WO2017163991A1 - 監視装置、監視システムおよび監視方法 - Google Patents

監視装置、監視システムおよび監視方法 Download PDF

Info

Publication number
WO2017163991A1
WO2017163991A1 PCT/JP2017/010078 JP2017010078W WO2017163991A1 WO 2017163991 A1 WO2017163991 A1 WO 2017163991A1 JP 2017010078 W JP2017010078 W JP 2017010078W WO 2017163991 A1 WO2017163991 A1 WO 2017163991A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
battery
voltage
unit
monitoring circuit
Prior art date
Application number
PCT/JP2017/010078
Other languages
English (en)
French (fr)
Inventor
洋幸 長野
正孝 厚木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/084,148 priority Critical patent/US11175342B2/en
Priority to EP17770034.1A priority patent/EP3435517A4/en
Priority to JP2018507244A priority patent/JP6863365B2/ja
Publication of WO2017163991A1 publication Critical patent/WO2017163991A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a monitoring device, a monitoring system, and a monitoring method.
  • Patent Document 1 discloses a failure diagnosis apparatus that compares a threshold value corresponding to an average voltage value of a battery in a power storage system with a voltage value of each battery and detects a battery abnormality based on the result. ing.
  • the change in voltage value is not always caused by a battery abnormality.
  • a monitoring circuit that monitors the voltage value of a battery is driven using power stored in the battery to be monitored, if there is a monitoring circuit with a large leakage current (a large self-consumption current), The voltage value of the associated battery decreases.
  • a large leakage current a large self-consumption current
  • the failure diagnosis apparatus described in Patent Document 1 even in such a case, it may be determined that the battery is abnormal even though the battery is not actually abnormal. If there is an abnormality in the monitoring circuit, there is a possibility that the voltage value or the like cannot be monitored finally. In addition, proper maintenance response cannot be taken.
  • an object of the present invention is to provide a monitoring device, a monitoring system, and a monitoring method that solve the above-described problems.
  • the monitoring device comprises: A specific monitoring circuit among a plurality of monitoring circuits that are driven using power stored in two or more battery units associated as monitoring targets has the highest voltage value among the plurality of battery units within a predetermined period. Using a comparison result comparing a ratio associated with a low low voltage battery unit with a predetermined threshold, and information indicating whether there are two or more low voltage battery units associated with the specific monitoring circuit And a determination unit that determines whether or not a leakage current of the specific monitoring circuit is equal to or greater than a first reference.
  • the monitoring system includes: A plurality of chargeable / dischargeable battery parts; A plurality of monitoring circuits that are driven using electric power stored in two or more battery units associated as monitoring targets among the plurality of battery units, and monitor the voltage values of the associated battery units; A detection unit for detecting a low voltage battery unit having the lowest voltage value among the plurality of battery units; A comparison result between a ratio of a specific monitoring circuit associated with the battery unit detected as the low-voltage battery unit within the predetermined period and the first threshold value, and the specific monitoring circuit A determination unit that determines whether or not a leakage current of the specific monitoring circuit is equal to or higher than a first reference using information indicating whether or not there are two or more low voltage battery units associated with each other; Is provided.
  • the monitoring method includes: A plurality of chargeable / dischargeable battery units, and driving using electric power stored in two or more battery units associated as monitoring targets among the plurality of battery units, the voltage of the associated battery unit A monitoring method in a monitoring system having a plurality of monitoring circuits for monitoring values, Obtaining information of the low voltage battery part having the lowest voltage value among the plurality of battery parts, Within a predetermined period, a ratio of a specific monitoring circuit among the plurality of monitoring circuits is calculated to be associated with the battery unit detected as the low-voltage battery unit, A leakage current of the specific monitoring circuit using a comparison result between the ratio and a predetermined threshold value and information indicating whether or not there are two or more low-voltage battery units associated with the specific monitoring circuit Is determined to be greater than or equal to the first criterion.
  • FIG. 2 shows an example of a functional configuration of a monitoring system 100 according to an embodiment of the present invention. It is a figure which shows an example (normal example) of a time-dependent change of the minimum voltage value observed in the monitoring system 100, and the identification number of the battery part 10 which showed the minimum voltage value. It is a figure which shows another example (abnormal example) of the time-dependent change of the minimum voltage value observed in the monitoring system 100, and the identification number of the battery part 10 which showed the minimum voltage value. It is a flowchart which shows the operation example of the determination part 13 of the monitoring system 100 which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the specific example of step S102 of FIG.
  • FIG. 1 is a configuration diagram showing an example of a hardware configuration of a power storage system 400 to which the monitoring system according to the first to third embodiments of the present invention can be applied.
  • FIG. 1 is a configuration diagram showing an example of a hardware configuration of a power storage system 400 to which the monitoring system according to the first to third embodiments of the present invention can be applied.
  • a plurality of constituent elements having substantially the same function may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of configurations having substantially the same functional configuration are distinguished as necessary, such as a battery unit 10a and a battery unit 10b.
  • a battery unit 10a and a battery unit 10b are distinguished as necessary.
  • only the same reference numerals are given.
  • the battery unit 10a and the battery unit 10b they are simply referred to as the battery unit 10.
  • FIG. 1 shows a functional configuration example of a monitoring system according to an embodiment of the present invention.
  • the monitoring system 100 includes a plurality of battery units 10a to 10f, a plurality of monitoring circuits 11a and 11b, a detection unit 12, and a determination unit 13.
  • the battery unit 10 is a battery module or a battery pack on which a battery cell or a plurality of battery cells are mounted.
  • the monitoring circuit 11 is associated with a plurality of battery units 10 as monitoring targets, and acquires the voltage value of the monitoring target battery unit 10.
  • the monitoring circuit 11a is associated with the battery units 10a to 10c
  • the monitoring circuit 11b is associated with the battery units 10d to 10f.
  • the monitoring circuit 11 is driven using electric power stored in the battery unit 10 to be monitored.
  • the detection unit 12 acquires information such as voltage values monitored by the plurality of monitoring circuits 11 from the monitoring circuit 11 and detects specific information from the acquired information. For example, the detection unit 12 detects a low-voltage battery unit that shows the lowest voltage value among the battery units 10a to 10f based on the acquired voltage value.
  • the determination unit 13 determines the state of the monitoring system 100 based on the information detected by the detection unit. For example, the determination unit 13 is based on the information on the low-voltage battery unit and the correspondence relationship between the monitoring circuit 11 and the battery unit 10. 11 can be determined.
  • the monitoring circuit 11, the detection unit 12, and the determination unit 13 may have a configuration and a function that are mounted on a BMU (Battery Management Unit).
  • BMU Battery Management Unit
  • FIG. 1 illustrates an example of the monitoring system 100 including the two monitoring circuits 11 and the six battery units 10.
  • the present invention is not limited to such an example.
  • the numbers of the battery units 10 and the monitoring circuits 11 are merely examples, and any configuration may be used as long as each of the two or more monitoring circuits 11 monitors two or more battery units 10.
  • the battery unit 10 is connected to an electric load, power generation equipment, or the like (not shown) and constitutes a power storage system.
  • Example of voltage value observation 2 and 3 show the minimum voltage value observed in the monitoring system 100 having 12 monitoring circuits 11 and 48 battery units 10, and the identification number of the battery unit 10 indicating the minimum voltage value. It is a graph showing a time-dependent change. 2 and 3, the horizontal axis is time, the vertical axis at the left end is the battery voltage, and the vertical axis at the right end is the identification number of the battery unit 10.
  • Each of the 48 battery units 10 is identified by a number from 1 to 48, and the battery units 10 identified by four consecutive numbers are associated with a common monitoring circuit 11. Specifically, the battery numbers are divided into 12 groups of 1 to 4, 5 to 8, 9 to 12 to 44, 45 to 48, and the battery units 10 in the same group are operated by the same monitoring circuit 11. Is being monitored.
  • the monitoring circuit 11 has different leakage currents for each individual. Even if the level is not a defective product, if the monitoring circuit 11 having a large leakage current is used, the power stored in the battery unit 10 is consumed correspondingly. For this reason, the amount of decrease in the voltage of the battery unit 10 associated as the monitoring target increases as the leakage current of the monitoring circuit 11 increases. If it is not possible to determine that the cause of the decrease is in the monitoring circuit 11, the battery unit 10 is not abnormal but the battery unit 10 is determined to be abnormal or the system is stopped. There are times when it falls. For this reason, the method to determine the monitoring circuit 11 whose leak current is more than the reference is provided here.
  • the low-voltage battery units are dispersed in the battery units 10 having various identification numbers without concentrating on the specific battery unit 10.
  • the low voltage battery parts are dispersed in the battery parts 10 having the identification numbers 9 to 16 between 0:00 and 17:00, and in other battery parts 10 in other time zones. It can be seen that they are dispersed. That is, it can be seen that the low voltage battery units are dispersed in the battery units 10 associated with different monitoring circuits 11.
  • the low voltage battery units are concentrated on the battery units 10 having the identification numbers 45 to 48. These battery units 10 are associated with the same monitoring circuit 11.
  • the leakage current is larger than a predetermined reference by using the information on the low voltage battery unit and the correspondence between the battery unit 10 and the monitoring circuit 11 as compared with the other monitoring circuit 11.
  • the monitoring circuit 11 can be detected. Further, in both FIG. 2 and FIG. 3, it can be seen that the replacement of the low-voltage battery unit is small in a period in which there is no battery voltage fluctuation considered to be a standby period in which the battery unit 10 is neither charged nor discharged. For this reason, it is more preferable that the period during which the above characteristics are determined is a period in which the battery unit 10 is charged, discharged, or charged / discharged.
  • FIG. 4 is a flowchart for explaining an operation example of the determination unit 13 of the monitoring system 100 according to the first embodiment of the present invention.
  • the determination unit 13 acquires information on the low-voltage battery unit acquired during the predetermined period from the detection unit 12. The longer the period used here, the higher the determination accuracy.
  • the determination unit 13 may perform the determination from information on a period of one cycle until the battery unit 10 is fully discharged from a fully charged state.
  • the determination unit 13 may perform determination from information on a period during which the battery unit 10 is charged and discharged.
  • the determination unit 13 may particularly perform determination from information on a period during which the battery unit 10 is charged.
  • the reason why it is preferable to carry out the determination from the information of the period during which the battery unit 10 is charged will be described.
  • the resistance tends to increase during charging and the voltage tends to appear high. Therefore, it can be considered that the self-consumption current of the monitoring circuit is large when the low-voltage battery units are concentrated on the battery unit associated with the same monitoring circuit 11 during charging.
  • the monitoring circuit 11 when there is no abnormality in the monitoring circuit 11, it is highly likely that the low-voltage battery unit will be replaced when the battery unit 10 is charged / discharged. ).
  • the determination unit 13 uses the acquired information on the low voltage battery unit and information indicating the correspondence relationship between the battery unit 10 and the monitoring circuit 11 to determine the ratio of each monitoring circuit 11 associated with the low voltage battery unit. calculate.
  • the ratio may be a ratio of time associated with the low voltage battery unit for each monitoring circuit 11 within a predetermined period. Further, the ratio may be the ratio of the correspondence relationship between each monitoring circuit 11 and the low-voltage battery unit acquired at a predetermined time interval. At that time, during the period in which the battery unit 10 is charged, discharged, or charged / discharged, information on 10 points is acquired at predetermined time intervals, and each monitoring circuit 11 is associated with the low voltage battery unit at the 10 points. It is better to calculate the ratio.
  • the correspondence relationship with the low voltage battery unit is obtained for each monitoring circuit 11 every 6 minutes, The ratio is calculated.
  • the correspondence relationship between the battery unit 10 and the monitoring circuit 11 is stored in a storage unit (not shown), and the determination unit 13 acquires information on the correspondence relationship from the storage unit.
  • FIG. 5 is a diagram for explaining a specific example of step S102 in FIG.
  • FIG. 5 shows a sample in which the low-voltage battery unit is detected 10 times in the monitoring system 100 configured as shown in FIG.
  • the battery units 10a, 10b, and 10c are associated with the monitoring circuit 11a
  • the battery units 10d, 10e, and 10f are associated with the monitoring circuit 11b. Therefore, sample no.
  • the ratio of the monitoring circuit 11a associated with the low voltage battery unit is 80%
  • the ratio of the monitoring circuit 11b associated with the low voltage battery unit is 20%. .
  • the determination unit 13 compares the calculated ratio with the predetermined first threshold value, and determines whether the calculated ratio is equal to or greater than the predetermined first threshold value.
  • the first threshold value used by the determination unit 13 is determined according to the system configuration of the monitoring system 100 and the length of the target period. For example, the first threshold value may be smaller as the number of monitoring circuits 11 is larger. The first threshold value may be a larger value as the predetermined period is shorter. The first threshold value is a value for determining that the low voltage battery unit is biased toward the battery unit 10 associated with the specific monitoring circuit 11, and is 80%, for example.
  • the determination unit 13 compares the ratio calculated in step S102 with the largest value with the first threshold (step S103).
  • the determination unit 13 determines whether there are two or more low-voltage battery units associated with the monitoring circuit 11 having the highest calculated ratio (Ste S104). When there are two or more low-voltage battery units associated with the monitoring circuit 11, the determination unit 13 determines that the leakage current of the monitoring circuit 11 is equal to or higher than the first reference (step S105).
  • the determination unit 13 determines that the leakage current of the monitoring circuit 11 is less than the first reference. Is also determined to be smaller (step S106).
  • the operation shown in FIG. 4 may be executed periodically, for example, or may be executed when a predetermined start operation is performed.
  • the leakage current of the specific monitoring circuit 11 is larger than that of the other monitoring circuits 11, and the power of the battery unit 10 to be monitored by the specific monitoring circuit 11 is biased due to the influence. It is in a consumed state. For this reason, even when the leakage current of the monitoring circuit 11 is equal to or higher than a predetermined reference, the operation itself of the power storage system is less affected and may not be said to be abnormal.
  • the monitoring system 100 may be a reference for specifying the cause of the voltage drop depending on how the first threshold is determined. You may notify as information. Alternatively, depending on how the first threshold value is determined, the monitoring system 100 determines that the leakage current of the specific monitoring circuit 11 is equal to or higher than the reference when the determination unit 13 determines that the system abnormality is an administrator of the monitoring system 100 or the like. Can also be notified.
  • the plurality of monitoring circuits 11 of the monitoring system 100 are driven using the electric power stored in the battery unit 10 associated as the monitoring target. And the ratio with which the specific monitoring circuit 11 is matched with the low voltage battery part among the some monitoring circuits 11 is compared with a predetermined 1st threshold value. Using this comparison result and information indicating whether or not there are two or more low voltage battery units associated with the specific monitoring circuit 11, the leakage current of the specific monitoring circuit 11 is a predetermined first reference. It is determined whether or not this is the case. With this configuration, it is possible to identify the monitoring circuit 11 having a larger leakage current than the other monitoring circuits 11.
  • a different value is used as the first threshold value depending on the length of the predetermined period. Specifically, a larger first threshold is used as the predetermined period is shorter. With this configuration, the determination accuracy of the monitoring circuit 11 having a large leakage current can be further increased.
  • a period during which the battery unit 10 is charged, discharged, or charged / discharged can be used as the predetermined period.
  • the characteristics seen when the monitoring circuit 11 having a large leakage current is included in the voltage value tend to appear in the voltage value. For this reason, the determination accuracy of the monitoring circuit 11 having a large leakage current can be further increased.
  • FIG. 6 is a flowchart for explaining an operation example of the determination unit 13 of the monitoring system 100 according to the second embodiment of the present invention.
  • the determination unit 13 performs a first reference determination (step S200).
  • the first reference determination shown in step S200 corresponds to steps S101 to S106 in FIG.
  • the determination unit 13 performs the first reference determination and determines whether or not the determination result is equal to or greater than the first reference (step S201).
  • the determination unit 13 acquires the voltage drop amount in the standby state of the low-voltage battery unit from the detection unit 12 (step S202).
  • step S201 the detection unit 12 detects the voltage drop amount of each battery unit 10 based on the voltage value acquired from the monitoring circuit 11 in a standby state (a state in which neither charging nor discharging is performed).
  • a standby state a state in which neither charging nor discharging is performed.
  • the detection unit 12 may detect the voltage drop amount of each battery unit 10 detected as the low voltage battery unit within a predetermined period. Alternatively, the detection unit 12 may detect a voltage drop amount of two or more battery units 10 associated with the monitoring circuit determined that the ratio calculated in step S102 of FIG. 4 is greater than the first threshold value. Good. In the latter case, the voltage drop amount of the other battery part (preferably the high voltage battery part having the highest voltage value) may be further acquired. The determination unit 13 acquires the voltage drop amount detected by the detection unit 12 as described above.
  • a power storage system including a plurality of battery units 10
  • an operation for correcting the voltage difference to be small
  • the balance operation can be corrected so that the voltage difference becomes small if the voltage difference between the battery units 10 is within a predetermined voltage difference.
  • the voltage difference between the battery units 10 is equal to or greater than a predetermined voltage difference, the voltage difference cannot be reduced, so that the voltage difference increases each time the charge / discharge operation is performed.
  • the predetermined voltage is set according to the ability of the balance circuit that performs the balance operation, and varies depending on the type of the balance circuit, the method of the balance operation, and the like.
  • the determination unit 13 determines whether or not the voltage drop amount is equal to or greater than the second threshold (step S203). When the voltage drop amount is equal to or greater than the second threshold value, the determination unit 13 determines that the leak current of the specific monitoring circuit 11 is equal to or greater than the second reference, and the leak current is significantly larger than the first reference (the level is large). ) (Step S204). When the voltage drop amount is smaller than the second threshold value in step S203, the determination unit 13 determines that the leakage current of the specific monitoring circuit 11 is smaller than the second reference, and the monitoring circuit 11 leaks less than the first reference. It is determined that the current is large but the degree is small (low level) (step S205).
  • the amount of voltage drop in the standby state of the low voltage battery unit is used to determine the leakage current of the monitoring circuit 11. It becomes possible to determine the size. Since the voltage drop amount in the standby state of the low-voltage battery unit is a value corresponding to the magnitude of the leakage current of the monitoring circuit 11, the monitoring circuit having a large leak current is used by using the voltage drop amount in the standby state of the low-voltage battery unit. 11 determination accuracy can be improved. Further, by using the information on the voltage drop amount, it is possible to further determine the level of the level of the leakage current of the monitoring circuit 11 determined to be larger than the reference.
  • the value of the second threshold value by adjusting the value of the second threshold value, it is possible to determine whether or not the range can be corrected by the balance operation. In this embodiment, that is, when it is determined that the level is small (a range that can be corrected by the balance operation), it can be corrected by the balance operation, and therefore it can be determined that the replacement of the monitoring circuit 11 at that time is unnecessary. . On the other hand, if it is determined that the level is high (out of the range that can be corrected by the balance operation), it cannot be corrected by the balance operation, and therefore it can be determined that the replacement of the monitoring circuit 11 is unnecessary.
  • the voltage drop amount in the standby state of the low-voltage battery unit is used to determine whether or not the leakage current is equal to or higher than the reference by comparing the value with the second threshold value.
  • the voltage drop amount in the standby state of the low-voltage battery unit may be used as a value indicating the magnitude of the leakage current.
  • the difference between the voltage drop amount in the standby state of the high voltage battery unit and the voltage drop amount in the standby state of the low voltage battery unit can be used as a value indicating the magnitude of the leakage current.
  • the determination unit 13 determines the amount of voltage decrease (hereinafter referred to as “voltage drop amount”) of two or more battery units associated with the monitoring circuit 11 determined to have the ratio calculated in step S102 equal to or greater than the first threshold. (Referred to as the first voltage drop amount).
  • the determination unit 13 may determine the level of the level by comparing the first voltage decrease amount with the voltage decrease amount of the battery unit 10 associated with the other monitoring circuit 11.
  • the first voltage drop amount may use an average value of the voltage drop amounts of two or more battery units, or may use a value having the largest voltage drop amount.
  • FIG. 7 is a diagram illustrating a functional configuration of the monitoring device 20 according to the third embodiment of the present invention.
  • the monitoring device 20 includes a determination unit 13.
  • the determination unit 13 compares a ratio of a specific monitoring circuit among the plurality of monitoring circuits that is associated with the low voltage battery unit having the lowest voltage value among the plurality of battery units with a predetermined first threshold value. .
  • the monitoring circuit is driven using electric power stored in the battery unit associated with the monitoring target.
  • the determination unit 13 uses the comparison result and information indicating whether there are two or more low-voltage battery units associated with the specific monitoring circuit, and the leakage current of the specific monitoring circuit is a predetermined first value. It is determined whether or not it exceeds the standard.
  • FIG. 8 is a flowchart for explaining an operation example of the determination unit 13 of the monitoring device 20 according to the third embodiment of the present invention.
  • the determination unit 13 uses a ratio in which the specific monitoring circuit is associated with the low voltage battery unit, and information indicating whether there are two or more low voltage battery units associated with the specific monitoring circuit. Then, it is determined whether or not the leakage current of the monitoring circuit is greater than or equal to a predetermined first reference (step S301).
  • the monitoring system 100 of the present invention described using the first to third embodiments can be applied to various power storage systems including a battery unit.
  • the monitoring system 100 can be applied to a power storage system including a storage battery that stores power used in each home.
  • FIG. 9 is a configuration diagram showing an example of a hardware configuration of the power storage system 400 to which the monitoring system according to the first to third embodiments of the present invention can be applied.
  • the power storage system 400 includes a storage battery 401, a HEMS (Home Energy Management System) 402, a smart meter 403, a monitor 404, a distribution board 405, an electric load 406, a power generation device 407, and an electric vehicle 408. .
  • the power storage system 400 is connected to the Internet 600 and a power transmission network 500 owned by a power company.
  • the storage battery 401 includes a secondary battery that can be repeatedly charged and discharged, such as a battery cell.
  • the storage battery 401 can store electricity generated by the power generation device 407 and electricity supplied from a commercial power source (not shown), and can supply the stored electricity to the electrical load 406 and the like.
  • the HEMS 402 is a control device that grasps the state of energy use and controls and manages so that the power storage system 400 can be efficiently operated as a whole.
  • the HEMS 402 can be connected to a server 601 on the Internet 600, and can report the energy usage status in the power storage system 400 to the server 601 or operate in accordance with an instruction from the server 601.
  • the HEMS 402 is connected to the storage battery 401, the electric load 406, and the like through a communication path, and can control the operation of the storage battery 401, the electric load 406, and the like.
  • the HEMS 402 can notify the use status of energy in the power storage system 400 and an abnormality occurring in the power storage system 400 using the monitor 404.
  • the storage battery 401, smart meter 403, electric load 406, power generation device 407, electric vehicle 408, and the like are connected via a distribution board 405. Thereby, electricity sent from the power transmission network 500 via the smart meter 403 or electricity generated by the power generation device 407 is supplied to the electric load 406 or the storage battery 401 or stored in the storage battery 401 or the electric vehicle 408. Electricity is supplied to the electric load 406.
  • the smart meter 403 is a power meter having a communication function, and by connecting the smart meter 403 to the HEMS 402, it becomes possible to grasp the usage status of electricity in both the power storage system 400 and the power company.
  • the monitor 404 is connected to the HEMS 402 and is an example of an output device that outputs information related to the power storage system 400 such as electricity usage.
  • the monitor 404 may be a dedicated monitor for the power storage system 400, or may be a device such as a personal computer (PC), a television receiver, a smartphone, or a tablet terminal.
  • the electrical load 406 is a device that consumes power in the power storage system 400, and is, for example, a television receiver, a PC, an air conditioner, a lighting fixture, or the like.
  • the power generation device 407 is a solar power generation device, for example, and generates electricity from an energy source such as sunlight. Electricity generated by the power generation device 407 is stored in the storage battery 401 and the electric vehicle 408, or sold to a power company.
  • the electric vehicle 408 is a vehicle provided with a battery cell, and can be used as a storage battery by connecting to the power storage system 400.
  • the electric vehicle 408 can supply the stored electricity to the electric load 406 when the amount of electricity used is large or during a power failure.
  • the battery unit 10 is a secondary battery provided in, for example, the storage battery 401 or the electric vehicle 408.
  • the monitoring circuit 11, the detection unit 12, and the determination unit 13 can be realized as, for example, one component in the storage battery 401.
  • the detection unit 12 and the determination unit 13 may be realized as functions of the HEMS 402 and the smart meter 403.
  • the detection unit 12 and the determination unit 13 may be provided in the server 601 on the Internet 600.
  • the monitoring system 100 can be provided as a function of the electric vehicle 408.
  • the electric vehicle 408 can have the functions of the battery unit 10, the monitoring circuit 11, the detection unit 12, and the determination unit 13.
  • a home power storage system As an example of a power storage system to which the monitoring system of the above embodiment can be applied, a home power storage system has been described as an example, but the present invention is not limited to such an example.
  • the monitoring system of the above embodiment can be applied to various power storage systems using the battery unit 10. At this time, each function of the monitoring system 100 may be realized by one device or may be realized by a plurality of devices. Various changes can be made to the hardware configuration.
  • a specific monitoring circuit among a plurality of monitoring circuits driven using power stored in two or more battery units associated as monitoring targets is within a predetermined period.
  • the comparison result comparing the ratio associated with the low voltage battery unit having the lowest voltage value with a predetermined threshold, and whether or not there are two or more low voltage battery units associated with the specific monitoring circuit
  • a determination unit that determines whether or not a leakage current of the specific monitoring circuit is equal to or higher than a first reference using the information.
  • the said determination part is a monitoring apparatus of Additional remark 1 which uses the said threshold value which changes according to the length of a predetermined period.
  • the said determination part is a monitoring apparatus of Additional remark 2 which uses the said threshold value, so that the said predetermined period is short.
  • Supplementary Note 5 The monitoring device according to any one of Supplementary Notes 1 to 4, wherein the predetermined period is a period in which the battery unit is charged.
  • the said determination part further uses the fall amount of the voltage value in the standby period when the said low voltage battery part is not charging and discharging, and the leak current of the said specific monitoring circuit is more than a 2nd reference
  • the monitoring device according to any one of appendices 1 to 5, which determines whether or not.
  • a plurality of chargeable / dischargeable battery units A plurality of monitoring circuits that are driven using electric power stored in two or more battery units associated as monitoring targets among the plurality of battery units, and monitor the voltage values of the associated battery units;
  • a detection unit for detecting a low voltage battery unit having the lowest voltage value among the plurality of battery units;
  • a comparison result between a ratio of a specific monitoring circuit associated with the battery unit detected as the low-voltage battery unit within the predetermined period and the first threshold value, and the specific monitoring circuit
  • a determination unit that determines whether or not a leakage current of the specific monitoring circuit is equal to or higher than a first reference using information indicating whether or not there are two or more low voltage battery units associated with each other;
  • a monitoring system comprising: (Additional remark 8) It drives using the electric power stored in the several battery part which can be charged / discharged, and two or more battery parts matched as a monitoring object among these battery parts, and was matched

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

リーク電流が所定の基準以上である監視回路を判定するために、監視装置20は、監視対象として対応付けられた2つ以上の電池部10に蓄えられた電力を用いて駆動する複数の監視回路11のうち、特定の監視回路11が、複数の前記電池部10のうち最も電圧値が低い低圧電池部と対応付けられている割合を所定の閾値と比較した比較結果と、特定の監視回路11と対応付けられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路11のリーク電流が第1の基準以上であるか否かを判定する判定部13を備える。

Description

監視装置、監視システムおよび監視方法
 本発明は、監視装置、監視システムおよび監視方法に関する。
 複数の二次電池を用いた蓄電システムでは、電池が経時的に劣化したり、異常が発生した場合に必要なメンテナンスを行うために、監視を行っている。例えば特許文献1には、蓄電システム内の電池の平均電圧値に応じた閾値と、各電池の電圧値とを比較し、その結果に基づいて、電池の異常を検出する故障診断装置が開示されている。
特開2009-301791号公報
 しかしながら、電圧値の変化は、必ずしも電池の異常によって引き起こされているとは限らない。例えば、電池の電圧値を監視する監視回路が、監視対象の電池に蓄えられた電力を用いて駆動する場合、リーク電流が大きい(自己消費電流が大きい)監視回路があると、その監視回路と対応付けられた電池の電圧値が低下する。しかしながら、特許文献1に記載の故障診断装置では、このような場合であっても、実際には電池に異常が生じていないにも関わらず、電池の異常と判定されてしまう場合があった。もし、監視回路の異常だった場合には、最終的に電圧値などの監視ができなくなってしまうおそれがある。さらに適切な保守対応がとれなくなってしまう。
 そこで本発明の目的は、上述した課題を解決する監視装置、監視システムおよび監視方法を提供することである。
 本発明による監視装置は、
 監視対象として対応付けられた2つ以上の電池部に蓄えられた電力を用いて駆動する複数の監視回路のうち特定の監視回路が、所定期間内において複数の前記電池部のうち最も電圧値が低い低圧電池部と対応付けられている割合を所定の閾値と比較した比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する判定部を有する。
 また、本発明による監視システムは、
 充放電可能な複数の電池部と、
 前記複数の電池部のうち監視対象として対応づけられた2つ以上の電池部に蓄えられた電力を用いて駆動し、前記対応付けられた電池部の電圧値を監視する複数の監視回路と、 前記複数の電池部のうち最も電圧値が低い低圧電池部を検出する検出部と、
 所定期間内において前記複数の監視回路のうち特定の監視回路が前記低圧電池部として検出された電池部と対応付けられている割合と第1の閾値との比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する判定部と、を備える。
 また、本発明による監視方法は、
 充放電可能な複数の電池部と、前記複数の電池部のうち監視対象として対応づけられた2つ以上の電池部に蓄えられた電力を用いて駆動し、前記対応付けられた電池部の電圧値を監視する複数の監視回路とを有する監視システムにおける監視方法であって、
 前記複数の電池部のうち最も電圧値が低い低圧電池部の情報を取得し、
 所定期間内において、前記複数の監視回路のうち特定の監視回路が前記低圧電池部として検出された電池部と対応付られている割合を算出し、
 前記割合と所定の閾値との比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する。
 本発明によれば、リーク電流が所定の基準以上である監視回路を判定することが可能である。
本発明の一実施形態に係る監視システム100の機能構成例を示している。 監視システム100において観測される最低電圧値と、最低電圧値を示した電池部10の識別番号との経時的な変化の一例(正常例)を示す図である。 監視システム100において観測される最低電圧値と、最低電圧値を示した電池部10の識別番号との経時的な変化の他の一例(異常例)を示す図である。 本発明の第1の実施形態に係る監視システム100の判定部13の動作例を示すフローチャートである。 図3のステップS102の具体例について説明するための図である。 本発明の第2の実施形態に係る監視システム100の判定部13の動作例を示すフローチャートである。 本発明の第3の実施形態に係る監視装置20の機能構成を示す図である。 本発明の第3の実施形態に係る監視装置20の判定部13の動作例を示すフローチャートである。 本発明の第1~第3の実施形態に係る監視システムを適用可能な蓄電システム400のハードウェア構成の一例を示す構成図である。
 以下、本発明の実施形態について添付の図面を参照して説明する。なお、本明細書および図面において、同一の機能を有する構成要素については同じ符号を付することによって重複説明を省略する場合がある。
 また、本明細書および図面において、実質的に同一の機能を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて電池部10aおよび電池部10bのように区別する。ただし、これらの構成要素のそれぞれを特に区別する必要がない場合、同一符号のみを付する。例えば電池部10aおよび電池部10bなどを特に区別する必要がない場合には、単に電池部10と称する。
 <第1の実施形態>
 (監視システム100の機能構成)
 図1は、本発明の一実施形態に係る監視システムの機能構成例を示している。この監視システム100は、複数の電池部10a~10fと、複数の監視回路11aおよび11bと、検出部12と、判定部13とを有する。電池部10は、電池セルまたは複数の電池セルを搭載した電池モジュールや電池パックなどである。監視回路11は、監視対象として複数の電池部10と対応付けられており、監視対象の電池部10の電圧値を取得している。具体的には、監視回路11aは、電池部10a~10cと対応付けられており、監視回路11bは、電池部10d~10fと対応付けられている。監視回路11は、監視対象の電池部10に蓄えられた電力を用いて駆動されている。検出部12は、複数の監視回路11が監視する電圧値などの情報を監視回路11から取得して、取得した情報から特定の情報を検出する。例えば検出部12は、取得した電圧値に基づいて、電池部10a~10fのうち最も低い電圧値を示す低圧電池部を検出する。判定部13は、検出部が検出した情報に基づいて、監視システム100の状態を判定する。例えば判定部13は、低圧電池部の情報と、監視回路11と電池部10との対応関係とに基づいて、他の監視回路11と比較して、リーク電流が所定の基準以上である監視回路11を判定することができる。例えば、監視回路11、検出部12および判定部13は、BMU(Battery Management Unit)に搭載される構成および機能であってもよい。
 なお、図1では簡単のため、2つの監視回路11と、6つの電池部10とを有する監視システム100の例について説明した。しかしながら、本発明はかかる例に限定されない。電池部10および監視回路11の数については、例示であり、2つ以上の監視回路11のそれぞれが2つ以上の電池部10を監視する構成であればよい。また、電池部10は、図示しない電気負荷や発電設備などと接続されており、蓄電システムを構成している。
 (電圧値の観測例)
 図2および図3は、12個の監視回路11と、48個の電池部10とを有する監視システム100において観測される最低電圧値と、最低電圧値を示した電池部10の識別番号との経時的な変化を表すグラフである。図2および図3の横軸は時刻であり、左端の縦軸は電池電圧であり、右端の縦軸は電池部10の識別番号である。48個の電池部10のそれぞれが1~48の番号で識別され、連続する4つの番号で識別される電池部10が共通する監視回路11と対応づけられている。具体的には、電池番号が1~4、5~8、9~12・・・41~44、45~48の12のグループに分けられ、同じグループ内の電池部10は同じ監視回路11によって監視されている。
 監視回路11は、個体別にリーク電流が異なる。不良品と言えないレベルであっても、リーク電流が大きい監視回路11を用いていると、その分だけ電池部10に蓄えられた電力が消費されてしまう。このため、監視対象として対応づけられた電池部10の電圧は、監視回路11のリーク電流が大きいほど低下量が大きい。この低下の原因が監視回路11にあると判断できない場合、実際には電池部10には異常が生じていないにも関わらず、電池部10の異常と判断されてしまったり、システムが停止してしまったりすることがある。このため、ここではリーク電流が基準以上である監視回路11を判定する方法を提供する。
 図2の例では、低圧電池部は、特定の電池部10に集中することなく様々な識別番号の電池部10に分散している。具体的に、図2の例では、0:00から17:00の間では識別番号9~16の電池部10に低圧電池部が分散しており、他の時間帯では他の電池部10に分散していることがわかる。即ち、異なる監視回路11に対応付けられている電池部10に、低圧電池部が分散していることが分かる。これに対して、図3の例では、低圧電池部が、識別番号45~48の電池部10に集中している。これらの電池部10は、同じ監視回路11に対応づけられている。通常は、複数の電池部10の電圧が均一になるように充電、放電が行われ、電圧にばらつきが生じた場合には電圧差を小さくなるように補正する動作(バランス動作)が行われる。そのため、低圧電池部が特定の電池部10に集中する場合、何らかの異常が発生している可能性が高い。電池部10自体に異常が発生している場合には、複数の電池部10が同時に異常を起こす可能性は低いため、低圧電池部は、異常を起こした1つの電池部10に集中すると考えられる。また、図2に示す例のように低圧電池部が複数の電池部10に低圧電池部が分散する場合には、電池部10および蓄電システムには異常はみられないと考えられる。これに対して、図3に示した例のように、特定の監視回路11が監視する複数(少なくとも2以上)の電池部10に低圧電池部が集中する場合、特定の監視回路11のリーク電流が大きいと考えられる。このため、特定の監視回路11が低圧電池部と対応付けられている割合が所定の閾値以上であり、且つ、特定の監視回路11と対応付けられた低圧電池部が2つ以上ある場合、特定の監視回路11のリーク電流が大きいと考えられる。このような特徴を利用して、低圧電池部の情報と、電池部10と監視回路11との対応関係とを用いて、他の監視回路11と比較して、リーク電流が所定の基準以上大きい監視回路11を検出することができる。また、図2および図3のいずれにおいても、電池部10が充電も放電もしていない待機期間と考えられる電池電圧の変動がない期間では、低圧電池部の入れ替わりが少ないことがわかる。このため、上記の特徴を判断する期間は、電池部10が充電、放電、または充放電されている期間であることがより好ましい。
 (判定部13の動作例)
 図4は、本発明の第1の実施形態に係る監視システム100の判定部13の動作例を説明するためのフローチャートである。判定部13は、所定期間に取得された低圧電池部の情報を検出部12から取得する。ここで用いられる期間は、長いほど判定精度が高くなる。例えば、判定部13は、電池部10が満充電の状態から完全放電するまでの1サイクルの期間の情報から判定を実施してもよい。判定部13は、電池部10が充電及び放電されている期間の情報から判定を実施してもよい。判定部13は、特に電池部10が充電されている期間の情報から判定を実施してもよい。ここで、電池部10が充電されている期間の情報から判定を実施するのがよい理由を説明する。劣化したセルがある場合、充電時に抵抗が大きくなり電圧が高く表れる傾向がある。そのため、充電時にも同じ監視回路11に対応付けられている電池部に低圧電池部が集中する場合には、監視回路の自己消費電流が大きいと考えることができる。また、監視回路11に異常が生じていない場合、電池部10が充放電すると、低圧電池部が入れ替わる可能性が高いため、所定期間の間に充放電を行う期間を含むことが好ましい(ステップS101)。
 判定部13は、取得した低圧電池部の情報と、電池部10と監視回路11との対応関係を示す情報とを用いて、各監視回路11について、低圧電池部と対応付けられていた割合を算出する。割合は、所定期間のうちに、各監視回路11について低圧電池部と対応付けられていた時間の割合でもよい。また、割合は、所定の時間間隔で取得した、各監視回路11と低圧電池部との対応関係の割合でもよい。その際、電池部10が充電、放電又は充放電されている期間において、所定の時間間隔で10点の情報を取得し、その10点において各監視回路11が低圧電池部と対応付けられている割合を算出したほうがよい。例えば、電池部10が1Cで充電される(完全放電された状態から1時間で充電完了となる)場合には、6分毎に各監視回路11について低圧電池部との対応関係を取得し、その割合を算出する。電池部10と監視回路11との対応関係は、図示しない記憶部に記憶されており、判定部13は、記憶部から対応関係の情報を取得する。
 図5は、図4のステップS102の具体例について説明するための図である。簡単のため、図5では、図1に示す構成の監視システム100において、10回低圧電池部を検知したサンプルを示す。この例において、電池部10a、10bおよび10cは監視回路11aと対応付けられており、電池部10d、10eおよび10fは監視回路11bと対応付けられている。したがって、サンプルNo.1~10が取得された期間内において、監視回路11aが低圧電池部と対応付けられている割合は80%であり、監視回路11bが低圧電池部と対応付けられている割合は20%である。
 図4の説明に戻る。判定部13は、算出した割合と所定の第1の閾値の大きさを比較し、算出した割合が所定の第1の閾値以上であるか否かを判断する。ここで判定部13が用いる第1の閾値は、監視システム100のシステム構成や対象とする期間の長さに応じて定められる。例えば第1の閾値は、監視回路11の数が多いほど小さい値であってよい。
第1の閾値は、所定の期間が短いほど大きい値であってよい。また第1の閾値は、特定の監視回路11に対応付けられた電池部10に低圧電池部が偏っていることを判定するための値であり、例えば80%である。判定部13は、ステップS102で算出した割合のうち最も値の大きいものを第1の閾値と比較する(ステップS103)。
 算出した割合が所定の第1の閾値以上である場合、判定部13は、算出した割合が最も高い監視回路11と対応付けられた低圧電池部が2つ以上であるか否かを判断する(ステップS104)。監視回路11と対応付けられた低圧電池部が2つ以上である場合、判定部13は、その監視回路11のリーク電流が、第1の基準以上であると判定する(ステップS105)。
 算出した割合が所定の第1の閾値より小さい場合、および監視回路と対応付けられた低圧電池部が1つである場合、判定部13は、その監視回路11のリーク電流が第1の基準よりも小さいと判定する(ステップS106)。
 図4に示した動作は、例えば、定期的に実行されてもよいし、所定の開始操作が行われたときに実行されてもよい。上記の手順で検出される状態は、他の監視回路11と比較して、特定の監視回路11のリーク電流が大きく、その影響で特定の監視回路11の監視対象の電池部10の電力が偏って消費された状態である。このため、監視回路11のリーク電流が所定の基準以上である場合であっても、蓄電システムの動作自体には影響が小さく、異常な状態とは言えないこともある。このため、監視システム100は、判定部13が特定の監視回路11のリーク電流が基準以上であると判定した場合、第1の閾値の定め方によっては、電圧低下の原因を特定するための参考情報として通知してもよい。或いは、第1の閾値の定め方によっては、監視システム100は、判定部13が特定の監視回路11のリーク電流が基準以上であると判定した場合、システムの異常として監視システム100の管理者などに通知することもできる。
 以上説明したように、本実施形態によれば、監視システム100の複数の監視回路11は、監視対象として対応付けられた電池部10に蓄えられた電力を用いて駆動する。そして複数の監視回路11のうち、特定の監視回路11が、低圧電池部と対応付けられている割合が所定の第1閾値と比較される。この比較結果と、特定の監視回路11と対応付けられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、特定の監視回路11のリーク電流が所定の第1の基準以上であるか否かが判定される。この構成により、他の監視回路11と比較して、リーク電流が大きい監視回路11を特定することが可能になる。このため、電池部10に異常が発生していないにも関わらず、監視回路11のリーク電流が大きいため電池部10の電圧が低下している場合、電圧低下の原因が監視回路11にあることを特定することが可能になる。したがって、監視システム100において、電池部10の異常の誤検知を抑制することができる。
 また、本実施形態によれば、第1の閾値として所定期間の長さに応じて異なる値が用いられる。具体的には、所定期間が短いほど大きい第1の閾値が用いられる。この構成により、リーク電流が大きい監視回路11の判定精度をより高めることができる。
 また、本実施形態によれば、所定期間として、電池部10が充電、放電または充放電されている期間を用いることができる。電池部10が充電、放電または充放電されている期間は、待機期間と比較して、リーク電流が大きい監視回路11を含む場合にみられる特徴が電圧値に現れやすい。このため、リーク電流が大きい監視回路11の判定精度をより高めることができる。
 <第2の実施形態>
 本発明の第2の実施形態に係る監視システム100の機能構成は、第1の実施形態と同様であるためここでは説明を省略する。本実施形態では、検出部12および判定部13の動作が第1の実施形態と異なるため、以下、相違点について主に説明する。
 (判定部13の動作例)
 図6は、本発明の第2の実施形態に係る監視システム100の判定部13の動作例について説明するためのフローチャートである。判定部13は、第1の基準判定を行う(ステップS200)。ステップS200に示す第1の基準判定は、図4のステップS101~ステップS106に相当する。判定部13は、第1の基準判定を行い、判定結果が第1の基準以上であるか否かを判定する(ステップS201)。判定結果が第1の基準以上である場合、判定部13は、低圧電池部の待機状態における電圧低下量を検出部12から取得する(ステップS202)。
 ステップS201の詳細について説明する。まず検出部12は、待機状態(充電も放電も行っていない状態)において、監視回路11から取得した電圧値に基づいて、各電池部10の電圧低下量を検出する。監視回路11のリーク電流に起因して電池部10の電圧値が低下している場合、電池部10が充電も放電も行っていなくても、電力が消費されて電圧値が低下するという特徴がある。このため、判定部13は、検出部12から低圧電池部の電圧低下量を取得する。
 また、ステップS202の動作においては、検出部12は、所定期間内に低圧電池部として検出された各電池部10の電圧低下量を検出してもよい。或いは、検出部12は、図4のステップS102において算出した割合が第1の閾値より大きいと判定された監視回路に対応付けられた2つ以上の電池部10の電圧低下量を検出してもよい。後者の場合には、その他の電池部(好ましくは最も電圧値が高い高圧電池部)の電圧低下量をさらに取得してもよい。判定部13は、上記の通り検出部12が検出した電圧低下量を取得する。
 ここで、一般的に、複数の電池部10から構成される蓄電システムにおいては電池部10同士の電圧差が大きくなった場合には、電圧差を小さくなるように補正する動作(バランス動作)が行われている。バランス動作は、電池部10同士の電圧差が所定の電圧差以内であれば、電圧差が小さくなるように補正することが可能である。しかしバランス動作は、電池部10同士の電圧差が所定の電圧差以上になった場合には、電圧差を縮めることができないため、充放電動作を行う度に電圧差が大きくなってしまう。所定の電圧は、バランス動作を行うバランス回路の能力に応じて設定されるものであり、バランス回路の種類及びバランス動作の方法などに応じて変わる。
 図6の説明に戻る。判定部13は、電圧低下量が第2の閾値以上であるか否かを判断する(ステップS203)。電圧低下量が第2の閾値以上である場合、判定部13は、特定の監視回路11のリーク電流が第2の基準以上であり、リーク電流が第1の基準よりも大幅に大きい(レベル大)と判定する(ステップS204)。ステップS203で電圧低下量が第2の閾値より小さい場合、判定部13は、特定の監視回路11のリーク電流が第2の基準よりも小さく、この監視回路11は、第1の基準よりはリーク電流が大きいが、度合は小さい(レベル小)と判定する(ステップS205)。
 本発明の第2の実施形態では、各監視回路11が低圧電池部と対応付けられていた割合に加えて、低圧電池部の待機状態における電圧低下量を用いて、監視回路11のリーク電流の大きさを判定することが可能になる。低圧電池部の待機状態における電圧低下量は、監視回路11のリーク電流の大きさに応じた値となるため、低圧電池部の待機状態における電圧低下量を用いることで、リーク電流が大きい監視回路11の判定精度を向上させることができる。また、電圧低下量の情報を用いることで、基準よりも大きいと判定された監視回路11のリーク電流の大きさについて、さらにレベルの大小を判定することが可能である。本実施形態において、第2の閾値の値を調整することで、バランス動作によって補正可能な範囲か否か判定することができるようになる。本実施形態では、すなわち、レベル小(バランス動作によって補正可能な範囲)と判定された場合には、バランス動作によって補正可能なため、その時点での監視回路11の交換は不要であると判断できる。一方、レベル大(バランス動作によって補正可能な範囲外)と判定された場合には、バランス動作によって補正できないため、監視回路11の交換が不要であると判断することができる。
 なお、図6の例では、低圧電池部の待機状態における電圧低下量は、第2の閾値と値の大きさを比較することで、リーク電流が基準以上であるか否かを判定するために用いられたが、かかる例に限定されない。低圧電池部の待機状態における電圧低下量は、リーク電流の大きさを示す値として用いられてもよい。例えば、高圧電池部の待機状態における電圧低下量と、低圧電池部の待機状態における電圧低下量との差を、リーク電流の大きさを示す値として用いることができる。
 また、ステップS203において、判定部13は、ステップS102で算出した割合が第1の閾値以上であると判定された監視回路11に対応付けられた2つ以上の電池部の電圧低下量(以下、第1電圧低下量と称する)を用いることができる。この場合判定部13は、第1電圧低下量をその他の監視回路11に対応付けられた電池部10の電圧低下量と比較することにより、レベルの大小を判定してもよい。さらに、第1電圧低下量は、2つ以上の電池部の電圧低下量の平均値を用いてもよいし、その中で最も電圧低下量の大きい値を用いてもよい。
 <第3の実施形態>
 図7は、本発明の第3の実施形態に係る監視装置20の機能構成を示す図である。監視装置20は、判定部13を備える。判定部13は、複数の監視回路のうち、特定の監視回路が、複数の前記電池部のうち最も電圧値が低い低圧電池部と対応付けられている割合を所定の第1の閾値と比較する。ここで監視回路は、監視対象として対応付けられた電池部に蓄えられた電力を用いて駆動する。判定部13は、比較結果と、特定の監視回路と対応付けられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、特定の監視回路のリーク電流が所定の第1の基準以上であるか否かを判定する。
 図8は、本発明の第3の実施形態に係る監視装置20の判定部13の動作例を説明するためのフローチャートである。判定部13は、特定の監視回路が低圧電池部と対応付けられている割合と、特定の監視回路と対応付けられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、監視回路のリーク電流が所定の第1の基準以上であるか否かを判定する(ステップS301)。
 <ハードウェア構成例>
 第1~第3の実施形態を用いて説明した本発明の監視システム100は、電池部を含む様々な蓄電システムに対して適用することができる。例えば、この監視システム100は、各家庭内で使用する電力を蓄える蓄電池を含む蓄電システムに対して適用可能である。
 図9は、本発明の第1~第3の実施形態に係る監視システムを適用可能な蓄電システム400のハードウェア構成の一例を示す構成図である。
 蓄電システム400は、蓄電池401と、HEMS(Home Energy Management Sysmte)402と、スマートメーター403と、モニター404と、分電盤405と、電気負荷406と、発電装置407と、電気自動車408とを含む。蓄電システム400は、インターネット600および電力事業者の所有する送電網500とそれぞれ接続されている。
 蓄電池401は、電池セルなど繰り返し充電および放電することが可能な二次電池を含む。蓄電池401は、発電装置407で発電した電気や、図示しない商用電源から供給された電気を蓄えることができ、蓄えた電気を電気負荷406などに供給することができる。
 HEMS402は、エネルギーの使用状況を把握し、蓄電システム400が全体として効率良く運転できるように制御および管理する制御装置である。HEMS402は、例えば、インターネット600上のサーバ601と接続することができ、蓄電システム400内のエネルギーの使用状況をサーバ601に報告したり、サーバ601からの指示に従って動作したりすることができる。またHEMS402は、蓄電池401や電気負荷406などと通信路で接続されており、蓄電池401や電気負荷406などの動作を制御することもできる。HEMS402は、モニター404を用いて、蓄電システム400内のエネルギーの使用状況や蓄電システム400内で発生した異常を通知することができる。
 蓄電池401、スマートメーター403、電気負荷406、発電装置407および電気自動車408などは、分電盤405を介して接続されている。これにより、スマートメーター403を介して送電網500から送られてきた電気や、発電装置407が発電した電気が、電気負荷406または蓄電池401に供給されたり、蓄電池401や電気自動車408に蓄えられた電気が電気負荷406に供給されたりする。
 スマートメーター403は、通信機能を有する電力メーターであり、スマートメーター403をHEMS402と接続することで、蓄電システム400内と電力会社の双方で電気の使用状況を把握することができるようになる。
 モニター404は、HEMS402と接続されており、電気の使用状況など蓄電システム400に関する情報を出力する出力装置の一例である。モニター404は、蓄電システム400の専用モニターであってもよいし、パーソナルコンピュータ(PC)、テレビ受像装置、スマートフォン、タブレット端末などの装置であってもよい。
 電気負荷406は、蓄電システム400内で電力を消費する装置であり、例えばテレビ受像機、PC、エアーコンディショナー、照明器具などである。
 発電装置407は、例えば太陽光発電装置などであり、太陽光などのエネルギー源から電気を作り出す。発電装置407で作られた電気は、蓄電池401や電気自動車408に蓄えられたり、電力事業者に売却されたりする。
 電気自動車408は、電池セルを備えた自動車であり、蓄電システム400と接続することで、蓄電池として使用することができる。電気自動車408は、蓄えた電気を電気使用量が多い時や停電時に電気負荷406に供給することができる。
 (監視システムの機能構成とハードウェア構成の対応関係)
 図1に示した監視システム100の機能構成と、図9に示すハードウェア構成との対応関係の一例について説明する。図1に示した監視システム100を図9の蓄電システム400に適用する場合、電池部10は、例えば蓄電池401や電気自動車408に備えられた二次電池である。電池部10が蓄電池401に備えられた二次電池である場合、監視回路11、検出部12、判定部13は、例えば蓄電池401内の一部品として実現することができる。或いは、検出部12、判定部13は、HEMS402やスマートメーター403の機能として実現されてもよい。或いは、検出部12および判定部13は、インターネット600上のサーバ601内に備えられていてもよい。
 或いは、監視システム100は、電気自動車408の機能として備えることもできる。
電気自動車408は、電池部10、監視回路11、検出部12および判定部13の機能を有することができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の技術的思想の範囲内で当業者が理解し得る様々な変更をすることができる。
 例えば、上記実施形態で示したフローチャートの各ステップが実行される順序は、必ずしも記載された順序である必要はない。特に記載がない限り、当業者が想到し得る各種の変更を加えることが可能である。
 上記実施形態の監視システムを適用可能な蓄電システムとして、家庭内蓄電システムを例に挙げたが、本発明はかかる例に限定されない。電池部10を用いる様々な蓄電システムに対して、上記実施形態の監視システムを適用することが可能である。このとき監視システム100の各機能は、1つの装置で実現されてもよいし、複数の装置で実現されてもよい。そのハードウェア構成については、様々な変更を加えることができる。
 上記の実施の形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1) 監視対象として対応付けられた2つ以上の電池部に蓄えられた電力を用いて駆動する複数の監視回路のうち特定の監視回路が、所定期間内において複数の前記電池部のうち最も電圧値が低い低圧電池部と対応付けられている割合を所定の閾値と比較した比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する判定部、を備える監視装置。
(付記2) 前記判定部は、所定期間の長さに応じて異なる前記閾値を用いる、付記1に記載の監視装置。
(付記3) 前記判定部は、前記所定期間が短いほど大きい前記閾値を用いる、付記2に記載の監視装置。
(付記4) 前記所定期間は、前記電池部が充電、放電または充放電されている期間である、付記1から3のいずれか1項に記載の監視装置。
(付記5) 前記所定期間は、前記電池部が充電されている期間である、付記1から4のいずれか1項に記載の監視装置。
(付記6) 前記判定部は、前記低圧電池部が充電および放電していない待機期間中における電圧値の低下量をさらに用いて、前記特定の監視回路のリーク電流が第2の基準以上であるか否かを判定する、付記1から5のいずれか1項に記載の監視装置。
(付記7) 充放電可能な複数の電池部と、
 前記複数の電池部のうち監視対象として対応づけられた2つ以上の電池部に蓄えられた電力を用いて駆動し、前記対応付けられた電池部の電圧値を監視する複数の監視回路と、 前記複数の電池部のうち最も電圧値が低い低圧電池部を検出する検出部と、
 所定期間内において前記複数の監視回路のうち特定の監視回路が前記低圧電池部として検出された電池部と対応付けられている割合と第1の閾値との比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する判定部と、を備える監視システム。
(付記8) 充放電可能な複数の電池部と、前記複数の電池部のうち監視対象として対応づけられた2つ以上の電池部に蓄えられた電力を用いて駆動し、前記対応付けられた電池部の電圧値を監視する複数の監視回路とを有する監視システムにおける監視方法であって、
 前記複数の電池部のうち最も電圧値が低い低圧電池部の情報を取得し、
 所定期間内において、前記複数の監視回路のうち特定の監視回路が前記低圧電池部として検出された電池部と対応付られている割合を算出し、
 前記割合と所定の閾値との比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する、監視方法。
 この出願は、2016年3月22日に出願された日本出願特願2016-57587を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  電池部
 11  監視回路
 12  検出部
 13  判定部
 20  監視装置
 100  監視システム

Claims (8)

  1.  監視対象として対応付けられた2つ以上の電池部に蓄えられた電力を用いて駆動する複数の監視回路のうち特定の監視回路が、所定期間内において複数の前記電池部のうち最も電圧値が低い低圧電池部と対応付けられている割合を所定の閾値と比較した比較結果と、前記特定の監視回路と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視回路のリーク電流が第1の基準以上であるか否かを判定する判定手段、を備える監視装置。
  2.  前記判定手段は、所定期間の長さに応じて異なる前記閾値を用いる、請求項1に記載の監視装置。
  3.  前記判定手段は、前記所定期間が短いほど大きい前記閾値を用いる、請求項2に記載の監視装置。
  4.  前記所定期間は、前記電池部が充電、放電または充放電されている期間である、請求項1から3のいずれか1項に記載の監視装置。
  5.  前記所定期間は、前記電池部が充電されている期間である、請求項1から4のいずれか1項に記載の監視装置。
  6.  前記判定手段は、前記低圧電池部が充電および放電していない待機期間中における電圧値の低下量をさらに用いて、前記特定の監視回路のリーク電流が第2の基準以上であるか否かを判定する、請求項1から5のいずれか1項に記載の監視装置。
  7.  充放電可能な複数の電池部と、
     前記複数の電池部のうち監視対象として対応づけられた2つ以上の電池部に蓄えられた電力を用いて駆動し、前記対応付けられた電池部の電圧値を監視する複数の監視手段と、
     前記複数の電池部のうち最も電圧値が低い低圧電池部を検出する検出手段と、
     所定期間内において前記複数の監視手段のうち特定の監視手段が前記低圧電池部として検出された電池部と対応付けられている割合と第1の閾値との比較結果と、前記特定の監視手段と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視手段のリーク電流が第1の基準以上であるか否かを判定する判定手段と、を備える監視システム。
  8.  充放電可能な複数の電池部と、前記複数の電池部のうち監視対象として対応づけられた2つ以上の電池部に蓄えられた電力を用いて駆動し、前記対応付けられた電池部の電圧値を監視する複数の監視手段とを有する監視システムにおける監視方法であって、
     前記複数の電池部のうち最も電圧値が低い低圧電池部の情報を取得し、
     所定期間内において、前記複数の監視手段のうち特定の監視手段が前記低圧電池部として検出された電池部と対応付られている割合を算出し、
     前記割合と所定の閾値との比較結果と、前記特定の監視手段と対応づけられた低圧電池部が2つ以上であるか否かを示す情報とを用いて、前記特定の監視手段のリーク電流が第1の基準以上であるか否かを判定する、監視方法。
PCT/JP2017/010078 2016-03-22 2017-03-14 監視装置、監視システムおよび監視方法 WO2017163991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/084,148 US11175342B2 (en) 2016-03-22 2017-03-14 Monitoring device, monitoring system, and monitoring method
EP17770034.1A EP3435517A4 (en) 2016-03-22 2017-03-14 MONITORING DEVICE, MONITORING SYSTEM AND MONITORING PROCEDURE
JP2018507244A JP6863365B2 (ja) 2016-03-22 2017-03-14 監視装置、監視システムおよび監視方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016057587 2016-03-22
JP2016-057587 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017163991A1 true WO2017163991A1 (ja) 2017-09-28

Family

ID=59899644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010078 WO2017163991A1 (ja) 2016-03-22 2017-03-14 監視装置、監視システムおよび監視方法

Country Status (4)

Country Link
US (1) US11175342B2 (ja)
EP (1) EP3435517A4 (ja)
JP (1) JP6863365B2 (ja)
WO (1) WO2017163991A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368036B2 (en) * 2020-04-28 2022-06-21 Nxp B.V. Power management circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301791A (ja) 2008-06-11 2009-12-24 Nissan Motor Co Ltd 燃料電池システムの故障診断装置
JP2012208067A (ja) * 2011-03-30 2012-10-25 Keihin Corp 電池電圧検出装置
JP2014223003A (ja) * 2013-05-14 2014-11-27 トヨタ自動車株式会社 蓄電システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031353A (en) * 1998-02-25 2000-02-29 Ericsson, Inc. Method and apparatus for communicating battery pack information
US7405537B2 (en) * 2004-12-20 2008-07-29 Gm Global Technology Operations, Inc. Apparatus and methods for estimating the state-of-charge of a power source
US7800247B2 (en) * 2008-05-30 2010-09-21 Chun-Chieh Chang Storage system that maximizes the utilization of renewable energy
US8259221B1 (en) * 2009-04-15 2012-09-04 Cisco Technology, Inc. System and method for charging rechargeable batteries in a digital camera
US8791669B2 (en) * 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US10044074B2 (en) * 2011-03-18 2018-08-07 Johnson Controls Technology Company Battery power source control and current detection systems and methods
JP5658354B2 (ja) 2011-03-31 2015-01-21 ルネサスエレクトロニクス株式会社 電圧監視モジュール及びこれを用いた電圧監視システム
JP5753764B2 (ja) 2011-10-27 2015-07-22 日立オートモティブシステムズ株式会社 電池システム監視装置およびこれを備えた蓄電装置
US9459323B2 (en) * 2011-11-08 2016-10-04 Hitachi Chemical Company, Ltd. Battery-state monitoring system
US9045042B2 (en) * 2012-04-13 2015-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for a one-time departure schedule setup for charging battery-electric vehicles
DE102013219360A1 (de) * 2013-09-26 2015-03-26 Siemens Aktiengesellschaft Energiespeichereinrichtung
WO2015058165A1 (en) * 2013-10-17 2015-04-23 Ambri Inc. Battery management systems for energy storage devices
US9768632B2 (en) * 2014-03-25 2017-09-19 Klepfer Holdings, Llc. Electric power station
DE102015101283A1 (de) * 2015-01-29 2016-08-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum elektrischen Laden einer Hochvoltbatterie an einem Wechselstromnetz
JP6172176B2 (ja) * 2015-02-09 2017-08-02 トヨタ自動車株式会社 電池監視装置
US20170057372A1 (en) * 2015-08-25 2017-03-02 Ford Global Technologies, Llc Electric or hybrid vehicle battery pack voltage measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301791A (ja) 2008-06-11 2009-12-24 Nissan Motor Co Ltd 燃料電池システムの故障診断装置
JP2012208067A (ja) * 2011-03-30 2012-10-25 Keihin Corp 電池電圧検出装置
JP2014223003A (ja) * 2013-05-14 2014-11-27 トヨタ自動車株式会社 蓄電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435517A4

Also Published As

Publication number Publication date
JP6863365B2 (ja) 2021-04-21
US20200292625A1 (en) 2020-09-17
EP3435517A4 (en) 2019-04-03
JPWO2017163991A1 (ja) 2019-01-31
US11175342B2 (en) 2021-11-16
EP3435517A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
CN106537718B (zh) 电池管理
US10230249B2 (en) Battery pack, method for charging/discharging same, and power consumption device
JP6056730B2 (ja) 蓄電システム
JP6228666B2 (ja) 電池システム
EP3073604B1 (en) Storage battery unit, overcurrent control method, and program
US10756533B2 (en) Battery pack charge control device and method
JP5974849B2 (ja) 電池監視装置
US20160195590A1 (en) Battery apparatus and battery system
US10491013B2 (en) Battery system having battery manager
KR102553037B1 (ko) 배터리 전압 데이터를 이용한 이상 상태 사전 감지 시스템
JP2015073340A (ja) 蓄電システム
US20180003745A1 (en) Method for diagnosing state of capacitor in modular converter
JP2020526153A (ja) マルチセルバッテリー電力管理システム
JPWO2014141747A1 (ja) 電池システム
KR101902308B1 (ko) 배터리 관리 시스템
JP5553622B2 (ja) 二次電池システムおよびその管理方法
KR20200038005A (ko) 배터리 셀의 상태 관리 시스템 및 방법
WO2017163991A1 (ja) 監視装置、監視システムおよび監視方法
JP2013192395A (ja) 2次電池の充放電検査装置
US9985321B2 (en) Battery system
JP7003911B2 (ja) 監視装置、監視システムおよび監視方法
JP2016122542A (ja) 蓄電装置の故障判定方法
KR102111492B1 (ko) 누설 전류 감지 기능을 갖는 에너지 저장 장치
JP2016115619A (ja) 電池監視システム
KR101782223B1 (ko) 배터리 조절 시스템 진단 장치 및 이를 포함하는 에너지 저장 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507244

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770034

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770034

Country of ref document: EP

Kind code of ref document: A1