WO2017163810A1 - Inverter-integrated electric compressor - Google Patents

Inverter-integrated electric compressor Download PDF

Info

Publication number
WO2017163810A1
WO2017163810A1 PCT/JP2017/008388 JP2017008388W WO2017163810A1 WO 2017163810 A1 WO2017163810 A1 WO 2017163810A1 JP 2017008388 W JP2017008388 W JP 2017008388W WO 2017163810 A1 WO2017163810 A1 WO 2017163810A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
bus bar
inverter
case
power
Prior art date
Application number
PCT/JP2017/008388
Other languages
French (fr)
Japanese (ja)
Inventor
一重 片桐
幹生 小林
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to DE112017000754.2T priority Critical patent/DE112017000754T5/en
Priority to CN201780018317.XA priority patent/CN109072894B/en
Publication of WO2017163810A1 publication Critical patent/WO2017163810A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Definitions

  • the present invention relates to an inverter-integrated electric compressor having an inverter circuit portion in a housing.
  • an inverter-integrated electric compressor in which an inverter circuit portion is attached to a housing is used in consideration of switching noise.
  • This inverter circuit portion is housed in a housing portion formed in the housing, and is fed by a power harness from a vehicle battery (power source).
  • a method of soldering a terminal to which the power harness is connected to the substrate of the inverter circuit unit and connecting the power harness to the terminal with a connector has been adopted (for example, see Patent Document 1).
  • the present invention has been made to solve the conventional technical problems, and an inverter-integrated electric compressor that has improved reliability by improving the connection structure of a power supply harness that supplies power to the inverter circuit section. The purpose is to provide.
  • the inverter-integrated electric compressor of the present invention includes a housing with a built-in motor and an inverter circuit unit that supplies power to the motor, and one end is directly connected to the inverter circuit unit or a predetermined power supply path member.
  • the connector bus bar is connected to the outer surface of the housing via an insulating case member, and a high power connector is secured to the power harness. The other end of the connector bus bar enters the case member. The one end is connected to the high power connector so that it can move or close to the high power connector, and the power harness is fixed to the high power connector. The end is conducted.
  • the inverter-integrated electric compressor according to a second aspect of the invention is characterized in that, in the above invention, the other end of the connector bus bar is engaged with the high power connector so as to be movable.
  • the inverter-integrated electric compressor according to a third aspect of the present invention is characterized in that, in each of the above-described inventions, one end of the connector bus bar is connected to the inverter circuit portion or the power supply path member by screws.
  • an inverter-integrated electric compressor including a male screw portion provided at one end of the connector bus bar in the above invention, and the male screw portion is a screw formed on the inverter circuit portion or the power supply path member.
  • an inverter-integrated electric compressor wherein the inverter circuit portion is housed in an inverter housing portion configured in a housing, and the inverter housing portion is closed by a lid member and The housing portion has a communication portion communicating with the outside in a state of being closed by the lid member, and a part of the inverter circuit portion or the power supply path member is located in the communication portion, and the connector bus bar is electrically connected to the inverter circuit portion. In this state, the communication portion is blocked by the case member.
  • the inverter-integrated electric compressor there is provided the inverter-integrated electric compressor.
  • the case member is connected to the insulating bus bar case in which one end of the connector bus bar is accommodated to close the communication portion, and is connected to the bus bar case.
  • the other end of the connector bus bar penetrates the bus bar case and enters the connector case, and the bus bar case and the connector case around the portion where the connector bus bar penetrates.
  • a seal member that waterproofs the space is provided.
  • an inverter-integrated electric compressor including a housing in which a motor is built and an inverter circuit unit that supplies power to the motor, one end is directly connected to the inverter circuit unit or via a predetermined power supply path member.
  • the connector bus bar includes a high-power connector that is attached to the outer surface of the housing via an insulating case member and is secured to the power harness, and the other end of the connector bus bar enters the case member. One end is connected in a state where the power connector is movably in contact with or close to the power connector, and the power harness is fixed to the high power connector so that the power harness and the other end of the connector bus bar are connected.
  • the connector bus bar Since the electrical connection is made, the connector bus bar is not connected to the high power connector or power harness, One end of the inverter circuit portion of Kutabasuba, or, it is possible to connect to the power supply path member.
  • the position of the connector bus bar can be adjusted even if the positional relationship between one end of the connector bus bar and the inverter circuit section or the connection part of the power supply path member is shifted due to dimensional variations, etc. By doing so, it becomes possible to absorb the positional deviation of the connection location and match the two. That is, it is possible to eliminate the stress applied to the inverter circuit portion and the power supply path member when connecting one end of the connector bus bar, and the reliability can be improved.
  • the other end of the connector bus bar and the high power connector or power harness can be easily conducted in the case member, so that the assembly workability is also improved. Is.
  • the connector bus bar and the high power connector are positioned by the engagement relationship between the two.
  • electrical connection with the power harness can be further ensured.
  • one end of the connector bus bar is connected to the inverter circuit portion or the power supply path member by screwing as in the invention of claim 3, the contact area between the two can be increased, and a large current can be handled. Will be able to.
  • a male screw part is provided at one end of the connector bus bar as in the invention of claim 4, and the male screw part enters the screw hole formed in the inverter circuit part or the power supply path member. If the connector bus bar is connected to the inverter circuit unit or the power feeding path member by the nut screwed into the part, the positioning of the connector bus bar and the inverter circuit unit or the power feeding path member becomes easy. Further, the inverter circuit portion is housed in the inverter housing portion formed in the housing as in the invention of claim 5, and this inverter housing portion is closed by the lid member, and the inverter housing portion is closed by the lid member.
  • the case member is made of an insulating bus bar case in which one end of the connector bus bar is accommodated to close the communicating portion, and an insulating member in which a high power connector is attached to the bus bar case.
  • FIG. 1 is a perspective view of an inverter-integrated electric compressor of one embodiment to which an electronic circuit device of the present invention is applied.
  • FIG. 2 is a perspective view of a state where a cover member of the inverter-integrated electric compressor in FIG. 1 is removed. It is a top view of the inverter accommodating part of the inverter integrated electric compressor of FIG.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3. It is an enlarged view of the connector bus-bar part of FIG. It is a disassembled perspective view of the inverter circuit part and housing of the inverter integrated electric compressor of FIG.
  • FIG. 2 is an exploded perspective view of a connector bus bar and the housing of the inverter-integrated electric compressor of FIG. 1. It is a disassembled perspective view of the connector bus-bar part of FIG. It is the disassembled perspective view seen from the bus-bar case and connector case of FIG. It is the disassembled perspective view seen from the bus-bar case and connector case of FIG.
  • the inverter-integrated electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner that air-conditions a vehicle interior of a vehicle (not shown), and is driven by a motor (not shown) and this motor.
  • a housing 2 containing a compression mechanism (not shown) and an inverter circuit unit 3 for driving the motor are provided.
  • the housing 2 includes a motor housing 4 containing the motor, a compression mechanism housing 6 connected to one side in the axial direction of the motor housing 4 and containing the compression mechanism, and an opening on one side of the compression mechanism housing 6.
  • a compression mechanism cover 7 that closes the motor housing 4, an inverter accommodating portion 8 that is configured on the other side in the axial direction of the motor housing 4, and a lid member 11 that closes the opening 9 on the other side of the inverter accommodating portion 8 so as to be openable and closable.
  • the inverter circuit part 3 is accommodated in this inverter accommodating part 8.
  • the inverter accommodating portion 8 is arranged in the lateral direction so as to be on the other side.
  • the motor of the embodiment is composed of a three-phase synchronous motor (brushless DC motor), and the compression mechanism is, for example, a scroll type compression mechanism.
  • the compression mechanism is driven by a motor, compresses the refrigerant, and discharges it into the refrigerant circuit.
  • a low-temperature gas refrigerant sucked from an evaporator (also referred to as a heat absorber) that also forms part of the refrigerant circuit is circulated in the motor housing 4. Therefore, the inside of the motor housing 4 is cooled.
  • the inverter accommodating part 8 is divided with the inside of the motor housing 4 in which a motor is accommodated by the partition 12 formed in the motor housing 4, and this partition 12 is also cooled by a low temperature gas refrigerant.
  • the inverter circuit unit 3 includes a high heat dissipation substrate 14 on which a power switching element 13 constituting an arm of each phase of a three-phase inverter circuit is mounted, and a control on which a control circuit 16 is mounted. A substrate 17, a bus bar assembly 18 connected to the power switching element 13 of the high heat dissipation substrate 14, and a filter mold assembly 21 on which a smoothing capacitor 19 is mounted.
  • the inverter circuit unit 3 converts DC power fed from a vehicle battery (not shown) into three-phase AC power and feeds it to a stator coil (not shown) of the motor.
  • connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase has three terminals on the lead terminals 22, 23 and 24 drawn from the partition wall 12 of the motor housing 4.
  • the power supply terminal of the power switching element 13 on the upper arm side and the ground terminal of the power switching element 13 on the lower arm side are connected to each other via the plate 26 of an insulating case member 25 described later attached to the motor housing 4.
  • the power supply harness 30 from the battery connected to the high power connector 28 (consisting of screws) is conducted.
  • the lead terminals 22 to 24 to which the connection points of the upper arm side power switching element 13 and the lower arm side power switching element 13 of each phase are connected penetrate the partition wall 12 and the motor in the motor housing 4.
  • the power supply terminal and the ground terminal are referred to as a terminal plate 29 of the filter mold assembly 21, a conductive member 31 called an EMC bus bar assembly, a conductive circuit board 32 called an EMC board, a connector bus bar 33, and an HV connector. It is connected to the power harness 30 via the above-described high power connector 28 and the like.
  • the case member 25 of the embodiment includes two parts, an insulating connector case 27 to which a high power connector 28 is attached and an insulating bus bar case 34 called an EMC filter case in which the connector bus bar 33 is built. These structures will be described later in detail.
  • the high heat dissipation board 14 is formed in a thick plate shape by a resin for molding a circuit board, and each power switching element 13 and its peripheral circuit components are arranged on one side.
  • the power switching element 13 is configured to pass through the high heat dissipation substrate 14 and exchange heat with the other side.
  • circuit components around the power switching element 13 are also arranged on the other surface.
  • an electrode terminal (not shown) that is connected to the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase protrudes.
  • electrode terminals (not shown) that are connected to the power supply terminal and the ground terminal described above also protrude on one surface of the high heat dissipation substrate 14, and these pass through the bus bars 49 and 50 of the bus bar assembly 18 to be described later. It is connected to the terminal board 44 of the mold assembly 21. Furthermore, a connector 39 connected to the control circuit 16 of the control board 17 is attached to the periphery of one surface of the high heat dissipation board 14 outside the bus bar assembly 18.
  • Control Board 17 The control circuits 16 of the control board 17 are arranged on both sides of the control board 17 and perform switching control of each power switching element 13 of the high heat dissipation board 14 based on a command from the outside. . Also, it has a function of transmitting the motor drive state to the outside, and is configured by connecting circuit components such as a microcomputer by printed wiring. Further, a connection portion 41 to which the connector 39 of the high heat dissipation substrate 14 described above is connected is disposed around the control substrate 17. (4) Configuration of Filter Mold Assembly 21 The smoothing capacitor 19 is connected between the power supply terminal and the ground terminal of the three-phase inverter circuit, and absorbs the high-frequency component of the switching current of the three-phase inverter circuit.
  • the smoothing capacitor 19 is disposed on a filter mold assembly (circuit board) 21, and a terminal plate 29 of the filter mold assembly 21 is connected to a conduction member 31 as will be described later, and a conduction circuit board 32, a connector bus bar 33, and The power supply harness 30 is conductively connected through the high power connector 28 and the like, and the terminal plate 44 is connected to the electrode terminal conductive to the power supply terminal and the ground terminal of the high heat dissipation substrate 14 described above.
  • the bus bar assembly 18 has five bus bars 46, 47, 48, 49, and 50 that form wiring of a three-phase inverter circuit.
  • Each of the bus bars 46 to 50 is disposed at a position outside the control board 17 and is integrated by insert molding of an insulating hard resin.
  • the bus bars 46 to 48 are connected to the power switching element 13 of the high heat dissipation board 14.
  • Each electrode terminal conducting to the connection point and each terminal plate 26 are connected, and bus bars 49 and 50 connect the electrode terminal conducting to the power supply terminal and the ground terminal to the terminal plate 44 of the filter mold assembly 21.
  • the high heat dissipation board 14, the bus bar assembly 18, and the control board 17 with the bus bar assembly 18 sandwiched between the high heat dissipation board 14 on which the power switching element 13 and the like are mounted and the control board 17 on which the control circuit 16 is mounted. are laminated.
  • each of the above-described electrode terminals constituted by screws is inserted from the other surface side of the high heat dissipation substrate 14 and penetrates the high heat dissipation substrate 14 to the bus bars 46 to 50 of the bus bar assembly 18 respectively. Screw together.
  • Each screw terminal is electrically connected to the circuit board of the high heat dissipation board 14 and the bus bars 46 to 50 by this screwing.
  • screws 51 and 52 are inserted from one surface side of the control board 17, penetrate the control board 17, and screw into the bus bar assembly 18.
  • the high heat dissipation board 14, the bus bar assembly 18, and the control board 17 are integrated.
  • the terminal plate 44 of the filter mold assembly 21 is directed to one side of the bus bars 49, 50 of the bus bar assembly 18, and screws 53, 54 are inserted to insert the bus bar.
  • the filter mold assembly 21 is screwed to the bus bar assembly 18 by being screwed to 49 and 50. In this state, the terminal plate 44 is electrically connected to the electrode terminals 42 and 43 through the bus bars 49 and 50, respectively.
  • the inverter circuit unit 3 including the high heat dissipation substrate 14, the control substrate 17, the bus bar assembly 18, and the filter mold assembly 21 (smoothing capacitor 19) is integrated (sub-assembly).
  • the inverter circuit portion 3 integrated in this way is accommodated in the inverter accommodating portion 8 of the motor housing 4 with the high heat dissipation substrate 14 as the partition wall 12 side.
  • the other surface of the high heat dissipation substrate 14 at a position corresponding to the power switching element 13 is filled with a filler for heat conduction (such as grease), and each power switching element 13 is connected to the partition 12 through the filler.
  • a filler for heat conduction such as grease
  • each power switching element 13 is connected to the partition 12 through the filler.
  • the heat exchange relationship is established.
  • the smoothing capacitor 19 is also brought into close contact with the partition wall 12 for heat exchange.
  • the inverter circuit part 3 is attached to the motor housing 4 (housing 2) with a some screw
  • the power supply path from the power harness 30 to the inverter circuit unit 3 includes the conductive member 31, the conductive circuit board 32, the connector bus bar 33, and the high power connector 28 described above.
  • the conducting member 31 includes a terminal plate 61 at one end and a terminal plate 62 located at the other end and connected to the terminal plate 61.
  • the conductive circuit board 32 is a circuit board provided with wiring, and the conductive member 31 and the conductive circuit board 32 constitute a power supply path member 63 in the present invention.
  • the connector bus bar 33 is made of a metal plate, and one end thereof is bent at a substantially right angle, and a male screw part 64 protruding in the longitudinal direction is provided at the bent end.
  • the other end of the connector bus bar 33 is formed with a notch 33A having a dimension that allows the high-power connector 28 to move and come into contact therewith and be engageable.
  • the notch 33A is formed in the connector bus bar 33.
  • the bus bar case 34 constituting the case member 25 is made of an insulating member such as a hard resin, and has two through holes 66 through which the two bus bars 33 and 33 are inserted.
  • the connector case 27 constituting the case member 25 is also made of an insulating member such as a hard resin.
  • Two high power connectors 28 are attached to the connector case 27, and a partition wall 27 ⁇ / b> A is formed integrally with the connector case 27 between the high power connectors 28, 28.
  • Each of the high power connectors 28 and 28 is formed of a screw, and a base portion 28 ⁇ / b> A thereof is embedded in the connector case 27.
  • the connector case 27 is formed with two insertion holes 67 extending from one surface to the bases 28A of the high power connectors 28, 28. Further, a seal member 68 made of an O-ring is attached to one surface of the connector case 27 so as to surround the periphery of each insertion hole 67.
  • a communication portion 71 is formed on the inverter housing portion 8 on the filter mold assembly 21 side so as to protrude in the radial direction of the motor housing 4.
  • the communicating portion 71 is also opened (72) on the side opposite to the opening 9 side and is not blocked by the lid member 11.
  • the terminal plate 29 (a part of the inverter circuit unit 3) of the filter mold assembly 21 is positioned on the opening 9 side of the communication unit 71 in a state where the inverter circuit unit 3 is stored in the inverter storage unit 8.
  • the bus bar case 34 and the connector case 27 constituting the case member 25 are coupled by the screws 73 to assemble the case member 25.
  • each insertion hole 67 of the connector case 27 corresponds to each through hole 66 of the bus bar case 34
  • the seal member 68 is located between the bus bar case 34 and the connector case 27 around the insertion hole 67 and the through hole 66. Seal watertight and waterproof.
  • the other end of the two connector bus bars 33 in which the notches 33A are formed is inserted into the through holes 66 of the bus bar case 34 and inserted into the respective insertion holes 67 of the connector case 27 to be connected to the high power connector 28. Abut (contact into the connector case 27).
  • the connector bus bar 33 is inserted into the notch 33A so that the high power connector 28 enters the notch 33A. Engage in a movable relationship in the direction.
  • the conductive member 31 and the conductive circuit board 32 are assembled with screws 77.
  • the two screw holes 78 formed in the terminal plate 62 of the conductive member 31 and the two screw holes 79 of the conductive circuit board 32 match (the connector bus bar 33 is not fixed at this time).
  • the assembled conductive member 31 and conductive circuit board 32 are inserted into the bus bar case 34, and the male screw portions 64 of the connector bus bars 33 are respectively inserted into the screw holes 79 of the conductive circuit board 32 and the screw holes 78 of the terminal plate 62. Let it enter.
  • the nut 76 is screwed into the male screw portion 64, and one end of the connector bus bar 33 is connected to the conductive circuit board 32 and the conductive member 31 by screws and fixed. At this time, the other end of the connector bus bar 33 is not connected to the high power connector 28.
  • the connector bus bar 33 The position can be adjusted so that both can be matched. That is, for example, a gap is generated between one end of the connector bus bar 33 and the conductive circuit board 32 or the like due to dimensional variations in a state where the male screw portion 64 of the connector bus bar 33 is inserted into the screw holes 78 and 79.
  • the connector bus bar 33 moves to the conductive circuit board 32 side. As a result, no stress is applied to the conductive circuit board 32 and the conductive member 31 when the nut 76 is connected.
  • the other end of the connector bus bar 33 is not connected to the high power connector 28, and one end of the connector bus bar 33, the lower part of the conductive circuit board 32 and the conductive member 31 (power feeding path member 63) is the bus bar case. 34 is stored in the form.
  • the case member 25 (the bus bar case 34 and the connector case 27) is placed on the outer surface of the motor housing 4 in such a manner that the conducting member 31 is inserted into the communicating portion 71 from the opening 72, and the case member 25 ( The bus bar case 34 and the connector case 27) are attached to the outer surface of the motor housing 4.
  • the bus bar case 34 closes the opening 72 of the communication portion 71 and is sealed (sealed) with the motor housing 4 in a watertight manner.
  • the terminal plate 61 at one end of the conducting member 31 is positioned on the opening 9 side of the communication portion 71 and contacts the terminal plate 29 of the filter mold assembly 21 from the opening 72 side.
  • the terminal plate 29 of the filter mold assembly 21 is attached to the terminal plate 61 of the conducting member 31 with screws 56 and is conducted.
  • the other end of the connector bus bar 33 is not connected to the high power connector 28. Therefore, even if the positions of the terminal plate 29 and the terminal plate 61 are slightly shifted due to dimensional variations, the positions of the connector bus bar 33 and the like are adjusted.
  • the entire connector bus bar 33 and the power supply path member 63 are connected to each other by screwing the screws 56 together. Move to the 29th side.
  • no stress is applied to the filter mold assembly 21 at the time of connection by the screw 56, and it is possible to prevent inconveniences such as breakage of a soldered portion of the filter mold assembly 21.
  • the cover member 11 is attached to the opening 9 of the inverter accommodating part 8 with a some screw
  • the high power connector 28 is attached to the outer surface of the motor housing 4 (housing 2) via the insulating case member 25.
  • the power harness 30 is inserted into each of the two high power connectors 28 and tightened with nuts 81 and fixed with screws.
  • the power harness 30 may be fixed to the high power connector 28 by press fitting or the like instead of screwing.
  • the other end of the connector bus bar 33 is electrically connected to the power harness 30 via the high power connector 28 by tightening with the nut 81.
  • the power harness 30 is electrically connected to the inverter circuit unit 3 and supplied with power.
  • the inverter-integrated electric compressor 1 including the motor housing 4 (housing 2) containing the motor and the inverter circuit unit 3 that supplies power to the motor, one end is connected to the inverter circuit unit 3.
  • a connector bus bar 33 that is conducted through the power supply path member 63 (the conducting member 31 and the conducting circuit board 32) and the outer surface of the motor housing 4 are attached via the insulating case member 25, and the power harness 30 is fixed.
  • the connector bus bar 33 is provided with a high power connector 28.
  • the other end of the connector bus bar 33 enters the case member 25 and is in contact with the high power connector 28 so as to be movable.
  • the power harness 30 and the other end of the connector bus bar 33 are made conductive.
  • one end of the connector bus bar 33 is connected to the power supply path member 63 (the conductive member 31 and the conductive circuit board 32) in a state where the other end of the connector bus bar 33 is not connected to the high power connector 28 or the power harness 30. Is possible.
  • the connector bus bar 33 By adjusting the position, it is possible to absorb the positional deviation of the connection location and match them. Therefore, when one end of the connector bus bar 33 is connected, the stress applied to the inverter circuit unit 3 and the power feeding path member 63 can be eliminated, and the reliability can be improved. Further, by fixing the power harness 30 to the high power connector 28, the other end of the connector bus bar 33 and the high power connector 28 and the power harness 30 can be easily conducted in the case member 25. Workability is also improved.
  • the other end of the connector bus bar 33 is engaged with the high power connector 28 so as to be movable, so that the connector bus bar 33 and the high power connector 28 are positioned by the engagement relationship therebetween.
  • electrical connection with the power supply harness 30 can be further ensured.
  • one end of the connector bus bar 33 is connected to the power supply path member 63 (the conductive member 31 and the conductive circuit board 32) by screws.
  • the connector bus bar 33 may be connected to the power supply path member 63 by soldering.
  • the contact area between the two can be increased, and a large current can be handled. become able to.
  • a male screw part 64 is provided at one end of the connector bus bar 33, and the male screw part 64 enters the screw holes 78 and 79 formed in the power supply path member 63 (the conductive member 31 and the conductive circuit board 32). Since the connector bus bar 33 is connected to the power supply path member 63 by the nut 76 screwed into the male screw portion 64, the positioning of the connector bus bar 33 and the power supply path member 63 is facilitated.
  • the inverter circuit portion 3 is accommodated in the inverter accommodating portion 8 configured in the motor housing 4, and the inverter accommodating portion 8 is closed by the lid member 11, and the inverter accommodating portion 8 is When the communication portion 71 is connected to the outside in a state of being blocked by the member 11, a part of the inverter circuit unit 3 and the power supply path member 63 are arranged in the communication portion 71, and the connector bus bar 33 is connected to the power supply path member.
  • the inverter circuit part 3 in the inverter accommodating part 8 of the motor housing 4 and the high power connector 28 can be easily conducted through the connector bus bar 33 and the power supply path member 63.
  • the case member 25 is connected to the insulating bus bar case 34 in which one end of the connector bus bar 33 is accommodated to close the communication portion 71, and the high power connector 28 is attached to the bus bar case 34.
  • the other end of the connector bus bar 33 penetrates the bus bar case 34 and enters the connector case 27, so that the motor housing 4 has the case member 25 and the connector bus bar. The workability when assembling 33 is extremely good.
  • the connector bus bar 33 is conducted to the inverter circuit section 3 through the conduction path member 63 including the conduction member 31 and the conduction circuit board 32.
  • the terminal plate 29 of the filter mold assembly 21 of the inverter circuit section 3 is connected to the connector bus bar 33.
  • the connector bus bar 33 may be directly screwed to (connected to) the terminal plate 29 (inverter circuit portion 3) by extending to the vicinity of the opening 72 of the communication portion 71.
  • the other end of the connector bus bar 33 is movable, even if the position of one end of the terminal plate 29 and the connector bus bar 33 is shifted due to the variation in dimensions, the position of the connector bus bar 33 can be adjusted, It is possible to prevent stress from being applied to the inverter circuit unit 3 at the time of screwing (connection).
  • the other end of the connector bus bar 33 is brought into contact with and engaged with the high power connector 28.
  • the present invention is not limited thereto, and when the power harness 30 is screwed (fixed) to the high power connector 28.
  • the other end of the connector bus bar 33 may be movably brought close to the high-power connector 28 within a range in which the connector bus bar 33 can be conducted.
  • the case member 25 is composed of two parts, ie, the connector case 27 and the bus bar case 34, but they may be configured as one body. Furthermore, the shape and structure of the inverter circuit unit 3 and the motor housing 4 and the shape and structure of the power feeding path including the connector bus bar 33 shown in the embodiments are not limited thereto, and the gist of the present invention. It goes without saying that various changes can be made without departing from the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Inverter Devices (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Provided is an inverter-integrated electric compressor for which the connection structure of a power supply harness suppling power to an inverter circuit unit is improved, and reliability is improved. This inverter-integrated electric compressor is equipped with connector bus bars 33 one end of each of which is electrically connected to an inverter circuit unit 3, and high-power-use connectors 28 attached to the outer surface of a housing 2 via an insulating case member 25. The one end of each connector bus bar is connected while the other end of each proceeds into the interior of the case member and movably makes contact with the respective high-power-use connecter. A power supply harness 30 is secured to the high-power-use connectors, thereby electrically connecting the power supply harness and the other end of each connector bus bar.

Description

インバータ一体型電動圧縮機Inverter-integrated electric compressor
 本発明は、ハウジングにインバータ回路部を備えたインバータ一体型電動圧縮機に関する。 The present invention relates to an inverter-integrated electric compressor having an inverter circuit portion in a housing.
 従来より車両用の空気調和装置に用いられる電動圧縮機としては、スイッチングノイズを考慮して、ハウジングにインバータ回路部を取り付けたインバータ一体型の電動圧縮機が用いられている。このインバータ回路部は、ハウジングに形成された収容部に収容され、車両のバッテリ(電源)からの電源ハーネスにより給電されることになる。
 この場合、従来ではインバータ回路部の基板に電源ハーネスが接続される端子を半田付けし、この端子にコネクタにより電源ハーネスを接続する等の方法が採られていた(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, as an electric compressor used in a vehicle air conditioner, an inverter-integrated electric compressor in which an inverter circuit portion is attached to a housing is used in consideration of switching noise. This inverter circuit portion is housed in a housing portion formed in the housing, and is fed by a power harness from a vehicle battery (power source).
In this case, conventionally, a method of soldering a terminal to which the power harness is connected to the substrate of the inverter circuit unit and connecting the power harness to the terminal with a connector has been adopted (for example, see Patent Document 1).
特開2014−176160号公報JP 2014-176160 A
 しかしながら、従来の如くインバータ回路部の基板に端子を半田付けする場合、特に高電流(高電力)で使用される場合には、高電流を流すために断面積を大きくして接続を強固にする必要がある。そのため、基板や半田付け部分を含む各接続部品に残留応力が発生し易く、信頼性が低くなる問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、インバータ回路部に給電する電源ハーネスの接続構造を改善して信頼性を向上させたインバータ一体型電動圧縮機を提供することを目的とする。
However, when the terminals are soldered to the inverter circuit board as in the prior art, especially when used at a high current (high power), the cross-sectional area is increased in order to flow a high current, thereby strengthening the connection. There is a need. Therefore, there is a problem that residual stress is easily generated in each connection component including the substrate and the soldered portion, and the reliability is lowered.
The present invention has been made to solve the conventional technical problems, and an inverter-integrated electric compressor that has improved reliability by improving the connection structure of a power supply harness that supplies power to the inverter circuit section. The purpose is to provide.
 本発明のインバータ一体型電動圧縮機は、モータが内蔵されたハウジングと、モータに給電するインバータ回路部を備えたものであって、一端がインバータ回路部に直接、若しくは、所定の給電経路部材を介して導通されるコネクタバスバーと、ハウジングの外面に絶縁性のケース部材を介して取り付けられ、電源ハーネスが固定される高電力用コネクタを備え、コネクタバスバーは、他端がケース部材内に進入し、高電力用コネクタに移動可能に当接した状態、若しくは、近接した状態で、一端が接続されると共に、電源ハーネスが高電力用コネクタに固定されることで、当該電源ハーネスとコネクタバスバーの他端が導通されることを特徴とする。
 請求項2の発明のインバータ一体型電動圧縮機は、上記発明においてコネクタバスバーの他端は、高電力用コネクタに移動可能な関係で係合することを特徴とする。
 請求項3の発明のインバータ一体型電動圧縮機は、上記各発明においてコネクタバスバーの一端は、インバータ回路部、若しくは、給電経路部材にネジ止めにより接続されることを特徴とする。
 請求項4の発明のインバータ一体型電動圧縮機は、上記発明においてコネクタバスバーの一端に設けられた雄ネジ部を備え、この雄ネジ部がインバータ回路部、若しくは、給電経路部材に形成されたネジ孔に進入した状態で、当該雄ネジ部に螺合するナットにより、コネクタバスバーはインバータ回路部、若しくは、給電経路部材に接続されることを特徴とする。
 請求項5の発明のインバータ一体型電動圧縮機は、上記各発明においてインバータ回路部は、ハウジングに構成されたインバータ収容部に収容され、このインバータ収容部は、蓋部材により閉塞されると共に、インバータ収容部は、蓋部材で閉塞された状態で、外部に連通する連通部を有し、インバータ回路部の一部、若しくは、給電経路部材が連通部に位置し、コネクタバスバーがインバータ回路部に導通された状態で、連通部はケース部材により閉塞されることを特徴とする。
 請求項6の発明のインバータ一体型電動圧縮機は、上記発明においてケース部材は、コネクタバスバーの一端が収容されて連通部を閉塞する絶縁性のバスバーケースと、このバスバーケースに結合されて高電力用コネクタが取り付けられた絶縁性のコネクタケースとから成り、コネクタバスバーの他端は、バスバーケースを貫通してコネクタケース内に進入すると共に、コネクタバスバーが貫通する箇所の周囲におけるバスバーケースとコネクタケース間を防水するシール部材が設けられていることを特徴とする。
The inverter-integrated electric compressor of the present invention includes a housing with a built-in motor and an inverter circuit unit that supplies power to the motor, and one end is directly connected to the inverter circuit unit or a predetermined power supply path member. The connector bus bar is connected to the outer surface of the housing via an insulating case member, and a high power connector is secured to the power harness. The other end of the connector bus bar enters the case member. The one end is connected to the high power connector so that it can move or close to the high power connector, and the power harness is fixed to the high power connector. The end is conducted.
The inverter-integrated electric compressor according to a second aspect of the invention is characterized in that, in the above invention, the other end of the connector bus bar is engaged with the high power connector so as to be movable.
The inverter-integrated electric compressor according to a third aspect of the present invention is characterized in that, in each of the above-described inventions, one end of the connector bus bar is connected to the inverter circuit portion or the power supply path member by screws.
According to a fourth aspect of the present invention, there is provided an inverter-integrated electric compressor including a male screw portion provided at one end of the connector bus bar in the above invention, and the male screw portion is a screw formed on the inverter circuit portion or the power supply path member. The connector bus bar is connected to the inverter circuit portion or the power feeding path member by a nut screwed into the male screw portion in the state of entering the hole.
According to a fifth aspect of the present invention, there is provided an inverter-integrated electric compressor, wherein the inverter circuit portion is housed in an inverter housing portion configured in a housing, and the inverter housing portion is closed by a lid member and The housing portion has a communication portion communicating with the outside in a state of being closed by the lid member, and a part of the inverter circuit portion or the power supply path member is located in the communication portion, and the connector bus bar is electrically connected to the inverter circuit portion. In this state, the communication portion is blocked by the case member.
According to a sixth aspect of the present invention, there is provided the inverter-integrated electric compressor. In the above-described invention, the case member is connected to the insulating bus bar case in which one end of the connector bus bar is accommodated to close the communication portion, and is connected to the bus bar case. And the other end of the connector bus bar penetrates the bus bar case and enters the connector case, and the bus bar case and the connector case around the portion where the connector bus bar penetrates. A seal member that waterproofs the space is provided.
 本発明によれば、モータが内蔵されたハウジングと、モータに給電するインバータ回路部を備えたインバータ一体型電動圧縮機において、一端がインバータ回路部に直接、若しくは、所定の給電経路部材を介して導通されるコネクタバスバーと、ハウジングの外面に絶縁性のケース部材を介して取り付けられ、電源ハーネスが固定される高電力用コネクタを備え、コネクタバスバーは、他端がケース部材内に進入し、高電力用コネクタに移動可能に当接した状態、若しくは、近接した状態で、一端が接続されると共に、電源ハーネスが高電力用コネクタに固定されることで、当該電源ハーネスとコネクタバスバーの他端が導通されるようにしたので、コネクタバスバーの他端が高電力用コネクタや電源ハーネスに接続されていない状態で、コネクタバスバーの一端をインバータ回路部、若しくは、給電経路部材に接続することが可能となる。
 これにより、インバータ一体型電動圧縮機の組立時に、寸法のバラツキ等によってコネクタバスバーの一端とインバータ回路部、若しくは、給電経路部材の接続箇所の位置関係がずれたとしても、コネクタバスバーの位置を調整することで、接続箇所の位置ずれを吸収して両者が合致させることができるようになる。即ち、コネクタバスバーの一端を接続する際にインバータ回路部や給電経路部材に加わる応力を解消することが可能となり、信頼性を向上させることができるようになる。また、高電力用コネクタに電源ハーネスを固定することで、ケース部材内において容易にコネクタバスバーの他端と高電力用コネクタや電源ハーネスとを導通させることができるので、組み付け作業性も改善されるものである。
 この場合、請求項2の発明の如くコネクタバスバーの他端が、高電力用コネクタに移動可能な関係で係合するようにすれば、両者の係合関係によってコネクタバスバーと高電力用コネクタの位置決めができるようになり、電源ハーネスとの導通もより確実とすることができるようになる。
 また、請求項3の発明の如くコネクタバスバーの一端を、インバータ回路部、若しくは、給電経路部材にネジ止めにより接続するようにすれば、両者の接触面積を大きくとれるようになり、大電流に対応することができるようになる。
 この場合、請求項4の発明の如くコネクタバスバーの一端に雄ネジ部を設け、この雄ネジ部がインバータ回路部、若しくは、給電経路部材に形成されたネジ孔に進入した状態で、当該雄ネジ部に螺合するナットにより、コネクタバスバーがインバータ回路部、若しくは、給電経路部材に接続されるようにすれば、コネクタバスバーとインバータ回路部、若しくは、給電経路部材との位置決めが容易となる。
 また、請求項5の発明の如くインバータ回路部が、ハウジングに構成されたインバータ収容部に収容され、このインバータ収容部が、蓋部材により閉塞されると共に、インバータ収容部が、蓋部材で閉塞された状態で、外部に連通する連通部を有しており、インバータ回路部の一部、若しくは、給電経路部材が連通部に位置し、コネクタバスバーがインバータ回路部に導通された状態で、連通部がケース部材により閉塞されるようにすれば、ハウジングのインバータ収容部内のインバータ回路部と高電力用コネクタとを、コネクタバスバーにより、若しくは、それと給電経路部材を介して容易に導通させることができるようになる。
 この場合、請求項6の発明の如くケース部材を、コネクタバスバーの一端が収容されて連通部を閉塞する絶縁性のバスバーケースと、このバスバーケースに結合されて高電力用コネクタが取り付けられた絶縁性のコネクタケースとから構成し、コネクタバスバーの他端が、バスバーケースを貫通してコネクタケース内に進入するようにすれば、ハウジングにケース部材やコネクタバスバーを組み付ける際の作業性が極めて良好となる。そして、コネクタバスバーが貫通する箇所の周囲におけるバスバーケースとコネクタケース間を防水するシール部材を設ければ、バスバーケースとコネクタケースとの隙間から侵入する水により、コネクタバスバー部分で短絡故障が発生する不都合も回避することができるようになる。
According to the present invention, in an inverter-integrated electric compressor including a housing in which a motor is built and an inverter circuit unit that supplies power to the motor, one end is directly connected to the inverter circuit unit or via a predetermined power supply path member. The connector bus bar includes a high-power connector that is attached to the outer surface of the housing via an insulating case member and is secured to the power harness, and the other end of the connector bus bar enters the case member. One end is connected in a state where the power connector is movably in contact with or close to the power connector, and the power harness is fixed to the high power connector so that the power harness and the other end of the connector bus bar are connected. Since the electrical connection is made, the connector bus bar is not connected to the high power connector or power harness, One end of the inverter circuit portion of Kutabasuba, or, it is possible to connect to the power supply path member.
As a result, when assembling the inverter-integrated electric compressor, the position of the connector bus bar can be adjusted even if the positional relationship between one end of the connector bus bar and the inverter circuit section or the connection part of the power supply path member is shifted due to dimensional variations, etc. By doing so, it becomes possible to absorb the positional deviation of the connection location and match the two. That is, it is possible to eliminate the stress applied to the inverter circuit portion and the power supply path member when connecting one end of the connector bus bar, and the reliability can be improved. Further, by fixing the power harness to the high power connector, the other end of the connector bus bar and the high power connector or power harness can be easily conducted in the case member, so that the assembly workability is also improved. Is.
In this case, if the other end of the connector bus bar is engaged with the high power connector in a movable relationship as in the second aspect of the invention, the connector bus bar and the high power connector are positioned by the engagement relationship between the two. As a result, electrical connection with the power harness can be further ensured.
In addition, if one end of the connector bus bar is connected to the inverter circuit portion or the power supply path member by screwing as in the invention of claim 3, the contact area between the two can be increased, and a large current can be handled. Will be able to.
In this case, a male screw part is provided at one end of the connector bus bar as in the invention of claim 4, and the male screw part enters the screw hole formed in the inverter circuit part or the power supply path member. If the connector bus bar is connected to the inverter circuit unit or the power feeding path member by the nut screwed into the part, the positioning of the connector bus bar and the inverter circuit unit or the power feeding path member becomes easy.
Further, the inverter circuit portion is housed in the inverter housing portion formed in the housing as in the invention of claim 5, and this inverter housing portion is closed by the lid member, and the inverter housing portion is closed by the lid member. In a state where the communication part is connected to the outside, a part of the inverter circuit part or the power supply path member is located in the communication part, and the connector bus bar is electrically connected to the inverter circuit part. Is closed by the case member, the inverter circuit portion in the inverter accommodating portion of the housing and the high power connector can be easily conducted by the connector bus bar or via the power supply path member. become.
In this case, as in the invention of claim 6, the case member is made of an insulating bus bar case in which one end of the connector bus bar is accommodated to close the communicating portion, and an insulating member in which a high power connector is attached to the bus bar case. If the other end of the connector bus bar penetrates the bus bar case and enters the connector case, the workability when assembling the case member and the connector bus bar to the housing is extremely good. Become. If a sealing member that waterproofs between the bus bar case and the connector case around the portion where the connector bus bar penetrates is provided, a short circuit failure occurs in the connector bus bar portion due to water entering from the gap between the bus bar case and the connector case. Inconvenience can be avoided.
本発明の電子回路装置を適用した一実施例のインバータ一体型電動圧縮機の斜視図である。1 is a perspective view of an inverter-integrated electric compressor of one embodiment to which an electronic circuit device of the present invention is applied. 図1のインバータ一体型電動圧縮機の蓋部材を取り外した状態の斜視図である。FIG. 2 is a perspective view of a state where a cover member of the inverter-integrated electric compressor in FIG. 1 is removed. 図1のインバータ一体型電動圧縮機のインバータ収容部の平面図である。It is a top view of the inverter accommodating part of the inverter integrated electric compressor of FIG. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 図4のコネクタバスバー部分の拡大図である。It is an enlarged view of the connector bus-bar part of FIG. 図1のインバータ一体型電動圧縮機のインバータ回路部とハウジングの分解斜視図である。It is a disassembled perspective view of the inverter circuit part and housing of the inverter integrated electric compressor of FIG. 図1のインバータ一体型電動圧縮機のコネクタバスバー等とハウジングの分解斜視図である。FIG. 2 is an exploded perspective view of a connector bus bar and the housing of the inverter-integrated electric compressor of FIG. 1. 図7のコネクタバスバー部分の分解斜視図である。It is a disassembled perspective view of the connector bus-bar part of FIG. 図8のバスバーケースとコネクタケースの上方から見た分解斜視図である。It is the disassembled perspective view seen from the bus-bar case and connector case of FIG. 図8のバスバーケースとコネクタケースの下方から見た分解斜視図である。It is the disassembled perspective view seen from the bus-bar case and connector case of FIG.
 以下、本発明の一実施形態について、図面に基づき詳細に説明する。実施例のインバータ一体型電動圧縮機1は、図示しない車両の車室内を空調する車両用空気調和装置の冷媒回路の一部を構成するものであり、図示しないモータと、このモータにより駆動される圧縮機構(図示せず)を内蔵したハウジング2と、モータを駆動するインバータ回路部3を備えている。
 ハウジング2は、前記モータを内蔵するモータハウジング4と、このモータハウジング4の軸方向の一側に接続されて前記圧縮機構を内蔵する圧縮機構ハウジング6と、この圧縮機構ハウジング6の一側の開口を閉塞する圧縮機構カバー7と、モータハウジング4の軸方向の他側に構成されたインバータ収容部8と、このインバータ収容部8の他側の開口9を開閉可能に閉塞する蓋部材11を備えている。そして、このインバータ収容部8内にインバータ回路部3が収容される。
 尚、各図ではインバータ収容部8を上に、圧縮機構カバー7を下にした状態で実施例のインバータ一体型電動圧縮機1を示しているが、実際には圧縮機構カバー7が一側、インバータ収容部8が他側となるように横方向で配置されるものである。
 実施例のモータは、三相同期モータ(ブラシレスDCモータ)から構成されており、前記圧縮機構は例えばスクロール式の圧縮機構である。圧縮機構はモータにより駆動され、冷媒を圧縮して冷媒回路内に吐出する。そして、モータハウジング4には、これも冷媒回路の一部を構成するエバポレータ(吸熱器とも称される)から吸入された低温のガス冷媒が流通される。そのため、モータハウジング4内は冷却されている。そして、インバータ収容部8は、モータハウジング4に形成された隔壁12によりモータが収容されるモータハウジング4内と区画されており、この隔壁12も低温のガス冷媒により冷却される。
 (1)インバータ回路部3の構成
 前記インバータ回路部3は、三相インバータ回路の各相のアームを構成する電力スイッチング素子13が実装された高放熱基板14と、制御回路16が実装された制御基板17と、高放熱基板14の電力スイッチング素子13に接続されるバスバーアセンブリ18と、平滑コンデンサ19が実装されたフィルタモールドアセンブリ21を有している。
 このインバータ回路部3は、図示しない車両のバッテリから給電される直流電力を三相交流電力に変換して前記モータのステータコイル(図示せず)に給電するものである。そのため、各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点が、モータハウジング4の隔壁12から引き出された引出端子22、23、24に三枚の端子板26を介してそれぞれ接続され、上アーム側の電力スイッチング素子13の電源端子と下アーム側の電力スイッチング素子13の接地端子が、モータハウジング4に取り付けられた後述する絶縁性のケース部材25の高電力用コネクタ28(ネジから成る)に接続される前述したバッテリからの電源ハーネス30に導通されることになる。
 この場合、各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点が接続される引出端子22~24は、隔壁12を貫通してモータハウジング4内のモータの前述したステータコイルに接続されている。また、電源端子と接地端子は、フィルタモールドアセンブリ21の端子板29、EMCバスバーアセンブリと称される導通部材31、EMCボードと称される導通回路基板32、コネクタバスバー33、及び、HVコネクタと称される前述した高電力用コネクタ28等を介して電源ハーネス30に接続される。
 尚、実施例のケース部材25は、高電力用コネクタ28が取り付けられた絶縁性のコネクタケース27と、コネクタバスバー33を内蔵するEMCフィルタケースと称される絶縁性のバスバーケース34との二部品で構成されているが、これらの構成については後に詳述する。
 (2)高放熱基板14の構成
 前記高放熱基板14は、回路基板をモールドする樹脂により厚板状に成形されており、各電力スイッチング素子13やそれらの周辺の回路部品は一面側に配置されると共に、電力スイッチング素子13は高放熱基板14を貫通して他面側と熱交換可能に構成されている。尚、この他面にも電力スイッチング素子13周辺の回路部品が配置されている。
 また、高放熱基板14の一面には、前述した各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点に導通する電極端子(図示せず)が突出しており、これらは後述するバスバーアセンブリ18のバスバー46、47、48を介して、隔壁12から引き出された引出端子22、23、24に端子板26を介してそれぞれ接続されることになる。更に、高放熱基板14の一面には、前述した電源端子と接地端子に導通する電極端子(図示せず)も突出しており、これらは後述するバスバーアセンブリ18のバスバー49、50を介して、フィルタモールドアセンブリ21の端子板44に接続されることになる。更にまた、高放熱基板14の一面の周辺部には、バスバーアセンブリ18の外側において制御基板17の制御回路16に接続されるコネクタ39が取り付けられている。
 (3)制御基板17の構成
 前記制御基板17の制御回路16は、制御基板17の両面に配置されており、外部からの指令に基づいて高放熱基板14の各電力スイッチング素子13をスイッチング制御する。また、モータの駆動状態を外部に送信する機能を有しており、マイクロコンピュータ等の回路部品をプリント配線にて接続して構成されている。更に、制御基板17の周辺部には、前述した高放熱基板14のコネクタ39が接続される接続部41が配置されている。
 (4)フィルタモールドアセンブリ21の構成
 前記平滑コンデンサ19は、三相インバータ回路の電源端子と接地端子との間に接続されて、三相インバータ回路のスイッチング電流の高周波成分を吸収する。この平滑コンデンサ19はフィルタモールドアセンブリ(回路基板)21に配置されており、このフィルタモールドアセンブリ21の端子板29が後述する如く導通部材31に接続され、導通回路基板32、コネクタバスバー33、及び、高電力用コネクタ28等を介して電源ハーネス30に導通接続され、端子板44が前述した高放熱基板14の電源端子と接地端子に導通する電極端子に接続されることになる。
 (5)バスバーアセンブリ18の構成
 前記バスバーアセンブリ18は、三相インバータ回路の配線を成す五つのバスバー46、47、48、49、50を有している。各バスバー46~50は制御基板17の外側となる位置に配置され、絶縁性の硬質樹脂のインサート成形により一体化されており、バスバー46~48により、高放熱基板14の電力スイッチング素子13との接続点に導通する各電極端子と各端子板26が接続され、バスバー49、50により、電源端子と接地端子に導通する電極端子とフィルタモールドアセンブリ21の端子板44が接続される。
 (6)インバータ回路部3の組立と組み付け
 次に、インバータ回路部3の組立手順について説明する。電力スイッチング素子13等が実装された高放熱基板14と、制御回路16が実装された制御基板17により、バスバーアセンブリ18を挟んだ状態でこれら高放熱基板14、バスバーアセンブリ18、及び、制御基板17を積層する。
 このように積層された状態で、ネジから構成された前述した各電極端子を高放熱基板14の他面側から挿入し、高放熱基板14を貫通してバスバーアセンブリ18のバスバー46~50にそれぞれ螺合させる。この螺合によって高放熱基板14の回路基板とバスバー46~50に各電極端子は導通する。
 また、制御基板17の一面側からネジ51、52を挿入し、制御基板17を貫通してバスバーアセンブリ18に螺合させる。このようなネジ止めにより、高放熱基板14とバスバーアセンブリ18と制御基板17は一体化される。次に、平滑コンデンサ19を高放熱基板14側とした状態で、フィルタモールドアセンブリ21の端子板44をバスバーアセンブリ18のバスバー49、50の一面側に宛がい、ネジ53、54を挿入してバスバー49、50に螺合させることにより、フィルタモールドアセンブリ21をバスバーアセンブリ18にネジ止めする。この状態で、端子板44はバスバー49、50を介し、電極端子42、43にそれぞれ導通する。これにより、高放熱基板14、制御基板17、バスバーアセンブリ18及びフィルタモールドアセンブリ21(平滑コンデンサ19)を備えたインバータ回路部3が一体化(サブアセンブリ)される。
 このように一体化されたインバータ回路部3を、高放熱基板14を隔壁12側としてモータハウジング4のインバータ収容部8内に収容する。このとき、電力スイッチング素子13に対応する位置の高放熱基板14の他面には、熱伝導用の充填材(グリス等)を充填し、この充填材を介して各電力スイッチング素子13を隔壁12に密着させ、熱交換関係とする。また、平滑コンデンサ19も隔壁12に密着させて熱交換関係とする。
 そして、複数のネジによりインバータ回路部3をモータハウジング4(ハウジング2)に取り付ける。その後、端子板26を引出端子22、23、24とバスバー46、47、48間に渡ってネジ止めによりそれぞれ取り付けて導通させる。また、フィルタモールドアセンブリ21の端子板29をネジ56により後述する如く導通部材31に取り付けて導通させる。
 (7)インバータ回路部3への給電経路の構成
 次に、インバータ回路部3への給電経路の構成について詳述する。電源ハーネス30からインバータ回路部3への給電経路は、実施例の場合、前述した導通部材31と、導通回路基板32と、コネクタバスバー33、及び、高電力用コネクタ28により構成される。導通部材31は、一端の端子板61と、他端に位置してこの端子板61に導通した端子板62を備えている。また、導通回路基板32は回路基板に配線が施されたものであり、これら導通部材31と導通回路基板32により本発明における給電経路部材63が構成される。
 コネクタバスバー33は金属板にて構成され、一端が略直角に屈曲されており、この屈曲された一端には、長手方向に突出する雄ネジ部64が設けられている。また、コネクタバスバー33の他端には高電力用コネクタ28が移動可能に進入して当接し、且つ、係合可能な寸法の切込33Aが形成されており、この切込33Aはコネクタバスバー33の長手方向に渡って所定の長さ寸法を有している(図7~図10)。そして、このようなコネクタバスバー33が二本使用される。ケース部材25を構成するバスバーケース34は、硬質樹脂等の絶縁部材から構成されており、二本のバスバー33、33が挿通される貫通孔66が二カ所形成されている。
 同じくケース部材25を構成するコネクタケース27も、硬質樹脂等の絶縁部材から構成されている。高電力用コネクタ28はこのコネクタケース27に二本取り付けられており、これら高電力用コネクタ28、28の間には、仕切壁27Aがコネクタケース27に一体に形成されている。各高電力用コネクタ28、28はネジから成り、それらの基部28Aがコネクタケース27内に埋め込まれている。また、コネクタケース27には一面から各高電力用コネクタ28、28の基部28Aまで至る挿通孔67が二カ所形成されている。更に、コネクタケース27の一面には、各挿通孔67の周囲を囲繞するかたちでOリングから成るシール部材68が取り付けられている。
 (8)給電経路の組み付けと、インバータ回路部3への接続
 次に、以上の給電経路を構成する各部材のハウジング2(モータハウジング4)への組み付け手順について説明する。インバータ収容部8のフィルタモールドアセンブリ21側には連通部71がモータハウジング4の径方向に突出して形成されている。この連通部71は開口9側とは反対側にも開口(72)しており、蓋部材11によっては閉塞されない。また、インバータ回路部3がインバータ収容部8に収容された状態で、フィルタモールドアセンブリ21の端子板29(インバータ回路部3の一部)は、この連通部71の開口9側に位置する。
 先ず、ケース部材25を構成するバスバーケース34とコネクタケース27をネジ73により結合し、ケース部材25を組み立てる。この場合、コネクタケース27の各挿通孔67はバスバーケース34の各貫通孔66に対応し、シール部材68はこの挿通孔67及び貫通孔66の部分の周囲におけるバスバーケース34とコネクタケース27の間を水密的にシールし、防水する。
 次に、二本のコネクタバスバー33の切込33Aが形成された他端をバスバーケース34の各貫通孔66に挿入し、コネクタケース27の各挿通孔67まで差し込んで、高電力用コネクタ28に当接させる(コネクタケース27内に進入させる)。このとき、コネクタバスバー33の他端には切込33Aが形成されているので、この切込33A内に高電力用コネクタ28が進入するかたちでコネクタバスバー33は高電力用コネクタ28に、その長手方向に移動可能な関係で係合する。また、導通部材31と導通回路基板32をネジ77により組み立てる。このとき、導通部材31の端子板62に形成された二つのネジ孔78と導通回路基板32の二つのネジ孔79が合致する(この時点ではコネクタバスバー33は固定されていない)。
 次に、この組み立てた導通部材31と導通回路基板32をバスバーケース34に挿入し、各コネクタバスバー33の雄ネジ部64を導通回路基板32のネジ孔79及び端子板62のネジ孔78にそれぞれ進入させる。そして、ナット76を雄ネジ部64に螺合させてコネクタバスバー33の一端を導通回路基板32及び導通部材31にネジ止めにて接続し、固定する。この時点ではコネクタバスバー33の他端は高電力用コネクタ28に接続されていないので、寸法のバラツキにより雄ネジ部64と各ネジ孔78、79の位置が多少ずれていても、コネクタバスバー33の位置を調整して両者を合致させることができるようになる。即ち、例えば、コネクタバスバー33の雄ネジ部64を各ネジ孔78、79に進入させた状態で、寸法のバラツキにより、コネクタバスバー33の一端と導通回路基板32等との間に隙間が生じたとしても、ナット76を螺合させていくことで、コネクタバスバー33が導通回路基板32側に移動する。これにより、ナット76による接続時に導通回路基板32及び導通部材31に応力が加わることが無くなる。
 即ち、この状態でコネクタバスバー33の他端は高電力用コネクタ28には接続されておらず、コネクタバスバー33の一端、導通回路基板32と導通部材31(給電経路部材63)の下部がバスバーケース34内に収納されたかたちとなる。そして、この状態で導通部材31を開口72から連通部71内に挿入するかたちでケース部材25(バスバーケース34及びコネクタケース27)をモータハウジング4の外面に宛がい、ネジ74によりケース部材25(バスバーケース34及びコネクタケース27)をモータハウジング4の外面に取り付ける。このとき、バスバーケース34は連通部71の開口72を閉塞すると共に、モータハウジング4との間は水密的にシール(封止)される。
 この状態で、導通部材31の一端の端子板61は連通部71の開口9側に位置し、フィルタモールドアセンブリ21の端子板29に開口72側から当接して対応する。このフィルタモールドアセンブリ21の端子板29をネジ56により導通部材31の端子板61に取り付けて導通させる。この時点でもコネクタバスバー33の他端は高電力用コネクタ28に接続されていないので、寸法のバラツキにより端子板29と端子板61の位置が多少ずれていても、コネクタバスバー33等の位置を調整して合致させることができるようになる。即ち、例えば寸法のバラツキにより、端子板29と端子板61との間に隙間が生じたとしても、ネジ56を螺合させていくことで、コネクタバスバー33と給電経路部材63の全体が端子板29側に移動する。これにより、ネジ56による接続時にフィルタモールドアセンブリ21に応力が加わることが無くなり、フィルタモールドアセンブリ21の半田付け箇所が割れるなどの不都合が発生することが防止される。そして、蓋部材11をインバータ収容部8の開口9に複数のネジにより取り付け、開閉可能にインバータ収容部8の開口9を閉塞する。
 このようにして高電力用コネクタ28は絶縁性のケース部材25を介してモータハウジング4(ハウジング2)の外面に取り付けられることになる。そして、最後に電源ハーネス30を二本の高電力用コネクタ28にそれぞれ差し入れ、ナット81にて締め付けてネジ止め固定する。尚、係るネジ止めでは無く、圧入等で電源ハーネス30を高電力用コネクタ28に固定しても良い。このとき、コネクタケース27には仕切壁27Aが形成されているので、電源ハーネス30が短絡する不都合も生じない。そして、このナット81による締め付けによりコネクタバスバー33の他端は、高電力用コネクタ28を介して電源ハーネス30に導通する。コネクタバスバー33は導通回路基板32、導通部材31を介してフィルタモールドアセンブリ21に導通しているので、これにより、インバータ回路部3に電源ハーネス30が導通されて給電されることになる。
 以上詳述した如く本発明では、モータが内蔵されたモータハウジング4(ハウジング2)と、モータに給電するインバータ回路部3を備えたインバータ一体型電動圧縮機1において、一端がインバータ回路部3に給電経路部材63(導通部材31及び導通回路基板32)を介して導通されるコネクタバスバー33と、モータハウジング4の外面に絶縁性のケース部材25を介して取り付けられ、電源ハーネス30が固定される高電力用コネクタ28を備え、コネクタバスバー33は、他端がケース部材25内に進入し、高電力用コネクタ28に移動可能に当接した状態で、一端が接続されると共に、電源ハーネス30が高電力用コネクタ28に固定されることで、この電源ハーネス30とコネクタバスバー33の他端が導通されるようにしたので、コネクタバスバー33の他端が高電力用コネクタ28や電源ハーネス30に接続されていない状態で、コネクタバスバー33の一端を給電経路部材63(導通部材31及び導通回路基板32)に接続することが可能となる。
 これにより、インバータ一体型電動圧縮機1の組立時に、寸法のバラツキ等によってコネクタバスバー33の一端とインバータ回路部3や給電経路部材63の接続箇所の位置関係がずれたとしても、コネクタバスバー33の位置を調整することで、接続箇所の位置ずれを吸収して両者が合致させることができるようになる。従って、コネクタバスバー33の一端を接続する際に、インバータ回路部3や給電経路部材63に加わる応力を解消することが可能となり、信頼性を向上させることができるようになる。また、高電力用コネクタ28に電源ハーネス30を固定することで、ケース部材25内において容易にコネクタバスバー33の他端と高電力用コネクタ28や電源ハーネス30とを導通させることができるので、組み付け作業性も改善される。
 この場合、実施例ではコネクタバスバー33の他端が、高電力用コネクタ28に移動可能な関係で係合するようにしたので、両者の係合関係によってコネクタバスバー33と高電力用コネクタ28の位置決めができるようになり、電源ハーネス30との導通もより確実とすることができるようになる。
 また、実施例ではコネクタバスバー33の一端を、給電経路部材63(導通部材31及び導通回路基板32)にネジ止めにより接続している。このコネクタバスバー33を半田付けで給電経路部材63に接続してもよいが、実施例の如くネジ止めで接続することで、両者の接触面積を大きくとれるようになり、大電流に対応することができるようになる。
 この場合、コネクタバスバー33の一端に雄ネジ部64を設け、この雄ネジ部64が給電経路部材63(導通部材31及び導通回路基板32)に形成されたネジ孔78、79に進入した状態で、当該雄ネジ部64に螺合するナット76により、コネクタバスバー33が給電経路部材63に接続されるようにしているので、コネクタバスバー33と給電経路部材63との位置決めが容易となる。
 また、実施例の如くインバータ回路部3が、モータハウジング4に構成されたインバータ収容部8に収容され、このインバータ収容部8が、蓋部材11により閉塞されると共に、インバータ収容部8が、蓋部材11で閉塞された状態で、外部に連通する連通部71を有しているとき、インバータ回路部3の一部や給電経路部材63を連通部71に配置し、コネクタバスバー33が給電経路部材63を介してインバータ回路部3に導通された状態で、連通部71がケース部材25により閉塞されるようにすれば、モータハウジング4のインバータ収容部8内のインバータ回路部3と高電力用コネクタ28とを、コネクタバスバー33と給電経路部材63を介して容易に導通させることができるようになる。
 この場合、実施例ではケース部材25を、コネクタバスバー33の一端が収容されて連通部71を閉塞する絶縁性のバスバーケース34と、このバスバーケース34に結合されて高電力用コネクタ28が取り付けられた絶縁性のコネクタケース27とから構成し、コネクタバスバー33の他端が、バスバーケース34を貫通してコネクタケース27内に進入するようにしているので、モータハウジング4にケース部材25やコネクタバスバー33を組み付ける際の作業性が極めて良好となる。
 そして、コネクタバスバー33が貫通する箇所の周囲におけるバスバーケース34とコネクタケース27間を防水するシール部材68を設けているので、バスバーケース34とコネクタケース27との隙間から侵入する水により、コネクタバスバー33部分で短絡故障が発生する不都合も回避することができるようになる。
 尚、実施例ではコネクタバスバー33を導通部材31及び導通回路基板32から成る導通経路部材63を介してインバータ回路部3に導通させたが、インバータ回路部3のフィルタモールドアセンブリ21の端子板29を連通部71の開口72近傍まで延長させて、コネクタバスバー33を直接端子板29(インバータ回路部3)にネジ止め(接続)しても良い。その場合にもコネクタバスバー33の他端は移動可能であるので、寸法のバラツキで端子板29とコネクタバスバー33の一端の位置がずれていたとしても、コネクタバスバー33の位置を調整することで、ネジ止め(接続)時にインバータ回路部3に応力が加わることを防止することができる。
 また、実施例ではコネクタバスバー33の他端を高電力用コネクタ28に当接させ、係合させたが、それに限らず、電源ハーネス30が高電力用コネクタ28にネジ止め(固定)された際に導通できる範囲で、コネクタバスバー33の他端を高電力用コネクタ28に移動可能に近接させた状態としても良い。更に、実施例ではケース部材25をコネクタケース27とバスバーケース34の二部品で構成したが、両者を一体として構成しても良い。
 更にまた、実施例で示したインバータ回路部3やモータハウジング4の形状、構造、及び、コネクタバスバー33等を含む給電経路の形状、構造は、それに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能であることは云うまでもない。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The inverter-integrated electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner that air-conditions a vehicle interior of a vehicle (not shown), and is driven by a motor (not shown) and this motor. A housing 2 containing a compression mechanism (not shown) and an inverter circuit unit 3 for driving the motor are provided.
The housing 2 includes a motor housing 4 containing the motor, a compression mechanism housing 6 connected to one side in the axial direction of the motor housing 4 and containing the compression mechanism, and an opening on one side of the compression mechanism housing 6. A compression mechanism cover 7 that closes the motor housing 4, an inverter accommodating portion 8 that is configured on the other side in the axial direction of the motor housing 4, and a lid member 11 that closes the opening 9 on the other side of the inverter accommodating portion 8 so as to be openable and closable. ing. And the inverter circuit part 3 is accommodated in this inverter accommodating part 8. FIG.
In each of the drawings, the inverter-integrated electric compressor 1 of the embodiment is shown with the inverter accommodating portion 8 on the top and the compression mechanism cover 7 on the bottom, but actually, the compression mechanism cover 7 is on one side. The inverter accommodating portion 8 is arranged in the lateral direction so as to be on the other side.
The motor of the embodiment is composed of a three-phase synchronous motor (brushless DC motor), and the compression mechanism is, for example, a scroll type compression mechanism. The compression mechanism is driven by a motor, compresses the refrigerant, and discharges it into the refrigerant circuit. A low-temperature gas refrigerant sucked from an evaporator (also referred to as a heat absorber) that also forms part of the refrigerant circuit is circulated in the motor housing 4. Therefore, the inside of the motor housing 4 is cooled. And the inverter accommodating part 8 is divided with the inside of the motor housing 4 in which a motor is accommodated by the partition 12 formed in the motor housing 4, and this partition 12 is also cooled by a low temperature gas refrigerant.
(1) Configuration of Inverter Circuit Unit 3 The inverter circuit unit 3 includes a high heat dissipation substrate 14 on which a power switching element 13 constituting an arm of each phase of a three-phase inverter circuit is mounted, and a control on which a control circuit 16 is mounted. A substrate 17, a bus bar assembly 18 connected to the power switching element 13 of the high heat dissipation substrate 14, and a filter mold assembly 21 on which a smoothing capacitor 19 is mounted.
The inverter circuit unit 3 converts DC power fed from a vehicle battery (not shown) into three-phase AC power and feeds it to a stator coil (not shown) of the motor. Therefore, the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase has three terminals on the lead terminals 22, 23 and 24 drawn from the partition wall 12 of the motor housing 4. The power supply terminal of the power switching element 13 on the upper arm side and the ground terminal of the power switching element 13 on the lower arm side are connected to each other via the plate 26 of an insulating case member 25 described later attached to the motor housing 4. The power supply harness 30 from the battery connected to the high power connector 28 (consisting of screws) is conducted.
In this case, the lead terminals 22 to 24 to which the connection points of the upper arm side power switching element 13 and the lower arm side power switching element 13 of each phase are connected penetrate the partition wall 12 and the motor in the motor housing 4. Are connected to the aforementioned stator coil. The power supply terminal and the ground terminal are referred to as a terminal plate 29 of the filter mold assembly 21, a conductive member 31 called an EMC bus bar assembly, a conductive circuit board 32 called an EMC board, a connector bus bar 33, and an HV connector. It is connected to the power harness 30 via the above-described high power connector 28 and the like.
The case member 25 of the embodiment includes two parts, an insulating connector case 27 to which a high power connector 28 is attached and an insulating bus bar case 34 called an EMC filter case in which the connector bus bar 33 is built. These structures will be described later in detail.
(2) Configuration of the high heat dissipation board 14 The high heat dissipation board 14 is formed in a thick plate shape by a resin for molding a circuit board, and each power switching element 13 and its peripheral circuit components are arranged on one side. In addition, the power switching element 13 is configured to pass through the high heat dissipation substrate 14 and exchange heat with the other side. Note that circuit components around the power switching element 13 are also arranged on the other surface.
Further, on one surface of the high heat dissipation substrate 14, an electrode terminal (not shown) that is connected to the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase protrudes. These are connected to the lead terminals 22, 23 and 24 drawn from the partition wall 12 via the terminal plate 26 via bus bars 46, 47 and 48 of the bus bar assembly 18 which will be described later. Further, electrode terminals (not shown) that are connected to the power supply terminal and the ground terminal described above also protrude on one surface of the high heat dissipation substrate 14, and these pass through the bus bars 49 and 50 of the bus bar assembly 18 to be described later. It is connected to the terminal board 44 of the mold assembly 21. Furthermore, a connector 39 connected to the control circuit 16 of the control board 17 is attached to the periphery of one surface of the high heat dissipation board 14 outside the bus bar assembly 18.
(3) Configuration of Control Board 17 The control circuits 16 of the control board 17 are arranged on both sides of the control board 17 and perform switching control of each power switching element 13 of the high heat dissipation board 14 based on a command from the outside. . Also, it has a function of transmitting the motor drive state to the outside, and is configured by connecting circuit components such as a microcomputer by printed wiring. Further, a connection portion 41 to which the connector 39 of the high heat dissipation substrate 14 described above is connected is disposed around the control substrate 17.
(4) Configuration of Filter Mold Assembly 21 The smoothing capacitor 19 is connected between the power supply terminal and the ground terminal of the three-phase inverter circuit, and absorbs the high-frequency component of the switching current of the three-phase inverter circuit. The smoothing capacitor 19 is disposed on a filter mold assembly (circuit board) 21, and a terminal plate 29 of the filter mold assembly 21 is connected to a conduction member 31 as will be described later, and a conduction circuit board 32, a connector bus bar 33, and The power supply harness 30 is conductively connected through the high power connector 28 and the like, and the terminal plate 44 is connected to the electrode terminal conductive to the power supply terminal and the ground terminal of the high heat dissipation substrate 14 described above.
(5) Configuration of Bus Bar Assembly 18 The bus bar assembly 18 has five bus bars 46, 47, 48, 49, and 50 that form wiring of a three-phase inverter circuit. Each of the bus bars 46 to 50 is disposed at a position outside the control board 17 and is integrated by insert molding of an insulating hard resin. The bus bars 46 to 48 are connected to the power switching element 13 of the high heat dissipation board 14. Each electrode terminal conducting to the connection point and each terminal plate 26 are connected, and bus bars 49 and 50 connect the electrode terminal conducting to the power supply terminal and the ground terminal to the terminal plate 44 of the filter mold assembly 21.
(6) Assembly and assembly of inverter circuit unit 3 Next, an assembly procedure of the inverter circuit unit 3 will be described. The high heat dissipation board 14, the bus bar assembly 18, and the control board 17 with the bus bar assembly 18 sandwiched between the high heat dissipation board 14 on which the power switching element 13 and the like are mounted and the control board 17 on which the control circuit 16 is mounted. Are laminated.
In the state of being laminated in this way, each of the above-described electrode terminals constituted by screws is inserted from the other surface side of the high heat dissipation substrate 14 and penetrates the high heat dissipation substrate 14 to the bus bars 46 to 50 of the bus bar assembly 18 respectively. Screw together. Each screw terminal is electrically connected to the circuit board of the high heat dissipation board 14 and the bus bars 46 to 50 by this screwing.
Further, screws 51 and 52 are inserted from one surface side of the control board 17, penetrate the control board 17, and screw into the bus bar assembly 18. By such screwing, the high heat dissipation board 14, the bus bar assembly 18, and the control board 17 are integrated. Next, with the smoothing capacitor 19 on the high heat dissipation substrate 14 side, the terminal plate 44 of the filter mold assembly 21 is directed to one side of the bus bars 49, 50 of the bus bar assembly 18, and screws 53, 54 are inserted to insert the bus bar. The filter mold assembly 21 is screwed to the bus bar assembly 18 by being screwed to 49 and 50. In this state, the terminal plate 44 is electrically connected to the electrode terminals 42 and 43 through the bus bars 49 and 50, respectively. Thereby, the inverter circuit unit 3 including the high heat dissipation substrate 14, the control substrate 17, the bus bar assembly 18, and the filter mold assembly 21 (smoothing capacitor 19) is integrated (sub-assembly).
The inverter circuit portion 3 integrated in this way is accommodated in the inverter accommodating portion 8 of the motor housing 4 with the high heat dissipation substrate 14 as the partition wall 12 side. At this time, the other surface of the high heat dissipation substrate 14 at a position corresponding to the power switching element 13 is filled with a filler for heat conduction (such as grease), and each power switching element 13 is connected to the partition 12 through the filler. The heat exchange relationship is established. Further, the smoothing capacitor 19 is also brought into close contact with the partition wall 12 for heat exchange.
And the inverter circuit part 3 is attached to the motor housing 4 (housing 2) with a some screw | thread. Thereafter, the terminal plate 26 is attached between the lead terminals 22, 23, 24 and the bus bars 46, 47, 48 by screwing, and is conducted. Further, the terminal plate 29 of the filter mold assembly 21 is attached to the conducting member 31 by a screw 56 to be conducted as will be described later.
(7) Configuration of Power Supply Path to Inverter Circuit Unit 3 Next, the configuration of the power supply path to the inverter circuit unit 3 will be described in detail. In the embodiment, the power supply path from the power harness 30 to the inverter circuit unit 3 includes the conductive member 31, the conductive circuit board 32, the connector bus bar 33, and the high power connector 28 described above. The conducting member 31 includes a terminal plate 61 at one end and a terminal plate 62 located at the other end and connected to the terminal plate 61. The conductive circuit board 32 is a circuit board provided with wiring, and the conductive member 31 and the conductive circuit board 32 constitute a power supply path member 63 in the present invention.
The connector bus bar 33 is made of a metal plate, and one end thereof is bent at a substantially right angle, and a male screw part 64 protruding in the longitudinal direction is provided at the bent end. In addition, the other end of the connector bus bar 33 is formed with a notch 33A having a dimension that allows the high-power connector 28 to move and come into contact therewith and be engageable. The notch 33A is formed in the connector bus bar 33. And has a predetermined length dimension in the longitudinal direction (FIGS. 7 to 10). Two such connector bus bars 33 are used. The bus bar case 34 constituting the case member 25 is made of an insulating member such as a hard resin, and has two through holes 66 through which the two bus bars 33 and 33 are inserted.
Similarly, the connector case 27 constituting the case member 25 is also made of an insulating member such as a hard resin. Two high power connectors 28 are attached to the connector case 27, and a partition wall 27 </ b> A is formed integrally with the connector case 27 between the high power connectors 28, 28. Each of the high power connectors 28 and 28 is formed of a screw, and a base portion 28 </ b> A thereof is embedded in the connector case 27. The connector case 27 is formed with two insertion holes 67 extending from one surface to the bases 28A of the high power connectors 28, 28. Further, a seal member 68 made of an O-ring is attached to one surface of the connector case 27 so as to surround the periphery of each insertion hole 67.
(8) Assembly of power feeding path and connection to inverter circuit section 3 Next, a procedure for assembling each member constituting the above power feeding path to the housing 2 (motor housing 4) will be described. A communication portion 71 is formed on the inverter housing portion 8 on the filter mold assembly 21 side so as to protrude in the radial direction of the motor housing 4. The communicating portion 71 is also opened (72) on the side opposite to the opening 9 side and is not blocked by the lid member 11. Further, the terminal plate 29 (a part of the inverter circuit unit 3) of the filter mold assembly 21 is positioned on the opening 9 side of the communication unit 71 in a state where the inverter circuit unit 3 is stored in the inverter storage unit 8.
First, the bus bar case 34 and the connector case 27 constituting the case member 25 are coupled by the screws 73 to assemble the case member 25. In this case, each insertion hole 67 of the connector case 27 corresponds to each through hole 66 of the bus bar case 34, and the seal member 68 is located between the bus bar case 34 and the connector case 27 around the insertion hole 67 and the through hole 66. Seal watertight and waterproof.
Next, the other end of the two connector bus bars 33 in which the notches 33A are formed is inserted into the through holes 66 of the bus bar case 34 and inserted into the respective insertion holes 67 of the connector case 27 to be connected to the high power connector 28. Abut (contact into the connector case 27). At this time, since the notch 33A is formed at the other end of the connector bus bar 33, the connector bus bar 33 is inserted into the notch 33A so that the high power connector 28 enters the notch 33A. Engage in a movable relationship in the direction. In addition, the conductive member 31 and the conductive circuit board 32 are assembled with screws 77. At this time, the two screw holes 78 formed in the terminal plate 62 of the conductive member 31 and the two screw holes 79 of the conductive circuit board 32 match (the connector bus bar 33 is not fixed at this time).
Next, the assembled conductive member 31 and conductive circuit board 32 are inserted into the bus bar case 34, and the male screw portions 64 of the connector bus bars 33 are respectively inserted into the screw holes 79 of the conductive circuit board 32 and the screw holes 78 of the terminal plate 62. Let it enter. Then, the nut 76 is screwed into the male screw portion 64, and one end of the connector bus bar 33 is connected to the conductive circuit board 32 and the conductive member 31 by screws and fixed. At this time, the other end of the connector bus bar 33 is not connected to the high power connector 28. Therefore, even if the positions of the male screw portion 64 and the screw holes 78 and 79 are slightly shifted due to dimensional variations, the connector bus bar 33 The position can be adjusted so that both can be matched. That is, for example, a gap is generated between one end of the connector bus bar 33 and the conductive circuit board 32 or the like due to dimensional variations in a state where the male screw portion 64 of the connector bus bar 33 is inserted into the screw holes 78 and 79. However, when the nut 76 is screwed, the connector bus bar 33 moves to the conductive circuit board 32 side. As a result, no stress is applied to the conductive circuit board 32 and the conductive member 31 when the nut 76 is connected.
That is, in this state, the other end of the connector bus bar 33 is not connected to the high power connector 28, and one end of the connector bus bar 33, the lower part of the conductive circuit board 32 and the conductive member 31 (power feeding path member 63) is the bus bar case. 34 is stored in the form. In this state, the case member 25 (the bus bar case 34 and the connector case 27) is placed on the outer surface of the motor housing 4 in such a manner that the conducting member 31 is inserted into the communicating portion 71 from the opening 72, and the case member 25 ( The bus bar case 34 and the connector case 27) are attached to the outer surface of the motor housing 4. At this time, the bus bar case 34 closes the opening 72 of the communication portion 71 and is sealed (sealed) with the motor housing 4 in a watertight manner.
In this state, the terminal plate 61 at one end of the conducting member 31 is positioned on the opening 9 side of the communication portion 71 and contacts the terminal plate 29 of the filter mold assembly 21 from the opening 72 side. The terminal plate 29 of the filter mold assembly 21 is attached to the terminal plate 61 of the conducting member 31 with screws 56 and is conducted. Even at this time, the other end of the connector bus bar 33 is not connected to the high power connector 28. Therefore, even if the positions of the terminal plate 29 and the terminal plate 61 are slightly shifted due to dimensional variations, the positions of the connector bus bar 33 and the like are adjusted. To be able to match. That is, for example, even if a gap is generated between the terminal plate 29 and the terminal plate 61 due to variation in dimensions, the entire connector bus bar 33 and the power supply path member 63 are connected to each other by screwing the screws 56 together. Move to the 29th side. As a result, no stress is applied to the filter mold assembly 21 at the time of connection by the screw 56, and it is possible to prevent inconveniences such as breakage of a soldered portion of the filter mold assembly 21. And the cover member 11 is attached to the opening 9 of the inverter accommodating part 8 with a some screw | thread, and the opening 9 of the inverter accommodating part 8 is obstruct | occluded so that opening and closing is possible.
In this way, the high power connector 28 is attached to the outer surface of the motor housing 4 (housing 2) via the insulating case member 25. Finally, the power harness 30 is inserted into each of the two high power connectors 28 and tightened with nuts 81 and fixed with screws. The power harness 30 may be fixed to the high power connector 28 by press fitting or the like instead of screwing. At this time, since the partition wall 27A is formed in the connector case 27, there is no inconvenience that the power harness 30 is short-circuited. The other end of the connector bus bar 33 is electrically connected to the power harness 30 via the high power connector 28 by tightening with the nut 81. Since the connector bus bar 33 is electrically connected to the filter mold assembly 21 via the conductive circuit board 32 and the conductive member 31, the power harness 30 is electrically connected to the inverter circuit unit 3 and supplied with power.
As described above in detail, in the present invention, in the inverter-integrated electric compressor 1 including the motor housing 4 (housing 2) containing the motor and the inverter circuit unit 3 that supplies power to the motor, one end is connected to the inverter circuit unit 3. A connector bus bar 33 that is conducted through the power supply path member 63 (the conducting member 31 and the conducting circuit board 32) and the outer surface of the motor housing 4 are attached via the insulating case member 25, and the power harness 30 is fixed. The connector bus bar 33 is provided with a high power connector 28. The other end of the connector bus bar 33 enters the case member 25 and is in contact with the high power connector 28 so as to be movable. By fixing to the high power connector 28, the power harness 30 and the other end of the connector bus bar 33 are made conductive. Thus, one end of the connector bus bar 33 is connected to the power supply path member 63 (the conductive member 31 and the conductive circuit board 32) in a state where the other end of the connector bus bar 33 is not connected to the high power connector 28 or the power harness 30. Is possible.
As a result, even when the positional relationship between one end of the connector bus bar 33 and the connection portion of the inverter circuit unit 3 or the power feeding path member 63 is shifted due to dimensional variation or the like when the inverter-integrated electric compressor 1 is assembled, the connector bus bar 33 By adjusting the position, it is possible to absorb the positional deviation of the connection location and match them. Therefore, when one end of the connector bus bar 33 is connected, the stress applied to the inverter circuit unit 3 and the power feeding path member 63 can be eliminated, and the reliability can be improved. Further, by fixing the power harness 30 to the high power connector 28, the other end of the connector bus bar 33 and the high power connector 28 and the power harness 30 can be easily conducted in the case member 25. Workability is also improved.
In this case, in the embodiment, the other end of the connector bus bar 33 is engaged with the high power connector 28 so as to be movable, so that the connector bus bar 33 and the high power connector 28 are positioned by the engagement relationship therebetween. As a result, electrical connection with the power supply harness 30 can be further ensured.
In the embodiment, one end of the connector bus bar 33 is connected to the power supply path member 63 (the conductive member 31 and the conductive circuit board 32) by screws. The connector bus bar 33 may be connected to the power supply path member 63 by soldering. However, by connecting the connector bus bar 33 with screws as in the embodiment, the contact area between the two can be increased, and a large current can be handled. become able to.
In this case, a male screw part 64 is provided at one end of the connector bus bar 33, and the male screw part 64 enters the screw holes 78 and 79 formed in the power supply path member 63 (the conductive member 31 and the conductive circuit board 32). Since the connector bus bar 33 is connected to the power supply path member 63 by the nut 76 screwed into the male screw portion 64, the positioning of the connector bus bar 33 and the power supply path member 63 is facilitated.
Further, as in the embodiment, the inverter circuit portion 3 is accommodated in the inverter accommodating portion 8 configured in the motor housing 4, and the inverter accommodating portion 8 is closed by the lid member 11, and the inverter accommodating portion 8 is When the communication portion 71 is connected to the outside in a state of being blocked by the member 11, a part of the inverter circuit unit 3 and the power supply path member 63 are arranged in the communication portion 71, and the connector bus bar 33 is connected to the power supply path member. If the communication part 71 is closed by the case member 25 in a state of being electrically connected to the inverter circuit part 3 via 63, the inverter circuit part 3 in the inverter accommodating part 8 of the motor housing 4 and the high power connector 28 can be easily conducted through the connector bus bar 33 and the power supply path member 63.
In this case, in the embodiment, the case member 25 is connected to the insulating bus bar case 34 in which one end of the connector bus bar 33 is accommodated to close the communication portion 71, and the high power connector 28 is attached to the bus bar case 34. And the other end of the connector bus bar 33 penetrates the bus bar case 34 and enters the connector case 27, so that the motor housing 4 has the case member 25 and the connector bus bar. The workability when assembling 33 is extremely good.
Since the sealing member 68 is provided to waterproof between the bus bar case 34 and the connector case 27 around the portion where the connector bus bar 33 penetrates, the connector bus bar is caused by water entering from the gap between the bus bar case 34 and the connector case 27. The inconvenience that a short-circuit failure occurs at the 33 portion can be avoided.
In the embodiment, the connector bus bar 33 is conducted to the inverter circuit section 3 through the conduction path member 63 including the conduction member 31 and the conduction circuit board 32. However, the terminal plate 29 of the filter mold assembly 21 of the inverter circuit section 3 is connected to the connector bus bar 33. The connector bus bar 33 may be directly screwed to (connected to) the terminal plate 29 (inverter circuit portion 3) by extending to the vicinity of the opening 72 of the communication portion 71. Even in that case, since the other end of the connector bus bar 33 is movable, even if the position of one end of the terminal plate 29 and the connector bus bar 33 is shifted due to the variation in dimensions, the position of the connector bus bar 33 can be adjusted, It is possible to prevent stress from being applied to the inverter circuit unit 3 at the time of screwing (connection).
In the embodiment, the other end of the connector bus bar 33 is brought into contact with and engaged with the high power connector 28. However, the present invention is not limited thereto, and when the power harness 30 is screwed (fixed) to the high power connector 28. The other end of the connector bus bar 33 may be movably brought close to the high-power connector 28 within a range in which the connector bus bar 33 can be conducted. Further, in the embodiment, the case member 25 is composed of two parts, ie, the connector case 27 and the bus bar case 34, but they may be configured as one body.
Furthermore, the shape and structure of the inverter circuit unit 3 and the motor housing 4 and the shape and structure of the power feeding path including the connector bus bar 33 shown in the embodiments are not limited thereto, and the gist of the present invention. It goes without saying that various changes can be made without departing from the scope.
1 インバータ一体型電動圧縮機
 2 ハウジング
 3 インバータ回路部
 4 モータハウジング
 6 圧縮機構ハウジング
 8 インバータ収容部
 21 フィルタモールドアセンブリ
 25 ケース部材
 27 コネクタケース
 28 高電力用コネクタ
 29 端子板
 30 電源ハーネス
 31 導通部材
 32 導通回路基板
 33 コネクタバスバー
 63 給電経路部材
 64 雄ネジ部
 68 シール部材
 71 連通部
 76、81 ナット
DESCRIPTION OF SYMBOLS 1 Inverter integrated electric compressor 2 Housing 3 Inverter circuit part 4 Motor housing 6 Compression mechanism housing 8 Inverter accommodating part 21 Filter mold assembly 25 Case member 27 Connector case 28 Connector for high power 29 Terminal board 30 Power supply harness 31 Conductive member 32 Conductiveness Circuit board 33 Connector bus bar 63 Power feeding path member 64 Male thread portion 68 Seal member 71 Communication portion 76, 81 Nut

Claims (6)

  1.  モータが内蔵されたハウジングと、前記モータに給電するインバータ回路部を備えたインバータ一体型電動圧縮機において、
     一端が前記インバータ回路部に直接、若しくは、所定の給電経路部材を介して導通されるコネクタバスバーと、
     前記ハウジングの外面に絶縁性のケース部材を介して取り付けられ、電源ハーネスが固定される高電力用コネクタを備え、
     前記コネクタバスバーは、他端が前記ケース部材内に進入し、前記高電力用コネクタに移動可能に当接した状態、若しくは、近接した状態で、一端が接続されると共に、
     前記電源ハーネスが前記高電力用コネクタに固定されることで、当該電源ハーネスと前記コネクタバスバーの他端が導通されることを特徴とするインバータ一体型電動圧縮機。
    In an inverter-integrated electric compressor having a housing with a built-in motor and an inverter circuit unit for supplying power to the motor,
    A connector bus bar whose one end is directly connected to the inverter circuit section or via a predetermined power supply path member;
    It is attached to the outer surface of the housing via an insulating case member, and includes a high power connector to which a power harness is fixed.
    In the state where the other end of the connector bus bar enters the case member and is movably contacted with the high power connector, or in the proximity thereof, one end is connected,
    An inverter-integrated electric compressor, wherein the power harness is fixed to the high power connector, whereby the other end of the power harness and the connector bus bar are electrically connected.
  2.  前記コネクタバスバーの他端は、前記高電力用コネクタに移動可能な関係で係合することを特徴とする請求項1に記載のインバータ一体型電動圧縮機。 2. The inverter-integrated electric compressor according to claim 1, wherein the other end of the connector bus bar is engaged with the high power connector so as to be movable.
  3.  前記コネクタバスバーの一端は、前記インバータ回路部、若しくは、前記給電経路部材にネジ止めにより接続されることを特徴とする請求項1又は請求項2に記載のインバータ一体型電動圧縮機。 3. The inverter-integrated electric compressor according to claim 1 or 2, wherein one end of the connector bus bar is connected to the inverter circuit section or the power supply path member by screwing.
  4.  前記コネクタバスバーの一端に設けられた雄ネジ部を備え、
     該雄ネジ部が前記インバータ回路部、若しくは、前記給電経路部材に形成されたネジ孔に進入した状態で、当該雄ネジ部に螺合するナットにより、前記コネクタバスバーは前記インバータ回路部、若しくは、前記給電経路部材に接続されることを特徴とする請求項3に記載のインバータ一体型電動圧縮機。
    A male screw part provided at one end of the connector bus bar,
    With the male screw portion entering the screw hole formed in the inverter circuit portion or the power supply path member, the connector bus bar is connected to the inverter circuit portion or the nut by screwing into the male screw portion. The inverter-integrated electric compressor according to claim 3, wherein the inverter-integrated electric compressor is connected to the power supply path member.
  5.  前記インバータ回路部は、前記ハウジングに構成されたインバータ収容部に収容され、該インバータ収容部は、蓋部材により閉塞されると共に、
     前記インバータ収容部は、前記蓋部材で閉塞された状態で、外部に連通する連通部を有し、前記インバータ回路部の一部、若しくは、前記給電経路部材が前記連通部に位置し、前記コネクタバスバーが前記インバータ回路部に導通された状態で、前記連通部は前記ケース部材により閉塞されることを特徴とする請求項1乃至請求項4のうちの何れかに記載のインバータ一体型電動圧縮機。
    The inverter circuit portion is housed in an inverter housing portion configured in the housing, and the inverter housing portion is closed by a lid member,
    The inverter accommodating portion has a communication portion communicating with the outside in a state of being closed by the lid member, and a part of the inverter circuit portion or the power feeding path member is located in the communication portion, and the connector 5. The inverter-integrated electric compressor according to claim 1, wherein the communication portion is closed by the case member in a state where the bus bar is electrically connected to the inverter circuit portion. 6. .
  6.  前記ケース部材は、前記コネクタバスバーの一端が収容されて前記連通部を閉塞する絶縁性のバスバーケースと、該バスバーケースに結合されて前記高電力用コネクタが取り付けられた絶縁性のコネクタケースとから成り、
     前記コネクタバスバーの他端は、前記バスバーケースを貫通して前記コネクタケース内に進入すると共に、
     前記コネクタバスバーが貫通する箇所の周囲における前記バスバーケースと前記コネクタケース間を防水するシール部材が設けられていることを特徴とする請求項5に記載のインバータ一体型電動圧縮機。
    The case member includes an insulating bus bar case that houses one end of the connector bus bar and closes the communicating portion, and an insulating connector case that is coupled to the bus bar case and to which the high power connector is attached. Consisting of
    The other end of the connector bus bar penetrates the bus bar case and enters the connector case,
    6. The inverter-integrated electric compressor according to claim 5, further comprising a sealing member that waterproofs between the bus bar case and the connector case around a portion where the connector bus bar penetrates.
PCT/JP2017/008388 2016-03-24 2017-02-24 Inverter-integrated electric compressor WO2017163810A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017000754.2T DE112017000754T5 (en) 2016-03-24 2017-02-24 Inverter integrated electric compressor
CN201780018317.XA CN109072894B (en) 2016-03-24 2017-02-24 Inverter-integrated electric compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-060648 2016-03-24
JP2016060648A JP6767761B2 (en) 2016-03-24 2016-03-24 Inverter integrated electric compressor

Publications (1)

Publication Number Publication Date
WO2017163810A1 true WO2017163810A1 (en) 2017-09-28

Family

ID=59901254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008388 WO2017163810A1 (en) 2016-03-24 2017-02-24 Inverter-integrated electric compressor

Country Status (4)

Country Link
JP (1) JP6767761B2 (en)
CN (1) CN109072894B (en)
DE (1) DE112017000754T5 (en)
WO (1) WO2017163810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146246A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Bus bar and power source device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342766B2 (en) * 2020-03-31 2023-09-12 株式会社豊田自動織機 electric compressor
JP2023172130A (en) * 2022-05-23 2023-12-06 サンデン株式会社 Composite device
EP4300789A1 (en) * 2022-06-30 2024-01-03 Valeo Japan Co., Ltd Electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584716A (en) * 1994-07-14 1996-12-17 Copeland Corporation Terminal assembly for hermetic compressor
JP2008245461A (en) * 2007-03-28 2008-10-09 Toyota Motor Corp Bus bar and inverter device
WO2009066569A1 (en) * 2007-11-20 2009-05-28 Mitsubishi Heavy Industries, Ltd. Bus bar structure and inverter-integrated type electric compressor
JP2013160091A (en) * 2012-02-02 2013-08-19 Toyota Industries Corp Electric compressor
JP2015063914A (en) * 2013-09-24 2015-04-09 株式会社豊田自動織機 Motor compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719134B2 (en) * 2006-11-22 2011-07-06 三菱重工業株式会社 Inverter-integrated electric compressor
JP5054991B2 (en) * 2007-02-01 2012-10-24 三菱重工業株式会社 Busbar connection structure and inverter-integrated electric compressor
JP5107133B2 (en) * 2008-05-14 2012-12-26 三菱重工業株式会社 Inverter-integrated electric compressor
JP5683536B2 (en) * 2012-06-08 2015-03-11 株式会社豊田自動織機 Electric compressor
JP5708592B2 (en) * 2012-08-03 2015-04-30 株式会社豊田自動織機 Electric compressor
JP6021623B2 (en) * 2012-12-11 2016-11-09 三菱重工業株式会社 Inverter-integrated electric compressor
JP6153745B2 (en) 2013-03-07 2017-06-28 三菱重工オートモーティブサーマルシステムズ株式会社 Inverter board and inverter-integrated electric compressor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584716A (en) * 1994-07-14 1996-12-17 Copeland Corporation Terminal assembly for hermetic compressor
JP2008245461A (en) * 2007-03-28 2008-10-09 Toyota Motor Corp Bus bar and inverter device
WO2009066569A1 (en) * 2007-11-20 2009-05-28 Mitsubishi Heavy Industries, Ltd. Bus bar structure and inverter-integrated type electric compressor
JP2013160091A (en) * 2012-02-02 2013-08-19 Toyota Industries Corp Electric compressor
JP2015063914A (en) * 2013-09-24 2015-04-09 株式会社豊田自動織機 Motor compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146246A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Bus bar and power source device
CN111630730A (en) * 2018-01-26 2020-09-04 松下知识产权经营株式会社 Bus bar and power supply device
JPWO2019146246A1 (en) * 2018-01-26 2021-02-04 パナソニックIpマネジメント株式会社 Busbar and power supply

Also Published As

Publication number Publication date
CN109072894B (en) 2020-10-16
CN109072894A (en) 2018-12-21
JP6767761B2 (en) 2020-10-14
JP2017172512A (en) 2017-09-28
DE112017000754T5 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2017163828A1 (en) Inverter-integrated electric compressor
JP4898931B2 (en) Inverter-integrated electric compressor
WO2017163810A1 (en) Inverter-integrated electric compressor
US8097992B2 (en) Electric compressor
EP2169231B2 (en) Inverter-device built-in type electric compressor and vehicle equipped with the same compressor
JP2004228126A (en) Housing for electronic circuit
JP2017158223A (en) Electric motor control device
CN111712641B (en) Electric compressor
CN111344823A (en) DC link capacitor module, power electronic module and power electronic device
CN109121457B (en) Electronic circuit device and inverter-integrated electric compressor including the same
CN111771055B (en) Electric compressor
US11869717B2 (en) Capacitor
WO2018051718A1 (en) Inverter-integrated electric compressor and method for manufacturing same
CN111712642B (en) Electric compressor
WO2017221854A1 (en) Electrical component mounting structure and inverter-integrated electric compressor including the same
JP6814607B2 (en) Electric compressor
JP2007315183A (en) Electric compressor
JP4794236B2 (en) Start relay device
WO2017073258A1 (en) Power storage unit
WO2020201799A1 (en) Power conversion device
WO2019163408A1 (en) Electric compressor
CN111771056A (en) Electric compressor
JP2019187106A (en) Power conversion device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000754

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769855

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769855

Country of ref document: EP

Kind code of ref document: A1