CSI请求的触发。
可选地,参考信号的触发对应第一字段指示格式,CSI请求的触发对应第二字段指示格式。
其中,所述第一字段指示格式对应了一种信令指示的字段值描述,而所述第二字段指示格式对应了另一种信令指示的字段值描述。可选地,每一种字段指示格式可对应一个信令解读的表格。
可选地,当CSI中的信道质量指示(Channel Quality Indication,简称:CQI)的上报时刻为子帧n时,CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref;nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与CSI请求或参考信号的触发的发送相同的下行子帧;或nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为CSI请求或参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
可选地,在本发明实施例中,参考信号还可为非零功率参考信号,且对应一个非零功率参考信号资源池;
本发明实施例方法还包括:基站对UE的非零功率参考信号资源池配置和对UE的零功率参考信号资源配置采用相同的位图指示信令;
其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
可选地,所述方法还包括:基站通过下行控制信息向UE发送零功率参考 信号的配置信令,配置信令用来指示基站发送的零功率参考信号的配置信息。
可选地,在基站通过下行控制信息向UE发送零功率参考信号的配置信令之前,所述方法还包括:基站通过高层信令向UE发送零功率参考信号资源的配置信息。
下面通过多种配置方式,详细说明本发明实施例提供的资源配置方法。
进一步地,现有的支持非周期CSI上报的触发技术中,其触发信令包含在下行控制信道的上行DCI的CSI请求域字段中。具体如下表1所示。
表1 现有CSI请求域字段及描述
参考信号资源域字段值 字段值描述
'00' 没有非周期CSI上报被触发
'01' 服务小区C的CSI进程集的非周期CSI上报被触发
'10' 第一CSI进程集合的非周期CSI上报被触发
'11' 第二CSI进程集合的非周期CSI上报被触发
但现有非周期CSI上报的触发是CSI进程特定的或服务小区特定的,即当非周期CSI上报被触发时,UE在服务小区C内的所有CSI进程对应的CSI上报为非周期CSI上报。此外,当两个限制性测量子帧集被配置时,UE在两个测量子帧集上的非周期CSI上报被分别触发。
对于非周期的CSI-RS资源的触发来说,由于CSI-RS资源发送的开关及配置的改变是CSI-RS资源特定的,因此,所述非周期CSI-RS资源的触发信令应该是资源特定的信令。当一个CSI进程内的CSI-RS资源数目较多时,所需的非周期的CSI-RS触发信令的开销很大,因此,基站可将每个CSI进程内的K(K>=1)个CSI-RS资源分成两组,每组对应一个非周期CSI-RS资源的触发信令。可选的,一种非周期CSI-RS的触发信令如下表2所示,所述表2中的触发信令只是一种示例性的触发信令设计。不排除用于非周期CSI-RS的触发信令以有其他的设计形式。
表2 非周期CSI-RS的触发信令
Figure PCTCN2016078217-appb-000002
Figure PCTCN2016078217-appb-000003
此外,当每个CSI进程内有一个CSI-RS资源时,另一种可选的非周期CSI-RS的触发信令如下表3所示,所述表3中的触发信令只是一种示例性的触发信令设计。不排除用于非周期CSI-RS的触发信令以有其他的设计形式.
表3 非周期CSI-RS的触发信令
Figure PCTCN2016078217-appb-000004
且由于非周期CSI上报和非周期CSI-RS资源的触发间具有一定的耦合关系,在进行非周期CSI-RS资源的发送时,同时暗含了非周期CSI上报。即,将非周期CSI-RS的触发和非周期CSI上报的触发进行绑定。非周期CSI-RS的触发暗含了对应的非周期CSI上报的触发,或非周期CSI上报的触发同时暗含了对应的非周期CSI-RS的触发。
在第一种配置方式中,基站将非周期CSI-RS资源发送的触发和非周期CSI上报的触发进行绑定,从而非周期上报的触发也相应扩展为CSI-RS资源特定的。
可选地,非周期CSI-RS资源的触发也可以是CSI-RS资源组特定的。具体实现时,可自定义一个CSI-RS资源池,基站将资源池内的资源分为T组, 分别对应T个CSI进程。对T个进程中每个进程中的CSI-RS资源进行非周期触发。其中,触发信令为PDCCH/增强物理下行控制信道(Enhanced Physical Downlink Control Channel,简称:EPDCCH)的上行或下行DCI格式中的一个CSI-RS触发域字段。可选地,所述CSI-RS触发域字段的bit数为1bit。可选的,另一种用于非周期CSI-RS触发的触发信令如下述表4所示。所述表4中的触发信令只是一种示例性的触发信令设计。不排除用于非周期CSI-RS的触发信令以有其他的设计形式。
表4 本发明实施例提供的一种非周期CSI-RS触发的触发信令及描述
Figure PCTCN2016078217-appb-000005
可选地,基站还可将资源池内的每个CSI-RS资源进行非周期发送的触发。每个CSI-RS资源对应的非周期CSI-RS触发域字段为1bi t。其中,一个资源池包括的CSI-RS资源个数为P(P>=1)。一种可选的非周期CSI-RS的触发信令设计如下表5所示,所述表5中的触发信令只是一种示例性的触发信令设计。不排除用于非周期CSI-RS的触发信令以有其他的设计形式。
表5本发明实施例提供的一种非周期CSI-RS触发的触发信令及描述
Figure PCTCN2016078217-appb-000006
进一步地,在第二种配置中,基站将非周期CSI-RS资源的触发和非周期CSI上报进行解耦,即,非周期CSI上报可以是CSI进程特定的,而非周期 CSI-RS资源的触发是CSI-RS资源特定的,从而各自对应的触发信令将是不同的。
同上,假定非周期CSI-RS资源的触发信令为2bit的下行控制信道的上行或下行DCI格式中的一个CSI-RS触发字段域,而非周期CSI上报的触发信令为2bit的下行控制信道的上行或下行DCI格式中的一个CSI请求字段域。上述两种DCI信令可以基于相同或类似格式的DCI信令进行格式设计,具体的触发信令如下述表6和表7所示。基站通过DCI信令中的1bit类型信令来指示当前的DCI信令格式为表6或者表7所示的触发信令。
其中,表6对应非周期CSI-RS的触发信令,表7对应非周期CSI上报的触发信令。所述表6或表7中的触发信令均只是一种示例性的触发信令设计。不排除用于非周期CSI-RS的触发信令或用于非周期CSI上报的触发信令可以有其他的设计形式。
可选地,该触发信令包含在PDCCH/EPDCCH的上行或下行DCI格式中,同上一个配置,非周期CSI-RS的触发信令是CSI进程特定的或CSI-RS资源或CSI-RS资源组特定的。
表6本发明实施例提供的再一种触发信令及描述
Figure PCTCN2016078217-appb-000007
表7本发明实施例提供的再一种触发信令及描述
信道状态信息请求域字段值 字段值描述
'00' 没有非周期CSI上报被触发
'01' 服务小区C的CSI进程集的非周期CSI上报被触发
'10' 第一CSI进程集合的非周期CSI上报被触发
'11' 第二CSI进程集合的非周期CSI上报被触发
进一步地,在第三种配置中,当非周期CSI-RS被支持时,会影响周期或非周期CSI上报中的CQI计算和UE的CSI测量行为。当CQI上报时刻为子帧n时,CQI所基于的参考测量参考信号资源的时域子帧位置为n-nCQI_ref
n-nCQI_ref指的是n时刻上报的CQI计算时所假定或基于的参考信号发射时刻n-nCQI_ref,对于非周期CSI上报对应的参考测量参考信号资源为非周期CSI-RS资源的情况来说n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref,为与上行控制信息指示中的非周期CSI请求的发送相同的下行子帧;或n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref,为下行控制信息指示中的非周期CSI请求发送的下行子帧或非周期CSI-RS的触发的发送下行子帧。
可选地,n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref,为下行控制信息指示中的非周期CSI请求或非周期CSI-RS的触发的发送下行子帧之后的第S(S>=1)个下行子帧;或n-nCQI_ref为下行控制信息指示中的非周期CSI请求或非周期CSI-RS的触发的发送下行子帧之后T(T>=1)个下行子帧或T个下行子帧中的任意一个子帧。其中,T的大小取决于UE的CQI测量处理时间。
在本发明实施例中,非周期CSI上报中的CQI计算可基于非周期CSI请求发送的下行子帧之后的连续T个子帧上的非周期CSI-RS资源。
可选地,非周期CSI上报所基于的参考测量参考信号资源也可以是周期发送的CSI-RS资源。当周期CSI-RS发送和非周期CSI-RS同时被支持时,需定义非周期CSI上报中的CQI所基于的参考测量参考信号资源为周期的还是非周期的。
在本发明实施例中,周期CSI上报是高层信令触发的,周期CSI上报中的CQI计算可基于非周期CSI-RS资源,如果周期CSI-RS资源和非周期CSI-RS 资源共存时,周期CSI-RS资源的发送周期较长,周期CSI上报中的CQI可以基于周期CSI-RS或非周期CSI-RS。同理,需定义周期CSI上报中的CQI所基于的参考测量参考信号资源为周期的还是非周期的。n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为周期CSI上报时刻n之前的一个最近的非周期CSI-RS的触发的下行子帧。对于周期CSI-RS资源来说,nCQI_ref为大于等于M的一个有效下行子帧,对于非周期CSI-RS资源来说,nCQI_ref为大于等于N的一个下行子帧或为使得CSI上报时刻n之前最近的大于等于P的一个有效下行子帧。
方案特征概括:当周期CSI上报中的CQI计算基于非周期CSI-RS发送时,所述n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为下行控制信息指示中的非周期CSI请求或非周期CSI-RS的触发的发送的下行子帧;
或所述n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为下行控制信息指示中的非周期CSI请求或非周期CSI-RS的触发的发送下行子帧之后的第S(S>=1)个下行子帧。
可选地,所述n-nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为最近的一次下行控制信息指示中的非周期CSI请求或非周期CSI-RS的触发的发送的下行子帧。或所述nCQI_ref为大于等于G(例如G=4)的一个最小的有效下行子帧。
另一种,非周期CSI-RS资源的触发和动态指示可以为如下所述的方法:
在周期CSI-RS的发射时序中的每个CSI-RS发射时刻进行周期配置的CSI-RS资源在不同用户间的共享和动态切换。具体实施流程包括:基站向用户设备发送一个预定义或预设置的CSI-RS资源的配置信息,所述配置信息中包括预定义或预设置的CSI-RS端口数,时频资源位置信息等。如果允许用户实际发射时的CSI-RS资源是可动态变化的,则在下行控制信息中进一步通过DCI中的M(M>=1)个bit,如2-4bit来动态指示变化后的CSI-RS资源端口数和或时频资源位置信息等。如周期发送的预定义的CSI-RS端口数为8, 而实际发射时的CSI-RS端口数为1,2,4,8中的任意一种,则可通过2bit的DCI信令来指示本次CSI-RS发射实际使用的端口数。从而其他用户可在空出来的CSI-RS资源位置上传输专用业务信道的数据。其中,这里CSI-RS资源(如端口数,时频资源位置等)的动态变化限定在所述预定义或预设置的CSI-RS资源范围或所述预定义或预设置的CSI-RS资源暗含的CSI-RS资源范围内。所述CSI-RS资源的范围包括所述CSI-RS资源的端口数和或时频位置等信息。而所述暗含的CSI-RS资源范围指的是所述预定义或预设置的CSI-RS资源扩展后的资源范围。当预定义的CSI-RS端口数为8,而实际使用的CSI-RS端口数为4时,需进一步通知所述4端口的CSI-RS资源为预定义的8端口CSI-RS资源中的两个4端口CSI-RS资源中的哪一个。而如果实际使用的CSI-RS端口数为2时,需进一步通知所述2端口的CSI-RS资源为预定义的8端口CSI-RS资源中的四个2端口CSI-RS资源中的哪一个。同理,如果实际使用的CSI-RS端口数为1时,需进一步通知所述单端口的CSI-RS资源为预定义的8端口CSI-RS资源中的八个单端口CSI-RS资源中的哪一个。在上述例子中,考虑到既要通知CSI-RS资源的端口数又要通知实际使用的所述CSI-RS资源的配置信息,因此最终需要的CSI-RS资源的动态通知信令的bit个数为5.
方案特征概括:基站通过高层信令向用户设备发送CSI-RS资源的第一级配置信息,并基于所述第一级配置信息进行CSI-RS资源的第二级动态通知。其中,所述第一级配置信息中的CSI-RS资源为预定义或预设置的周期发送的CSI-RS资源,且所述周期发送的CSI-RS资源的端口数固定。而第二级动态通知中的CSI-RS资源为周期或非周期的实际使用的CSI-RS资源。可选地,所述第二级动态通知的信令可以是层一的下行控制信令。所述第二级动态通知的信令中包括CSI-RS资源的端口数情况指示,和或所述指示端口数下的CSI-RS资源的配置指示。
上述方案中,共享的周期CSI-RS的时频域资源配置对所有用户来说是相 同的。在每个所述CSI-RS资源的周期发射时刻点,进行不同用户的对应CSI-RS资源的触发。如在发射时刻点一,进行用户一的所述CSI-RS资源的发送,而在发射时刻点二,进行用户二的所述CSI-RS资源的发送。如果所述用户一或所述用户二实际发射的CSI-RS资源的端口数不等于配置的周期CSI-RS资源的端口数,则进一步通过DCI信令通知给其他用户以使得其他用户进行对应的数据发射时的速率匹配。
可选地,所述每个周期发射时刻点发送的周期CSI-RS资源也可以有K(K>=1)套,在发射时刻点一,进行用户一和用户二的所述CSI-RS资源的发送,在时刻点二进行所述用户三和用户四的所述CSI-RS资源的发送,如果支持实际发送的CSI-RS资源的动态变化,则需要在下行控制信息中既通知实际使用的CSI-RS资源为K套中的哪些套,又通知实际使用的每套CSI-RS资源的端口数。从而所需的DCI bit数为(log2(K)+2)bits.
所述实施方法中,同样可将前面所述的非周期CSI-RS发送和非周期CSI上报进行绑定触发的方法应用在本实施例中。
进一步地,在第四种配置中,基站对小区特定的NZP CSI-RS资源和ZPCSI-RS资源进行定义和配置。
在本发明实施例中,小区级NZP CSI-RS资源的特征为以下两点:1)小区级NZP CSI-RS资源配置时半静态可变的;2)小区级的CSI-RS资源是固定端口的。
具体地,小区级NZP CSI-RS资源的配置方法为:基站联合ZP CSI-RS资源一起进行配置,并通知给UE。
在一个例子中,假定小区级NZP CSI-RS资源的端口数固定为4,则基站可与4端口的ZP CSI-RS资源的16位位图指示进行联合配置。
基站用ZP CSI-RS资源配置既指示本小区的小区级NZP CSI-RS资源配置,同时又指示ZP CSI-RS资源配置。UE解调时,先解调本小区的小区级NZP CSI-RS资源配置,再在其他位置上解调ZP CSI-RS资源配置。
16bit的配置信令采用两级CRC编码,其中,111000 001100 000bit为CRC1指示NZP CSI-RS资源配置;000000 000000 0011bit为CRC2指示ZPCSI-RS资源配置。
可选地,另一种实施方法中,基站通过两级信令通知的方式向用户设备进行CSI-RS资源的配置指示,所述两级信令包括半静态高层信令和动态控制信令。具体地,基站先通过高层信令向用户设备通知一个CSI-RS资源的第一级配置指示,再基于所述第一级配置指示进行CSI-RS资源的第二级动态配置指示。用户设备基于对所述两级CSI-RS资源的配置指示信息进行其数据发射时的速率匹配。所述两级信令通知中的CSI-RS资源为ZP CSI-RS资源或CSI-IM资源。
或基站将所有的CSI-RS资源分成M组,通过下行控制信令来动态指示CSI-RS资源的配置为所述M组中的哪一组。所述CSI-RS资源为ZP CSI-RS资源或CSI-IM资源。当所述M等于1时,等价于基站通过下行控制信令来动态指示CSI-RS资源的配置,同理,所述CSI-RS资源为ZP CSI-RS资源或CSI-IM资源。
因此,通过应用上述多种资源配置方法,基站向用户设备发送参考信号的触发信令;其中,触发信令对应下行控制信道的上行或下行DCI格式中的一个参考信号资源触发域字段;基站再根据触发信令向用户设备发送参考信号,用户设备根据接收的参考信号,进行信道测量和估计。用户设备根据接收到的是否发送参考信号的触发信令和对应的参考信号资源进行信道测量和估计,因此,提高了参考信号资源的使用效率。
上述实施例的方法以基站为执行主体进行描述,下面以用户设备为执行主体简要说明资源接收方法。
具体地,UE接收基站发送的参考信号的触发信令,触发信令用来指示基站是否进行了所述参考信号的发送;其中,触发信令对应下行控制信息中的一个参考信号触发域字段;UE接收基站根据触发信令发送的参考信号;根据 接收到的触发信令和参考信号,UE进行基于所述参考信号的信道质量测量。
基站根据前述的多种配置方式向UE发送触发信令和参考信号,UE接收到触发信令和参考信号后,进行基于所述参考信号的信道质量测量。
可选地,用户设备接收基站发送的参考信号的触发信令,所述方法还包括:
参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;用户设备根据所述触发信令进行对应的所述CSI上报。
可选地,当CSI中的信道质量指示CQI的上报时刻为子帧n时,CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与CSI请求或所述参考信号的触发的发送相同的下行子帧;或nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
上述实施例描述的方法均可实现资源配置方法,相应地,本发明实施例还提供了一种资源配置装置,用以实现前述实施例中提供的资源配置方法,如图8所示,所述装置包括:发送单元810。
所述装置的发送单元810,用于向用户设备发送参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
其中,所述触发信令对应下行控制信息中的一个参考信号资源触发域字段;
所述发送单元810还用于,根据所述触发信令进行所述参考信号资源的发送。
进一步地,所述发送单元810发送的所述触发信令是信道状态信息CSI 进程特定的或参考信号资源特定的或参考信号资源组特定的;
其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号资源被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号资源被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被分别触发。
进一步地,所述装置还包括:
指示单元820,用于所述参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;
其中,所述CSI请求的触发是CSI进程特定的或参考信号特定的或参考信号资源组特定的。
进一步地,所述发送单元810发送的所述触发信令包括的所述参考信号触发域字段长度为1比特或2比特。
进一步地,所述发送单元810还用于,向用户设备发送触发类型指示信令,所述触发类型指示信令用来指示当前的触发为参考信号的触发还是CSI请求的触发。
进一步地,所述发送单元810发送的所述参考信号的触发对应第一字段指示格式,所述指示单元指示的所述CSI请求的触发对应第二字段指示格式。
进一步地,当所述CSI中的信道质量指示CQI上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
进一步地,所述参考信号为非零功率参考信号,且对应一个非零功率参 考信号资源池;
所述装置还包括:配置单元830,用于对所述用户设备的非零功率参考信号资源池配置和对所述用户设备的零功率参考信号资源配置采用相同的位图指示信令;
其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
进一步地,所述发送单元810还用于,通过下行控制信息向所述用户设备发送零功率参考信号的配置信令,所述配置信令用来指示所述装置发送的零功率参考信号的配置信息。
进一步地,所述发送单元810还用于,通过高层信令向所述用户设备发送零功率参考信号资源的配置信息。
相应地,本发明实施例还提供了一种资源接收装置,用以实现前述实施例中提供的资源接收方法,如图9所示,所述装置包括:接收单元910和配置单元920。
所述装置的接收单元910,用于接收基站发送的参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
所述接收单元910还用于,接收基站根据所述触发信令发送的所述参考信号;
信道测量单元920,用于根据所述触发信令和所述参考信号,进行参考信号的信道质量测量。
进一步地,所述接收单元910接收的所述参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;
所述装置还包括:上报单元930,用于根据所述触发信令进行对应的所述CSI上报。
进一步地,当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
因此,通过应用上述多种资源配置装置,所述装置向用户设备发送参考信号的触发信令;其中,触发信令对应下行控制信道的上行DCI格式中的一个参考信号资源触发域字段;所述装置再根据触发信令向基站发送参考信号资源,用户设备根据接收的参考信号资源,进行信道测量和估计。用户设备可根据触发信令指示的是否发送了参考信号资源进行对应的参考信号资源的接收和信道测量、估计,因此,提高了参考信号资源的使用效率。
另外,本发明实施例提供的资源配置装置还可以采用的实现方式如下,用以实现前述本发明实施例中的资源配置方法,如图10所示,所述基站包括:、发射器1010、处理器1020、以及存储器1030。
所述装置的发射器1010,用于向用户设备发送参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
所述发射器1010还用于,根据所述触发信令进行所述参考信号的发送。
存储器1030用于存储终端的程序代码和数据。
可以理解的是,图10仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器等,而所有可以实现本发明的基站都在本发明的保护范围之内。
进一步地,所述发射器1010发送的所述触发信令是信道状态信息CSI进 程特定的或参考信号资源特定的或参考信号资源组特定的;
其中,其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号资源被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号资源被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被分别触发。
进一步地,处理器1020,用于所述参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;
其中,所述CSI请求的触发是CSI进程特定的或参考信号资源特定的或参考信号资源组特定的。
进一步地,所述发射器1010发送的所述触发信令包括的所述参考信号触发域字段长度为1比特或2比特。
进一步地,所述发射器1010还用于,向所述用户设备发送触发类型指示信令,所述触发类型指示信令用来指示当前的触发为参考信号的触发还是CSI请求的触发。
进一步地,所述发射器1010发送的所述参考信号的触发对应第一字段指示格式,所述处理器指示的所述CSI请求的触发对应第二字段指示格式。
进一步地,当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
进一步地,所述参考信号为非零功率参考信号,且对应一个非零功率参考信号资源池;
所述处理器1020还用于,对所述用户设备的非零功率参考信号资源池配置和对所述用户设备的零功率参考信号资源配置采用相同的位图指示信令;
其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
进一步地,所述发射器1010还用于,通过下行控制信息向所述用户设备发送零功率参考信号的配置信令,所述配置信令用来指示所述基站发送的零功率参考信号的配置信息。
进一步地,所述发射器1010还用于,通过高层信令向所述用户设备发送零功率参考信号资源的配置信息。
另外,本发明实施例提供的资源接收装置还可以采用的实现方式如下,用以实现前述本发明实施例中的资源接收方法,如图11所示,所述用户设备包括:接收器1110、处理器1120、以及存储器1130。
所述装置的接收器1110,用于接收基站发送的参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
所述接收器1110还用于,接收基站根据所述触发信令发送的所述参考信号;
所述处理器1120,用于根据所述触发信令和所述参考信号,进行参考信号配置。
存储器1130用于存储终端的程序代码和数据。
可以理解的是,图11仅仅示出了用户设备的简化设计。在实际应用中,用户设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器等,而所有可以实现本发明的用户设备都在本发明的保护范围之内。
进一步地,所述参考信号的触发信令同时指示了CSI请求的触发;或所述CSI请求的触发信令同时指示了所述参考信号的触发;所述处理器1120还用于,根据所述触发信令进行对应的所述CSI上报。
进一步地,当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
用于执行本发明上述基站或者用户设备的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
因此,通过应用本发明实施例提供的基站和用户设备,基站向用户设备发送参考信号的触发信令;其中,触发信令对应下行控制信道的上行或下行DCI格式中的一个参考信号资源触发域字段;基站再根据触发信令向用户设备发送参考信号资源,用户设备根据所述触发信令的指示进行对应的参考信号资源的接收和信道测量、估计。因此大大提高了参考信号资源的使用效率。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以使由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然, 存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内

Claims (72)

  1. 一种资源配置方法,其特征在于,所述方法包括:
    基站向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
    所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
    所述基站根据所述配置信令对所述用户设备进行N端口的参考信号的发送。
  2. 根据权利要求1所述的资源配置方法,其特征在于,所述N端口的参考信号对应K个M端口的参考信号之外,所述N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,所述1<=P<N,且所述P不等于所述M,N为大于等于1的正整数;
    所述配置信令还包括所述L个P端口的参考信号的配置信息和所述N端口的参考信号与所述L个P端口的参考信号间的对应关系指示信息。
  3. 根据权利要求1或2所述的资源配置方法,其特征在于,所述基站向用户设备发送参考信号的配置信令之前,所述方法还包括:
    所述基站根据所述参考信号的端口数N,确定所述N端口的参考信号与所述K个M端口的参考信号之间的对应关系指示信息;和/或
    确定所述N端口的参考信号与所述L个P端口的参考信号之间的对应关系指示信息。
  4. 根据权利要求3所述的资源配置方法,其特征在于,所述对应关系指示信息对应一个1bit的对应关系指示信息字段;所述对应关系指示信息字段用来指示所述对应关系为第一映射关系或第二映射关系。
  5. 根据权利要求1至4中任一项所述的资源配置方法,其特征在于,所述K个M端口的参考信号或L个P端口的参考信号的配置信息包括所述参考 信号到资源单元的映射和/或所述每个M端口或P端口的参考信号的传输子帧配置,以使得所述用户设备根据所述配置信息进行所述N端口的参考信号的接收。
  6. 根据权利要求5所述的资源配置方法,其特征在于,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
  7. 根据权利要求1-3中任一项所述的资源配置方法,其特征在于,所述配置信令还包括所述K个M端口的参考信号的重叠因子和/或抽样因子。
  8. 根据权利要求1-3中任一项所述的资源配置方法,其特征在于,所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息和所述资源组内的参考信号的指示信息;
    其中,所有M端口的参考信号由T(T>=1)个参考信号组构成,所述每个参考信号组由至少一个参考信号构成;或
    所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息;
    其中,所有M端口的参考信号由R(R>=1)个参考信号组构成,所述每个参考信号组由至少K个参考信号构成。
  9. 根据权利要求1-3中任一项所述的资源配置方法,其特征在于,所述配置信令还包括位图指示信息,所述位图指示信息指示了组成所述N端口的参考信号的M端口的参考信号的配置信息和/或P端口的参考信号的配置信息。
  10. 根据权利要求9中所述的资源配置方法,其特征在于,所述M端口的参考信号对应了一个位图指示,所述P端口的参考信号对应了一个位图指示;
    当M大于P时,所述P端口的参考信号的位图指示根据所述M端口的参考信号的位图指示的补集得到;
    其中,所述位图指示信息中的有效位指示了用来组成N端口的参考信号 的M或P端口的参考信号的配置信息。
  11. 一种资源接收方法,其特征在于,所述方法包括:
    用户设备接收基站发送的参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
    所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
    所述用户设备接收所述基站根据所述配置信令发送的N端口的参考信号;
    根据所述配置信令和所述参考信号,所述用户设备进行基于N端口的参考信号接收和信道质量测量。
  12. 一种资源配置方法,其特征在于,所述方法包括:
    基站向用户设备发送参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
    其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
    所述基站根据所述触发信令进行所述参考信号的发送。
  13. 根据权利要求12所述的资源配置方法,其特征在于,所述触发信令是信道状态信息CSI进程特定的或参考信号资源特定的或参考信号资源组特定的;
    其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号资源被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号资源被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被分别触发。
  14. 根据权利要求12所述的资源配置方法,其特征在于,所述方法还包括:
    所述参考信号的触发信令同时指示了CSI请求的触发;或,
    CSI请求的触发信令同时指示了所述参考信号的触发;
    其中,所述CSI请求的触发是CSI进程特定的或参考信号资源特定的或参考信号资源组特定的。
  15. 根据权利要求12-14中任一项所述的资源配置方法,其特征在于,所述参考信号触发域字段长度为1比特或2比特。
  16. 根据权利要求12-15中任一项所述的资源配置方法,其特征在于,所述方法还包括:所述基站向所述用户设备发送触发类型指示信令,所述触发类型指示信令用来指示当前的触发为参考信号的触发还是CSI请求的触发。
  17. 根据权利要求16所述的资源配置方法,其特征在于,所述参考信号的触发对应第一字段指示格式,所述CSI请求的触发对应第二字段指示格式。
  18. 根据权利要求12-17中任一项所述的资源配置方法,其特征在于,
    当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
    所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
  19. 根据权利要求12-18中任一项所述的资源配置方法,其特征在于,所述参考信号为非零功率参考信号,且对应一个非零功率参考信号资源池;
    所述方法还包括:所述基站对所述用户设备的非零功率参考信号资源池配置和对所述用户设备的零功率参考信号资源配置采用相同的位图指示信令;
    其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
  20. 根据权利要求12-19中任一项所述的资源配置方法,其特征在于, 所述方法还包括:
    所述基站通过下行控制信息向所述用户设备发送零功率参考信号的配置信令,所述配置信令用来指示所述基站发送的零功率参考信号的配置信息。
  21. 根据权利要求20所述的资源配置方法,其特征在于,在所述基站通过下行控制信息向所述用户设备发送零功率参考信号的配置信令之前,所述方法还包括:
    所述基站通过高层信令向所述用户设备发送零功率参考信号资源的配置信息。
  22. 一种资源接收方法,其特征在于,所述方法包括:
    用户设备接收基站发送的参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
    其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
    所述用户设备接收基站根据所述触发信令发送的所述参考信号;
    根据所述触发信令和所述参考信号,所述用户设备进行所述参考信号的信道质量测量。
  23. 根据权利要求22所述的资源接收方法,用户设备接收基站发送的参考信号的触发信令,其特征在于,所述方法还包括:
    所述参考信号的触发信令同时指示了CSI请求的触发;或,
    CSI请求的触发信令同时指示了所述参考信号的触发;
    用户设备根据所述触发信令进行对应的所述CSI上报。
  24. 根据权利求23中所述的资源接收方法,其特征在于,
    当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
    所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的 发送子帧之后的第S(S>=1)个下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
  25. 一种资源配置装置,其特征在于,所述装置包括:
    发送单元,用于向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
    所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
    所述发送单元还用于,根据所述配置信令对所述用户设备进行N端口的参考信号的发送。
  26. 根据权利要求25所述的资源配置装置,其特征在于,所述N端口的参考信号对应K个M端口的参考信号之外,所述发送单元发送的N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,所述1<=P<N,且所述P不等于所述M,N为大于等于1的正整数;
    所述配置信令还包括所述L个P端口的参考信号的配置信息和所述N端口的参考信号与所述L个P端口的参考信号间的对应关系指示信息。
  27. 根据权利要求25或26所述的资源配置装置,其特征在于,所述装置还包括:
    确定单元,用于根据所述参考信号的端口数N,确定所述N端口的参考信号与所述K个M端口的参考信号之间的对应关系指示信息;
    和/或
    所述确定单元,还用于确定所述N端口的参考信号与所述L个P端口的参考信号之间的对应关系指示信息。
  28. 根据权利要求27所述的资源配置装置,其特征在于,
    所述发送单元发送的所述配置信令包括的所述对应关系指示信息对应一 个1bit的对应关系指示信息字段;所述对应关系指示信息字段用来指示所述对应关系为第一映射关系或第二映射关系。
  29. 根据权利要求25至28中任一项所述的资源配置装置,其特征在于,所述K个M端口的参考信号或L个P端口的参考信号的配置信息包括所述参考信号到资源单元的映射和/或所述每个M端口或P端口的参考信号的传输子帧配置,以使得所述用户设备根据所述配置信息进行所述N端口的参考信号的接收。
  30. 根据权利要求29所述的资源配置装置,其特征在于,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
  31. 根据权利要求25-27中任一项所述的资源配置装置,其特征在于,所述发送单元发送的所述配置信令还包括所述K个M端口的参考信号的重叠因子和/或抽样因子。
  32. 根据权利要求25-27中任一项所述的资源配置装置,其特征在于,所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息和所述资源组内的参考信号的指示信息;
    其中,所有M端口的参考信号由T(T>=1)个参考信号组构成,所述每个参考信号组由至少一个参考信号构成;或
    所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息;
    其中,所有M端口的参考信号由R(R>=1)个参考信号组构成,所述每个参考信号组由至少K个参考信号构成。
  33. 根据权利要求25-27中任一项所述的资源配置装置,其特征在于,所述发送单元发送的所述配置信令还包括位图指示信息,所述位图指示信息指示了组成所述N端口的参考信号的M端口的参考信号的配置信息和/或P端口的参考信号的配置信息。
  34. 根据权利要求33中所述的资源配置装置,其特征在于,所述M端口 的参考信号对应了一个位图指示,所述P端口的参考信号对应了一个位图指示;
    当M大于P时,所述P端口的参考信号的位图指示根据所述M端口的参考信号的位图指示的补集得到;
    其中,所述位图指示信息中的有效位指示了用来组成N端口的参考信号的M或P端口的参考信号的配置信息。
  35. 一种资源接收装置,其特征在于,所述装置包括:
    接收单元,用于接收基站发送的参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
    所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
    所述接收单元还用于,接收所述基站根据所述配置信令发送的N端口的参考信号;
    信道测量单元,用于根据所述配置信令和所述参考信号,进行基于N端口的参考信号的信道质量测量。
  36. 一种资源配置装置,其特征在于,所述装置包括:
    发送单元,用于向用户设备发送参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
    其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
    所述发送单元还用于,根据所述触发信令进行所述参考信号的发送。
  37. 根据权利要求36所述的资源配置装置,其特征在于,所述发送单元发送的所述触发信令是信道状态信息CSI进程特定的或参考信号资源特定的或参考信号资源组特定的;
    其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号资源被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号资源 被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被分别触发。
  38. 根据权利要求36所述的资源配置装置,其特征在于,所述装置还包括:
    指示单元,用于所述参考信号的触发信令同时指示了CSI请求的触发;或,CSI请求的触发信令同时指示了所述参考信号的触发;
    其中,所述CSI请求的触发是CSI进程特定的或参考信号特定的或参考信号资源组特定的。
  39. 根据权利要求36-38中任一项所述的资源配置装置,其特征在于,所述发送单元发送的所述触发信令包括的所述参考信号触发域字段长度为1比特或2比特。
  40. 根据权利要求36-39中任一项所述的资源配置装置,其特征在于,所述发送单元还用于,向用户设备发送触发类型指示信令,所述触发类型指示信令用来指示当前的触发为参考信号的触发还是CSI请求的触发。
  41. 根据权利要求40所述的资源配置装置,其特征在于,所述发送单元发送的所述参考信号的触发对应第一字段指示格式,所述指示单元指示的所述CSI请求的触发对应第二字段指示格式。
  42. 根据权利要求36-41中任一项所述的资源配置装置,其特征在于,当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
    所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
  43. 根据权利要求36-42中任一项所述的资源配置装置,其特征在于,所述参考信号为非零功率参考信号,且对应一个非零功率参考信号资源池;
    所述装置还包括:配置单元,用于对所述用户设备的非零功率参考信号资源池配置和对所述用户设备的零功率参考信号资源配置采用相同的位图指示信令;
    其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
  44. 根据权利要求36-43中任一项所述的资源配置装置,其特征在于,所述发送单元还用于,通过下行控制信息向所述用户设备发送零功率参考信号的配置信令,所述配置信令用来指示所述装置发送的零功率参考信号的配置信息。
  45. 根据权利要求44所述的资源配置装置,其特征在于,所述发送单元还用于,通过高层信令向所述用户设备发送零功率参考信号资源的配置信息。
  46. 一种资源接收装置,其特征在于,所述装置包括:
    接收单元,用于接收基站发送的参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
    其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
    所述接收单元还用于,接收基站根据所述触发信令发送的所述参考信号;
    信道测量单元,用于根据所述触发信令和所述参考信号,进行参考信号的信道质量测量。
  47. 根据权利要求46所述的资源接收装置,其特征在于,所述接收单元接收的所述参考信号的触发信令同时指示了CSI请求的触发;或,
    CSI请求的触发信令同时指示了所述参考信号的触发;
    所述装置还包括:上报单元,用于根据所述触发信令进行对应的所述CSI上报。
  48. 根据权利求47中所述的资源接收装置,其特征在于,当所述CSI中 的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
    所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
  49. 一种基站,其特征在于,所述基站包括:
    发射器,向用户设备发送参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
    所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
    所述发射器还用于,根据所述配置信令对所述用户设备进行N端口的参考信号的发送。
  50. 根据权利要求49所述的基站,其特征在于,所述N端口的参考信号对应K个M端口的参考信号之外,所述N端口的参考信号还对应了至少L(L>=1)个P端口的参考信号,所述1<=P<N,且所述P不等于所述M,N为大于等于1的正整数;
    所述发射器发送的所述配置信令还包括所述L个P端口的参考信号的配置信息和所述N端口的参考信号与所述L个P端口的参考信号间的对应关系指示信息。
  51. 根据权利要求49或50所述的基站,其特征在于,所述基站还包括:
    至少一个处理器,用于根据所述参考信号的端口数N,确定所述N端口的参考信号与所述K个M端口的参考信号之间的对应关系指示信息;
    和/或
    确定所述N端口的参考信号与所述L个P端口的参考信号之间的对应关系指示信息。
  52. 根据权利要求51所述的基站,其特征在于,所述发射器发送的所述配置信令包括的所述对应关系指示信息对应一个1bit的对应关系指示信息字段;所述对应关系指示信息字段用来指示所述对应关系为第一映射关系或第二映射关系。
  53. 根据权利要求49至52中任一项所述的基站,其特征在于,所述K个M端口的参考信号或L个P端口的参考信号的配置信息包括所述参考信号到资源单元的映射和/或所述每个M端口或P端口的参考信号的传输子帧配置,以使得所述用户设备根据所述配置信息进行所述N端口的参考信号的接收。
  54. 根据权利要求43所述的基站,其特征在于,至少存在两个M端口或P端口的参考信号的传输子帧配置是不同的。
  55. 根据权利要求49-51中任一项所述的基站,其特征在于,所述发射器发送的所述配置信令还包括所述K个M端口的参考信号的重叠因子和/或抽样因子。
  56. 根据权利要求49-51中任一项所述的基站,其特征在于,所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息和所述资源组内的参考信号的指示信息;
    其中,所有M端口的参考信号由T(T>=1)个参考信号组构成,所述每个参考信号组由至少一个参考信号构成;或
    所述K个M端口的参考信号的配置信令包括M端口的参考信号的组索引指示信息;
    其中,所有M端口的参考信号由R(R>=1)个参考信号组构成,所述每个参考信号组由至少K个参考信号构成。
  57. 根据权利要求49-51中任一项所述的基站,其特征在于,所述发射器发送的所述配置信令还包括位图指示信息,所述位图指示信息指示了组成所述N端口的参考信号的M端口的参考信号的配置信息和/或P端口的参考信号的配置信息。
  58. 根据权利要求57中所述的基站,其特征在于,所述M端口的参考信号对应了一个位图指示,所述P端口的参考信号对应了一个位图指示;
    当M大于P时,所述P端口的参考信号的位图指示根据所述M端口的参考信号的位图指示的补集得到;
    其中,所述位图指示信息中的有效位指示了用来组成N端口的参考信号的M或P端口的参考信号的配置信息。
  59. 一种用户设备,其特征在于,所述用户设备包括:
    接收器,用于接收基站发送的参考信号的配置信令,所述参考信号的端口数为N,所述N端口的参考信号对应K(K>=1)个M端口的参考信号,其中,1<=M<N,N为大于等于1的正整数;
    所述配置信令包括所述K个M端口的参考信号的配置信息和所述N端口的参考信号与所述K个M端口的参考信号间的对应关系指示信息;
    所述接收器还用于,接收所述基站根据所述配置信令发送的N端口的参考信号;
    至少一个处理器,用于根据所述配置信令和所述参考信号,进行N端口的参考信号的信道质量测量。
  60. 一种基站,其特征在于,所述基站包括:
    发射器,用于向用户设备发送参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
    其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
    所述发射器还用于,根据所述触发信令进行所述参考信号的发送。
  61. 根据权利要求60所述的基站,其特征在于,所述发射器发送的所述 触发信令是信道状态信息CSI进程特定的或参考信号资源特定的或参考信号资源组特定的;
    其中,CSI进程特定的触发信令指的是CSI进程中的所有参考信号被触发,参考信号资源特定的触发信令指的是CSI进程内的每个参考信号被分别触发,参考信号资源组特定的触发信令指的是CSI进程中的每个参考信号资源组内的参考信号资源被触发。
  62. 根据权利要求60所述的基站,其特征在于,所述基站还包括:
    至少一个处理器,用于所述参考信号的触发信令同时指示了CSI请求的触发;或,CSI请求的触发信令同时指示了所述参考信号的触发;
    其中,所述CSI请求的触发是CSI进程特定的或参考信号资源特定的或参考信号资源组特定的。
  63. 根据权利要求60-62中任一项所述的基站,其特征在于,所述发射器发送的所述触发信令包括的所述参考信号触发域字段长度为1比特或2比特。
  64. 根据权利要求60-63中任一项所述的基站,其特征在于,所述发射器还用于,向所述用户设备发送触发类型指示信令,所述触发类型指示信令用来指示当前的触发为参考信号的触发还是CSI请求的触发。
  65. 根据权利要求64所述的基站,其特征在于,所述发射器发送的所述参考信号的触发对应第一字段指示格式,所述处理器指示的所述CSI请求的触发对应第二字段指示格式。
  66. 根据权利要求60-65中任一项所述的基站,其特征在于,
    当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信号资源的子帧为n-nCQI_ref
    所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的 发送子帧之后的第S(S>=1)个下行子帧;或所述n-nCQI_ref满足使得参考测量参考信号发射时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
  67. 根据权利要求60-66中任一项所述的基站,其特征在于,所述参考信号为非零功率参考信号,且对应一个非零功率参考信号资源池;
    所述处理器还用于,对所述用户设备的非零功率参考信号资源池配置和对所述用户设备的零功率参考信号资源配置采用相同的位图指示信令;
    其中,非零功率参考信号资源池配置对应的位图指示信令中的有效位与零功率参考信号资源配置对应的位图指示信令中的有效位不同。
  68. 根据权利要求60-67中任一项所述的基站,其特征在于,所述发射器还用于,通过下行控制信息向所述用户设备发送零功率参考信号的配置信令,所述配置信令用来指示所述基站发送的零功率参考信号的配置信息。
  69. 根据权利要求68所述的基站,其特征在于,所述发射器还用于,通过高层信令向所述用户设备发送零功率参考信号资源的配置信息。
  70. 一种用户设备,其特征在于,所述用户设备包括:
    接收器,用于接收基站发送的参考信号的触发信令,所述触发信令用来指示基站是否进行所述参考信号的发送;
    其中,所述触发信令对应下行控制信息中的一个参考信号触发域字段;
    所述接收器还用于,接收基站根据所述触发信令发送的所述参考信号;
    至少一个处理器,用于根据所述触发信令和所述参考信号,进行参考信号的信道质量测量。
  71. 根据权利要求70所述的用户设备,所述参考信号的触发信令同时指示了CSI请求的触发,或CSI请求的触发信令同时指示了所述参考信号的触发;所述处理器还用于,根据所述触发信令进行对应的所述CSI上报。
  72. 根据权利求71中所述的用户设备,其特征在于,当所述CSI中的信道质量指示CQI的上报时刻为子帧n时,所述CQI所基于的参考测量参考信 号资源的子帧为n-nCQI_ref
    所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为与所述CSI请求或所述参考信号的触发的发送相同的下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送子帧之后的第S(S>=1)个下行子帧;或所述nCQI_ref满足使得参考测量参考信号发送时刻n-nCQI_ref为所述CSI请求或所述参考信号的触发的发送下行子帧之后的T(T>=1)个子帧或T个子帧中的任意一个子帧。
PCT/CN2016/078217 2016-03-31 2016-03-31 资源配置方法、资源接收方法、装置、基站与用户设备 WO2017166250A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/078217 WO2017166250A1 (zh) 2016-03-31 2016-03-31 资源配置方法、资源接收方法、装置、基站与用户设备
CN201680083626.0A CN108781144B (zh) 2016-03-31 2016-03-31 资源配置方法、资源接收方法、装置、基站与用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078217 WO2017166250A1 (zh) 2016-03-31 2016-03-31 资源配置方法、资源接收方法、装置、基站与用户设备

Publications (1)

Publication Number Publication Date
WO2017166250A1 true WO2017166250A1 (zh) 2017-10-05

Family

ID=59962400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078217 WO2017166250A1 (zh) 2016-03-31 2016-03-31 资源配置方法、资源接收方法、装置、基站与用户设备

Country Status (2)

Country Link
CN (1) CN108781144B (zh)
WO (1) WO2017166250A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315871A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及系统
CN103391174A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 Csi反馈信令的指示配置方法及基站
EP2670187A1 (en) * 2012-06-01 2013-12-04 Fujitsu Limited Measurement behaviour indications for resource patterns
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN104052532A (zh) * 2013-03-15 2014-09-17 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
CN104704872A (zh) * 2013-06-19 2015-06-10 华为技术有限公司 一种通信质量测量的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448028B (zh) * 2010-09-30 2014-12-24 华为技术有限公司 通知下行信道静默信息的方法及设备
CN103037395B (zh) * 2011-09-29 2015-04-29 华为技术有限公司 多个接入点时配置csi-rs的方法、基站及接入点
CN103179664B (zh) * 2011-12-20 2016-09-07 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
EP2896240B1 (en) * 2012-09-11 2017-12-27 LG Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system
CN104619027B (zh) * 2013-11-01 2020-01-14 中兴通讯股份有限公司 一种发现信号处理方法和基站
CN104767592B (zh) * 2014-01-02 2019-01-01 中国移动通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315871A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及系统
CN103391174A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 Csi反馈信令的指示配置方法及基站
EP2670187A1 (en) * 2012-06-01 2013-12-04 Fujitsu Limited Measurement behaviour indications for resource patterns
CN104052532A (zh) * 2013-03-15 2014-09-17 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
CN104704872A (zh) * 2013-06-19 2015-06-10 华为技术有限公司 一种通信质量测量的方法和装置
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置

Also Published As

Publication number Publication date
CN108781144B (zh) 2020-11-17
CN108781144A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
US11140569B2 (en) Method and radio node for handling CSI reporting
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
CN110034886B (zh) 一种资源指示、确定方法及装置
WO2020124353A1 (zh) 侧行通信的方法和终端设备
WO2013007088A1 (zh) 一种信道状态信息的处理方法、装置及系统
JP2016536913A (ja) チャネル状態情報参照信号を構成するための方法、および基地局
CN107371241B (zh) 参考信号传输方法、网络设备、用户设备和通信系统
WO2018171614A1 (zh) 一种参考信号发送方法、接收方法和装置
WO2018171780A1 (zh) 信令的发送方法、装置和系统
TW202010285A (zh) 傳輸訊息的方法、終端設備和網路設備
CN111034287A (zh) 资源配置方法、确定方法及其装置、通信系统
CN110381000B (zh) 通信系统参数的确定、指示方法及设备
WO2021013159A1 (zh) 一种信道状态信息传输方法及装置
CN109151875B (zh) 用于测量信道状态的方法和装置
JP2023523440A (ja) ビーム報告の方法及び装置
WO2019138360A1 (en) Activation and deactivation of semi-persistent csi reporting
WO2019028760A1 (zh) 资源指示和接收方法、装置及通信系统
WO2013166814A1 (zh) 触发信道状态信息非周期反馈的方法、ue、基站及系统
WO2022028501A1 (zh) 一种信号传输方法、装置及存储介质
WO2015003367A1 (zh) 反馈信道状态信息csi的方法、用户设备和基站
CN110138527A (zh) 一种资源指示、确定方法及装置
WO2020221261A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896030

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896030

Country of ref document: EP

Kind code of ref document: A1