WO2018171780A1 - 信令的发送方法、装置和系统 - Google Patents

信令的发送方法、装置和系统 Download PDF

Info

Publication number
WO2018171780A1
WO2018171780A1 PCT/CN2018/080384 CN2018080384W WO2018171780A1 WO 2018171780 A1 WO2018171780 A1 WO 2018171780A1 CN 2018080384 W CN2018080384 W CN 2018080384W WO 2018171780 A1 WO2018171780 A1 WO 2018171780A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
pmi2
base station
pmi1
precoding matrix
Prior art date
Application number
PCT/CN2018/080384
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18771700.4A priority Critical patent/EP3579445A4/en
Publication of WO2018171780A1 publication Critical patent/WO2018171780A1/zh
Priority to US16/579,621 priority patent/US20200021343A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the signal transmission model of a wireless communication system can be based on the following mathematical formula:
  • the embodiment of the invention provides a method, a device and a system for transmitting signaling, which are used to improve transmission efficiency and achieve the purpose of saving air interface resources.
  • the receiving, by the UE, the first signaling sent by the base station includes:
  • the sending unit is configured to periodically send the second signaling to the user equipment.
  • the first signaling further includes a rank indication and/or the first The signaling also includes the PMI2.
  • the receiving unit is configured to receive at least two first make
  • the present invention also introduces various hardware structures and chip systems to implement the invention described above.
  • the foregoing embodiment can solve the problem that the base station wastes in the signaling in the uplink transmission mode of the base station, and further solves the problem that the transmission is not accurate enough under the condition that the number of signaling is guaranteed.
  • FIG. 2 is a schematic timing diagram of a signaling sending method according to an embodiment of the present disclosure
  • FIG. 7 is a structural diagram of an apparatus for implementing signaling according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an apparatus for implementing signaling according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a chip system for implementing signaling according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of one possible system network of the present invention.
  • a radio access network RAN
  • the RAN includes at least one base station (BS), and for the sake of clarity, only one base station and one UE are shown.
  • the RAN is connected to a core network (CN).
  • the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
  • PSTN public switched telephone network
  • a system using multiple input multiple output (MIMO) technology can increase the transmission rate of data or other information by using multiple transmit antennas and multiple receive antennas for data or other information transmission.
  • MIMO multiple input multiple output
  • the UE side needs to acquire the channel information.
  • a precoding matrix indication (PMI) can be transmitted to the user equipment UE through the base station as a type of such information.
  • the manner in which the base station determines the PMI may be generally determined by measuring a reference signal sent by the user equipment.
  • a reference signal sent by the user equipment.
  • various reference signals for example, a sounding reference signal (SRS), or other reference signals, such as a demodulation reference signal (DMRS), and others.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • a signal, or a combination of various signal types, is measured.
  • the specific measurement process of the base station may also be multiple.
  • One way is ergodic--for example, the UE determines all possible precoding matrices, uses these precoding matrices to precode the reference signal, and uses the precoded reference signal. Send to the base station.
  • the UE may determine a precoding matrix of the uplink data or a precoding matrix of other uplink information according to the PMI.
  • the PMI may be used only to refer to the uplink data or other uplink information. coding. But usually the UE will receive the PMI before precoding the data or other upstream information. The purpose is to make a reference for the UE to determine the precoding matrix.
  • the number of the above PMIs may be one or multiple.
  • the UE and the base station may be determined by complying with protocols, standards, or by mutual communication negotiation.
  • the precoding matrix W can be expressed as follows:
  • One PMI is used to indicate a certain matrix W in the codebook, which may be referred to as PMI1; another PMI indicates that a row of the matrix is selected. Or a column, which can be called PMI2. In one embodiment, there may also be a PMI3 and PMI2 used together to indicate the row and column of the certain matrix W.
  • the case of the dual codebook may be one parameter of one PMI indicating the precoding matrix, and the other PMI indicating another parameter of the precoding matrix.
  • i 1 can be PMI1 and i 2 can be PMI2. among them:
  • the form of the matrix can also be different.
  • the above W1 may also be a short-term/narrowband matrix, in which case W2 is a long-term/wideband matrix.
  • W2 is a long-term/wideband matrix.
  • it is not limited to the precoding matrix form of the above dual codebook structure.
  • it may also be the case that two PMIs indicate a precoding matrix.
  • one of the two precoding matrix indications indicates that the corresponding precoding matrix may be a unit matrix.
  • the network device may be a base station. It should be understood that the present invention may also support a device to device, in which case the network device may be a user equipment or other type of relay.
  • the first network device determines that the first precoding matrix indication PMI1 and the second precoding matrix indicate PMI2. This determination process may be determined by measurement or notified by other network side devices. In one embodiment, the first network device receives the PMI 1 and the PMI 2. In another embodiment, the first network device measures a reference signal to obtain the PMI1 and the PMI2.
  • the network device determines a first precoding matrix indication PMI1 and a second precoding matrix indication PMI2, wherein the PMI1 and the PMI2 are used to indicate a precoding matrix; the network device sends a first signaling to a user equipment, The first signaling includes the PMI1; the network device sends a second signaling to the user equipment, and the second signaling includes the PMI2.
  • the first signaling is a first type of signaling, and the first signaling generally refers to signaling including PMI1.
  • the second signaling generally refers to signaling including PMI2, unless otherwise specified, such as the embodiment of FIG.
  • the two first signalings sent at different times have different PMI1s, but in some cases, for example, the base station determines that the PMI1 included in the first signaling sent at two moments is the same. The situation, or some times sent to improve reliability.
  • the two second signalings sent at different times are also generally different, but in some cases, for example, the base station determines that the PMI2 included in the second signaling sent at two moments is the same. Situation, or some multiple transmissions to improve reliability.
  • the first signaling and the second signaling may be respectively indicated. Because the signaling characteristics are different, different signaling indicates different characteristics of the PMI, which may be increased. The flexibility of the indication and the effect of resource optimization. It should be understood that the sequence of the first signaling and the second signaling may be determined according to the situation, which is not limited by the present invention.
  • the precoding matrix here may be the matrix described above for precoding the data to be transmitted.
  • the precoding matrix is correspondingly used for transmitting uplink data or signals.
  • Different indication methods can be used for different precoding matrix forms.
  • the PMI1 and the PMI2 are used to jointly indicate the first precoding matrix.
  • the PMI1 is used to indicate a precoding matrix W a
  • the PMI2 is used to indicate the other precoding matrix W b.
  • the PMI1 and the PMI2 may also be a column indication.
  • the precoding matrix is a sub-matrix of a discrete Fourier transform (DFT) matrix, where the DFT matrix is divided.
  • DFT discrete Fourier transform
  • each set contains at least 2 columns of the DFT matrix, the PMI1 being used to indicate a set ⁇ k ⁇ in the Fourier matrix,
  • the PMI 2 indicates a precoding matrix constructed according to the combination of elements in the set ⁇ k ⁇ .
  • the base station may select a matrix of broadband characteristics from one codebook according to PMI1, and select a matrix of narrowband characteristics from another codebook according to PMI2.
  • the two codebooks can be the same, or they can be two codebooks unique to the broadband and narrowband characteristics.
  • the base station may select a broadband characteristic codebook and a narrowband characteristic codebook from two different codebooks respectively, or may select one of the shared codebooks, and then notify the UE of the PMI.
  • the matrix of the broadband characteristic and the matrix of the narrowband characteristics together form a precoding matrix, and in a specific implementation process, the base station may also directly according to the matrix of the broadband characteristics corresponding to the PMI1 and the PMI2 at the receiving end.
  • the matrix of the corresponding narrowband characteristic demodulates the received signal step by step, eliminating the need to synthesize the commonly constructed precoding matrix before demodulation. Therefore, when the PMI1 is used to indicate a matrix of the broadband characteristics, and when the PMI2 is used to indicate a matrix of the narrowband characteristics, the base station indicates the PMI1 using high layer signaling, and the base station uses a physical layer Control information signaling indicates the PMI2.
  • the broadband characteristic matrix associated with the PMI1 changes slowly, ie, may not change during several data transmissions, and the matrix of the narrowband characteristics associated with the PMI2 changes faster, so the base station passes
  • the high layer signaling indicates the PMI1
  • the base station indicates the PMI2 through medium access control layer signaling or physical layer control information signaling.
  • the base station can be indicated by DCI.
  • the matrix of the broadband characteristic and the matrix of the narrowband characteristic respectively cooperate with different characteristic signaling, which can further improve the transmission efficiency of the indication signaling.
  • the signaling may be a combination of higher layer signaling and higher layer signaling, lower layer signaling and lower layer signaling, or higher layer signaling and lower layer signaling.
  • the lower layer signaling may also be media access control (MAC) layer signaling or physical layer signaling; the following table shows some implementations that PMI1 and PMI2 may implement:
  • the high layer signaling is radio resource control (RRC) signaling, layer 2 (L2) signaling, or media access control control element (MAC CE) signaling.
  • RRC radio resource control
  • L2 layer 2
  • MAC CE media access control control element
  • the physical layer signaling is downlink control information (DCI), downlink service information, and the like, and the downlink control information may be transmitted on a downlink control channel or a downlink traffic channel, which is not specifically limited herein.
  • the signaling indication can also be used in conjunction with other messages or information, such as PMI1 using signaling and PMI2 using data indication.
  • PMI1 and RI may be indicated in physical layer control signaling, while PMI2 is transmitted on a physical layer traffic channel.
  • first signaling and the second signaling used for the precoding matrix indication may be the same same layer signaling or any other signaling according to the foregoing signaling, which is not limited herein.
  • the first signaling and the second signaling may all be physical layer DCI signaling.
  • the physical layer DCI signaling may be a single-level DCI signaling or a two-level DCI signaling.
  • the first signaling corresponds to the first-level DCI signaling in the two-level DCI signaling
  • the second signaling corresponds to the two-level DCI signaling.
  • the second level of DCI signaling in the order.
  • the base station determines to indicate a plurality of PMI groups, and a set of PMIs is used to indicate a precoding matrix of one frequency resource.
  • the PMI group includes at least one PMI, which may be a single codebook and a multi-codebook structure introduced in the embodiment of the present invention.
  • each PMI group can be referred to as a frequency selective PMI.
  • the number of the frequency-selected PMIs indicated in the second signaling is greater than or equal to 1, the number of the frequency-selected PMIs to be indicated in the second signaling may be further indicated by the first signaling.
  • the first-level DCI signaling indicates the number of frequency-selected PMIs to be indicated in the second-level DCI signaling and/or the index information of the frequency-selected sub-bands, where the sub-bands are in the total bandwidth.
  • the first frequency domain granularity corresponds to all resource block sizes scheduled by the user
  • the second frequency domain granularity corresponds to a subset of the resource regions scheduled by the user.
  • the number of PMI1 indicated by the first signaling is usually 1
  • the PMI2 is associated with the second frequency domain granularity.
  • the second frequency domain granularity is a part of all resource blocks scheduled by the UE, and therefore the number of PMI2 indicated by the second signaling is usually greater than or equal to 1.
  • the PMI1 indicates that W1 is one of W i , W j , W k , W l ; the PMI 2 indicates that W2 is one of W a , W b , W c , W d , for example, if the base station
  • the base station may also adopt a different signaling indication scheme.
  • the first signaling further includes the rank indicator (RI).
  • the second signaling further includes the RI.
  • the same bit field may be used to simultaneously indicate the rank indication and PMI1. That is, the base station may perform joint coding and indication according to the rank indication and the first precoding matrix indication PMI1.
  • different rank fields are used to indicate the rank indication and PMI1, respectively, that is, the base station may indicate according to the rank and the first The precoding matrix indicates that PMI1 is independently coded and indicated.
  • each bit field after joint coding indicates both the rank indication and the first precoding matrix indication:
  • the base station determines a PMI1, the base station determines at least two PMI2s, and the at least two PMI2s are PMI2-1, PMI2-2, respectively.
  • the PMI1 and the PMI2-1 are used to jointly indicate a first precoding matrix
  • the PMI1 and the PMI2-2 are used to jointly indicate the second precoding matrix.
  • the base station sends the first signaling and the at least two second signaling, where the first signaling includes the first PMI, the second signaling includes the PMI2-1, and the third signaling
  • the order contains the PMI 2-2.
  • the PMI2-1 is associated with a first subband
  • the PMI2-2 is associated with a second subband
  • the first precoding matrix is a precoding matrix of the first subband
  • the second precoding matrix is described as a precoding matrix of the second subband.
  • the UE after the UE receives the first signaling and the second signaling, the UE sends information to the base station in a first subband according to the first precoding matrix. And transmitting, by the UE, information to the base station in a second subband according to the second precoding matrix. It should be understood that the number of sub-bands may be greater than two.
  • the second signaling includes the PMI2-1
  • the third signaling includes the PMI2-2 may be replaced by the second signaling including the PMI2-1 and the Said PMI2-2.
  • the second signaling may further include more PMI2s associated with different subbands, so that the UE may receive the PMI1 and the different subbands described above.
  • the precoding matrix of each subband is determined separately after the associated PMI2.
  • the first signaling may be sent periodically. That is, the first signaling may be sent at a determined time according to a certain period, where the first signaling includes the PMI1.
  • the periodic transmission may be to send at least three first signalings, wherein a time difference ⁇ 21 between the second first signaling and a first first signaling transmission moment and a third first signaling and a second The time difference ⁇ 32 of the transmission timings of the first signaling is equal. It should be understood that the equality here may be that the number of subframes with the difference is equal, or calculated according to a certain time unit, the number of phase differences is equal.
  • the PMI 1 may be updated in units of the period of the first signaling.
  • the base station sends at least one of the second signalings during a time interval in which the base station transmits two consecutive first signalings.
  • the base station periodically sends the second signaling to the user equipment.
  • the base station may send the first signaling according to the period T1 and the second signaling according to the period T2.
  • the T1 and the T2 may have no relationship, and the base station may be according to the periodicity of the first signaling and the second signaling itself, or according to the respective PMI1 and PMI2.
  • the update frequency determines the transmission period. It should be understood that the transmission period may also be configured by the core network or other network elements.
  • the base station may also send the second signaling to the user equipment aperiodically, which is not limited herein.
  • the application scenario of the present invention may also be a scenario of a single codebook multi-PMI.
  • multiple PMIs may jointly indicate a single precoding matrix, or one PMI may indicate one precoding matrix and another PMI may serve as a row or column of a matrix in which the indication is selected, or other auxiliary functions.
  • the aforementioned precoding matrix is a case of a discrete Fourier transform.
  • the base station determines that the selected codeword does not need to be replaced frequently.
  • the corresponding PMI1 feedback does not need to be too frequent. If the PMI2 is sent in time, the UE may be instructed to select the matrix corresponding to the selected PMI1.
  • the right column ensures communication quality and improves air interface efficiency.
  • the present invention does not limit the base station to only indicate PMI1 and PMI2.
  • the number of PMIs may be greater than two, and the indication manner and the foregoing implementation.
  • different signaling can be determined according to the characteristics of different PMIs. For example, MAC layer signaling is used when transmitting PMI1, physical layer signaling is used when transmitting PMI2, and high layer signaling is used when transmitting PMI3. It is also possible to use the first signaling when transmitting the PMI1 and the second signaling when transmitting the PMI2 and/or PMI3.
  • the system can support three or more PMIs for precoding transmission, assuming that the PMIs are PMI1, PMI2, and PMI3, respectively.
  • the base station After receiving the reference signal, the base station or actively determines the PMI1, PMI2, and PMI3 according to historical measurement results. It should be understood that the base station may also be a relay device, a relay user device or other network device.
  • the base station transmits the PMI2 through the second signaling by transmitting the PMI1 in the first signaling, and transmitting the PMI3 through the third signaling.
  • the specific signaling usage of the PMI1, PMI2 and PMI3 can be determined according to actual conditions.
  • the first signaling is a high layer signaling;
  • the second signaling is MAC layer signaling, and
  • the third signaling is physical layer signaling.
  • the first signaling is high layer signaling
  • the second signaling and the third signaling are physical layer signaling
  • the second signaling and the third signaling may be the same signaling.
  • PMI2 and PMI3 are simultaneously indicated in one signaling.
  • the table below shows more ways to implement:
  • the PMI that can share the indication indicates that the base station can use the PMI indicated by the same signaling.
  • PMI1 is high layer signaling
  • PMI2 and PMI3 are physical layer signaling
  • the PMI2 and the PMI3 may be indicated in one signaling.
  • the base station may not be indicated in the same signaling according to actual usage.
  • the first signaling, the second signaling, and the third signaling used for the precoding matrix indication may be the same same layer signaling, such as physical layer DCI signaling.
  • FIG. 2 shows a timing diagram for a dual PMI transmission.
  • the PMIs that need to be indicated are PMI1 and PMI2, respectively.
  • the base station sends the PMI1 by using the first signaling, and sends the PMI2 by using the second signaling.
  • the base station sends a first signaling X to the UE, where the first signaling includes the PMI1a; at time B1, the base station sends a second signaling a to the UE, where the The second signaling a contains the PMI 2a.
  • the first signaling and the second signaling are different types of signaling, so that the effect of flexible configuration can be achieved.
  • the UE may determine a precoding matrix according to the PMI 1a and the PMI 2a.
  • the base station determines that the PMI2 needs to be updated, the base station sends a second signaling b to the UE, and the second signaling b includes the PMI2b.
  • the UE may determine a precoding matrix according to the PMI 1a and the PMI 2b.
  • the second signaling a and the second signaling b herein may be one type of signaling, for example, the second signaling a and the second signaling b are DCI signaling, and the transmission time is different; similarly, the The first signaling X and the subsequent first signaling Y are one type of signaling, which are transmitted at different times.
  • the second signaling a and the second signaling b are signaling of the same transport layer, for example, the second signaling a and the second signaling b are both MAC layer signaling.
  • the first signaling is physical layer signaling or higher layer signaling.
  • the first signaling X and the first signaling Y may also be the same type of signaling, or may be the same layer of signaling, the first signaling and the second signaling of the transport layer.
  • the base station sends a first signaling Y to the UE as the PMI1 needs to be updated.
  • the first signaling Y includes the PMI 1b.
  • the UE may determine a precoding matrix according to the PMI 1b and the PMI 2b.
  • the first signaling X and the first signaling Y may be periodic, which has the advantage of saving scheduling resources.
  • the first signaling X and/or the first signaling Y may further include a rank indication RI.
  • the rank indication may also be sent to the UE together with PMI1 in one field. The manner of updating is flexible.
  • the base station may not be in the second letter. Let c be fed back to the PMI 2c; or feed back a flag indicating that the precoding matrix is determined according to the last PMI.
  • the same rule may be used when updating the first signaling X to the first signaling Y.
  • the second signaling b may be fed back an offset value relative to the second signaling a.
  • the first signaling Y may feed back an offset value relative to the first signaling X. This will further save the resources required for the indication.
  • Figure 3 shows a timing diagram of another dual PMI feedback.
  • the base station sends a first signaling X to the UE, the first signaling X includes PMI1a and PMI2a, and the UE may determine a precoding matrix according to the PMI1a and the PMI2a.
  • the base station sends a second signaling a to the UE, the second signaling a includes the PMI 2b, similar to the embodiment shown in FIG. 2, the second signaling may include Is an offset value relative to the PMI 2a in the first signaling.
  • the UE determines a precoding matrix according to the PMI 1a and the PMI 2b.
  • the base station sends the first signaling, where the first signaling includes the PMI1b and the PMI2c.
  • the first signaling Y may also be an offset value based on a PMI1 value and/or a PMI2 value previously sent to the UE; and when the value is not updated or updated with the PMI1 and/or previously notified.
  • the corresponding precoding matrix indication may not be included in the first signaling Y, and the base station may have notified the PMI1 and/or of the UE before the first signaling X.
  • the embodiment of the first signalling Y is also the same for the first signalling X, if reasonable.
  • the RI is in the first signaling X, or the RI is in the first signaling Y1.
  • the base station determines the signaling according to the measurement result.
  • the UE may determine a precoding matrix according to the latest update PMI1 and PMI2.
  • the UE may not use the PMI notified by the base station, for example, using a channel reciprocity characteristic to estimate a channel and a precoding matrix, but the PMI notified by the base station may provide a reference for the UE.
  • the first signaling and/or the second signaling may include a rank indication RI.
  • the base station sends a first signaling Y2 to the UE, where the first signaling Y2 includes a PMI2b2, where the PMI1a and the PMI2b2 are used to indicate a precoding matrix W2, and the UE may be configured according to The PMI 1a and the PMI 2b 2 determine a precoding matrix. It should be understood that the process of transmitting the first signaling Y2 is optional, and the base station may determine whether to update the PMI2 to the PMI 2b2 according to the situation.
  • the base station sends a first signaling Z to the UE, where the first signaling Z includes a PMI1b and a PMI2c, where the PMI1b and the PMI2c are used to indicate a precoding matrix W1, the UE A precoding matrix may be determined according to the PMI 1b and the PMI 2c.
  • the base station sends a first signaling W to the UE, where the first signaling W includes a PMI2d, and if the base station updates the PMI1b by using the first signaling Z, The PMI 1b and the PMI 2d are used to indicate a precoding matrix W1, and the UE may determine a precoding matrix according to the PMI 1b and the PMI 2c. If the base station does not update the PMI1b by using the first signaling Z, the PMIa and the PMI2d are used to indicate a precoding matrix W1, and the UE may determine a precoding matrix according to the PMI1a and the PMI2c.
  • first signaling X, Y1, Y2, Z, and W are the same type of signaling, such as DCI signaling, and may also be signaling of the same transport layer, such as physical layer signaling, high layer signaling. Or one of MAC layer signaling.
  • the base station sends fourth signaling to the UE at a first moment, and the base station sends a fifth signaling to the UE at a second moment, where the fourth signaling
  • the command includes PMI1 and PMI2, and the fifth signaling includes PMI2.
  • the fourth signaling and the fifth signaling are the same signaling.
  • the fifth signaling only includes the PMI2, and it should be understood that the inclusion of only PMI2 refers to not including other precoding matrix indications other than PMI2.
  • the UE may determine a precoding matrix according to the PMI1 and the PMI2 included in the fourth signaling after receiving the fourth signaling at the first moment, where the UE may be in the second moment. After receiving the fifth signaling, the precoding matrix is determined according to the PMI1 included in the fourth signaling and the PMI2 included in the fifth signaling.
  • FIG. 5 shows a specific embodiment of the present invention.
  • FIG. 5 is an embodiment of the present invention from the perspective of a base station, wherein the base station may also be a relay user equipment or other network element or network equipment.
  • Step 501 The base station determines a first precoding matrix indication and a second precoding matrix indication.
  • Step 502 the base station sends first signaling to the user equipment, where the first signaling includes the first precoding matrix indication PMI1;
  • Step 503 The base station sends a second signaling to the user equipment, where the second signaling includes the second precoding matrix indicating PMI2.
  • the PMI1 is associated with a first frequency granularity
  • the PMI2 being associated with a second frequency granularity, wherein the second frequency granularity is less than or equal to the first frequency granularity
  • the PMI 1 and the PMI 2 can characterize the characteristics of different matrix designs.
  • the PMI1 is used to indicate a broadband characteristic of the precoding matrix
  • the PMI2 is used to indicate a subband characteristic of the precoding matrix
  • the PMI1 is used to indicate a long term characteristic of the precoding matrix
  • PMI2 is used to indicate the short-term characteristics of the precoding matrix.
  • the first signaling further includes a rank indication.
  • the base station periodically sends the first signaling to a user equipment.
  • the base station sends the second signaling to the user equipment, where the base station sends at least one of the second signaling within a time interval in which the base station sends two consecutive first signalings. .
  • the two embodiments may be implemented in combination by transmitting at least one of the second signaling in a time interval of the first signaling periodically transmitted.
  • the base station periodically transmits the second signaling to the user equipment.
  • the period in which the base station sends the second signaling is the same as the period in which the base station sends the first signaling.
  • the sending period of the second signaling is different from the sending period of the first signaling, and at least one of the second signaling is included in a time interval of the first signaling that is periodically sent.
  • the method further includes the step 504, the base station receiving an uplink reference signal sent by the user equipment.
  • the base station determines the first precoding indication and the second precoding indication according to the uplink reference signal.
  • the foregoing embodiment can solve the problem that when the base station indicates the uplink transmission mode, such as indicating the precoding matrix indication information of the uplink transmission, the field in the signaling is wasted, and further, the transmission is not accurate enough under the condition that the number of signaling is guaranteed.
  • the base station indicates the uplink transmission mode, such as indicating the precoding matrix indication information of the uplink transmission
  • the field in the signaling is wasted, and further, the transmission is not accurate enough under the condition that the number of signaling is guaranteed.
  • Figure 6 shows a specific embodiment of the present invention, and Figure 6 is an embodiment of the present invention from the perspective of a user equipment, wherein the user equipment may also be an Internet of Things device or other new type of wireless access. Type of network element.
  • Step 601 the user equipment UE receives the first signaling sent by the base station, where the first signaling includes a first precoding matrix indicating PMI1;
  • Step 602 The UE receives the second signaling sent by the base station, where the second signaling includes a first precoding matrix indicating PMI2, where the PMI1 and the PMI2 are used to indicate a precoding matrix.
  • the method further includes a step 603, the user equipment UE determining a precoding matrix according to the PMI1 and the PMI2.
  • the PMI1 is associated with a first frequency granularity
  • the PMI2 being associated with a second frequency granularity, wherein the second frequency granularity is less than or equal to the first frequency granularity.
  • the first frequency granularity and the second frequency granularity have been introduced in the foregoing embodiments, and are not described herein again.
  • the user equipment periodically receives the first signaling sent by the base station.
  • the user equipment receives the second signaling sent by the base station, where at least one of the second signaling is received within a time interval of receiving the two consecutive first signalings.
  • the two embodiments may be combined, that is, the user equipment receives at least one of the second signaling in a time interval of the first signaling sent by the receiving period.
  • the user equipment periodically receives the second signaling.
  • the period of receiving the second signaling may be the same as receiving the first signaling.
  • the period of receiving the second signaling is different from the period of receiving the first signaling, and at least one of the second signaling is included in the time interval of the first signaling received by the period.
  • the first signaling includes a rank indication RI.
  • the specific signaling types of the first signaling and the second signaling have been described in detail in the foregoing various embodiments, and details are not described herein again.
  • the method may further include the step 604, the UE sending an uplink reference signal to the base station.
  • the foregoing embodiment can solve the problem that the field in the signaling is wasted when the base station indicates the indication of the precoding matrix of the uplink transmission in the uplink transmission mode, and further, the transmission is not accurate enough under the condition that the number of signaling is guaranteed.
  • the problem can solve the problem that the field in the signaling is wasted when the base station indicates the indication of the precoding matrix of the uplink transmission in the uplink transmission mode, and further, the transmission is not accurate enough under the condition that the number of signaling is guaranteed.
  • FIG. 7 is a structural diagram of a network side device according to the present invention.
  • FIG. 7 may be a base station.
  • the apparatus includes a determining unit 701 and a transmitting unit 702.
  • the determining unit is configured to determine a first precoding matrix indication PMI1 and a second precoding matrix indication PMI2, where the PMI1 and the PMI2 are used to indicate a precoding matrix; and the sending unit 702 is configured to be used by a user.
  • the device sends the first signaling, where the first signaling includes the PMI1; the sending unit is further configured to send the second signaling to the user equipment, where the second signaling includes the PMI2.
  • the apparatus shown in FIG. 7 can implement various related functions in FIG.
  • the device further includes a receiving unit 703, configured to receive an uplink reference signal sent by the UE, and in another embodiment, the receiving unit is configured to receive configuration information, where the configuration information is used to indicate PMI1 and PMI2.
  • FIG. 8 shows a block diagram of a user equipment device of the present invention, which includes a receiving unit 801.
  • the receiving unit is configured to receive the first signaling sent by the base station, where the first signaling includes a first precoding matrix indicating PMI1, and the receiving unit is further configured to receive the second signaling sent by the base station.
  • the second signaling includes a first precoding matrix indicating PMI2; wherein the PMI1 and the PMI2 are used to indicate a precoding matrix.
  • the user equipment further includes a determining unit 802, configured to determine a precoding matrix according to the PMI1 and the PMI2.
  • the apparatus shown in FIG. 8 can implement various related functions in FIG. 7, and various implementations in the previous embodiments can also be implemented, and details are not described herein again.
  • the user equipment further includes a sending unit 803, configured to send an uplink reference signal.
  • the determining unit 802 is further configured to precode the uplink data according to the precoding matrix determined by the determining unit.
  • the sending unit 803 is further configured to send the uplink data.
  • Fig. 9 is a block diagram showing still another network side device of the present invention, and Fig. 9 may be a base station.
  • the device includes a processor 901 and a transmitter 902.
  • the processor may implement various related functions in FIG. 5, and various implementations in the previous embodiments may also be implemented.
  • the processor can store the memory 903 for storing code and data in the method embodiment shown in FIG. 5, and the processor 901 performs the calculation.
  • the network side device further includes a receiver 904, configured to receive an uplink reference signal sent by the UE.
  • the receiver is configured to receive configuration information, where the configuration information is used to indicate PMI1 and PMI2.
  • the processor may be a function of implementing the determining unit in FIG. 7, the transmitter may implement the function of the transmitting unit in FIG. 7, and the receiver may implement the function of the receiving unit in FIG.
  • the receiver and the transmitter may be a transceiver such as an antenna device or an antenna system.
  • Figure 10 is a block diagram showing a user equipment device of the present invention, and Figure 10 may be a user equipment.
  • the device includes a receiver 1001.
  • the apparatus illustrated in Figure 10 can implement the various related functions of Figure 7, as well as various embodiments of the prior embodiments.
  • the user equipment further includes a processor 1002, configured to determine a precoding matrix according to the PMI1 and the PMI2.
  • the processor may hang the memory 1003 for storing the code and data in the method embodiment shown in FIG. 7, and the step of completing the calculation or determination by the processor 1002, one embodiment
  • the user equipment further includes a transmitter 1004, configured to send an uplink reference signal.
  • the processor 1002 is further configured to precode the uplink data according to the determined precoding matrix.
  • the transmitter 1004 is further configured to send the uplink data.
  • the receiver and the transmitter in FIG. 9 and FIG. 10 may be a pair of transceiver antennas, or may be an antenna or a panel array that simultaneously implements the receiving and transmitting functions.
  • the processor may be a function of implementing the determining unit in FIG. 8, the transmitter may implement the function of the transmitting unit in FIG. 8, and the receiver may implement the function of the receiving unit in FIG.
  • the receiver and the transmitter may be a transceiver such as an antenna device or an antenna system.
  • FIG 11 illustrates yet another embodiment of the present invention, which is an integrated circuit system.
  • the integrated circuit system includes a chip 1101 and a memory 1102, wherein the chip and the memory are soldered to a circuit board, the circuit board being located on the network side or the user equipment side.
  • the chip memory 1102 is linked by the integrated circuit traces to the chip 1101, which reads or stores the calculated data and instructions through a link to the memory.
  • the chip is in contact with the contact point of the integrated circuit, and is connected to other chips, connectors or antennas through a trace for transmitting and receiving data and instructions.
  • the specific linking manner may be various high speed or low speed interfaces.
  • the chip may be a chip having an X86 instruction set, an advanced RISC machine (ARM) instruction set or other instruction set, or a logic chip such as a field programmable gate array. , FPGA).
  • the memory may be a memory, a hard disk or a rewritable FLASH chip or the like.
  • the integrated circuit system can implement the functions of receiving data, transmitting data, and processing data. For example, when the integrated circuit system is located on the network side, various steps shown in FIG. 5 can be implemented, for example, the chip determines the first precoding matrix indication.
  • the PMI1 and the second precoding matrix indicate the PMI2, the chip sends the first signaling to the user equipment, the first signaling includes the PMI1, and the chip sends the second signaling to the user equipment, where the The second signaling includes the PMI2.
  • the PMI1 and the PMI2 are used to indicate a precoding matrix.
  • the determining step may perform measurement according to the received uplink reference signal, or directly receive measurement results sent by other measurement components, and then calculate the PMI1 and the PMI2 according to the measurement result.
  • the specific calculation may be to call up instructions and data from the memory, such as calling up the calculation method and the previously stored codebook.
  • the base station performs addition, subtraction, multiplication or division of necessary operations through the gate circuit, and other logic operations to determine the PMI1 and the PMI2, and then sends the information to other components to be processed through the interface, and finally sends the components to the terminal device.
  • various steps shown in FIG. 6 may be implemented, such as receiving the first signaling sent by the base station and receiving the second signaling sent by the base station.
  • first signaling sent by the receiving base station and the second signaling sent by the receiving base station may specifically receive the first signaling and the second signaling directly through an interface, or may be processed by other components to receive the The first signaling and the payload of the second signaling are read out from the payload via the processor processing to determine PMI1 and PMI2.
  • a computer device may include a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein when the processor executes the program
  • the steps of Figures 2 to 6 can be implemented.
  • the specific implementation may also be implemented in the manner of FIG.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信令的发送方法、装置和系统,用以提高传输效率,达到节约空口资源的目的。第一方面,本发明实施例提供了一种信令的发送方法,基站确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于指示预编码矩阵;所述基站向用户设备发送第一信令,所述第一信令包含所述PMI1;所述基站向所述用户设备发送第二信令,所述第二信令包含所述PMI2。

Description

信令的发送方法、装置和系统
本申请要求于2017年3月24日提交中国专利局、申请号为201710184942.3、发明名称为“信令的发送方法,装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种信令的发送方法、装置和系统。
背景技术
通常,无线通信系统的信号传输模型可以基于如下数学公式:
y=HWx+n
其中,x代表待传输的信号,H代表信道矩阵,用于表征信道的特性,W为预编码矩阵,用于表示在通过信道H传输所述待传输数据前,对所述待传输的数据进行预编码的预编码矩阵。n代表噪声,y代表在接收侧接收到的信号。预编码矩阵W通常是通过测量确定的,例如确定上行数据的预编码矩阵过程,可以是由发送端发送一个或多个参考信号,接收端对所述参考信号的测量,并由接收端根据所述参考信号的测量结果确定最优的一个或多个预编码矩阵。所述接收端可以根据所述测量结果,向所述发送端发送预编码矩阵指示PMI。在某些情况下,所述PMI也可以不根据所述测量结果确定,例如核心网网元配置或其它网络设备直接通知所述接收端发送的PMI。
接收端发送PMI的形式可以不同。在某些情况下,PMI发送的具体形式与预编码矩阵W的表达形式有关。例如上行数据传输中的一种双码本形式,接收端发送2个预编码矩阵指示PMI1和PMI2,其中PMI1对应一个码本C1中的码字Wl,PMI2对应另外一个码本C2中的码字W2。发送端接收到PMI1和PMI2后从存储的码本C1和C2中找到对应的码字W1和W2,并根据预定的函数规则F(Wl,W2)获得信道信息。除此之外,用户设备还有多种形式的码本发送方式。
但是,为了上行传输发送所述PMI1和所述PMI2的方式,往往沿用了下行传输的方式,信令结构和灵活度有很多限制。在某些场景下,例如上行传输支持频选PMI指示,或双码本结构或通知多个PMI的情况,按照现有的下行传输方式的发送,不仅会造成下行控制信令的浪费,也会使得发送不够准确。
发明内容
本发明实施例提供了一种信令的发送方法、装置和系统,用以提高传输效率,达到节约空口资源的目的。
第一方面,本发明实施例提供了一种信令的发送方法,基站确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于指示预编码矩阵;所述基站向用户设备发送第一信令,所述第一信令包含所述PMI1;所述基站向所述用户设备发送第二信令,所述第二信令包含所述PMI2。
在第一方面的第一种可能的实现方式中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
结合第一方面,或者第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述PMI1用于指示所述预编码矩阵的宽带特性,所述PMI2用于指示所述预编码矩阵的子带特性;或
所述PMI1用于指示所述预编码矩阵的长期特性,所述PMI2用于指示所述预编码矩阵的短期特性。
结合第一方面,或者第一方面第一至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述基站向用户设备发送第一信令,包括:
所述基站向用户设备周期发送所述第一信令。
结合第一方面,或者第一方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述基站向用户发送至少两个第一信令;
所述基站向用户设备发送第二信令,包括:
在所述基站发送连续的两个第一信令的时间间隔内,所述基站至少发送一个所述第二信令。
结合第一方面,或者第一方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述基站向用户设备发送第二信令,包括:
所述基站向用户设备周期发送所述第二信令。
结合第一方面,或者第一方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述第一信令为高层信令,所述第二信令为物理层信令。
结合第一方面,或者第一方面第一至第五种任意一种可能的实现方式,在第七种可能的实现方式中,所述第一信令为DCI信令。
结合第一方面,或者第一方面第一至第七种任意一种可能的实现方式,在第八种可能 的实现方式中,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
第二方面,本发明实施例提供了一种信令的接收方法,用户设备UE接收基站发送的第一信令,所述第一信令包含第一预编码矩阵指示PMI1;所述UE接收基站发送的第二信令,所述第二信令包含第一预编码矩阵指示PMI2;其中,所述PMI1和所述PMI2用于指示预编码矩阵。
在第二方面的第一种可能的实现方式中,所述用户设备根据所述PMI1和所述PMI2确定预编码矩阵。
结合第二方面,或者第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
结合第二方面,或者第二方面第一至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述UE接收基站发送的第一信令,包括:
所述UE周期接收所述基站发送的所述第一信令。
结合第二方面,或者第二方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述UE接收基站发送的至少两个第一信令;
所述UE接收基站发送的第二信令,包括:
在所述UE连续接收两个第一信令的时间间隔内,所述UE至少接收一个所述第二信令。结合第二方面,或者第二方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述UE接收基站发送的第二信令,包括:
所述UE周期接收基站发送的第二信令。
结合第二方面,或者第二方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述第一信令为高层信令,所述第二信令为物理层信令。
结合第二方面,或者第二方面第一至第五种任意一种可能的实现方式,在第七种可能的实现方式中,所述第一信令为DCI信令。
结合第二方面,或者第二方面第一至第七种任意一种可能的实现方式,在第八种可能的实现方式中,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
第三方面,本发明实施例提供了一种基站,包括确定单元,用于确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于指示预编码矩阵;发送单元,用于向用户设备发送第一信令,所述第一信令包含所述PMI1;所述发送 单元,用于向所述用户设备发送第二信令,所述第二信令包含所述PMI2。
在第三方面的第一种可能的实现方式中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
结合第三方面,或者第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述PMI1用于指示所述预编码矩阵的宽带特性,所述PMI2用于指示所述预编码矩阵的子带特性;或所述PMI1用于指示所述预编码矩阵的长期特性,所述PMI2用于指示所述预编码矩阵的短期特性。
结合第三方面,或者第三方面第一至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述发送单元用于向用户设备发送第一信令,包括:
所述发送单元用于向用户设备周期发送所述第一信令。
结合第三方面,或者第三方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述发送单元用于向用户发送至少两个第一信令;
所述发送单元用于向用户设备发送第二信令,包括:
在所述发送单元发送连续的两个第一信令的时间间隔内,所述发送单元至少发送一个所述第二信令。
结合第三方面,或者第三方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述发送单元用于向用户设备发送第二信令,包括:
所述发送单元用于向用户设备周期发送所述第二信令。
结合第三方面,或者第三方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述第一信令为高层信令,所述第二信令为物理层信令。
结合第三方面,或者第三方面第一至第五种任意一种可能的实现方式,在第七种可能的实现方式中,所述第一信令为DCI信令。
结合第三方面,或者第三方面第一至第七种任意一种可能的实现方式,在第八种可能的实现方式中,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
第四方面,本发明实施例提供了一种用户设备UE,所述用户设备包括:
接收单元,用于接收基站发送的第一信令,所述第一信令包含第一预编码矩阵指示PMI1;所述接收单元,用于接收基站发送的第二信令,所述第二信令包含第一预编码矩阵指示PMI2;其中,所述PMI1和所述PMI2用于指示预编码矩阵。
在第四方面的第一种可能的实现方式中,所述用户设备还包括:
确定单元,用于根据所述PMI1和所述PMI2确定预编码矩阵。
结合第四方面,或者第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
结合第四方面,或者第四方面第一至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述接收单元用于接收基站发送的第一信令,包括:
所述接收单元,用于周期接收所述基站发送的所述第一信令。
结合第四方面,或者第四方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述接收单元,用于接收基站发送的至少两个第一信令;
所述接收单元,用于接收基站发送的第二信令,包括:
所述接收单元在连续接收两个第一信令的时间间隔内,所述接收单元至少接收一个所述第二信令。
结合第四方面,或者第四方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述接收单元用于接收基站发送的第二信令,包括:
所述接收单元,用于周期接收基站发送的第二信令。
结合第四方面,或者第四方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述第一信令为高层信令,所述第二信令为物理层信令。
结合第四方面,或者第四方面第一至第五种任意一种可能的实现方式,在第七种可能的实现方式中,所述第一信令为DCI信令。
结合第四方面,或者第四方面第一至第七种任意一种可能的实现方式,在第八种可能的实现方式中,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
本发明还提供了实施上述各个方面中的实体装置,包含接收、发送装置和存储器;本发明还提供了实施上述各个方面的芯片系统,以及一种计算机设备。
此外,本发明还介绍了多种硬件结构和芯片系统,以实施上述介绍的发明内容。通过上述实施方式,可以解决基站在上行传输方式中,信令中的字段浪费的问题,进一步在保证信令的数量一定情况下解决发送不够准确的问题。
附图说明
图1为本发明实施例提供的一种系统网络示意图;
图2为本发明实施例提供的一种信令发送方法的时序示意图;
图3为本发明实施例提供的一种信令发送方法的时序示意图;
图4为本发明实施例提供的一种信令发送方法的时序示意图;
图5为本发明实施例提供的一种信令发送方法的流程示意图;
图6为本发明实施例提供的一种信令发送方法的流程示意图;
图7为本发明实施例提供的一种实现信令发送的装置结构图;
图8为本发明实施例提供的一种实现信令发送的装置结构图;
图9为本发明实施例提供的一种实现信令发送的装置结构图;
图10为本发明实施例提供的一种实现信令发送的装置结构图;
图11为本发明实施例提供的一种实现信令发送的芯片系统结构图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本发明的一种可能的系统网络示意图。如图1所示,至少一个用户设备UE10与无线接入网(radio access network,简称RAN)进行通信。所述RAN包括至少一个基站20(base station,简称BS),为清楚起见,图中只示出一个基站和一个UE。所述RAN与核心网络(core network,简称CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(external network),例如英特网,公共交换电话网(public switched telephone network,简称PSTN)等。
为便于理解,下面对本申请中涉及到的一些名词做些说明。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。用户设备(user equipment,简称:UE)是一种具有通信功能的终端设备,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中用户设备可以叫做不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝 上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为用户设备或UE。基站(base station,简称:BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在不同的无线接入系统中基站的叫法可能有所不同,例如在而在通用移动通讯系统(Universal Mobile Telecommunications System,简称:UMTS)网络中基站称为节点B(NodeB),而在LTE网络中的基站称为演进的节点B(evolved NodeB,简称:eNB或者eNodeB)。
采用多入多出(Multiple Input Multiple Output,简称MIMO)技术的系统,利用多根发送天线和多根接收天线进行数据或其它信息的发送,可以提升数据或其它信息的传输速率。当基站作为信号的接收端,用户设备作为发送端时,UE侧需要获取信道信息。预编码矩阵指示(precoding matrix indication,简称:PMI)可以作为这类信息的一种,通过基站发送给用户设备UE。
基站确定PMI的方式通常可以是对用户设备发送的参考信号进行测量确定的。一般情况下的参考信号有多种,例如可以采用信道探测参考信号(sounding reference signal,简称:SRS),也可以采用其它参考信号,例如解调参考信号(demodulation reference signal,简称:DMRS)、其它信号、或各种信号类型的组合进行测量。基站具体的测量过程也可以多种,一种方式是遍历式的——例如,UE确定所有可能的预编码矩阵,使用这些预编码矩阵对参考信号进行预编码,并将预编码后的参考信号发送给基站。基站接收这些预编码矩阵对应的参考信号,并通过计算信噪比或其它参数确定最好的一个或多个测量结果,并确定其对应的索引,然后将该索引或对应该索引的PMI发送给用户设备。应理解,这些预编码矩阵对应的参考信号可以是一个或多个参考信号。另一种具体的测量过程也可以是,UE直接发送未经过预编码的参考信号给基站。基站测量以获取信道状态信息,并结合用户设备向基站发送数据使用的数据传输机制确定一个最好的预编码矩阵,并将该预编码矩阵对应的索引PMI发送给UE。
UE接收到PMI后,可以根据该PMI确定上行数据的预编码矩阵或其它上行信息的预编码矩阵,在特殊的情况下,也可以仅仅参考而不采用该PMI对上行数据或其它上行信息做预编码。但是通常UE会在对数据或其它上行信息做预编码前接收到该PMI。其目的是为UE确定预编码矩阵做出参考。
应理解,上述PMI的数量可以是一个,也可以是多个。所述UE和所述基站可以通过遵守协议、标准,或互相通过通信协商确定。例如,在三维MIMO(3D-MIMO)的双码本场 景下,预编码矩阵W可以表示为如下形式:
W=W1×W2
对应上述公式,PMI的个数为2个。其中,PMI1与W1相关联,PMI2与W2相关联。一个实施例中,PMI1指示矩阵W1,PMI2指示矩阵W2,在这种情况下,W1为长期/宽带矩阵,表征了信道的长期宽带特性,反映了信道的长期/平均变化特征;W2为短期/窄带矩阵,表征了信道的短期/窄带特性,反映了信道短期/瞬时变化特征。又例如,单码本的情况下也可以是两个或两个以上的情况,一个PMI用于指示码本中的某个矩阵W,可以称为PMI1;另一个PMI指示选取该矩阵的某行或某列,可以称为PMI2。在一个实施例中,还可以有一个PMI3和PMI2配合使用,分别指示选取该某个矩阵W的行与列。在LTE系统中,双码本的情况可以是一个PMI指示预编码矩阵的一个参数,另一个PMI指示预编码矩阵的另一个参数。例如:
Figure PCTCN2018080384-appb-000001
上表中,i 1可以为PMI1,i 2可以为PMI2。其中:
Figure PCTCN2018080384-appb-000002
Figure PCTCN2018080384-appb-000003
应理解,上述W的表达形式是为了清楚地反应在预编码情况下,以矩阵的形式表示便于理解。其真正的实现方式可以有多种,且本发明各个实施例可以适用于后续的任何版本及新无线接入系统。例如该矩阵可以为一个数组。在一个实施例中,在发送方和接收方双方事先规定好后,将该数组存储在芯片或存储介质中。这一规定可以是通过遵守协议或通过双方或多方通信规定的。矩阵中的元素与存储的内容相关联,对应的位置与存储的位置相关联,在接收端、发送端实现矩阵运算时,或接收端解码、发送端的编码过程中直接调用需要的位置对应的数据。应用于不同的数学模型,矩阵的形式也可以不同。一个实施例中,上述W1也可以是短期/窄带矩阵,在这种情况下,W2是长期/宽带矩阵。应理解,本发明实施例中,不限于上述双码本结构的预编码矩阵形式。在单一预编码矩阵场景下,也可能会出现2个PMI指示一个预编码矩阵的情况。可选地,单码本结构中出现2个PMI指示一个预编码矩阵的情况时,两个预编码矩阵指示中的一个指示对应的预编码矩阵可以为单位阵。
下面将结合具体示例对本发明的实施方式做出具体的描述。在本发明各实施例中,所述网络设备可以是一个基站。应理解,本发明也可以支持设备到设备场景(Device to Device),在该场景下,所述网络设备可以是一个用户设备或其它类型的中继。
第一网络设备确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2。这一确定过程可以是通过测量确定的或是其它网络侧设备通知的。一个实施例中,所述第一网络设备接收所述PMI1和所述PMI2。另一个实施例中,所述第一网络设备测量参考信号以获得所述PMI1和所述PMI2。
网络设备确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于指示预编码矩阵;所述网络设备向用户设备发送第一信令,所述第一信令包含所述PMI1;所述网络设备向所述用户设备发送第二信令,所述第二信令包含所述PMI2。
应理解,在本发明的实施例中,所述第一信令为第一种类的信令,所述第一信令通常是指包含PMI1的信令。所述第二信令通常是指包含PMI2的信令,除非另有规定,例如图4中的实施例。在不同时刻发送的两个第一信令,其PMI1通常是不相同的,但是在某些情况除外,例如所述基站在确定两个时刻发送的第一信令所包含的所述PMI1是一样的情形, 或者一些多次发送提高可靠性的情况。在不同时刻发送的两个第二信令,也通常是不相同的,但是在某些情况除外,例如所述基站在确定两个时刻发送的第二信令所包含的所述PMI2是一样的情形,或者一些多次发送提高可靠性的情况。
根据该实施方式,在至少两个PMI从基站发送给用户设备时,可以分别通过第一信令和第二信令指示,由于信令的特性不同,不同信令指示不同特性的PMI,可以增加指示的灵活度,并达到资源优化的效果。应理解,所述第一信令和第二信令的先后发送的顺序可以根据情况确定,本发明不做限定。
这里的预编码矩阵可以是前面描述的用于对待传输数据进行预编码的矩阵。对于用户设备,所述预编码矩阵相应的用于发送上行数据或信号。对于不同的预编码矩阵的形式,可以采用不同的指示方式。在单码本的情况下的一个实施例中,所述PMI1和所述PMI2用于联合指示所述第一预编码矩阵。在双码本的情况下的一个实施例中,所述PMI1用于指示一个预编码矩阵W a,所述PMI2用于指示所述另一个预编码矩阵W b。所述双码本的情况下,在表达上所述两个码本也可以表示为一个矩阵W ab=f(W a,W b);在这种情况下,所述PMI1和所述PMI2分别对应预编码矩阵W a,W b,这一指示方式也可以是一种所述PMI1和所述PMI2联合指示一个预编码矩阵W ab的形式。这里的f可以是各种计算的规则,例如可以是矩阵的加法形式或乘积形式W ab=W aW b
Figure PCTCN2018080384-appb-000004
等包含矩阵转置等类型的矩阵运算;也可能是从上述计算规则与其他选择方式的结合,例如从W a中选择某些行和/或列;从W b中选择某些行/或列,再进行矩阵的运算。在另一个实施例中,所述PMI1和所述PMI2也可以是一个列指示,例如,所述预编码矩阵为一个离散傅里叶变换(DFT)矩阵的子矩阵,其中,所述DFT矩阵分为至少两个集合{α 1}…{α n};每个集合中都包含所述DFT矩阵的至少2列,所述PMI1用于指示傅里叶矩阵中的一个集合{α k},所述PMI2指示根据该集合{α k}中的元素组合方式构成的预编码矩阵。在另一个实施例中,所述W ab=f(W a,W b)的计算也可以涉及除W a和W b之外的预编码子矩阵,例如可以增加一个选择矩阵W i,用于表示选择W a和/或W b的某列,也可以根据信道模型和其它需求确定不同的码本的表示方式。
以上各个示例介绍了不同PMI的表示方式,针对其不同的物理意义,结合本发明的信令通知方式,可以达到灵活与高效的技术效果。下面,将结合实施例进行更加详细的介绍。
一个实施方式中,在基于宽带特性和窄带特性设计的双码本结构中,基站可以根据PMI1从一个码本中选择宽带特性的矩阵,并根据PMI2从另一个码本中选择窄带特性的矩 阵,这两个码本可以是同一个,也可以是为宽带和窄带特性特有的两个码本。与之对应的,所述基站可以分别从两个不同的码本中选择宽带特性码本和窄带特性码本,也可以从共用的一个码本中选择,再通知所述UE所述PMI。所述宽带特性的矩阵与所述窄带特性的矩阵共同构成预编码矩阵,而在具体的实施过程中,所述基站在接收端也可以直接根据所述PMI1对应的宽带特性的矩阵和所述PMI2对应的窄带特性的矩阵分步解调接收到的信号,无需再在解调前合成所述共同构成的预编码矩阵。因此,当所述PMI1用于指示所述宽带特性的矩阵,且当所述PMI2用于指示所述窄带特性的矩阵时,所述基站使用高层信令指示所述PMI1,所述基站使用物理层控制信息信令指示所述PMI2。与所述PMI1相关联的宽带特性矩阵变化较慢,即可能在数次数据发送期间都不会发生变化,而与所述PMI2相关联的窄带特性的矩阵变化较快,因此,所述基站通过高层信令指示所述PMI1,而所述基站通过媒体接入控制层信令或物理层控制信息信令指示所述PMI2。一个实施例中,所述基站可以通过DCI指示。根据该实施例的方法,宽带特性的矩阵与窄带特性的矩阵分别与不同特性信令配合,可以进一步提高指示信令的传输效率。进一步来说,所述信令可以是高层信令与高层信令、低层信令与低层信令或高层信令与低层信令配合的组合。相对于高层信令,低层信令也可以是媒体接入控制(media access control,MAC)层信令或物理层信令;下表给出了一些PMI1和PMI2可能实现的实施方式:
PMI1 PMI2
高层信令 物理层信令
高层信令 MAC层信令
MAC层信令 MAC层信令
MAC层信令 物理层信令
物理层信令 物理层信令
一个实施例中,所述高层信令为无线资源控制(radio resource control,RRC)信令,层2(Layer 2,L2)信令或MAC控制元素(media access control control element,MAC CE)信令等;所述物理层信令为下行控制信息(downlink control information,DCI),下行业务信息等,所述下行控制信息可以在下行控制信道或下行业务信道上进行传输,这里不做具体限定。
信令指示也可以与其它消息或信息配合使用,例如PMI1使用信令,PMI2使用数据指示。可选地,PMI1和RI可以在物理层控制信令中指示,而PMI2在物理层业务信道上进行传输。
此外,用于预编码矩阵指示的第一信令和第二信令可以是相同的同一层信令或上述信令中的任意一种其他信令,这里不做限定。所述第一信令和所述第二信令可以均为物理层DCI信令,进一步地,所述物理层DCI信令可以为单级的DCI信令也可以为两级的DCI信令。当物理层DCI信令为两级的DCI信令时,所述第一信令对应了两级DCI信令中的第一级DCI信令,而所述第二信令对应了两级DCI信令中的第二级DCI信令。
一个实施例中,所述基站确定指示多个PMI组,一组PMI用于指示一个频率资源的预编码矩阵。该PMI组包含至少一个PMI,可以是本发明实施例中介绍的单码本、多码本的结构。这样每个PMI组可以称为频选PMI。该而当第二信令中指示的频选PMI的个数大于等于1时,进一步可通过第一信令指示第二信令中需指示的频选PMI的个数。如,通过第一级DCI信令指示第二级DCI信令中需指示的频选PMI的个数和/或频选子带(sub band)的索引信息,这里的子带为总带宽中的一个频率资源,或者是一个指定的一个频率资源宽度中的一部分。
应理解,本发明不限于上述宽带特性的矩阵和窄带特性的矩阵的双码本结构,也可以适应于其它场景。当所述PMI1与所述PMI2满足其中一个值的变化频率较高,另一个值的频率变化较低的情况时,可以使用本实施例的方案。一个实施例中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联。所述相关联可以是一种PMI类型与频率粒度的映射关系,例如,第一频域粒度对应了用户调度的所有资源块大小,第二频域粒度对应了用户调度的资源区域的一个子集。一个实施例中,由于PMI1与第一频域粒度相关联,例如所述第一频域粒度为全带宽或用户调度的所有资源块,因此通过第一信令指示的PMI1的个数通常为1,而PMI2与第二频域粒度相关联,如,所述第二频域粒度为UE调度的所有资源块中的一部分资源块,因此通过第二信令指示的PMI2的个数通常大于等于1,与UE调度的资源块大小和第二频域粒度有关。如,当UE调度的资源块大小为10个PRB,而第二频域粒度为2PRB时,则需通过第二信令指示的PMI2的个数为5。
又一个实施例中,如下表:
  PMI1=00 PMI1=01 PMI1=10 PMI1=11
PMI2=00 F(W i,W a) F(W j,W a) F(W k,W a) F(Wl,W a)
PMI2=01 F(W i,W b) F(W j,W b) F(W k,W b) F(Wl,W b)
PMI2=10 F(W i,W c) F(W j,W c) F(W k,W c) F(W l,W c)
PMI2=11 F(W i,W d) F(W j,W d) F(W k,W d) F(W l,W d)
上表中,所述PMI1指示W1为W i,W j,W k,W l中的一个;所述PMI2指示W2为W a,W b,W c,W d中的一个,例如,若基站指示第r个资源块中的第s部分资源的预编码矩阵指示为PMI1=00,PMI2=11时,那么根据上对应关系,所述基站在传输该第r个资源块中的第s部分资源时可以采用预编码矩阵W=F(W i,W d)。这也是联合指示的一个示例。
另一个实施例中,当所述PMI1和所述PMI2所占用的比特数的不同时,基站也可以采用不同的信令指示的方案。
另一个实施例中,所述第一信令还包含所述秩指示(rank indicator,RI)。另一个实施例中,所述第二信令还包含所述RI。当所述第一预编码矩阵指示和所述秩指示同时在第一信令发送时,可以使用同样的比特字段同时指示所述秩指示和PMI1。即所述基站可以根据所述秩指示和第一预编码矩阵指示PMI1进行联合编码及指示。当所述第一预编码矩阵指示和所述秩指示同时在第二信令发送时,使用不同的比特字段分别指示所述秩指示和PMI1,即所述基站可以根据所述秩指示和第一预编码矩阵指示PMI1进行独立编码及指示。
如下表,联合编码后的每一个比特字段同时指示了秩指示和第一预编码矩阵指示:
比特位的10进制表示 意义
0 RI=1:PMI1=0
1 RI=1:PMI1=1
23 RI=1:PMI1=23
24 RI=2:PMI1=0
25 RI=2:PMI1=1
39 RI=2:PMI1=15
40-63 保留
另一个实施例中,所述预编码矩阵的指示只有一个,如只有第一预编码矩阵指示时,当所述第一预编码矩阵指示和所述秩指示同时在第二信令发送时,使用不同的比特字段分别指示所述秩指示和PMI1,即,所述秩指示和第一预编码矩阵指示PMI1进行独立编码及指示。这里,需要指示的第一预编码矩阵指示的个数M可能大于1。结合前面所述的子带的实施例中,M个第一预编码矩阵指示对应了用户调度的M个子带。
又一个实施例中,所述基站确定一个PMI1,所述基站确定至少两个PMI2,所述至少两个PMI2分别为PMI2-1,PMI2-2。所述PMI1和所述PMI2-1用于联合指示第一预编码矩阵,所述PMI1和所述PMI2-2用于联合指示所述第二预编码矩阵。所述基站发送第一信令和至少两个第二信令,其中,所述第一信令包含所述第一PMI,所述第二信令包含所述PMI2-1,所述第三信令包含所述PMI2-2。可选的,所述PMI2-1与第一子带相关联,所述PMI2-2与第二子带相关联,所述第一预编码矩阵为所述第一子带的预编码矩阵,所述述第二预编码矩阵为所述第二子带的预编码矩阵。一个实施例中,在所述UE接收到所述第一信令和所述第二信令后,所述UE根据所述第一预编码矩阵,在第一子带向所述基站发送信息,所述UE根据所述第二预编码矩阵,在第二子带向所述基站发送信息。应理解,所述子带的数量可以大于2。又一个实施例中,所述所述第二信令包含所述PMI2-1,所述第三信令包含所述PMI2-2可以替换为所述第二信令包含所述PMI2-1和所述PMI2-2。在实际的实施过程中若存在更多的子带,所述第二信令还可以包含更多与不同子带相关联的PMI2,这样,所述UE可以在接收到上述PMI1与和不同子带相关联的PMI2后分别确定各个子带的预编码矩阵。
应理解,上述发送第一信令和第二信令的过程是可以调换的。
作为又一个实施例中,所述第一信令可以为周期发送的。即所述第一信令可以是按照一定周期在确定的时刻发送,其中,所述第一信令包含所述PMI1。这里的周期发送,可以是发送至少3个第一信令,其中第二个第一信令与第一个第一信令的发送时刻的时间差Δ 21与第三个第一信令与第二个第一信令的发送时刻的时间差Δ 32相等。应理解,这里的相等可以是相差的子帧的个数相等,或按照某个时间单位计算,相差的数量相等。在这种情况下,所述PMI1可以以第一信令的周期为单位更新。应理解,时间上相邻的第一信令间包含的所述PMI1可以是不同的,以达到更新的效果,当然,在某些情况下,当所述基站确定该次需要发送的PMI1和上次需要发送的PMI1相同时,可以发送第一信令,其中包含的第一信令和上次发送的PMI1是相同的,也可以停止更新一次,在第一信令中不包含相同的PMI1,或直接不发送该第一信令。在用户设备侧的一个实施例中,若用户设备未在约定的周期发送第一信令的时刻第一信令,或用户设备在约定的周期收到第一信令后确定所述第一信令中不包含PMI1,则用户设备依然按照该时刻前最后一次收到的PMI1确定预编码矩阵。此外,所述基站也可以向用户设备非周期的发送所述第一信令,这里不做限定。
另一个实施例中,在所述基站发送连续的两个第一信令的时间间隔内,所述基站至少 发送一个所述第二信令。
又一个实施例中,所述基站向用户设备周期发送所述第二信令。所述基站可以分别按照周期T1发送第一信令和按照周期T2发送第二信令。当所述PMI1和所述PMI2关联性较小时,所述T1和所述T2可以没有关系,所述基站可以根据第一信令和或第二信令本身的周期性,或根据PMI1、PMI2各自的更新频率确定发送周期,应理解,该发送周期也可以是核心网、或其它网元配置的。此外,所述基站也可以向用户设备非周期的发送所述第二信令,这里不做限定。
本发明的应用场景还可以是单码本多PMI的场景。在这样的场景下,可以是多个PMI联合指示单一的预编码矩阵,也可以是一个PMI指示一个预编码矩阵另一个PMI起到选择该指示的矩阵的行或列,或其它的辅助作用。例如,前述预编码矩阵为一个离散傅里叶变换的情况。某些情况下,所述基站确定无需过度频繁更换选择出的码字,对应的,PMI1反馈无需过于频繁,只要及时快速发送PMI2,即可指示所述UE在选择出的PMI1对应的矩阵中选择合适的列,保证通讯质量,提高空口效率。
应理解,本发明并不限定所述基站仅仅指示PMI1和PMI2,在多码本的情况下,或多PMI联合指示的场景下,所述PMI的数量可能大于2个,其指示方式和上述实施例相近,可以根据不同的PMI的特征确定使用不同的信令。例如,发送PMI1时使用MAC层信令,发送PMI2时使用物理层信令,发送PMI3时使用高层信令。还可以是发送所述PMI1时使用第一信令,发送所述PMI2和/或PMI3时使用第二信令。
下面将结合示例介绍本发明的具体实施方式。
多面板场景下,系统可以支持3个或以上的PMI进行预编码发送,假设所述PMI分别为PMI1,PMI2和PMI3。所述基站在接收到参考信号后,或主动根据历史测量结果确定所述PMI1,PMI2和PMI3。应理解,所述基站也可以是中继设备,中继用户设备或其它网络设备。
在三码本的情况下,有多种实施方式,例如,所述基站通过在第一信令发送所述PMI1,通过第二信令发送所述PMI2,通过第三信令发送所述PMI3。所述PMI1,PMI2和PMI3的具体信令使用可以根据实际情况确定。例如,所述第一信令为一高层信令;所述第二信令为MAC层信令,所述第三信令为物理层信令。当所述第一信令为高层信令,所述第二信令和所述第三信令为物理层信令时,所述第二信令和所述第三信令可以为同一信令,在一条信令中同时指示PMI2和PMI3。下表示出了更多可以实施的方式:
Figure PCTCN2018080384-appb-000005
其中,可共用指示的PMI表示基站可以使用同一信令指示的PMI。例如在PMI1为高层信令,PMI2、PMI3为物理层信令时,所述PMI2和所述PMI3可以在一条信令中指示。当然,根据实际使用的情况,所述基站也可以不在同一条信令中指示。此外,用于预编码矩阵指示的第一信令,第二信令和第三信令可以是相同的同一层信令,如均为物理层DCI信令。
下面,将根据所述反馈的时序进行进一步的说明。应理解,所述该说明仅仅是一个实施例,各种信令的发送顺序在实际发送和接收的过程可以有不同的先后顺序,不对本发明构成限定。
图2示出了一种双PMI发送的时序图。需要指示的PMI分别为PMI1和PMI2。所述基站通过第一信令发送所述PMI1,通过第二信令发送所述PMI2。
在A时刻,所述基站向所述UE发送第一信令X,所述第一信令包含所述PMI1a;在B1时刻,所述基站向所述UE发送第二信令a,所述第二信令a包含所述PMI2a。其中,所述第一信令和所述第二信令为不同种类的信令,这样可以达到灵活配置的效果。所述UE可以根据所述PMI1a和所述PMI2a确定预编码矩阵。
由于PMI2的更新速度快,在B2时刻,所述基站确定需要更新所述PMI2,所述基站向所述UE发送第二信令b,所述第二信令b包含所述PMI2b。所述UE可以根据所述PMI1a和所述PMI2b确定预编码矩阵。这里的第二信令a和第二信令b可以是一个类型的信令,例如第二信令a和第二信令b为DCI信令,其传输的时间不同;同理,即所述第一信令X和后续出现的第一信令Y为一个类型的信令,其传输的时间不同。另一个实施例中,所述第二信令a和第二信令b为同一传输层的信令,例如所述第二信令a和所述第二信令b同为MAC层信令,与所述第一信令区分开的,所述第一信令为物理层信令或高层信令。类 似的情况,第一信令X和第一信令Y也可以是同样种类的信令,也可以是同为一层的信令,所述第一信令和第二信令的传输层的实施例在前面已经有具体的示例。后续的实施例中类似的描述也是类似的意义。
在C时刻,由于所述PMI1需要被更新,所述基站向所述UE发送第一信令Y。所述第一信令Y包含所述PMI1b。所述UE可以根据所述PMI1b和所述PMI2b确定预编码矩阵。所述第一信令X和所述第一信令Y可以是周期性的,这样的好处是节省调度资源。又一个实施例中,所述第一信令X和/或所述第一信令Y中,可以还包含秩指示RI。所述秩指示也可以与PMI1在一个字段中一起发送给所述UE。所述更新的方式是灵活的,例如在D时刻,当所述基站确定无需更新或所述基站确认所述PMI2c与上一次反馈的PMI2b的值相同时,所述基站可以不在所述第二信令c中反馈所述PMI2c;或反馈一个标志位,指示按照上一次的PMI确定预编码矩阵。对所述第一信令Y更新所述第一信令X时可以是同样的规则。另一个实施例中,所述第二信令b可反馈的是相对所述第二信令a的偏移值。同样,所述第一信令Y可以反馈的是相对于第一信令X的偏移值。这样可以进一步节省指示所需的资源。
图3示出了另一种双PMI反馈的时序图。在A时刻,所述基站向所述UE发送第一信令X,所述第一信令X包含PMI1a和PMI2a,所述UE可以根据所述PMI1a和所述PMI2a确定预编码矩阵。
在B时刻,所述基站向所述UE发送第二信令a,所述第二信令a包含所述PMI2b,与图2中示出的实施例相似,所述第二信令可以包含的是相对于所述第一信令中PMI2a的偏移值。所述UE根据所述PMI1a和所述PMI2b确定预编码矩阵。可选的,在C时刻,所述基站发送第一信令,所述第一信令包含所述PMI1b和PMI2c。应理解,所述第一信令Y中,也可以是基于先前发送给UE的PMI1值和/或PMI2值的偏移值;且当无需更新或更新值与前一次通知的所述PMI1和/或PMI2值相同时,可以在所述第一信令Y中不包含对应的预编码矩阵指示,由于所述第一信令X前,所述基站可以已经有通知过所述UE的PMI1和/或PMI2,对于所述第一信令Y的实施例在合理的情况下,对于所述第一信令X也一样。一个实施例中,所述RI在第一信令X中,或所述RI在第一信令Y1中。
应理解,虽然在本发明的各个实施例中有时序关系,例如上述图2、图3的实施例,但是对于通知的先后,没有实质的限定,所述基站根据测量的结果在确定的信令通知所述UE更新的所述PMI,所述UE可以根据最新的更新PMI1和PMI2确定预编码矩阵。在某些情 况下,所述UE可以不使用所述基站通知的PMI,例如利用信道互易特性估计信道和预编码矩阵,但是所述基站通知的所述PMI可以为所述UE提供参考。一个实施例中,所述第一信令和/或所述第二信令可以包含秩指示RI。
图4示出了本发明又一实施例。图4示出了一种双PMI反馈的时序图。如图4所示,在A时刻,所述基站向所述UE发送第一信令X,其中,所述第一信令X包含PMI1a和所述PMI2a,所述PMI1a和所述PMI2a用于指示预编码矩阵W1,所述UE可以根据所述PMI1a和所述PMI2a确定预编码矩阵。在B1时刻,所述基站向所述UE发送第一信令Y1,所述第二信令包含所述PMI2b1,所述PMI1a和所述PMI2b1用于指示预编码矩阵W2。所述UE可以根据所述PMI1a和所述PMI2b1进行上行数据的发送。
可选的,在B2时刻,所述基站向UE发送第一信令Y2,所述第一信令Y2包含PMI2b2,所述PMI1a和所述PMI2b2用于指示预编码矩阵W2,所述UE可以根据所述PMI1a和所述PMI2b2确定预编码矩阵。应理解,所述发送第一信令Y2的过程是可选的,所述基站可以根据情况确定是否将PMI2更新为所述PMI2b2。
可选的,在C时刻,所述基站向UE发送第一信令Z,所述第一信令Z包含PMI1b和PMI2c,所述PMI1b和所述PMI2c用于指示预编码矩阵W1,所述UE可以根据所述PMI1b和所述PMI2c确定预编码矩阵。
可选的,在D时刻,所述基站向UE发送第一信令W,所述第一信令W包含PMI2d,若所述基站通过所述第一信令Z更新了所述PMI1b,所述PMI1b和所述PMI2d用于指示预编码矩阵W1,所述UE可以根据所述PMI1b和所述PMI2c确定预编码矩阵。若所述基站未通过所述第一信令Z更新所述PMI1b,所述PMIa和所述PMI2d用于指示预编码矩阵W1,所述UE可以根据所述PMI1a和所述PMI2c确定预编码矩阵。应理解,所述第一信令X,Y1,Y2,Z,和W为同一类型的信令,例如DCI信令,也可以为同一传输层的信令,例如物理层信令、高层信令或MAC层信令中的一种。
根据图4示出的实施例,所述基站在第一时刻向所述UE发送第四信令,所述基站在第二时刻向所述UE发送第五信令,其中,所述第四信令包含PMI1和PMI2,所述第五信令包含PMI2。一个实施例中,所述第四信令和所述第五信令为同一种信令。另一个实施例中,所述第五信令只包含所述PMI2,应理解,所述只包含PMI2是指不包含除PMI2以外的其它预编码矩阵指示。响应的,所述UE可以在第一时刻接收到所述第四信令后,根据所述第四信令包含的所述PMI1和所述PMI2确定预编码矩阵,所述UE可以在第二时刻接 收到上述第五信令后,根据所述第四信令包含的所述PMI1和所述第五信令包含的所述PMI2确定预编码矩阵。
下面,将结合附图,介绍本发明的其它实施方式,应理解,本发明的各个实施例可以根据实际情况进行组合、删除和替换。
图5示出了本发明的一个具体的实施方式,附图5是从基站的角度描述本发明的实施例,其中,所述基站也可以是一个中继用户设备或其它网元或网络设备。
步骤501,基站确定第一预编码矩阵指示和第二预编码矩阵指示;
步骤502,所述基站向用户设备发送第一信令,所述第一信令包含所述第一预编码矩阵指示PMI1;
步骤503,所述基站向所述用户设备发送第二信令,所述第二信令包含所述第二预编码矩阵指示PMI2。
应理解,本发明不限制上述实施例合理实现的时间顺序的调换,例如,上述实施方式502、503可以相互调换。
一个实施例中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
所述PMI1和所述PMI2可以表征不同矩阵设计的特性。例如,所述PMI1用于指示所述预编码矩阵的宽带特性,所述PMI2用于指示所述预编码矩阵的子带特性;或所述PMI1用于指示所述预编码矩阵的长期特性,所述PMI2用于指示所述预编码矩阵的短期特性。
可选的,所述第一信令还包含秩指示。
一个实施例中,所述基站向用户设备周期发送所述第一信令。又一个实施例中,所述基站向用户设备发送第二信令,其中,在所述基站发送连续的两个第一信令的时间间隔内,所述基站发送至少一个所述第二信令。该两个实施例可以结合实施,即在周期发送的所述第一信令的时间间隔中发送至少一个所述第二信令。另一个实施例中,基站向用户设备周期发送所述第二信令。其中,所述基站发送第二信令的周期与所述基站发送第一信令的周期相同。另一个实施例中,所述第二信令的发送周期与第一信令的发送周期不同,且在周期发送的所述第一信令的时间间隔中包含至少一个所述第二信令。
所述第一信令和所述第二信令的具体信令种类已经在前述各个实施例中有过详细介绍,在此不再赘述。
在步骤501前,还可以包括步骤504,所述基站接收用户设备发送的上行参考信号。 作为步骤501的一个实施例,所述基站根据所述上行参考信号确定所述第一预编码指示和所述第二预编码指示。
通过上述实施方式,可以解决基站在指示上行传输方式时,如指示上行传输的预编码矩阵指示信息时,信令中的字段浪费的问题,进一步在保证信令的数量一定情况下解决发送不够准确的问题。
附图6示出了本发明的一个具体的实施方式,附图6是从用户设备的角度描述本发明的实施例,其中,所述用户设备也可以是一个物联网设备或其它新型无线接入类型的网元。
步骤601,用户设备UE接收基站发送的第一信令,所述第一信令包含第一预编码矩阵指示PMI1;
步骤602,所述UE接收基站发送的第二信令,所述第二信令包含第一预编码矩阵指示PMI2;其中,所述PMI1和所述PMI2用于指示预编码矩阵。
一个实施例中,所述方法还包括步骤603,所述用户设备UE根据所述PMI1和所述PMI2确定预编码矩阵。
一个实施例中,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。其中所述第一频率粒度和第二频率粒度已在前述实施例有过具体的方案和实施方式的介绍,在此不再赘述。
一个实施例中,所述用户设备周期接收基站发送的所述第一信令。又一个实施例中,所述用户设备接收基站发送的第二信令,其中,在接收所述连续的两个第一信令的时间间隔内,接收至少一个所述第二信令。这两个实施例可以结合,即用户设备在接收周期发送的所述第一信令的时间间隔中接收至少一个所述第二信令。另一个实施例中,用户设备周期接收所述第二信令。其中,接收所述第二信令的周期可以与接收所述第一信令相同。另一个实施例中,接收第二信令的周期与接收第一信令的周期不同,且在周期接收的所述第一信令的时间间隔中包含至少一个所述第二信令。
一个实施例中,所述第一信令包含秩指示RI。所述第一信令和所述第二信令的具体信令种类已经在前述各个实施例中有过详细介绍,在此不再赘述。
在所述步骤601之前,还可以包括步骤604,所述UE向所述基站发送上行参考信号。
通过上述实施方式,可以解决基站指示在上行传输方式时,如指示上行传输的预编码矩阵指示信息时,信令中的字段浪费的问题,进一步在保证信令的数量一定情况下解决发送不够准确的问题。
图7示出了本发明一个网络侧设备装置结构图,具体的,图7可以是一个基站。该装置包含确定单元701和发送单元702。其中,所述确定单元用于确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于指示预编码矩阵;所述发送单元702用于向用户设备发送第一信令,所述第一信令包含所述PMI1;所述发送单元还用于向所述用户设备发送第二信令,所述第二信令包含所述PMI2。图7示出的装置可以实现图5中的各个相关的功能,也可以实现先前实施例中的各种实施方式,在此不再赘述。一个实施例中,所述装置还包含接收单元703,用于接收所述UE发送的上行参考信号,另一个实施例中,所述接收单元用于接收配置信息,所述配置信息用于指示所述PMI1和PMI2。
图8示出了本发明一个用户设备装置结构图,该装置包含接收单元801。其中,所述接收单元用于接收基站发送的第一信令,所述第一信令包含第一预编码矩阵指示PMI1;所述接收单元,还用于接收基站发送的第二信令,所述第二信令包含第一预编码矩阵指示PMI2;其中,所述PMI1和所述PMI2用于指示预编码矩阵。所述用户设备还包括确定单元802,用于根据所述PMI1和所述PMI2确定预编码矩阵。图8示出的装置可以实现图7中的各个相关的功能,也可以实现先前实施例中的各种实施方式,在此不再赘述。一个实施例中,所述用户设备还包含发送单元803,用于发送上行参考信号。所述确定单元802还用于根据所述确定单元确定的预编码矩阵对上行数据进行预编码。所述发送单元803还用于发送所述上行数据。
图9示出了本发明的又一网络侧装置结构图,图9可以是一个基站。该装置包含处理器901和发送器902。所述处理器可以实现图5中的各个相关的功能,也可以实现先前实施例中的各种实施方式。一个实施例中,所述处理器可以下挂存储器903,用于存储执行图5示出的方法实施例中的代码和数据,由所述处理器901完成计算。一个实施例中,所述网络侧装置还包含接收器904,用于接收所述UE发送的上行参考信号,一个实施例中,所述接收器用于接收配置信息,所述配置信息用于指示所述PMI1和PMI2。一个实施例中,所述处理器可以是实现图7中确定单元的功能,所述发送器可以实现图7中的发送单元的功能,接收器可以实现图7中接收单元的功能。所述接收器和所述发送器可以是一个收发装置,例如天线装置或天线系统。
图10示出了本发明一个用户设备装置结构图,图10可以是一个用户设备。该装置包含接收器1001。图10示出的装置可以实现图7中的各个相关的功能,也可以实现先前实 施例中的各种实施方式。一个实施方式中,所述用户设备还包括处理器1002,用于根据所述PMI1和所述PMI2确定预编码矩阵。又一个实施例中,所述处理器可以下挂存储器1003,用于存储执行图7示出的方法实施例中的代码和数据,由所述处理器1002完成计算或确定的步骤,一个实施例中,所述用户设备还包含发送器1004,用于发送上行参考信号。所述处理器1002还用于根据所述确定的预编码矩阵对上行数据进行预编码。所述发送器1004还用于发送所述上行数据。应理解,所述图9、10中的接收器和发送器可以为一对收发天线,也可以是一个同时实现收、发功能的天线或面板阵。一个实施例中,所述处理器可以是实现图8中确定单元的功能,所述发送器可以实现图8中的发送单元的功能,接收器可以实现图8中接收单元的功能。所述接收器和所述发送器可以是一个收发装置,例如天线装置或天线系统。
图11示出了本发明又一实施方式,所述图11为一个集成电路系统。该集成电路系统包含一个芯片1101和存储器1102,其中,所述芯片和存储器焊接于电路板上,该电路板位于网络侧或用户设备侧。所述芯片存储器1102由集成电路走线链接所述芯片1101,所述芯片通过与存储器的链接读取或存储计算的数据和指令。所述芯片与集成电路的接触点接触连通,与其它芯片、连接器或天线通过走线链接,用于收发数据和指令,具体的链接方式可以是各种高速或低速接口。所述芯片可以为具有X86指令集、进阶精简指令集机器(advanced RISC machine,ARM)指令集或其它指令集的芯片,也可以是一逻辑芯片,例如现场可编程门阵列(field programmable gate array,FPGA)。所述存储器可以是内存、硬盘或可擦写的FLASH芯片等。该集成电路系统可以实现接收数据、发送数据和处理数据的功能,例如,当所述集成电路系统位于网络侧时,可以实现图5中示出的各个步骤,例如芯片确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,所述芯片向用户设备发送第一信令,所述第一信令包含所述PMI1,所述芯片向所述用户设备发送第二信令,所述第二信令包含所述PMI2。其中,所述PMI1和所述PMI2用于指示预编码矩阵。其中,所述确定的步骤可以根据接收到的上行参考信号进行测量,或直接接收其它测量元件发送的测量结果,再根据测量结果计算以确定所述PMI1和所述PMI2。其具体的计算可以是从存储器调出指令和数据,例如调出计算方式和事先存储好的码本。所述基站通过门电路进行加、减、乘或除必要的运算,和其它逻辑运算以确定所述PMI1和所述PMI2,再通过接口发送给其它需要处理的元件,最终发送至终端设备。当所述集成电路系统位于终端侧时,可以实现图6中示出的各个步骤,例如接收基站发送的第一信令,和接收所述基站发送的第二信令。 应理解,所述接收基站发送的第一信令和接收基站发送的第二信令可以具体是通过接口直接接收第一信令和第二信令,也可以由其他元件处理后,接收所述第一信令和所述第二信令的净荷(payload),再经由处理器处理从payload中读出对应的字段以确定PMI1和PMI2。
作为本发明的又一个实施例,一种计算机设备,可以包括存储器,处理器,及存储在存储器上并可再处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,可以实现图2至图6的各个步骤。其具体实施方式还可以是结合图11的方式实现的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (36)

  1. 一种信令的发送方法,其特征在于:
    基站确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于联合指示预编码矩阵;
    所述基站向用户设备发送第一信令,所述第一信令包含所述PMI1;
    所述基站向所述用户设备发送第二信令,所述第二信令包含所述PMI2。
  2. 根据权利要求1所述的方法,其特征在于,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述PMI1用于指示所述预编码矩阵的宽带特性,所述PMI2用于指示所述预编码矩阵的子带特性;或
    所述PMI1用于指示所述预编码矩阵的长期特性,所述PMI2用于指示所述预编码矩阵的短期特性。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述基站向用户发送至少两个第一信令;
    所述基站向用户设备发送第二信令,包括:
    在所述基站发送连续的两个第一信令的时间间隔内,所述基站至少发送一个所述第二信令。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述第一信令为高层信令或媒体接入控制元素信令,所述第二信令为物理层信令。
  6. 根据权利要求1至4任意一项所述的方法,其特征在于,所述第一信令为DCI信令。
  7. 根据权利要求1至6任意一项所述方法,其特征在于,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
  8. 根据权利要求1至7任意一项所述方法,其特征在于,所述第二信令还包含秩指示和/或所述第二信令还包含所述PMI1。
  9. 根据权利要求1至8任意一项所述方法,其特征在于,当所述第二信令包含所述秩指示和所述PMI2时,不同的比特字段分别指示所述秩指示和所述PMI2。
  10. 一种信令的接收方法,其特征在于:
    用户设备UE接收基站发送的第一信令,所述第一信令包含第一预编码矩阵指示PMI1;
    所述UE接收基站发送的第二信令,所述第二信令包含第一预编码矩阵指示PMI2;
    其中,所述PMI1和所述PMI2用于联合指示预编码矩阵。
  11. 根据权利要求10所述的方法,其特征在于:
    所述用户设备根据所述PMI1和所述PMI2确定预编码矩阵。
  12. 根据权利要求10或11所述的方法,其特征在于,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
  13. 根据权利要求10至12任意一项所述的方法,其特征在于,所述UE接收基站发送的至少两个第一信令;
    所述UE接收基站发送的第二信令,包括:
    在所述UE连续接收两个第一信令的时间间隔内,所述UE至少接收一个所述第二信令。
  14. 根据权利要求10至13任意一项所述的方法,其特征在于,所述第一信令为高层信令或媒体接入控制元素信令,所述第二信令为物理层信令。
  15. 根据权利要求10至13任意一项所述的方法,其特征在于,所述第一信令为DCI信令。
  16. 根据权利要求10至15任意一项所述方法,其特征在于,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
  17. 根据权利要求10至16任意一项所述方法,其特征在于,所述第二信令还包含秩指示和/或所述第二信令还包含所述PMI1。
  18. 根据权利要求10至17任意一项所述方法,其特征在于,当所述第二信令包含所述秩指示和所述PMI2时,不同的比特字段分别指示所述秩指示和所述PMI2。
  19. 一种基站,其特征在于,包括:
    确定单元,用于确定第一预编码矩阵指示PMI1和第二预编码矩阵指示PMI2,其中,所述PMI1和所述PMI2用于联合指示预编码矩阵;
    发送单元,用于向用户设备发送第一信令,所述第一信令包含所述PMI1;
    所述发送单元,用于向所述用户设备发送第二信令,所述第二信令包含所述PMI2。
  20. 根据权利要求19所述的基站,其特征在于,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
  21. 根据权利要求19或20所述的基站,其特征在于,所述PMI1用于指示所述预编码矩阵的宽带特性,所述PMI2用于指示所述预编码矩阵的子带特性;或
    所述PMI1用于指示所述预编码矩阵的长期特性,所述PMI2用于指示所述预编码矩阵的短期特性。
  22. 根据权利要求19至21任意一项所述的基站,其特征在于,所述发送单元用于向用户发送至少两个第一信令;
    所述发送单元用于向用户设备发送第二信令,包括:
    在所述发送单元发送连续的两个第一信令的时间间隔内,所述发送单元至少发送一个所述第二信令。
  23. 根据权利要求19至22任意一项所述的基站,其特征在于,所述第一信令为高层信令或媒体接入控制元素信令,所述第二信令为物理层信令。
  24. 根据权利要求19至22任意一项所述的基站,其特征在于,所述第一信令为DCI信令。
  25. 根据权利要求19至24任意一项所述基站,其特征在于,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
  26. 根据权利要求19至25任意一项所述基站,其特征在于,所述第二信令还包含秩指示和/或所述第二信令还包含所述PMI1。
  27. 根据权利要求19至26任意一项所述基站,其特征在于,当所述第二信令包含所述秩指示和所述PMI2时,不同的比特字段分别指示所述秩指示和所述PMI2。
  28. 一种用户设备UE,其特征在于,所述用户设备包括:
    接收单元,用于接收基站发送的第一信令,所述第一信令包含第一预编码矩阵指示PMI1;
    所述接收单元,用于接收基站发送的第二信令,所述第二信令包含第一预编码矩阵指示PMI2;
    其中,所述PMI1和所述PMI2用于联合指示预编码矩阵。
  29. 根据权利要求28所述的用户设备,其特征在于,所述用户设备还包括:
    确定单元,用于根据所述PMI1和所述PMI2确定预编码矩阵。
  30. 根据权利要求28或29所述的用户设备,其特征在于,所述PMI1与第一频率粒度相关联,所述PMI2与第二频率粒度相关联,其中,所述第二频率粒度小于等于所述第一频率粒度。
  31. 根据权利要求28至30任意一项所述的用户设备,其特征在于,所述接收单元,用于接收基站发送的至少两个第一信令;
    所述接收单元,用于接收基站发送的第二信令,包括:
    所述接收单元在连续接收两个第一信令的时间间隔内,所述接收单元至少接收一个所 述第二信令。
  32. 根据权利要求28至31任意一项所述的用户设备,其特征在于,所述第一信令为高层信令或媒体接入控制元素信令,所述第二信令为物理层信令。
  33. 根据权利要求28至31任意一项所述的用户设备,其特征在于,所述第一信令为DCI信令。
  34. 根据权利要求28至33任意一项所述用户设备,其特征在于,所述第一信令还包含秩指示和/或所述第一信令还包含所述PMI2。
  35. 根据权利要求28至34任意一项所述用户设备,其特征在于,所述第二信令还包含秩指示和/或所述第二信令还包含所述PMI1。
  36. 根据权利要求28至35任意一项所述用户设备,其特征在于,当所述第二信令包含所述秩指示和所述PMI2时,不同的比特字段分别指示所述秩指示和所述PMI2。
PCT/CN2018/080384 2017-03-24 2018-03-24 信令的发送方法、装置和系统 WO2018171780A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18771700.4A EP3579445A4 (en) 2017-03-24 2018-03-24 METHOD, DEVICE AND SYSTEM FOR SENDING SIGNALS
US16/579,621 US20200021343A1 (en) 2017-03-24 2019-09-23 Signaling sending method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184942.3A CN108631838A (zh) 2017-03-24 2017-03-24 信令的发送方法,装置和系统
CN201710184942.3 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,621 Continuation US20200021343A1 (en) 2017-03-24 2019-09-23 Signaling sending method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018171780A1 true WO2018171780A1 (zh) 2018-09-27

Family

ID=63584217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080384 WO2018171780A1 (zh) 2017-03-24 2018-03-24 信令的发送方法、装置和系统

Country Status (4)

Country Link
US (1) US20200021343A1 (zh)
EP (1) EP3579445A4 (zh)
CN (1) CN108631838A (zh)
WO (1) WO2018171780A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236406A1 (en) * 2019-05-21 2020-11-26 Qualcomm Incorporated Methods and apparatus to facilitate adaptive precoder updating for channel state feedback

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461821B1 (en) * 2018-08-09 2019-10-29 At&T Intellectual Property I, L.P. Facilitation of beamforming gains for fronthaul links for 5G or other next generation network
US11876654B2 (en) * 2020-04-22 2024-01-16 Qualcomm Incorporated Methods and apparatus for unified codebooks for orthogonal sequence transmission
US11464017B1 (en) 2021-03-25 2022-10-04 At&T Intellectual Property I, L.P. Facilitation of beamforming utilizing interpolation for 5G or other next generation network
US11929800B2 (en) 2021-07-02 2024-03-12 Samsung Electronics Co., Ltd. Method and apparatus for multi-stage UL precoding
WO2024069585A1 (en) * 2022-09-30 2024-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods of channel quality indication reporting with type ii codebook for high velocity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080232501A1 (en) * 2007-03-20 2008-09-25 Nec Laboratories America, Inc. Static and differential precoding codebook for mimo systems
CN101938336A (zh) * 2010-08-13 2011-01-05 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和系统
CN102415041A (zh) * 2009-04-23 2012-04-11 高通股份有限公司 用于mimo操作的秩指示和预编码指示
CN102868497A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 上行多天线数据传输指示的处理方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811353B2 (en) * 2008-04-22 2014-08-19 Texas Instruments Incorporated Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
EP2219299B1 (en) * 2009-02-17 2012-11-14 Sony Corporation Beam selection method
CN104541456B (zh) * 2013-04-15 2017-11-28 华为技术有限公司 一种报告信道状态信息的方法、用户设备和基站
KR102195688B1 (ko) * 2014-02-20 2020-12-28 삼성전자 주식회사 빔포밍을 지원하는 무선 통신 시스템에서 피드백 정보 처리 방법 및 장치
GB2533966B (en) * 2015-01-09 2017-08-02 Samsung Electronics Co Ltd System and method for selecting a beamforming configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080232501A1 (en) * 2007-03-20 2008-09-25 Nec Laboratories America, Inc. Static and differential precoding codebook for mimo systems
CN102415041A (zh) * 2009-04-23 2012-04-11 高通股份有限公司 用于mimo操作的秩指示和预编码指示
CN101938336A (zh) * 2010-08-13 2011-01-05 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和系统
CN102868497A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 上行多天线数据传输指示的处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579445A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236406A1 (en) * 2019-05-21 2020-11-26 Qualcomm Incorporated Methods and apparatus to facilitate adaptive precoder updating for channel state feedback

Also Published As

Publication number Publication date
EP3579445A1 (en) 2019-12-11
US20200021343A1 (en) 2020-01-16
EP3579445A4 (en) 2020-01-22
CN108631838A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2018171780A1 (zh) 信令的发送方法、装置和系统
WO2018177229A1 (zh) 信令的发送方法,装置和系统
KR102697137B1 (ko) 채널 상태 정보의 측정 목적을 표시하기 위한 방법 및 디바이스와 시스템
CN105991231B (zh) 获取信道状态信息csi的方法及装置
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019148399A1 (zh) 上报信道状态信息csi的方法和装置
WO2018228228A9 (zh) 信息传输方法及装置
WO2017031672A1 (zh) 一种预编码信息发送、反馈方法及装置
JP6783945B2 (ja) 参照信号送信方法および装置
WO2019100905A1 (zh) 数据传输方法、终端设备和网络设备
WO2018202071A1 (zh) 数据传输方法、终端设备和网络设备
CN115104263A (zh) 通信方法和通信装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2017166977A1 (zh) 信道状态信息反馈的获取方法、相关设备及系统
WO2016183835A1 (zh) 传输信号的方法和设备
WO2021056588A1 (zh) 一种配置预编码的方法及装置
CN110324071A (zh) 一种tpmi的传输方法、接收端和发送端
WO2018058483A1 (zh) 传输信道状态信息的方法和装置
WO2019047946A1 (zh) 一种码本子集限制的方法
WO2018202041A1 (zh) 信息发送的方法及其装置和信息接收的方法及其装置
WO2019061494A1 (zh) 计算信道质量指示cqi的方法、终端设备和网络设备
WO2015003367A1 (zh) 反馈信道状态信息csi的方法、用户设备和基站
WO2016106696A1 (zh) 一种预编码矩阵指示pmi的反馈方法
WO2019100808A1 (zh) 捆绑大小确定方法、用户终端和网络侧设备
WO2024108762A1 (en) Systems and methods for channel state information report enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018771700

Country of ref document: EP

Effective date: 20190902

NENP Non-entry into the national phase

Ref country code: DE