WO2017164469A1 - Method for preparing thermally conductive polymer resin by using recycled ash conductive filler - Google Patents

Method for preparing thermally conductive polymer resin by using recycled ash conductive filler Download PDF

Info

Publication number
WO2017164469A1
WO2017164469A1 PCT/KR2016/009769 KR2016009769W WO2017164469A1 WO 2017164469 A1 WO2017164469 A1 WO 2017164469A1 KR 2016009769 W KR2016009769 W KR 2016009769W WO 2017164469 A1 WO2017164469 A1 WO 2017164469A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer resin
conductive polymer
filler
thermally conductive
flooring
Prior art date
Application number
PCT/KR2016/009769
Other languages
French (fr)
Korean (ko)
Inventor
현봉수
Original Assignee
주식회사 제이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이에스엠 filed Critical 주식회사 제이에스엠
Publication of WO2017164469A1 publication Critical patent/WO2017164469A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • C08K11/005Waste materials, e.g. treated or untreated sewage sludge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • Heat generated in this way acts as a cause of shortening the endurance of electronic equipment by increasing the temperature of operating parts, especially circuits and lamps of CPU, memory, plasma display monitor or liquid crystal display monitor.
  • the various electronic circuit elements of the device tend to malfunction or exhibit the maximum performance of the part above a certain temperature.
  • the heat sink or the outer shell should be made of metal-based material because it should be able to protect the product and should look good and at the same time be able to diffuse heat effectively.
  • the current applied to the electronic circuit may be shorted, which may cause malfunction of the electronic device. At least, even if the normal operation of the device is possible, the use efficiency of the power drops drastically, and there is a risk of electric shock to the user.
  • thermosetting resin wherein the graphene oxide is obtained from graphite oxide having a d-spacing of 8.700 kPa or more, and further includes graphene, and graphene oxide and graphene
  • the weight ratio of the fin is 9: 1 to 6: 4, wherein the thermosetting resin is characterized in that it comprises at least one member selected from the group consisting of epoxy resin, polyimide resin, phenoxy resin and acrylic resin.
  • Korean Patent No. 10-1333260 has the advantage of providing a resin composition that can implement excellent thermal conductivity while maintaining insulation using a thermally conductive ceramic compound containing alumina, but such insulation and thermal conductivity characteristics Since only a general resin and a thermally conductive material are used in manufacturing the resin composition having all of them, the manufacturing cost is high, and there is a problem in that there is no chance of recycling waste materials such as flooring materials, which are generated in recent years.
  • waste materials are causing a lot of problems in various industries, such waste materials are generated in each field, such as construction materials, industrial materials, household, general waste, and also difficult to separate collection.
  • waste materials are mixed with various kinds of metals, plastics, inorganics, organics, scrap metals, and cause environmental problems even when they are landfilled. Therefore, most of them are incinerated at temperatures around 1000 ° C and then used as building materials.
  • the present invention has been made in order to solve the above problems, the object of the present invention is to reclaim the land waste by incineration of the flooring remaining by using it as a component of the thermally conductive polymer resin used as a heat dissipating material of electronic products without simply filling
  • the object of the present invention is to reclaim the land waste by incineration of the flooring remaining by using it as a component of the thermally conductive polymer resin used as a heat dissipating material of electronic products without simply filling
  • another object of the present invention is to crush the floor in the process of manufacturing a recycled ash conductive filler (RACF) for manufacturing a thermally conductive polymer resin, and then mixed with aluminum to increase the overall thermal conductivity to increase the heat dissipation effect
  • a recycled ash conductive filler (RACF)
  • RAF recycled ash conductive filler
  • aluminum is supplied to oxidize the outermost surface of the aluminum exposed to the outside of the flooring to form alumina (Al 2 O 3 ), and the part exposed to the outside to have insulation.
  • the aluminum contained in the flooring material remains aluminum with high thermal conductivity, which ensures insulation and has maximum thermal conductivity.
  • Recycled Ash Conductive Filler (RACF) To provide a method for producing a thermally conductive polymer resin using .
  • the present invention for solving this problem
  • RAF heat dissipating filler
  • the bottom ash is characterized in that formed by separating the foreign matter after incineration at domestic waste temperature 800 ⁇ 1,000 °C.
  • the mixing step is characterized in that the mixing of 50 to 70 parts by weight of the flooring material and 30 to 50 parts by weight of aluminum powder.
  • the secondary grinding step is characterized in that the fired material is ground to an average particle size of 40 ⁇ 100 ⁇ m size.
  • the filling step is characterized by adding 10 to 30 parts by weight of an additive including an antioxidant, a heat stabilizer, a flame retardant, a flow enhancer.
  • the base resin is characterized in that the heat deflection temperature (HDT, ASTM D648, 18.6Kgf standards) is made of a thermoplastic engineering plastic (engineering plastic) higher than 150 °C.
  • the filling step is characterized by supplying the base resin and the additive to the extruder to melt at a set temperature, and then filling the heat dissipation filler (RACF, Recycled Ash Conductive Filler) and characterized in that the extrusion process into a pellet shape.
  • RAF heat dissipation filler
  • FIG. 1 is a conceptual diagram of a state where a conventional resin composition for high thermal conductivity insulating material is applied.
  • Figure 2 is a flow diagram of a method for manufacturing a thermally conductive polymer resin using a waste incineration bottom ash heat radiation filler (RACF, Recycled Ash Conductive Filler) according to the present invention.
  • RACF waste incineration bottom ash heat radiation filler
  • FIG. 2 is a flow chart of a method for manufacturing a thermally conductive polymer resin using a waste incineration bottom ash heat dissipation filler (RACF, Recycled Ash Conductive Filler) according to the present invention
  • Figure 3 is a waste incineration bottom ash heat dissipation filler (RACF, Recycled Ash Conductive)
  • RAF Recycled Ash Conductive
  • the present invention relates to a method for producing a thermally conductive polymer resin using a flooring material for recycling the floorings generated from household waste or flooring, as shown in Figure 2, the composition is a mixing step of mixing the flooring material and aluminum powder (S100) and the mixing In the first grinding step (S200) for grinding the mixed mixture in step (S100), the firing step (S300) for firing the mixed powder produced in the first grinding step (S200), and in the firing step (S300) Secondary crushing step (S400) for pulverizing the produced plastic material, and the filling step (S500) to form a thermally conductive polymer resin by mixing the heat-dissipating filler and the base resin generated in the second crushing step (S400). .
  • the flooring used in the mixing step (S100) is formed by firing the household waste or building flooring, incineration of household waste and building flooring at a temperature of 800 ⁇ 1,000 °C, foreign matters such as glass, scrap metal, ceramics, etc. To remove the flooring material.
  • the flooring material and the aluminum powder is mixed, 50 to 70 parts by weight of the flooring material and 30 to 50 parts by weight of the aluminum powder is mixed to form a mixture, the aluminum powder has a particle size (254 ⁇ m) of 100mesh or more Powder having the following particle size) is used.
  • the components of the flooring material include silicon dioxide (SiO 2 ) of about 32%, iron oxide (Fe 2 O 3 ) of about 8%, aluminum oxide (alumina, Al 2 O 3 ) of about 8%.
  • SiO 2 silicon dioxide
  • Fe 2 O 3 iron oxide
  • aluminum oxide alumina, Al 2 O 3
  • the overall thermal conductivity is not high.
  • the aluminum exposed to the outside of the flooring material is oxidized with alumina to increase insulation, whereas the thermal conductivity of aluminum is 208W / m ⁇ k, whereas the thermal conductivity of alumina Since 20W / m ⁇ k is low, most aluminum in excess of 50 parts by weight is oxidized to alumina state, so the thermal conductivity cannot be significantly improved.
  • 50 to 70 parts by weight of flooring material and 30 to 50 parts by weight of aluminum powder are mixed and insulated. It is possible to achieve the best thermal conduction efficiency.
  • the primary crushing step (S200) is to crush the mixture of the flooring material and the aluminum powder formed in the mixing step (S100), it is pulverized so that the average particle size of the mixture is 4 to 5 mm.
  • the mixture of the flooring particles and the aluminum powder is heated to a temperature of 700 to 800 ° C., and the plastic processing is performed.
  • the melting point of the floor material is about 1200 ° C. and the melting point of aluminum is about 660.32 ° C. Therefore, only aluminum is melted so that the flooring particles are bonded to the aluminum and aggregated into a single mass.
  • aluminum has high electrical conductivity, while aluminum is oxidized to alumina, so that the insulating material is insulated, and together with the insulating flooring material, all parts exposed to the outside are oxidized to alumina, thereby making the whole insulating material.
  • the melting point of the aluminum is about 660 °C
  • the melting point of the flooring is about 1200 °C, so that the aluminum is melted by firing at a temperature in between You can combine the grains.
  • the firing temperature is higher than 800 °C energy consumption is high, but there is no effect, so it is maintained below 800 °C, when firing at a temperature lower than 700 °C is higher than the melting point of aluminum, but it takes a lot of time Therefore, it maintains 700 to 800 °C.
  • the mixture of the bottom ash and the aluminum united together is pulverized into small particles to perform a secondary crushing step (S400) of manufacturing a recycled ash conductive filler (RACF).
  • a secondary crushing step (S400) using a ball mill or an air jet mill and the like to grind to have an average particle of 40 to 100 ⁇ m.
  • the particle size is larger than 100 ⁇ m, it is not evenly mixed when mixing with the base resin in the filling step (S500) to be described later, when the particle size is 40 ⁇ m small because excessive cost is consumed to form the particle size and economic efficiency is deteriorated
  • the particle size is maintained at 40 to 100 ⁇ m.
  • the secondary crushing step (S400) is to supply the excess air as in the above-described firing step (S300), the excess air contains a large amount of oxygen.
  • the firing step (S300) and the secondary grinding step (S400) to maintain the water content (water content) to 0.1% or less.
  • the filling step (S500) is, as shown in Figure 3, by using an extruder 100 is filled with a heat dissipation filler (RACF, Recycled Ash Conductive Filler) formed in the secondary grinding step (S400) to the base resin
  • a heat dissipation filler (RACF, Recycled Ash Conductive Filler) formed in the secondary grinding step (S400)
  • additives including antioxidants, heat stabilizers, flame retardants, flow enhancers, and the like are added to prevent the base resin from being more resistant to heat, not burning well, and oxidizing.
  • the base resin used in the filling step (S500) is to use a thermoplastic engineering plastic (heat deformation temperature (HDT, ASTM D648, 18.6Kgf basis)) higher than 150 °C, for example PA66, PPS, By using PAI, PAA, PA46, PA9T, PEI, PSU, etc., even if high heat is generated from electronic components, it is possible to stably release heat to the outside without deformation.
  • a thermoplastic engineering plastic heat deformation temperature (HDT, ASTM D648, 18.6Kgf basis)
  • the filling step (S500) is to use an extruder 100, the extruder 100 is to maintain a suitable temperature higher than 150 °C to maintain a stable molten state according to the material of the engineering plastic used do.
  • the inside of the extruder 100 is filled with a heat dissipating filler (RACF, Recycled Ash Conductive Filler) in the base resin through the outlet 130 formed in the rear end of the extruder 100, the pellet-shaped recycled thermal conductive polymer resin is discharged Will be.
  • RACF Heat dissipating filler
  • the base resin is added to 30 to 50 parts by weight, and the additive is 10 to 30 parts by weight of a heat dissipation filler (RACF, Recycled Ash Conductive Filler) in 50 to 70 parts by weight.
  • RAF Heat dissipation filler
  • the heat dissipation filler in the 50 to 70 parts by weight of the base resin is filled in 30 to 50 parts by weight to maintain the best thermal conductivity by efficiently distributing the heat dissipation filler (RACF, Recycled Ash Conductive Filler) in the base resin.
  • the present invention relates to a method for manufacturing a thermally conductive polymer resin using a waste incineration flooring heat dissipation filler, and more specifically, to a thermally conductive polymer resin having high insulation and thermal conductivity properties using a discarded flooring material (a flooring material remaining after incineration of domestic waste).
  • the present invention relates to a method for manufacturing a thermally conductive polymer resin using a recycled ash conductive filler, which can not only increase resources recyclability but also prevent environmental pollution caused by landfilling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a method for preparing a thermally conductive polymer resin by using a recycled ash conductive filler and, more specifically, to a method for preparing a thermally conductive polymer resin by using a recycled ash conductive filler, the method being capable of preparing a thermally conductive polymer resin having high insulation and thermally conductive properties by using discarded flooring materials (flooring materials remaining after the incineration of daily waste), such that the recyclability of resources can be increased and environmental pollution caused by the burying of the flooring materials can be prevented. To this end, the present invention comprises: a mixing step of mixing flooring materials with aluminum powder; a primary pulverizing step of pulverizing the mixture mixed in the mixing step; a sintering step of sintering mixture powder generated in the primary pulverizing step; a secondary pulverizing step of re-pulverizing the sintered materials generated in the sintering step; and a filling step of mixing a conductive filler generated in the secondary pulverizing step with a base resin so as to form a thermally conductive polymer resin.

Description

쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법Method for manufacturing thermally conductive polymer resin using waste incineration flooring heat radiation filler
본 발명은 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법에 관한 것으로서, 더욱 상세하게는 버려지는 바닥재(생활 폐기물을 소각하고 남은 바닥재)를 사용하여 절연성과 열전도 특성이 높은 열전도성 고분자 수지를 제조하도록 함으로써, 자원의 재활용성을 높일 수 있을 뿐만 아니라 바닥재 매립에 따른 환경오염을 방지할 수 있는 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thermally conductive polymer resin using a waste incineration flooring heat dissipation filler, and more specifically, to a thermally conductive polymer resin having high insulation and thermal conductivity properties using a discarded flooring material (a flooring material remaining after incineration of domestic waste). The present invention relates to a method for producing a thermally conductive polymer resin using a recycled ash conductive filler (RACF) that can not only increase the recyclability of resources but also prevent environmental pollution due to the landfill.
반도체, PCB, 디스플레이 장치 등의 각종 전자부품은 소재 자체의 특성과 각 부품의 연결부위에서 발생하는 전기적 저항으로 인하여 기기 작동시에 발열을 수반하게 된다.Various electronic parts such as semiconductors, PCBs, and display devices are accompanied by heat generation during operation of the device due to the characteristics of the material itself and the electrical resistance generated at the connection parts of the components.
이렇게 발생되는 열은 작동부품의 온도를 증가시킴으로써 전자기기의 내구연한을 단축시키는 원인으로 작용하며, 특히 중앙처리장치(CPU), 메모리(memory), 플라즈마 디스플레이 모니터 또는 액정 디스플레이 모니터의 회로나 램프 등의 각종 전자회로 소자는 일정 온도 이상에서 오작동을 일으키거나 해당 부품의 최대 성능을 발휘하기 어려운 경향이 있다.Heat generated in this way acts as a cause of shortening the endurance of electronic equipment by increasing the temperature of operating parts, especially circuits and lamps of CPU, memory, plasma display monitor or liquid crystal display monitor. The various electronic circuit elements of the device tend to malfunction or exhibit the maximum performance of the part above a certain temperature.
그리고, 최근의 전자부품 소형화 및 집적화는 단위 면적에 포함되는 회로 수의 증가로 인하여 더욱 심각한 발열을 초래하고 있으며, 따라서 이러한 전자부품의 냉각이 매우 중요한 문제로 대두되었다.In recent years, miniaturization and integration of electronic components have caused more serious heat generation due to an increase in the number of circuits included in a unit area, and thus cooling of such electronic components has become a very important problem.
그래서, 이를 개선하기 위하여 여러 가지 수단이 제시된 바 있으며, 특히 방열판(heat sink) 또는 전자기기의 외피(casing)를 이용하여 외기로 열을 방출하는 수동형 냉각방식이 중요한 수단으로 쓰이고 있다.Therefore, various means have been proposed to improve this, and in particular, a passive cooling method of dissipating heat to the outside by using a heat sink or a casing of an electronic device is used as an important means.
그러나, 상기와 같이 방열판이나 기기 외피에 의한 열전도에 의하여 냉각을 실시할 경우 전자기기에서 발생하는 열을 효과적으로 방열판 또는 외피로 전달해주는 것이 중요한 문제가 된다.However, when cooling by heat conduction by the heat sink or the device shell as described above, it is important to effectively transfer the heat generated from the electronic device to the heat sink or the shell.
일반적으로 전자회로와 방열판 또는 외피 사이를 단순하게 빈 공간으로 남겨둘 경우에는 공기의 높은 단열능력으로 인하여(열전도도 0.0234 W/mK) 효과적인 열의 확산이 이루어지지 않게 되며, 이에 효과적인 열전도를 위해서는 전자회로와 방열판 또는 외피 사이의 공기층을 최대한 배제하는 것이 필요하다.In general, in case of simply leaving an empty space between the electronic circuit and the heat sink or the outer shell, due to the high heat insulating ability of the air (thermal conductivity 0.0234 W / mK), effective heat diffusion is not achieved. It is necessary to exclude as much as possible the air layer between the heat sink and the heat sink or shell.
그리고, 방열판 또는 외피는 제품을 보호할 수 있으면서 외관상 보기가 좋아야 하고 동시에 열을 효과적으로 확산시킬 수 있어야 하므로 주로 금속계 소재를 사용하여 제작된다.In addition, the heat sink or the outer shell should be made of metal-based material because it should be able to protect the product and should look good and at the same time be able to diffuse heat effectively.
따라서, 공기층으로 인한 단열효과를 제거하기 위하여 전자회로와 방열판 또는 외피를 접촉 설계할 경우에는 전자회로에 부가되는 전류가 누전되어 전자기기의 오작동이 유발될 수 있으며, 상대적으로 누설되는 전류의 양이 적어 장치의 일반적인 작동이 가능한 경우라 하더라도 전력의 사용효율이 급격히 떨어지게 되고, 사용자의 감전 위험이 발생한다.Therefore, in the case of designing contact between the electronic circuit and the heat sink or the outer skin to remove the insulation effect caused by the air layer, the current applied to the electronic circuit may be shorted, which may cause malfunction of the electronic device. At least, even if the normal operation of the device is possible, the use efficiency of the power drops drastically, and there is a risk of electric shock to the user.
그래서, 이러한 문제점을 해결하기 위하여 도 1에 도시된 바와 같은 한국등록특허 제10-1333260호에 기재된 기술이 제안되었는데, 그 기술적 특징은 알루미나(Al2O3)를 포함하는 열전도성 세라믹 화합물; 산화 그래핀; 및 열경화성 수지;를 포함하여 이루어지고, 상기 산화 그래핀은 8.700Å 이상의 d-간격(d-spacing)을 갖는 산화 그라파이트(graphite oxide)로부터 얻어지며, 그래핀을 더 포함하되, 산화그래핀과 그래핀의 중량비가 9:1 내지 6:4로 형성되며, 상기 열경화성 수지는 에폭시 수지, 폴리이미드 수지, 페녹시 수지 및 아크릴 수지로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 한다.Thus, in order to solve this problem, the technology described in Korean Patent No. 10-1333260 as shown in FIG. 1 has been proposed, and its technical features include a thermally conductive ceramic compound including alumina (Al 2 O 3); Graphene oxide; And a thermosetting resin; wherein the graphene oxide is obtained from graphite oxide having a d-spacing of 8.700 kPa or more, and further includes graphene, and graphene oxide and graphene The weight ratio of the fin is 9: 1 to 6: 4, wherein the thermosetting resin is characterized in that it comprises at least one member selected from the group consisting of epoxy resin, polyimide resin, phenoxy resin and acrylic resin.
그런데, 한국등록특허 제10-1333260호에 기재된 기술은 알루미나를 포함하는 열전도성 세라믹 화합물을 사용하여 절연성도 유지하면서 우수한 열전도 특성도 구현할 수 있는 수지 조성물을 제공하는 장점은 있으나, 이러한 절연성 및 열전도 특성을 모두 가지는 수지조성물을 제조시에 일반적인 수지 및 열전도성 재료만을 사용하기 때문에 제조비용이 높아지고, 근래에 많이 발생하는 바닥재와 같은 폐기처리물의 재활용 기회가 없는 문제점이 있다.By the way, the technology described in Korean Patent No. 10-1333260 has the advantage of providing a resin composition that can implement excellent thermal conductivity while maintaining insulation using a thermally conductive ceramic compound containing alumina, but such insulation and thermal conductivity characteristics Since only a general resin and a thermally conductive material are used in manufacturing the resin composition having all of them, the manufacturing cost is high, and there is a problem in that there is no chance of recycling waste materials such as flooring materials, which are generated in recent years.
즉, 근래에 들어 폐자재는 각종 산업분야에서 많은 문제점을 야기하고 있는데, 이러한 폐자재는 건설자재, 산업자재, 가정용, 일반폐기물과 같이 각 분야에서 발생되고 있고, 또한 분리 수거가 어려운 자재들이다.That is, in recent years, waste materials are causing a lot of problems in various industries, such waste materials are generated in each field, such as construction materials, industrial materials, household, general waste, and also difficult to separate collection.
이러한 폐자재는 금속물, 플라스틱, 무기계, 유기계, 고철 등의 다양한 종류가 혼합되어 있어 매립 시에도 환경문제를 발생시키기 때문에 대부분 1000℃ 전후의 온도에서 소각한 후 폐기하거나 건축자재로 활용하고 있다.These waste materials are mixed with various kinds of metals, plastics, inorganics, organics, scrap metals, and cause environmental problems even when they are landfilled. Therefore, most of them are incinerated at temperatures around 1000 ° C and then used as building materials.
그러나, 벽돌과 같은 건축 자재로 사용할 경우에는 제품의 질도 높지 않고 제조시 비용이 많이 소요되기 때문에 경제성이 떨어지는 등의 문제점이 있다.However, when used as a building material, such as brick, there is a problem that the economical efficiency is lowered because the quality of the product is not high and the manufacturing cost is high.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 생활폐기물을 소각하고 남은 바닥재를 단순 매립하지 않고 전자제품의 방열소재로 사용되는 열전도성 고분자 수지의 성분으로 사용함으로써, 매립 폐기되는 바닥재를 재활용하여 자원의 낭비를 방지할 수 있고, 바닥재 매립에 따른 환경오염을 방지할 수 있도록 하는 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법을 제공하는 것이다.The present invention has been made in order to solve the above problems, the object of the present invention is to reclaim the land waste by incineration of the flooring remaining by using it as a component of the thermally conductive polymer resin used as a heat dissipating material of electronic products without simply filling Provides a method of manufacturing thermally conductive polymer resins using recycled ash conductive fillers (RACFs) to recycle waste floors to prevent waste of resources and to prevent environmental pollution due to landfills. It is.
그리고, 본 발명의 다른 목적은 열전도성 고분자 수지를 제조하기 위한 방열필러(RACF, Recycled Ash Conductive Filler)를 제조하는 과정에서 바닥재를 분쇄한 후, 알루미늄을 혼합하여 전체적인 열전도성을 높여 방열효과를 높일 뿐만 아니라, 바닥재 파우더와 알루미늄 파우더를 소성하는 과정에서 산소를 공급하여 바닥재의 외부로 드러나는 알루미늄의 최외곽 표면을 산화시켜 알루미나(Al2O3)로 형성하여, 절연성을 띄도록 하여 외부로 드러나는 부분은 완전하게 절연되도록 할 뿐만 아니라, 바닥재의 내부에 함유된 알루미늄은 열전도도가 높은 알루미늄 그대로 남아있게 하여 절연성을 확보하면서도 최대한의 열전도도를 가지도록 하는 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법을 제공하는 것이다.In addition, another object of the present invention is to crush the floor in the process of manufacturing a recycled ash conductive filler (RACF) for manufacturing a thermally conductive polymer resin, and then mixed with aluminum to increase the overall thermal conductivity to increase the heat dissipation effect In addition, during the firing of the flooring powder and the aluminum powder, oxygen is supplied to oxidize the outermost surface of the aluminum exposed to the outside of the flooring to form alumina (Al 2 O 3 ), and the part exposed to the outside to have insulation. In addition to ensuring complete insulation, the aluminum contained in the flooring material remains aluminum with high thermal conductivity, which ensures insulation and has maximum thermal conductivity. Recycled Ash Conductive Filler (RACF) To provide a method for producing a thermally conductive polymer resin using .
이러한 문제점을 해결하기 위한 본 발명은;The present invention for solving this problem;
바닥재와 알루미늄 파우더를 혼합하는 혼합단계와, 상기 혼합단계에서 혼합된 혼합물을 분쇄하는 1차 분쇄단계와, 상기 1차 분쇄단계에서 생성된 혼합 파우더를 소성하는 소성단계와, 상기 소성단계에서 생성된 소성물을 다시 분쇄하는 2차 분쇄단계와, 상기 2차 분쇄단계에서 생성된 방열필러(RACF, Recycled Ash Conductive Filler)를 베이스 수지에 충진하여 열전도성 고분자 수지를 형성하는 충진단계로 이루어지는 것을 특징으로 한다.A mixing step of mixing the flooring material and the aluminum powder, a first grinding step of pulverizing the mixture mixed in the mixing step, a firing step of firing the mixed powder produced in the first grinding step, and the firing step And a filling step of forming a thermally conductive polymer resin by filling the base resin with a secondary crushing step of pulverizing the fired material again and a heat dissipating filler (RACF) generated in the second crushing step. do.
여기서, 상기 바닥재는 생활폐기물을 800 ~ 1,000 ℃ 온도에서 소각 후, 이물질을 분리하여 형성된 것을 특징으로 한다.Here, the bottom ash is characterized in that formed by separating the foreign matter after incineration at domestic waste temperature 800 ~ 1,000 ℃.
그리고, 상기 혼합단계에서는 바닥재 50 내지 70 중량부와 알루미늄 파우더 30 내지 50 중량부를 혼합하는 것을 특징으로 한다.And, the mixing step is characterized in that the mixing of 50 to 70 parts by weight of the flooring material and 30 to 50 parts by weight of aluminum powder.
한편, 상기 소성단계에서는 700~800℃의 온도로 소성가공하되, 소성로 내부로 과잉공기를 공급하여 바닥재의 외부로 노출되는 알루미늄을 산화시키는 것을 특징으로 한다.On the other hand, in the firing step, the plastic working at a temperature of 700 ~ 800 ℃, by supplying excess air into the firing furnace is characterized in that the aluminum exposed to the outside of the flooring.
여기서, 상기 2차 분쇄단계는 소성물을 평균 입도 40~100㎛ 크기로 분쇄하는 것을 특징으로 한다.Here, the secondary grinding step is characterized in that the fired material is ground to an average particle size of 40 ~ 100㎛ size.
이때, 상기 2차 분쇄단계에서는 과잉공기를 공급하여 분쇄과정에서 바닥재의 외부로 노출되는 알루미늄을 산화시키는 것을 특징으로 한다.At this time, the secondary grinding step is characterized in that by supplying excess air to oxidize the aluminum exposed to the outside of the floor during the grinding process.
그리고, 상기 충진단계는 상기 방열필러 30 내지 50 중량부와 베이스 수지 50 내지 70 중량부를 혼합하는 것을 특징으로 한다.And, the filling step is characterized in that for mixing the heat dissipation filler 30 to 50 parts by weight and the base resin 50 to 70 parts by weight.
또한, 상기 충진단계는 산화방지제, 열안정제, 난연제, 흐름보강제를 포함하는 첨가제 10 내지 30 중량부를 추가하는 것을 특징으로 한다.In addition, the filling step is characterized by adding 10 to 30 parts by weight of an additive including an antioxidant, a heat stabilizer, a flame retardant, a flow enhancer.
여기서, 상기 베이스 수지는 열변형온도(HDT, ASTM D648, 18.6Kgf 기준)가 150℃ 보다 높은 열가소성 엔지니어링 플라스틱(engineering plastic)으로 이루어지는 것을 특징으로 한다.Here, the base resin is characterized in that the heat deflection temperature (HDT, ASTM D648, 18.6Kgf standards) is made of a thermoplastic engineering plastic (engineering plastic) higher than 150 ℃.
이때, 상기 충진단계에서는 베이스 수지와 첨가제를 압출기에 공급하여 설정된 온도로 녹인 후, 방열필러(RACF, Recycled Ash Conductive Filler)를 충진하여 펠릿 형상으로 압출 가공하는 것을 특징으로 한다.At this time, the filling step is characterized by supplying the base resin and the additive to the extruder to melt at a set temperature, and then filling the heat dissipation filler (RACF, Recycled Ash Conductive Filler) and characterized in that the extrusion process into a pellet shape.
그리고, 상기 방열필러(RACF, Recycled Ash Conductive Filler)를 충진할 때, 150℃로 예열하여 공급하는 것을 특징으로 한다.In addition, when the heat dissipation filler (RACF, Recycled Ash Conductive Filler) is filled, it is characterized in that it is supplied by preheating to 150 ℃.
상기한 구성의 본 발명에 따르면, 생활폐기물을 소각하고 남은 바닥재를 단순 매립하지 않고 전자제품의 방열소재로 사용되는 열전도성 고분자 수지의 성분으로 사용함으로써, 폐기되는 바닥재를 재활용하여 자원의 낭비를 방지할 수 있고, 바닥재 매립에 따른 환경오염을 방지할 수 있도록 하는 효과가 있다.According to the present invention of the above configuration, by incineration of the domestic waste and using the remaining flooring material as a component of the thermally conductive polymer resin used as a heat dissipating material of electronic products without simply landfill, by recycling the flooring to be discarded to prevent waste of resources It can be, and there is an effect to prevent environmental pollution due to the flooring buried.
그리고, 본 발명은 열전도성 고분자 수지를 제조하기 위한 방열필러(RACF, Recycled Ash Conductive Filler)를 제조하는 과정에서 바닥재를 분쇄한 후, 알루미늄을 혼합하여 전체적인 열전도성을 높여 방열효과를 높일 뿐만 아니라, 바닥재 파우더와 알루미늄 파우더를 소성하는 과정에서 산소를 공급하여 바닥재의 외부로 드러나는 알루미늄의 최외곽 표면을 산화시켜 알루미나(Al2O3)로 형성하여, 절연성을 띄도록 하여 외부로 드러나는 부분은 완전하게 절연되도록 할 뿐만 아니라, 바닥재의 내부에 함유된 알루미늄은 열전도도가 높은 알루미늄 그대로 남아있게 하여 절연성을 확보하면서도 최대한의 열전도도를 가지도록 하는 효과가 있다.In addition, the present invention is not only to increase the overall heat conductivity by increasing the overall thermal conductivity by crushing the flooring material in the process of manufacturing a recycled ash conductive filler (RACF, Recycled Ash Conductive Filler (RACF) for manufacturing a thermally conductive polymer resin to increase the heat dissipation effect, During the firing of the flooring powder and the aluminum powder, oxygen is supplied to oxidize the outermost surface of aluminum exposed to the outside of the flooring to form alumina (Al 2 O 3 ), so that the part exposed to the outside is completely insulating. In addition to being insulated, the aluminum contained in the interior of the flooring material has the effect of having the maximum thermal conductivity while ensuring insulation while leaving the aluminum with high thermal conductivity as it is.
도 1은 종래의 고열 전도성 절연 재료용 수지 조성물이 적용된 상태의 개념도이다.1 is a conceptual diagram of a state where a conventional resin composition for high thermal conductivity insulating material is applied.
도 2는 본 발명에 따른 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법의 흐름도이다.Figure 2 is a flow diagram of a method for manufacturing a thermally conductive polymer resin using a waste incineration bottom ash heat radiation filler (RACF, Recycled Ash Conductive Filler) according to the present invention.
도 3은 본 발명에 따른 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법에서 베이스 수지에 방열필러를 충진하는 개념도이다.3 is a conceptual diagram of filling a heat radiation filler in the base resin in the method of manufacturing a thermally conductive polymer resin using a waste incineration bottom ash heat radiation filler (RACF, Recycled Ash Conductive Filler) according to the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 보다 상세하게 설명한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다. 그리고, 본 발명은 다수의 상이한 형태로 구현될 수 있고, 기술된 실시 예에 한정되지 않음을 이해하여야 한다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. The same reference numerals are used for the same elements in the drawings, and duplicate descriptions of the same elements are omitted. And, it is to be understood that the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth.
도 2는 본 발명에 따른 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법의 흐름도이고, 도 3은 본 발명에 따른 쓰레기 소각 바닥재 방열필러(RACF, Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법에서 베이스 수지에 방열필러를 충진하는 개념도이다.2 is a flow chart of a method for manufacturing a thermally conductive polymer resin using a waste incineration bottom ash heat dissipation filler (RACF, Recycled Ash Conductive Filler) according to the present invention, Figure 3 is a waste incineration bottom ash heat dissipation filler (RACF, Recycled Ash Conductive) In the method of manufacturing a thermally conductive polymer resin using a filler) is a conceptual diagram of filling the heat radiation filler in the base resin.
본 발명은 생활폐기물 또는 바닥재에서 발생한 바닥재를 재활용하는 바닥재를 이용한 열전도성 고분자 수지 제조방법에 관한 것으로 도 2에 도시된 바와 같이 그 구성은 바닥재와 알루미늄 파우더를 혼합하는 혼합단계(S100)와 상기 혼합단계(S100)에서 혼합된 혼합물을 분쇄하는 1차 분쇄단계(S200)와, 상기 1차 분쇄단계(S200)에서 생성된 혼합 파우더를 소성하는 소성단계(S300)와, 상기 소성단계(S300)에서 생성된 소성물을 다시 분쇄하는 2차 분쇄단계(S400)와, 상기 2차 분쇄단계(S400)에서 생성된 방열필러와 베이스 수지를 혼합하여 열전도성 고분자 수지를 형성하는 충진단계(S500)로 이루어진다.The present invention relates to a method for producing a thermally conductive polymer resin using a flooring material for recycling the floorings generated from household waste or flooring, as shown in Figure 2, the composition is a mixing step of mixing the flooring material and aluminum powder (S100) and the mixing In the first grinding step (S200) for grinding the mixed mixture in step (S100), the firing step (S300) for firing the mixed powder produced in the first grinding step (S200), and in the firing step (S300) Secondary crushing step (S400) for pulverizing the produced plastic material, and the filling step (S500) to form a thermally conductive polymer resin by mixing the heat-dissipating filler and the base resin generated in the second crushing step (S400). .
여기서, 상기 혼합단계(S100)에서 사용되는 바닥재는 생활폐기물 또는 건축 바닥재를 소성 처리하여 형성되는데, 생활폐기물과 건축 바닥재를 800 ~ 1,000 ℃의 온도에서 소각한 후, 유리, 고철, 도자기 등과 같은 이물질을 제거하여 바닥재를 수거하게 된다.Here, the flooring used in the mixing step (S100) is formed by firing the household waste or building flooring, incineration of household waste and building flooring at a temperature of 800 ~ 1,000 ℃, foreign matters such as glass, scrap metal, ceramics, etc. To remove the flooring material.
이때, 상기 혼합단계(S100)에서는 바닥재와 알루미늄 파우더를 혼합하게 되는데, 바닥재 50 내지 70 중량부와 알루미늄 파우더 30 내지 50 중량부를 혼합하여 혼합물을 형성하게 되며, 상기 알루미늄 파우더는 100mesh이상의 입도(254㎛ 이하의 입도)를 가지는 파우더를 사용하게 된다.At this time, in the mixing step (S100), the flooring material and the aluminum powder is mixed, 50 to 70 parts by weight of the flooring material and 30 to 50 parts by weight of the aluminum powder is mixed to form a mixture, the aluminum powder has a particle size (254㎛) of 100mesh or more Powder having the following particle size) is used.
여기서, 상기 바닥재의 성분을 살펴보면 이산화규소(SiO2) 약 32%, 산화철(Fe2O3) 약 8%, 산화알루미늄(알루미나, Al2O3) 약 8%로 열전도성의 띄는 물질이 포함되어 있으나, 전체적인 열전도 특성은 높지 않다.Here, the components of the flooring material include silicon dioxide (SiO 2 ) of about 32%, iron oxide (Fe 2 O 3 ) of about 8%, aluminum oxide (alumina, Al 2 O 3 ) of about 8%. However, the overall thermal conductivity is not high.
따라서, 상기 바닥재를 70 중량부 초과 또는 알루미늄 파우더를 30 중량부 미만으로 혼합할 경우, 바닥재가 일정 이상의 열전도 특성을 가지고는 있으나 높지 않기 때문에 전체적인 열전도 특성이 저하되어 방열소재로 사용하기에 적합하지 않게 되며, 바닥재를 50 중량부 미만 또는 알루미늄 파우더를 50 중량부를 초과하여 사용할 경우에는 열전도 특성이 좋은 알루미늄 파우더를 많이 사용하더라도 열전도 특성이 눈에 띄게 향상되지 않는다.Therefore, when the flooring material is mixed in an amount of more than 70 parts by weight or less than 30 parts by weight of aluminum powder, the flooring material has a thermal conductivity of more than a certain level, but because it is not high, the overall thermal conductivity is lowered, so it is not suitable for use as a heat dissipating material. When using less than 50 parts by weight of the flooring material or more than 50 parts by weight of aluminum powder, even if a large amount of aluminum powder having good thermal conductivity is not significantly improved thermal conductivity.
즉, 후술할 소성단계(S300) 및 2차 분쇄단계(S400)에서 바닥재의 외부로 노출되는 알루미늄을 알루미나로 산화시켜 절연성을 높이게 되는데, 알루미늄의 열전도도는 208W/m·k인데 반해 알루미나의 열전도도는 20W/m·k로 낮기 때문에 50 중량부를 초과하는 대부분의 알루미늄은 산화되어 알루미나 상태로 되므로 열전도 특성을 크게 높일 수 없으므로, 바닥재 50 내지 70 중량부와 알루미늄 파우더 30 내지 50 중량부를 혼합하여 절연성을 띄면서도 최상의 열전도 효율을 낼 수 있게 한다.That is, in the firing step (S300) and the second crushing step (S400) to be described later, the aluminum exposed to the outside of the flooring material is oxidized with alumina to increase insulation, whereas the thermal conductivity of aluminum is 208W / m · k, whereas the thermal conductivity of alumina Since 20W / m · k is low, most aluminum in excess of 50 parts by weight is oxidized to alumina state, so the thermal conductivity cannot be significantly improved. Thus, 50 to 70 parts by weight of flooring material and 30 to 50 parts by weight of aluminum powder are mixed and insulated. It is possible to achieve the best thermal conduction efficiency.
그리고, 상기 1차 분쇄단계(S200)는 상기 혼합단계(S100)에서 형성된 바닥재와 알루미늄 파우더의 혼합물을 분쇄하게 되는데, 혼합물의 평균 입도가 4 내지 5 mm가 되도록 분쇄하게 된다.In addition, the primary crushing step (S200) is to crush the mixture of the flooring material and the aluminum powder formed in the mixing step (S100), it is pulverized so that the average particle size of the mixture is 4 to 5 mm.
이때, 상기 혼합물의 평균입도가 너무 클 경우, 베이스 수지에 충진할 때, 베이스 수지에 고르게 분산되기가 어려워 열전도도가 저하되는 문제점이 있다.At this time, when the average particle size of the mixture is too large, when filling the base resin, it is difficult to evenly dispersed in the base resin has a problem that the thermal conductivity is lowered.
여기서, 상기 혼합단계(S100)에서 알루미늄 파우더와 바닥재를 미리 혼합한 후, 1차 분쇄단계(S200)를 거치도록 함으로써, 분쇄하는 과정에서 바닥재 입자와 알루미늄 파우더가 고르게 혼합되도록 한다.Here, after mixing the aluminum powder and the flooring material in advance in the mixing step (S100), by passing through the first grinding step (S200), the flooring particles and the aluminum powder in the grinding process to be evenly mixed.
그리고, 상기 소성단계(sintering, S300)에서는 바닥재 입자와 알루미늄 파우더의 혼합물을 700 내지 800℃의 온도로 가열하여 소성 가공하게 되는데, 바닥재의 녹는점은 1200℃정도이고 알루미늄의 녹는점은 660.32℃ 정도이므로 알루미늄만 녹게 되어 바닥재 입자를 알루미늄이 접착하여 하나의 덩어리로 뭉치게 한다.In the firing step (Sintering, S300), the mixture of the flooring particles and the aluminum powder is heated to a temperature of 700 to 800 ° C., and the plastic processing is performed. The melting point of the floor material is about 1200 ° C. and the melting point of aluminum is about 660.32 ° C. Therefore, only aluminum is melted so that the flooring particles are bonded to the aluminum and aggregated into a single mass.
여기서, 상기 소성단계(S300)에서는 소성가공 과정에서 소성로의 내부로 과잉공기(excess air)를 공급하게 되는데, 상기 과잉공기는 다량의 산소가 포함되어 있다.Here, in the firing step (S300), the excess air (excess air) is supplied to the inside of the firing furnace in the plastic working process, the excess air contains a large amount of oxygen.
따라서, 다량의 산소를 함유하고 있는 과잉공기가 바닥재의 외부로 노출된 알루미늄과 접하게 되어, 노출된 알루미늄을 알루미나(Al2O3)로 산화시키게 된다.Therefore, excess air containing a large amount of oxygen comes into contact with aluminum exposed to the outside of the flooring material, thereby oxidizing the exposed aluminum to alumina (Al 2 O 3 ).
이때, 알루미늄은 전기 전도성이 높은데 반해, 알루미늄이 알루미나로 산화되면 절연성을 띄게 되어 절연성을 띄는 바닥재와 함께 외부로 노출된 부분은 모두 알루미나로 산화됨으로써 전체가 절연성을 띄게 된다.At this time, aluminum has high electrical conductivity, while aluminum is oxidized to alumina, so that the insulating material is insulated, and together with the insulating flooring material, all parts exposed to the outside are oxidized to alumina, thereby making the whole insulating material.
한편, 상기 소성단계(S300)에서 소성온도를 700 내지 800℃로 유지하게 되는데, 알루미늄의 녹는 점이 약 660℃이고, 바닥재의 녹는점은 약 1200℃이므로 그 사이의 온도로 소성하여야 알루미늄이 녹아 바닥재 알갱이들을 결합할 수 있게 된다.On the other hand, in the firing step (S300) is maintained at a firing temperature of 700 to 800 ℃, the melting point of the aluminum is about 660 ℃, the melting point of the flooring is about 1200 ℃, so that the aluminum is melted by firing at a temperature in between You can combine the grains.
여기서, 소성 온도를 800℃보다 높게 할 경우 에너지 소비는 많으나 그에 따른 효과가 없으므로 800℃이하로 유지하게 되며, 700℃보다 낮은 온도로 소성할 경우 알루미늄의 녹는점 보다 높다고는 하나 시간이 많이 소요되게 되므로 700 내지 800℃를 유지하게 된다.Here, if the firing temperature is higher than 800 ℃ energy consumption is high, but there is no effect, so it is maintained below 800 ℃, when firing at a temperature lower than 700 ℃ is higher than the melting point of aluminum, but it takes a lot of time Therefore, it maintains 700 to 800 ℃.
그리고, 상기 소성단계(S300)에서 하나로 뭉쳐진 바닥재와 알루미늄의 혼합물을 다시 작은 입자로 분쇄하여 방열필러(RACF, Recycled Ash Conductive Filler)를 제조하는 2차 분쇄단계(S400)을 수행하게 되는데, 상기 2차 분쇄단계(S400)에서는 볼밀 또는 에어제트밀 등을 사용하여 40 내지 100㎛의 평균 입자를 가지도록 분쇄하게 된다.In addition, in the firing step (S300), the mixture of the bottom ash and the aluminum united together is pulverized into small particles to perform a secondary crushing step (S400) of manufacturing a recycled ash conductive filler (RACF). In the secondary grinding step (S400) using a ball mill or an air jet mill and the like to grind to have an average particle of 40 to 100㎛.
이때, 입도가 100㎛보다 클 경우에는 후술할 충진단계(S500)에서 베이스 수지와 혼합할 때 고르게 혼합되지 않게 되며, 입도가 40㎛ 작을 경우에는 입도를 형성하는데 과도한 비용이 소모되어 경제성이 저하되므로, 40 내지 100㎛로 입도를 유지하게 된다.At this time, when the particle size is larger than 100㎛, it is not evenly mixed when mixing with the base resin in the filling step (S500) to be described later, when the particle size is 40㎛ small because excessive cost is consumed to form the particle size and economic efficiency is deteriorated The particle size is maintained at 40 to 100 μm.
한편, 상기 2차 분쇄단계(S400)에서는 전술한 소성단계(S300)에서와 동일하게 과잉공기를 공급하게 되는데, 과잉공기는 다량의 산소가 포함되어 있다.On the other hand, in the secondary crushing step (S400) is to supply the excess air as in the above-described firing step (S300), the excess air contains a large amount of oxygen.
그래서, 상기 2차 분쇠단계(S400)에서 분쇄하는 과정에서 알루미늄 부분이 외부로 노출될 경우, 과잉공기에 포함된 산소에 의해 알루미나로 산화되어, 상기 2차 분쇄단계(S400)에서 외부로 노출되는 알루미늄을 모두 알루미나로 산화시킴으로써, 절연성을 높여주게 된다.Thus, when the aluminum portion is exposed to the outside in the process of grinding in the secondary grinding step (S400), it is oxidized to alumina by oxygen contained in the excess air, is exposed to the outside in the secondary grinding step (S400) By oxidizing all aluminum with alumina, insulation is improved.
또한, 상기 소성단계(S300)와 2차 분쇄단계(S400)에서는 함수량(water content)을 0.1% 이하로 유지하게 한다.In addition, the firing step (S300) and the secondary grinding step (S400) to maintain the water content (water content) to 0.1% or less.
그리고, 상기 충진단계(S500)는 도 3에 도시된 바와 같이, 압출기(100)를 사용하여 2차 분쇄단계(S400)에서 형성된 방열필러(RACF, Recycled Ash Conductive Filler)를 베이스 수지에 충진하게 되는데, 베이스 수지가 열에 보다 잘 견디고 잘 연소되지 않으며 산화되는 것을 방지하도록 산화방지제, 열안정제, 난연제, 흐름보강제 등을 포함하는 첨가제를 첨가하게 된다.And, the filling step (S500) is, as shown in Figure 3, by using an extruder 100 is filled with a heat dissipation filler (RACF, Recycled Ash Conductive Filler) formed in the secondary grinding step (S400) to the base resin In addition, additives including antioxidants, heat stabilizers, flame retardants, flow enhancers, and the like are added to prevent the base resin from being more resistant to heat, not burning well, and oxidizing.
이때, 상기 충진단계(S500)에서 사용하는 베이스 수지는 열변형온도(HDT, ASTM D648, 18.6Kgf 기준)가 150℃ 보다 높은 열가소성 엔지니어링 플라스틱(engineering plastic)을 사용하게 되며, 일 예로 PA66, PPS, PAI, PAA, PA46, PA9T, PEI, PSU 등을 사용하여, 전자 부품에서 높은 열이 발생되더라도 변형되지 않고 안정적으로 외부로 열을 방출할 수 있게 한다.At this time, the base resin used in the filling step (S500) is to use a thermoplastic engineering plastic (heat deformation temperature (HDT, ASTM D648, 18.6Kgf basis)) higher than 150 ℃, for example PA66, PPS, By using PAI, PAA, PA46, PA9T, PEI, PSU, etc., even if high heat is generated from electronic components, it is possible to stably release heat to the outside without deformation.
한편, 상기 충진단계(S500)에서는 압출기(100)를 사용하게 되는데, 상기 압출기(100)는 사용되는 엔지니어링 플라스틱의 소재에 따라 안정적으로 녹은 상태를 유지하도록 하기 위하여 150℃ 보다 높은 적절한 온도를 유지하게 된다.On the other hand, the filling step (S500) is to use an extruder 100, the extruder 100 is to maintain a suitable temperature higher than 150 ℃ to maintain a stable molten state according to the material of the engineering plastic used do.
여기서, 상기 압출기(100)의 전부에는 상부로 1차 공급구(110)가 형성되어 베이스 수지와 기능성 첨가제를 동시에 주입하여 베이스 수지를 녹이게 되며, 압출기(100)의 후부에 위치하는 2차 공급구(120)를 통하여 방열필러(RACF, Recycled Ash Conductive Filler)를 충진하게 되는데, 방열필러(RACF, Recycled Ash Conductive Filler)를 충진할 때, 방열필러(RACF, Recycled Ash Conductive Filler)를 150℃로 예열하여 공급함으로써 베이스 수지가 방열필러(RACF, Recycled Ash Conductive Filler)의 낮은 온도에 의해 굳는 것을 방지하여 안정적으로 충진되도록 한다.Here, all of the extruder 100 has a primary supply port 110 formed at the top to inject a base resin and a functional additive at the same time to melt the base resin, the second supply located in the rear of the extruder 100 Filled with a heat-dissipating filler (RACF, Recycled Ash Conductive Filler) through the sphere (120), when filling a heat-resistant filler (RACF, Recycled Ash Conductive Filler), the heat-resistant filler (RACF, Recycled Ash Conductive Filler) to 150 ℃ By pre-heating and supplying, the base resin is prevented from being hardened by the low temperature of the Recycled Ash Conductive Filler (RACF), thereby ensuring stable filling.
이렇게 상기 압출기(100)의 내부에서 베이스 수지에 방열필러(RACF, Recycled Ash Conductive Filler)가 충진되어 압출기(100)의 후단에 형성된 배출구(130)를 통하여, 펠릿 형상의 재활용 열전도성 고분자 수지가 배출되게 된다.Thus, the inside of the extruder 100 is filled with a heat dissipating filler (RACF, Recycled Ash Conductive Filler) in the base resin through the outlet 130 formed in the rear end of the extruder 100, the pellet-shaped recycled thermal conductive polymer resin is discharged Will be.
한편, 상기 베이스 수지는 50 내지 70 중량부에 방열필러(RACF, Recycled Ash Conductive Filler)는 30 내지 50 중량부, 첨가제는 10 내지 30 중량부를 첨가하게 된다.On the other hand, the base resin is added to 30 to 50 parts by weight, and the additive is 10 to 30 parts by weight of a heat dissipation filler (RACF, Recycled Ash Conductive Filler) in 50 to 70 parts by weight.
이때, 상기 베이스 수지에 방열필러(RACF, Recycled Ash Conductive Filler)를 충진할 때, 방열필러(RACF, Recycled Ash Conductive Filler)를 30 중량부보다 적게 충진할 경우에는 열전도 특성이 저하되어 방열소재로 사용하기가 적합하지 않게 된다.At this time, when filling the base resin with a heat-dissipating filler (RACF, Recycled Ash Conductive Filler), when less than 30 parts by weight of a heat-dissipating filler (RACF, Recycled Ash Conductive Filler) is used as a heat dissipating material is lowered The following becomes unsuitable.
또한, 높은 열전도도를 얻기 위해서는 방열필러(RACF, Recycled Ash Conductive Filler)의 효율적인 분산과 더불어 수지 내의 방열필러(RACF, Recycled Ash Conductive Filler)의 함량을 증가시키는 것인데, 수지 내의 방열필러(RACF, Recycled Ash Conductive Filler)의 함량을 증가시키게 되면 점도가 상승되게 되고, 점도가 상승되면 방열필러(RACF, Recycled Ash Conductive Filler)가 효율적으로 분산되지 않아 오히려 열전도도를 나쁘게 하므로, 방열필러(RACF, Recycled Ash Conductive Filler)를 50중량부 이하로 충진하게 된다.In addition, in order to obtain high thermal conductivity, it is to increase the content of the recycled ash conductive filler (RACF) in the resin together with the efficient dispersion of the recycled ash conductive filler (RACF). Increasing the content of Ash Conductive Filler) increases the viscosity, and if the viscosity is increased, the heat dissipating filler (RACF, Recycled Ash Conductive Filler) is not effectively dispersed and rather degrades the thermal conductivity. Conductive Filler) is filled to 50 parts by weight or less.
따라서, 베이스 수지 50 내지 70 중량부에 방열필러는 30 내지 50 중량부를 충진하여 최대한 방열필러(RACF, Recycled Ash Conductive Filler)가 베이스 수지 내에 효율적으로 분포되도록 하여 최상의 열전도도를 유지하도록 한다.Therefore, the heat dissipation filler in the 50 to 70 parts by weight of the base resin is filled in 30 to 50 parts by weight to maintain the best thermal conductivity by efficiently distributing the heat dissipation filler (RACF, Recycled Ash Conductive Filler) in the base resin.
이상에서 본 발명의 바람직한 실시 예를 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않으며, 본 발명의 실시 예와 실질적으로 균등한 범위에 있는 것까지 본 발명의 권리 범위가 미치는 것으로 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것이다.Although the preferred embodiments of the present invention have been described above, the scope of the present invention is not limited thereto, and the scope of the present invention extends to the scope of the present invention to those which are substantially equivalent to the embodiments of the present invention. Various modifications can be made by those skilled in the art without departing from the scope of the present invention.
본 발명은 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법에 관한 것으로서, 더욱 상세하게는 버려지는 바닥재(생활 폐기물을 소각하고 남은 바닥재)를 사용하여 절연성과 열전도 특성이 높은 열전도성 고분자 수지를 제조하도록 함으로써, 자원의 재활용성을 높일 수 있을 뿐만 아니라 바닥재 매립에 따른 환경오염을 방지할 수 있는 쓰레기 소각 바닥재 방열필러(Recycled Ash Conductive Filler)를 이용한 열전도성 고분자 수지 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thermally conductive polymer resin using a waste incineration flooring heat dissipation filler, and more specifically, to a thermally conductive polymer resin having high insulation and thermal conductivity properties using a discarded flooring material (a flooring material remaining after incineration of domestic waste). The present invention relates to a method for manufacturing a thermally conductive polymer resin using a recycled ash conductive filler, which can not only increase resources recyclability but also prevent environmental pollution caused by landfilling.

Claims (11)

  1. 바닥재와 알루미늄 파우더를 혼합하는 혼합단계와,A mixing step of mixing the flooring material with the aluminum powder,
    상기 혼합단계에서 혼합된 혼합물을 분쇄하는 1차 분쇄단계와,A first grinding step of grinding the mixture mixed in the mixing step,
    상기 1차 분쇄단계에서 생성된 혼합 파우더를 소성하는 소성단계와,A firing step of firing the mixed powder produced in the first grinding step;
    상기 소성단계에서 생성된 소성물을 다시 분쇄하는 2차 분쇄단계와,A second crushing step of pulverizing the fired product produced in the calcination step;
    상기 2차 분쇄단계에서 생성된 방열필러(RACF, Recycled Ash Conductive Filler)를 베이스 수지에 충진하여 열전도성 고분자 수지를 형성하는 충진단계로 이루어지는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.A thermally conductive polymer resin using a waste incineration flooring material heat dissipation filler comprising: a filling step of forming a thermally conductive polymer resin by filling a base resin with a heat dissipating filler (RACF) generated in the second milling step; Manufacturing method.
  2. 제1항에 있어서,The method of claim 1,
    상기 바닥재는 생활폐기물을 800 ~ 1,000 ℃ 온도에서 소각 후, 이물질을 분리하여 형성된 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.The flooring material is a thermal conductive polymer resin manufacturing method using a waste incineration flooring heat dissipation filler, characterized in that formed by separating the foreign matter after incineration at domestic waste temperature 800 ~ 1,000 ℃.
  3. 제1항에 있어서,The method of claim 1,
    상기 혼합단계에서는 바닥재 50 내지 70 중량부와 알루미늄 파우더 30 내지 50 중량부를 혼합하는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.In the mixing step, 50 to 70 parts by weight of the flooring material and 30 to 50 parts by weight of aluminum powder, the method for producing a thermally conductive polymer resin using a waste incineration flooring heat radiation filler.
  4. 제1항에 있어서,The method of claim 1,
    상기 소성단계에서는 700~800℃의 온도로 소성가공하되,In the firing step, the plastic working at a temperature of 700 ~ 800 ℃,
    소성로 내부로 과잉공기를 공급하여 바닥재의 외부로 노출되는 알루미늄을 산화시키는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.A method of producing a thermally conductive polymer resin using a heat dissipating filler incineration flooring waste, characterized in that for oxidizing aluminum exposed to the outside of the flooring material by supplying excess air into the kiln.
  5. 제1항에 있어서,The method of claim 1,
    상기 2차 분쇄단계는 소성물을 평균 입도 40~100㎛ 크기로 분쇄하는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.The secondary crushing step is a thermal conductive polymer resin manufacturing method using a heat dissipation filler waste incineration flooring, characterized in that the pulverized material is crushed to an average particle size of 40 ~ 100㎛ size.
  6. 제5항에 있어서,The method of claim 5,
    상기 2차 분쇄단계에서는 과잉공기를 공급하여 분쇄과정에서 바닥재의 외부로 노출되는 알루미늄을 산화시키는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.The secondary grinding step is a method of producing a thermally conductive polymer resin using a heat dissipating filler incineration floor ash, characterized in that for supplying excess air to oxidize aluminum exposed to the outside of the floor during the grinding process.
  7. 제1항에 있어서,The method of claim 1,
    상기 충진단계는 상기 방열필러 30 내지 50 중량부와 베이스 수지 50 내지 70 중량부를 혼합하는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.In the filling step, 30 to 50 parts by weight of the heat dissipation filler and 50 to 70 parts by weight of the base resin, the method for producing a thermally conductive polymer resin using a waste incineration bottom ash heat dissipation filler.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 충진단계는 산화방지재, 열안정제, 난연제, 흐름보강제를 포함하는 첨가제 10 내지 30 중량부를 추가하는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.The filling step is a method for producing a thermally conductive polymer resin using a heat dissipating waste incinerator bottom ash, characterized in that the addition of 10 to 30 parts by weight of an additive including an antioxidant, a heat stabilizer, a flame retardant, a flow enhancer.
  9. 제8항에 있어서,The method of claim 8,
    상기 베이스 수지는 열변형온도(HDT, ASTM D648, 18.6Kgf 기준)가 150℃ 보다 높은 열가소성 엔지니어링 플라스틱(engineering plastic)으로 이루어지는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.The base resin is a thermally conductive polymer resin manufacturing method using a heat dissipation filler waste incineration flooring material, characterized in that the heat distortion temperature (HDT, ASTM D648, 18.6Kgf standards) of higher than 150 ℃ thermoplastic engineering plastics.
  10. 제9항에 있어서,The method of claim 9,
    상기 충진단계에서는 베이스 수지와 첨가제를 압출기에 공급하여 설정된 온도로 녹인 후, 방열필러(RACF, Recycled Ash Conductive Filler)를 충진하여 펠릿 형상으로 압출 가공하는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.In the filling step, the base resin and the additives are supplied to an extruder to be melted at a set temperature, and then a heat dissipation filler (RACF, Recycled Ash Conductive Filler) is filled and extruded into pellets. Method for producing a polymeric polymer resin.
  11. 제10항에 있어서,The method of claim 10,
    상기 방열필러를 충진할 때, 150℃로 예열하여 공급하는 것을 특징으로 하는 쓰레기 소각 바닥재 방열필러를 이용한 열전도성 고분자 수지 제조방법.When filling the heat dissipation filler, a thermal conductive polymer resin manufacturing method using a heat dissipation filler incineration flooring waste, characterized in that preheated to 150 ℃.
PCT/KR2016/009769 2016-03-21 2016-09-01 Method for preparing thermally conductive polymer resin by using recycled ash conductive filler WO2017164469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0033416 2016-03-21
KR1020160033416A KR101696901B1 (en) 2016-03-21 2016-03-21 manufacturing method of thermal conductive polymer using Recyled Ash Conductive Filler(RACF)

Publications (1)

Publication Number Publication Date
WO2017164469A1 true WO2017164469A1 (en) 2017-09-28

Family

ID=57990228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009769 WO2017164469A1 (en) 2016-03-21 2016-09-01 Method for preparing thermally conductive polymer resin by using recycled ash conductive filler

Country Status (2)

Country Link
KR (1) KR101696901B1 (en)
WO (1) WO2017164469A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102433191B1 (en) * 2020-12-24 2022-08-22 영인코리아 주식회사 A method for manufacturing eco-friendly recycled filler and rubber compositon for shoe parts comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106662A (en) * 1997-09-30 1999-04-20 Toshiba Silicone Co Ltd Organic polymer composition containing inorganic filler compounded therein and inorganic filler for organic polymer composition
JP2005307130A (en) * 2004-04-19 2005-11-04 Ks Shokai:Kk Heat-conductive alumina cement
JP4067106B2 (en) * 2004-11-01 2008-03-26 八洲建設株式会社 Waste composite resin pellet manufacturing apparatus and manufacturing method thereof
KR20130040440A (en) * 2011-10-14 2013-04-24 한양대학교 에리카산학협력단 Electrically insulative and thermally conductive ceramic/polymer composit powder and method for preparatin the same
KR101478819B1 (en) * 2013-04-05 2015-01-02 한국화학연구원 Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165709B2 (en) * 2004-09-30 2008-10-15 八洲建設株式会社 Molding device for waste composite resin molding and molding method thereof
KR101143145B1 (en) * 2009-12-30 2012-07-09 재단법인 포항산업과학연구원 Alumina coated graphite, method for manufacturing the same, and refractory with low thermal conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106662A (en) * 1997-09-30 1999-04-20 Toshiba Silicone Co Ltd Organic polymer composition containing inorganic filler compounded therein and inorganic filler for organic polymer composition
JP2005307130A (en) * 2004-04-19 2005-11-04 Ks Shokai:Kk Heat-conductive alumina cement
JP4067106B2 (en) * 2004-11-01 2008-03-26 八洲建設株式会社 Waste composite resin pellet manufacturing apparatus and manufacturing method thereof
KR20130040440A (en) * 2011-10-14 2013-04-24 한양대학교 에리카산학협력단 Electrically insulative and thermally conductive ceramic/polymer composit powder and method for preparatin the same
KR101478819B1 (en) * 2013-04-05 2015-01-02 한국화학연구원 Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same

Also Published As

Publication number Publication date
KR101696901B1 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
CN102746560B (en) Heat-conducting plastic and preparation method thereof
CN100385650C (en) Heat radiation structure
US7066244B2 (en) Temperature-homogenizing device
WO2022025652A1 (en) Method for manufacturing heat dissipation sheet using waste graphite
WO2013162269A1 (en) Method for preparing ferro-silicon and magnesium using ferro-nickel slag, preparation apparatus used therefor, and smelting reduction furnace
JP2015122463A (en) Cooling structure
WO2014133309A1 (en) Thermally conductive ceramic-polymer composite and method for manufacturing same
WO2014193180A1 (en) Composite graphite heat insulating material containing high-density compressed and expanded graphite particles and method for manufacturing same
WO2019194421A1 (en) Boron nitride-based heat-radiating filler having enhanced vertical thermal conductivity, heat-radiating sheet, and manufacturing method therefor
WO2018117367A1 (en) Method for manufacturing heat dissipation sheet including double insulation layers and heat dissipation sheet using same
WO2017164469A1 (en) Method for preparing thermally conductive polymer resin by using recycled ash conductive filler
WO2020130721A1 (en) Heat-dissipating fluid composition and battery module comprising same
CN102123563A (en) Method for manufacturing ceramic PCB (Printed Circuit Board)
CN104788951A (en) LED (light-emitting diode) high-thermal-conductivity composite material and preparation method thereof
WO2011025299A2 (en) Heat sink including silicon carbide and manufacturing method thereof
WO2024090878A1 (en) Composite heat dissipation hybrid tim sheet
CN106587970A (en) Radiation radiating LED (Light-Emitting Diode) ceramic substrate and preparation method thereof
KR20200113607A (en) Manufacturing Method of Powder Coating Materials
JP2012106888A (en) Highly insulating silicon carbide powder and composition containing the same
WO2021015580A1 (en) Thermal dissipation composite material and manufacturing method thereof
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
JP2006151778A (en) Phosphorus-containing coated magnesium oxide powder, production method therefor and resin composition containing the powder
WO2020122684A1 (en) Magnesia, method for manufacturing same, highly thermally conductive magnesia composition, and magnesia ceramic using same
CN1942084A (en) Homogeneouslly-radiating electronic device
KR101967856B1 (en) High Thermal Conductive Film and Manufacturing the Same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895595

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16895595

Country of ref document: EP

Kind code of ref document: A1