WO2018051718A1 - Inverter-integrated electric compressor and method for manufacturing same - Google Patents

Inverter-integrated electric compressor and method for manufacturing same Download PDF

Info

Publication number
WO2018051718A1
WO2018051718A1 PCT/JP2017/029581 JP2017029581W WO2018051718A1 WO 2018051718 A1 WO2018051718 A1 WO 2018051718A1 JP 2017029581 W JP2017029581 W JP 2017029581W WO 2018051718 A1 WO2018051718 A1 WO 2018051718A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
housing
press
inverter
caulking
Prior art date
Application number
PCT/JP2017/029581
Other languages
French (fr)
Japanese (ja)
Inventor
一三 大里
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to DE112017004627.0T priority Critical patent/DE112017004627T5/en
Priority to CN201780055649.5A priority patent/CN109690079A/en
Publication of WO2018051718A1 publication Critical patent/WO2018051718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10295Metallic connector elements partly mounted in a hole of the PCB

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is an inverter-integrated electric compressor that achieves a large cost reduction due to a reduction in the number of components and the amount of assembly man-hours and due to a decrease in loss-related expenses. A circuit board 17 of an inverter circuit part 3 has: fastening holes 33 formed through the circuit board; and a connecting hole which has, on an inner surface thereof, a conduction part for conducting to wiring and is formed to penetrate through the circuit board. An electric power switching element 13 has a press-fit terminal 14. Caulking shafts 61 are formed in a protruding manner in a motor housing 4. The caulking shafts are inserted through the fastening holes and the caulking shafts that protrude from the fastening holes are deformed, whereby the circuit board is caulked and fastened to the motor housing. The press-fit terminal is press-fitted into the connection hole, whereby the electric power switching element is electrically connected to the circuit board.

Description

インバータ一体型電動圧縮機及びその製造方法Inverter-integrated electric compressor and manufacturing method thereof
 本発明は、ハウジングにインバータ回路部を備えたインバータ一体型電動圧縮機、及び、当該インバータ一体型電動圧縮機の製造方法に関する。 The present invention relates to an inverter-integrated electric compressor having an inverter circuit portion in a housing, and a method for manufacturing the inverter-integrated electric compressor.
 従来より車両用の空気調和装置に用いられる電動圧縮機としては、スイッチングノイズを考慮して、ハウジングにインバータ回路部を取り付けたインバータ一体型の電動圧縮機が用いられている。この場合、インバータ回路部は回路基板に電力スイッチング素子等の電気部品が実装されており、複数本のネジにてハウジングに取り付けられていた。また、回路基板の配線と電気部品との接続は半田付けにて行われていた(例えば、特許文献1参照)。 Conventionally, as an electric compressor used in a vehicle air conditioner, an inverter-integrated electric compressor in which an inverter circuit portion is attached to a housing is used in consideration of switching noise. In this case, the inverter circuit unit has electric parts such as power switching elements mounted on the circuit board, and is attached to the housing with a plurality of screws. Further, the wiring of the circuit board and the electrical component are connected by soldering (see, for example, Patent Document 1).
特開2015−40538号公報Japanese Patent Laying-Open No. 2015-40538
 しかしながら、係る従来の取付構造では多数のネジにてインバータ回路部をハウジングに締結していたため、部品コストが高騰すると共に、組付工数も多数に上り、生産性の悪いものであった。また、回路基板と電気部品との接続に関しても半田付け不良となる割合が高く、多額の仕損費を要していた。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、部品点数と組付工数の削減、仕損費の低減により大幅なコストダウンを図ることができるインバータ一体型電動圧縮機、及び、その製造方法を提供することを目的とする。
However, in such a conventional mounting structure, the inverter circuit portion is fastened to the housing with a large number of screws, so that the cost of parts rises and the number of assembly steps increases, resulting in poor productivity. In addition, the connection between the circuit board and the electrical component has a high rate of soldering failure, which requires a large amount of waste.
The present invention has been made to solve the conventional technical problems, and is an inverter-integrated electric motor that can achieve a significant cost reduction by reducing the number of parts, the number of assembling steps, and the cost of waste. It aims at providing a compressor and its manufacturing method.
 本発明のインバータ一体型電動圧縮機は、モータが内蔵されたハウジングと、モータに給電するインバータ回路部を備えたものであって、インバータ回路部は、回路基板と、この回路基板に接続される電気部品を備え、回路基板には、締結孔が貫通形成されると共に、内面に配線への導通部が形成された接続孔が貫通形成され、電気部品は、プレスフィット端子を有し、ハウジングには、カシメ軸が突設されており、このカシメ軸を締結孔に挿通し、当該締結孔から突出したカシメ軸を変形させることで、回路基板はハウジングにカシメ締結され、プレスフィット端子を接続孔に圧入することで、電気部品は回路基板に電気的に接続されていることを特徴とする。
 請求項2の発明のインバータ一体型電動圧縮機は、上記発明においてカシメ軸は、ハウジングを構成する金属にて一体に形成されており、このカシメ軸を締結孔に挿通し、当該締結孔から突出したカシメ軸を圧潰することで、回路基板はハウジングにカシメ締結されていることを特徴とする。
 請求項3の発明のインバータ一体型電動圧縮機は、上記各発明において電気部品は、モータへの給電をスイッチングするための電力スイッチング素子であり、ハウジングと熱伝導関係に配置されていることを特徴とする。
 請求項4の発明のインバータ一体型電動圧縮機は、上記各発明において回路基板は、樹脂成形されたバスバーアセンブリを有し、回路基板には、取付孔が貫通形成され、バスバーアセンブリには、カシメ軸が一体に突出形成されており、このバスバーアセンブリのカシメ軸を取付孔に挿通し、当該取付孔から突出したカシメ軸を熱、若しくは、超音波により変形させることで、バスバーアセンブリは回路基板にカシメ締結されていることを特徴とする。
 請求項5の発明のインバータ一体型電動圧縮機の製造方法は、請求項1乃至請求項3の発明の電気部品のプレスフィット端子をハウジングのカシメ軸と同一方向に指向させた状態で、当該電気部品をハウジングと熱伝導関係に配置した後、回路基板を電気部品に被せ、カシメ軸の締結孔への挿通及びカシメ締結と、プレスフィット端子の接続孔への圧入接続を、同一工程にて行うことを特徴とする。
 請求項6の発明のインバータ一体型電動圧縮機の製造方法は、請求項4の発明の電気部品のプレスフィット端子をハウジングのカシメ軸と同一方向に指向させた状態で、当該電気部品をハウジングと熱伝導関係に配置し、バスバーアセンブリのカシメ軸をハウジングのカシメ軸と同一方向に指向させた状態で、当該バスバーアセンブリを電気部品に被せ、プレスフィット端子をバスバーアセンブリより突出させた後、回路基板をバスバーアセンブリに被せ、ハウジングのカシメ軸の締結孔への挿通及びカシメ締結と、バスバーアセンブリのカシメ軸の取付孔への挿通及びカシメ締結と、プレスフィット端子の接続孔への圧入接続を、同一工程にて行うことを特徴とする。
The inverter-integrated electric compressor according to the present invention includes a housing in which a motor is built in, and an inverter circuit unit that supplies power to the motor. The inverter circuit unit is connected to the circuit board and the circuit board. The circuit board is provided with a fastening hole formed in the circuit board, and a connection hole formed with a conduction portion to the wiring is formed through the inner surface. The caulking shaft is projected, and the circuit board is caulked and fastened to the housing by inserting the caulking shaft into the fastening hole and deforming the caulking shaft protruding from the fastening hole, and the press fit terminal is connected to the connection hole. The electrical component is electrically connected to the circuit board by press-fitting into the circuit board.
In the inverter-integrated electric compressor according to a second aspect of the present invention, in the above invention, the caulking shaft is integrally formed with a metal constituting the housing, and the caulking shaft is inserted into the fastening hole and protrudes from the fastening hole. By crushing the crimped shaft, the circuit board is crimped to the housing.
The inverter-integrated electric compressor according to a third aspect of the present invention is characterized in that in each of the above-mentioned inventions, the electrical component is a power switching element for switching power feeding to the motor, and is disposed in a heat conduction relationship with the housing. And
According to a fourth aspect of the present invention, there is provided the inverter-integrated electric compressor. In each of the above-described inventions, the circuit board has a resin-molded bus bar assembly, the circuit board has a mounting hole formed therethrough, and the bus bar assembly has a caulking. The shaft is integrally formed so that the caulking shaft of the bus bar assembly is inserted into the mounting hole, and the caulking shaft protruding from the mounting hole is deformed by heat or ultrasonic waves, so that the bus bar assembly is formed on the circuit board. It is characterized by being caulked.
According to a fifth aspect of the present invention, there is provided a method of manufacturing an inverter-integrated electric compressor, wherein the electric fitting press fit terminal of the first to third aspects of the invention is oriented in the same direction as the caulking shaft of the housing. After placing the components in a heat conductive relationship with the housing, the circuit board is placed on the electrical components, and the caulking shaft is inserted into the fastening hole, the caulking is fastened, and the press-fit connection to the press fit terminal is performed in the same process. It is characterized by that.
According to a sixth aspect of the present invention, there is provided a method for manufacturing an inverter-integrated electric compressor, wherein a press-fit terminal of the electric component according to the fourth aspect is oriented in the same direction as a caulking shaft of the housing. Arranged in heat conduction relationship, with the bus bar assembly caulking shaft oriented in the same direction as the housing caulking shaft, the bus bar assembly is placed on the electrical component, and the press-fit terminal protrudes from the bus bar assembly. Insert the housing into the fastening hole of the caulking shaft and the caulking fastening, and insert the caulking shaft into the mounting hole of the bus bar assembly and the caulking fastening, and press-fit connection to the press-fit terminal connection hole. It is performed in a process.
 本発明によれば、モータが内蔵されたハウジングと、モータに給電するインバータ回路部を備えたインバータ一体型電動圧縮機において、回路基板と、この回路基板に接続される電気部品を備えたインバータ回路部の回路基板に締結孔と、内面に配線への導通部が形成された接続孔を貫通形成すると共に、電気部品にプレスフィット端子を設け、ハウジングにはカシメ軸を突設し、このカシメ軸を締結孔に挿通し、当該締結孔から突出したカシメ軸を変形させることで、回路基板をハウジングにカシメ締結し、プレスフィット端子を接続孔に圧入することで、電気部品を回路基板に電気的に接続するようにしたので、回路基板をネジによりハウジングに締結する必要が無くなり、部品点数の削減を図ることができるようになる。また、電気部品を回路基板に半田付けする必要も無くなるので、半田付け不良も解消され、仕損費の低減を図ることができるようになる。
 そして、例えば請求項5の発明に如く電気部品のプレスフィット端子をハウジングのカシメ軸と同一方向に指向させた状態で、当該電気部品をハウジングと熱伝導関係に配置した後、回路基板を電気部品に被せることで、カシメ軸の締結孔への挿通及びカシメ締結と、プレスフィット端子の接続孔への圧入接続を同一工程にて行うことが可能となるので、組付工数も著しく削減することができるようになり、総じて大幅なコストダウンを図ることが可能となる。
 特に、請求項3の発明の如く電気部品が、モータへの給電をスイッチングするための電力スイッチング素子であり、この電力スイッチング素子をハウジングと熱伝導関係に配置しながら回路基板に接続する際に有効である。
 ここで、請求項2の発明の如くカシメ軸を、ハウジングを構成する金属にて一体に形成し、カシメ軸を締結孔に挿通し、当該締結孔から突出したカシメ軸を圧潰することで、回路基板をハウジングにカシメ締結するようにすれば、通常金属にてハウジングが構成されるインバータ一体型電動圧縮機において、効果的に部品点数の削減を図ることができるようになり、極めて有効なものとなる。
 また、請求項4の発明の如く回路基板が、樹脂成形されたバスバーアセンブリを有している場合には、回路基板に更に取付孔を貫通形成し、バスバーアセンブリには、カシメ軸を一体に突出形成して、このバスバーアセンブリのカシメ軸を取付孔に挿通し、当該取付孔から突出したカシメ軸を熱、若しくは、超音波により変形させることで、バスバーアセンブリを回路基板にカシメ締結するようにすれば、回路基板へのバスバーアセンブリの取り付けにもネジが不要となり、部品点数の削減を図ることが可能となる。
 そして、この場合には、例えば請求項6の発明の如く電気部品のプレスフィット端子をハウジングのカシメ軸と同一方向に指向させた状態で、当該電気部品をハウジングと熱伝導関係に配置し、バスバーアセンブリのカシメ軸をハウジングのカシメ軸と同一方向に指向させた状態で、当該バスバーアセンブリを電気部品に被せ、プレスフィット端子をバスバーアセンブリより突出させた後、回路基板をバスバーアセンブリに被せることで、ハウジングのカシメ軸の締結孔への挿通及びカシメ締結と、バスバーアセンブリのカシメ軸の取付孔への挿通及びカシメ締結と、プレスフィット端子の接続孔への圧入接続を同一工程にて行うことが可能となるので、同様に組付工数を削減して大幅なコストダウンを図ることが可能となる。
According to the present invention, in an inverter-integrated electric compressor including a housing in which a motor is built and an inverter circuit unit that supplies power to the motor, an inverter circuit including a circuit board and electrical components connected to the circuit board A fastening hole is formed in the circuit board of the part, and a connection hole in which a conduction part to the wiring is formed on the inner surface, a press-fit terminal is provided in the electrical component, and a caulking shaft is projected from the housing. Is inserted into the fastening hole, the caulking shaft protruding from the fastening hole is deformed, the circuit board is caulked and fastened to the housing, and the press-fit terminal is press-fitted into the connection hole, so that the electrical component is electrically connected to the circuit board. Therefore, it is not necessary to fasten the circuit board to the housing with screws, and the number of components can be reduced. In addition, since it is not necessary to solder the electrical component to the circuit board, the soldering failure can be eliminated, and the loss cost can be reduced.
Then, for example, as in the invention of claim 5, in a state where the press-fit terminal of the electrical component is oriented in the same direction as the caulking shaft of the housing, the electrical component is disposed in a heat conductive relationship with the housing, and then the circuit board is mounted on the electrical component. It is possible to perform the insertion of the caulking shaft into the fastening hole and the caulking fastening and the press-fit connection to the connection hole of the press-fit terminal in the same process, so that the assembly man-hour can be significantly reduced. As a result, the overall cost can be significantly reduced.
In particular, as in the invention of claim 3, the electrical component is a power switching element for switching the power supply to the motor, and is effective when connecting the power switching element to the circuit board while being arranged in a heat conduction relationship with the housing. It is.
Here, as in the invention of claim 2, the caulking shaft is formed integrally with the metal constituting the housing, the caulking shaft is inserted into the fastening hole, and the caulking shaft protruding from the fastening hole is crushed, whereby the circuit By caulking the board to the housing, it is possible to effectively reduce the number of parts in an inverter-integrated electric compressor whose housing is usually made of metal, which is extremely effective. Become.
Further, when the circuit board has a resin-molded bus bar assembly as in the invention of claim 4, a mounting hole is further formed through the circuit board, and a caulking shaft projects integrally with the bus bar assembly. Then, the caulking shaft of the bus bar assembly is inserted into the mounting hole, and the caulking shaft protruding from the mounting hole is deformed by heat or ultrasonic waves so that the bus bar assembly is caulked and fastened to the circuit board. For example, screws are not required for mounting the bus bar assembly to the circuit board, and the number of components can be reduced.
In this case, for example, as in the invention of claim 6, with the press-fit terminal of the electric component oriented in the same direction as the caulking shaft of the housing, the electric component is arranged in a heat conductive relationship with the housing, and the bus bar With the caulking shaft of the assembly oriented in the same direction as the caulking shaft of the housing, the bus bar assembly is covered with an electrical component, the press fit terminal is projected from the bus bar assembly, and then the circuit board is covered with the bus bar assembly. Insertion and caulking of the housing caulking shaft into the fastening hole, insertion and caulking of the bus bar assembly into the caulking shaft mounting hole, and press-fit connection to the press-fit terminal connection hole can be performed in the same process. Therefore, it is possible to reduce the assembly man-hours and to greatly reduce the cost.
本発明を適用した一実施例のインバータ一体型電動圧縮機の斜視図である。1 is a perspective view of an inverter-integrated electric compressor according to an embodiment to which the present invention is applied. 図1のインバータ一体型電動圧縮機の蓋部材を取り外した状態の斜視図である。FIG. 2 is a perspective view of a state where a cover member of the inverter-integrated electric compressor in FIG. 1 is removed. 図1のインバータ一体型電動圧縮機の蓋部材を取り外した状態のインバータ収容部側から見た平面図である。It is the top view seen from the inverter accommodating part side of the state which removed the cover member of the inverter integrated electric compressor of FIG. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 図3に示したインバータ回路部の平滑コンデンサ以外の部分の分解斜視図である。It is a disassembled perspective view of parts other than the smoothing capacitor of the inverter circuit part shown in FIG. 図5に示したインバータ回路部の回路基板とフロントハウジングのカシメ締結、回路基板とバスバーアセンブリのカシメ締結構造を説明する図である。It is a figure explaining the crimping fastening structure of the circuit board and front housing of an inverter circuit part shown in FIG. 5, and the crimping fastening structure of a circuit board and a bus-bar assembly. 図5に示したインバータ回路部の電力スイッチング素子と回路基板との接続構造を説明する図である。It is a figure explaining the connection structure of the power switching element and circuit board of the inverter circuit part shown in FIG.
 以下、本発明の一実施形態について、図面に基づき詳細に説明する。実施例のインバータ一体型電動圧縮機1は、図示しない車両の車室内を空調する車両用空気調和装置の冷媒回路の一部を構成するものであり、モータM(図4に破線で示す)と、このモータMにより駆動される圧縮機構(図示せず)を内蔵した金属製(アルミニウムや鉄製。実施例ではアルミニウム製)のハウジング2と、モータMに給電して駆動するインバータ回路部3を備えている。
 ハウジング2は、前記モータMを内蔵するモータハウジング4と、このモータハウジング4の軸方向の一側に接続されて前記圧縮機構を内蔵する圧縮機構ハウジング6と、この圧縮機構ハウジング6の一側の開口を閉塞する圧縮機構カバー7と、モータハウジング4の軸方向の他側に構成されたインバータ収容部8と、このインバータ収容部8の他側の開口9を開閉可能に閉塞する蓋部材11を備えている。そして、このインバータ収容部8内にインバータ回路部3が収容される。
 尚、図1、図2ではインバータ収容部8を上に、圧縮機構カバー7を下にした状態で実施例のインバータ一体型電動圧縮機1を示しているが、実際には圧縮機構カバー7が一側、インバータ収容部8が他側となるように横方向で配置されるものである。
 実施例のモータMは、三相同期モータ(ブラシレスDCモータ)から構成されており、前記圧縮機構は例えばスクロール式の圧縮機構である。圧縮機構はモータMにより駆動され、冷媒を圧縮して冷媒回路内に吐出する。そして、モータハウジング4には、これも冷媒回路の一部を構成するエバポレータ(吸熱器とも称される)から吸入された低温のガス冷媒が流通される。そのため、モータハウジング4内は冷却されている。そして、インバータ収容部8は、モータハウジング4に形成された隔壁12によりモータMが収容されるモータハウジング4内と区画されており、この隔壁12も低温のガス冷媒により冷却される。
 (1)インバータ回路部3の構成
 前記インバータ回路部3は、三相インバータ回路の各相のアームを構成する電気部品の一例としての6個の電力スイッチング素子13と(図5)、プリント配線に制御回路16が実装された回路基板17と、平滑コンデンサ19が実装されたフィルタモールドアセンブリ21を備えており、回路基板17は更にバスバーアセンブリ18(図4、図5)を有している。このバスバーアセンブリ18も電気部品の一例に含まれる。
 このインバータ回路部3は、図示しない車両のバッテリから給電される直流電力を三相交流電力に変換して前記モータMのステータコイル(図示せず)に給電するものである。そのため、各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点が、モータハウジング4の隔壁12から引き出された引出端子22、23、24に三枚の端子板26を介してそれぞれ接続され、上アーム側の電力スイッチング素子13の電源端子と下アーム側の電力スイッチング素子13の接地端子が、モータハウジング4に取り付けられたHVコネクタと称される高電力用コネクタ28を介して前述したバッテリからの電源ハーネスに接続されることになる。
 この場合、各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点が接続される引出端子22~24は、隔壁12を貫通してモータハウジング4内のモータMの前述したステータコイルに接続されている。また、電源端子と接地端子は、フィルタモールドアセンブリ21の端子板29及び前述した高電力用コネクタ28等を介して電源ハーネスに接続される。
 (2)電力スイッチング素子13の構成
 各電力スイッチング素子13は実施例ではIGBT(MOSFETでもよい)から構成されており、一面が熱伝導用のシート或いはグリスを介してモータハウジング4の隔壁12に密着され、それと熱伝導関係に配置される。隔壁12は前述した如く低温のガス冷媒により冷却されているので、発熱を伴う電力スイッチング素子13は隔壁12から冷却されることになる。
 また、各電力スイッチング素子13はゲート、コレクタ、エミッタの3本のプレスフィット端子14を備えており、各プレスフィット端子14は電力スイッチング素子13のパッケージ27から引き出された後、隔壁12から垂直に起立する方向に指向されている(図5)。そして、各プレスフィット端子14は先端が先細状の案内部31とされ、この案内部31のパッケージ27側に変形可能な接続部32が拡幅形成されている(図7)。
 (3)回路基板17の構成
 前記制御基板17の制御回路16は、外部からの指令に基づいて各電力スイッチング素子13をスイッチング制御する。また、モータMの駆動状態を外部に送信する機能を有しており、マイクロコンピュータ等の回路部品をプリント配線にて接続して構成されている。更に、回路基板17の周辺部には、モータハウジング4にカシメ締結するための締結孔33とバスバーアセンブリ18をカシメ締結するための取付孔34が複数形成されている。また、回路基板17の中央部には各電力スイッチング素子13の各プレスフィット端子14が接続される接続孔54と、バスバーアセンブリ18の後述する各プレスフィット端子52が接続される接続孔56がそれぞれに複数形成されている。
 (4)フィルタモールドアセンブリ21の構成
 前記平滑コンデンサ19は、三相インバータ回路の電源端子と接地端子との間に接続されて、三相インバータ回路のスイッチング電流の高周波成分を吸収する。この平滑コンデンサ19はフィルタモールドアセンブリ(基板)21に配置されており、このフィルタモールドアセンブリ21の端子板29が前述した如く高電力用コネクタ28を介して電源ハーネスに導通接続され、端子板44が前述したバスバーアセンブリ18のバスバー49、50に接続されることになる。
 (5)バスバーアセンブリ18の構成
 前記回路基板17の一部を構成するバスバーアセンブリ18は、三相インバータ回路の配線を成す五つのバスバー46、47、48、49、50と、垂直に突出した複数のプレスフィット端子52を有している。各バスバー46~50は回路基板17の外側となる位置に配置され、絶縁性の硬質樹脂のインサート成形により一体化されており、バスバー46~48に各端子板26が接続され、バスバー49、50にフィルタモールドアセンブリ21の端子板44が接続される。また、各プレスフィット端子52も前述したプレスフィット端子14と同様に先端が先細状の案内部31とされ、この案内部31のバスバーアセンブリ18側に変形可能な接続部32が拡幅形成されている(図7)。尚、バスバー49、50もプレスフィット端子52と同様の構造のプレスフィット端子により構成されており、端子板44には後述する接続孔54及び導通部58と同一の構造部分が形成され、各バスバー49、50が当該構造部分に接続されるように構成されている。
 このバスバーアセンブリ18の中央部には各電力スイッチング素子13のプレスフィット端子14が通過する貫通孔51がそれぞれに複数形成されている。また、バスバーアセンブリ18の周辺部には、カシメ軸53がバスバーアセンブリ18を構成する硬質樹脂の一体成型により複数突出形成されている。
 (6)カシメ軸53、61、接続孔54、52の構成
 尚、バスバーアセンブリ18のカシメ軸53は回路基板17の前述した各取付孔34に対応する位置に形成されており、バスバーアセンブリ18から垂直に突出している。また、モータハウジング4の隔壁12には回路基板17の前述した各締結孔33に対応する位置にカシメ軸61が複数突出形成されている。この場合、各カシメ軸61はインバータ収容部8内において、隔壁12を構成するアルミニウム(実施例)の一体成型により形成されており、インバータ収容部8の開口9の方向に向けて隔壁12から垂直に突出している。
 また、回路基板17の接続孔54の内面には当該回路基板17の配線に導通する導通部58が形成されている(図7)。
 (7)インバータ回路部3の組み付け手順
 次に、本発明のインバータ一体型電動圧縮機1を製造する際に、上記インバータ回路部3をモータハウジング4に組み付ける手順について説明する。先ず、蓋部材11が取り付けられていない状態のモータハウジング4を、インバータ収容部8が上に向いた状態とし、前述した熱伝導用のシート或いはグリスを介して隔壁12上の所定の位置に各電力スイッチング素子13を配置する。これにより、各電力スイッチング素子13を隔壁12と熱伝導関係とする。また、このとき各電力スイッチング素子13のプレスフィット端子14は隔壁12から垂直に起立する方向、即ち、インバータ収容部8の開口9の方向に指向させる(図5)。
 次に、バスバーアセンブリ18の各カシメ軸53と、バスバー46~50と、各プレスフィット端子52がインバータ収容部8の開口9の方向に指向した状態で、当該バスバーアセンブリ18を各電力スイッチング素子13に被せる。このとき、各電力スイッチング素子13の各プレスフィット端子14を、バスバーアセンブリ18の各貫通孔51に進入させてその先端の案内部31をバスバーアセンブリ18より突出させる。
 この状態で、各電力スイッチング素子13のプレスフィット端子14、バスバーアセンブリ18のカシメ軸53とプレスフィット端子52、及び、隔壁12のカシメ軸61は同一方向、即ち、インバータ収容部8の開口9の方向に指向したかたちとなる。
 次に、回路基板17をバスバーアセンブリ18に被せる。このとき、隔壁12に突出形成された各カシメ軸61を回路基板17の各締結孔33内にそれぞれ挿通し、その先端を締結孔33から突出させる。また、バスバーアセンブリ18に形成された各カシメ軸53を回路基板17の各取付孔34内に挿通し、その先端を取付孔34からそれぞれ突出させる。
 また、各電力スイッチング素子13の各プレスフィット端子14の案内部31を、回路基板17の各接続孔54に進入させる。また、バスバーアセンブリ18の各プレスフィット端子52の案内部31を、回路基板17の各接続孔56に進入させる。尚、バスバーアセンブリ18の各バスバー46~50は回路基板17の外側に位置する。
 このように電力スイッチング素子13、バスバーアセンブリ18、及び、回路基板17をインバータ収容部8内に配置した後、図6に示すカシメ治具63を開口9側から回路基板17に押し付ける。このカシメ治具63には、回路基板17の各締結孔33から突出している各カシメ軸61の先端に対応する位置にそれぞれ湾曲したカシメ用凹部64を設けておき、同じく回路基板17の各取付孔34から突出している各カシメ軸53の先端に対応する位置には、それぞれ湾曲して凹陥した形状のカシメ部66を設けておく(図6に纏めて示す。尚、このカシメ部66としては、熱カシメ、又は、超音波溶着装置が用いられる。
 そして、カシメ治具63のカシメ用凹部64によりカシメ軸61(アルミニウム)の先端を圧潰し、図6の如く変形させて回路基板17をモータハウジング4にカシメ締結し、同時にカシメ部66によりカシメ軸53(硬質樹脂)の先端を熱により、又は、超音波により変形させてバスバーアセンブリ18を回路基板17にカシメ締結する。
 また、係るカシメ治具63による押圧工程で、同時に各電力スイッチング素子13の各プレスフィット端子14の接続部32を回路基板17の接続孔54に圧入し、バスバーアセンブリ18のプレスフィット端子52の接続部32を回路基板17の接続孔56にそれぞれ圧入する。これにより、各電力スイッチング素子13の各プレスフィット端子14の接続部32は変形し、回路基板17の接続孔54の導通部62に圧接するので、プレスフィット端子14は回路基板17の配線に導通されて電気的に接続され、バスバーアセンブリ18のプレスフィット端子52の接続部32は変形し、回路基板17の接続孔56の導通部62に圧接するので、バスバーアセンブリ18のプレスフィット端子52は回路基板17の配線に導通されて電気的に接続される。
 その後、引出端子22~24とバスバー46~48を端子板26で接続し、フィルタモールドアセンブリ21を端子板44でバスバー49、50に接続し、端子板29でフィルタモールドアセンブリ21を高電力用コネクタ28に接続する。最後に蓋部材11をモータハウジング4にネジ59で取り付ける。
 以上詳述した如く本発明では回路基板17と、この回路基板17に接続される電力スイッチング素子(電気部品)13を備えたインバータ回路部3の回路基板17に締結孔33と、内面に配線への導通部58が形成された接続孔54、52を貫通形成すると共に、電力スイッチング素子13、バスバーアセンブリ18にプレスフィット端子14、52を設け、モータハウジング4にはカシメ軸61を突設し、このカシメ軸61を締結孔33に挿通し、当該締結孔33から突出したカシメ軸61を変形させることで、回路基板17をモータハウジング4にカシメ締結し、プレスフィット端子14、52を接続孔54、56に圧入することで、電力スイッチング素子13、バスバーアセンブリ18を回路基板17に電気的に接続するようにしたので、回路基板17をネジによりモータハウジング4に締結する必要が無くなり、部品点数の削減を図ることができるようになる。また、電力スイッチング素子13やバスバーアセンブリ18を回路基板17に半田付けする必要も無くなるので、半田付け不良も解消され、仕損費の低減を図ることができるようになる。
 特に、実施例の如くモータMへの給電をスイッチングするための電力スイッチング素子13をモータハウジング4と熱伝導関係に配置しながら回路基板17に接続する際に有効である。
 ここで、実施例ではカシメ軸61を、モータハウジング4を構成するアルミニウム(金属)にて一体に形成し、カシメ軸61を締結孔33に挿通し、当該締結孔33から突出したカシメ軸61を圧潰することで、回路基板17をモータハウジング4にカシメ締結するようにしているので、通常アルミニウムや鉄等の金属にてモータハウジング4が構成されるインバータ一体型電動圧縮機1において、効果的に部品点数の削減を図ることができるようになり、極めて有効なものとなる。
 また、実施例ではインバータ回路部3が、樹脂成形されたバスバーアセンブリ18を備えており、回路基板17に更に取付孔34を貫通形成し、バスバーアセンブリ18には、カシメ軸53を一体に突出形成して、このバスバーアセンブリ18のカシメ軸53を取付孔34に挿通し、当該取付孔34から突出したカシメ軸53を熱、若しくは、超音波により変形させることで、バスバーアセンブリ18を回路基板17にカシメ締結するようにしているので、回路基板17へのバスバーアセンブリ18の取り付けにもネジが不要となり、部品点数の削減を図ることが可能となる。
 そして、電力スイッチング素子13やバスバーアセンブリ18のプレスフィット端子14、52をモータハウジング4のカシメ軸61と同一方向に指向させた状態で、電力スイッチング素子13をモータハウジング4の隔壁12と熱伝導関係に配置し、バスバーアセンブリ18のカシメ軸53をモータハウジング4のカシメ軸61と同一方向に指向させた状態で、当該バスバーアセンブリ18を電力スイッチング素子13に被せ、プレスフィット端子14をバスバーアセンブリ18より突出させた後、回路基板17をバスバーアセンブリ18に被せることで、モータハウジング4のカシメ軸61の締結孔33への挿通及びカシメ締結と、バスバーアセンブリ18のカシメ軸53の取付孔34への挿通及びカシメ締結と、プレスフィット端子14、52の接続孔54、56への圧入接続を同一工程にて行うことが可能となるので、同様に組付工数を削減して大幅なコストダウンを図ることが可能となる。
 尚、実施例ではインバータ回路部3の回路基板17に硬質樹脂製のバスバーアセンブリ18を設けたが、バスバーアセンブリ18を設けない場合には(請求項4及び請求項6以外の発明)、電力スイッチング素子13のプレスフィット端子14をモータハウジング4のカシメ軸61と同一方向に指向させた状態で、当該電力スイッチング素子13をモータハウジング4と熱伝導関係に配置した後、回路基板17を電力スイッチング素子13に被せることで、カシメ軸61の締結孔33への挿通及びカシメ締結と、プレスフィット端子14の接続孔54への圧入接続を同一工程にて行うことになる。その場合にも、組付工数も著しく削減することができるようになり、総じて大幅なコストダウンを図ることが可能となる。
 また、ハウジング2を構成するモータハウジング4が硬質樹脂にて構成される場合は(請求項2及びそれに従属する請求項以外の発明)、カシメ軸61も硬質樹脂にて一体に成型し、熱カシメ、若しくは、超音波溶着にて先端を変形させて締結孔33にカシメ締結することになる。その他、金属製のモータハウジング4のインバータ収容部8内に予め硬質樹脂部材を固定しておき、この硬質樹脂部材にカシメ軸61を一体に成型した場合も同様である。それらの場合には、上記実施例の如く金属製のカシメ軸61を用いるときに比して、回路基板17の配線との間の絶縁距離を確保する必要が無くなるので、インバータ回路部3の小型化を図ることができる利点がある。
 更に、実施例では電力スイッチング素子13を電気部品の例として採り上げたが、回路基板17の隔壁12側に取り付けられる他の電気部品(例えば図3に符号67で示す箇所)もプレスフィット端子による接続としてもよい。
 更にまた、実施例で示したインバータ回路部3やハウジング2(モータハウジング4)の形状、構造は、それに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能であることは云うまでもない。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The inverter-integrated electric compressor 1 according to the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner that air-conditions the interior of a vehicle (not shown), and includes a motor M (shown by a broken line in FIG. 4). And a housing 2 made of metal (aluminum or iron, made of aluminum in the embodiment) having a compression mechanism (not shown) driven by the motor M, and an inverter circuit unit 3 that feeds and drives the motor M. ing.
The housing 2 includes a motor housing 4 that houses the motor M, a compression mechanism housing 6 that is connected to one side in the axial direction of the motor housing 4 and that houses the compression mechanism, and one side of the compression mechanism housing 6. A compression mechanism cover 7 that closes the opening, an inverter accommodating portion 8 that is configured on the other side in the axial direction of the motor housing 4, and a lid member 11 that closes the opening 9 on the other side of the inverter accommodating portion 8 so as to be openable and closable. I have. And the inverter circuit part 3 is accommodated in this inverter accommodating part 8. FIG.
1 and 2 show the inverter-integrated electric compressor 1 of the embodiment with the inverter accommodating portion 8 facing up and the compression mechanism cover 7 facing down. One side is arranged in the lateral direction so that the inverter accommodating portion 8 is on the other side.
The motor M of the embodiment is composed of a three-phase synchronous motor (brushless DC motor), and the compression mechanism is, for example, a scroll type compression mechanism. The compression mechanism is driven by the motor M to compress the refrigerant and discharge it into the refrigerant circuit. A low-temperature gas refrigerant sucked from an evaporator (also referred to as a heat absorber) that also forms part of the refrigerant circuit is circulated in the motor housing 4. Therefore, the inside of the motor housing 4 is cooled. And the inverter accommodating part 8 is divided with the inside of the motor housing 4 in which the motor M is accommodated by the partition 12 formed in the motor housing 4, and this partition 12 is also cooled by a low temperature gas refrigerant.
(1) Configuration of Inverter Circuit Unit 3 The inverter circuit unit 3 includes six power switching elements 13 (FIG. 5) as an example of electrical components constituting the arm of each phase of the three-phase inverter circuit, and printed wiring. A circuit board 17 on which the control circuit 16 is mounted and a filter mold assembly 21 on which a smoothing capacitor 19 is mounted are provided. The circuit board 17 further includes a bus bar assembly 18 (FIGS. 4 and 5). The bus bar assembly 18 is also included in an example of an electrical component.
The inverter circuit unit 3 converts DC power fed from a vehicle battery (not shown) into three-phase AC power and feeds it to a stator coil (not shown) of the motor M. Therefore, the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase has three terminals on the lead terminals 22, 23 and 24 drawn from the partition wall 12 of the motor housing 4. The power terminal of the power switching element 13 on the upper arm side and the ground terminal of the power switching element 13 on the lower arm side are respectively connected via the plates 26 and are used for high power called an HV connector attached to the motor housing 4. The connector 28 is connected to the power harness from the battery described above.
In this case, the lead terminals 22 to 24 to which the connection points of the upper arm side power switching element 13 and the lower arm side power switching element 13 of each phase are connected penetrate the partition wall 12 and the motor in the motor housing 4. M is connected to the aforementioned stator coil. The power supply terminal and the ground terminal are connected to the power supply harness through the terminal plate 29 of the filter mold assembly 21 and the high power connector 28 described above.
(2) Configuration of Power Switching Element 13 Each power switching element 13 is composed of an IGBT (or a MOSFET) in the embodiment, and one surface is in close contact with the partition wall 12 of the motor housing 4 via a heat conductive sheet or grease. And is placed in heat conduction relationship with it. Since the partition wall 12 is cooled by the low-temperature gas refrigerant as described above, the power switching element 13 accompanied by heat generation is cooled from the partition wall 12.
Each power switching element 13 includes three press-fit terminals 14 including a gate, a collector, and an emitter. Each press-fit terminal 14 is pulled out from the package 27 of the power switching element 13 and then vertically from the partition wall 12. It is oriented in a standing direction (FIG. 5). Each press-fit terminal 14 has a guide portion 31 with a tapered tip, and a deformable connection portion 32 is formed on the package 27 side of the guide portion 31 so as to be widened (FIG. 7).
(3) Configuration of Circuit Board 17 The control circuit 16 of the control board 17 performs switching control of each power switching element 13 based on an external command. Further, it has a function of transmitting the driving state of the motor M to the outside, and is configured by connecting circuit components such as a microcomputer by printed wiring. Further, a plurality of fastening holes 33 for caulking the motor housing 4 and mounting holes 34 for caulking the bus bar assembly 18 are formed in the periphery of the circuit board 17. In addition, a connection hole 54 to which each press-fit terminal 14 of each power switching element 13 is connected and a connection hole 56 to which each press-fit terminal 52 (to be described later) of the bus bar assembly 18 is connected to the center portion of the circuit board 17. A plurality are formed.
(4) Configuration of Filter Mold Assembly 21 The smoothing capacitor 19 is connected between the power supply terminal and the ground terminal of the three-phase inverter circuit, and absorbs the high-frequency component of the switching current of the three-phase inverter circuit. The smoothing capacitor 19 is disposed on the filter mold assembly (substrate) 21. The terminal plate 29 of the filter mold assembly 21 is electrically connected to the power harness via the high power connector 28 as described above, and the terminal plate 44 is It is connected to the bus bars 49 and 50 of the bus bar assembly 18 described above.
(5) Configuration of Bus Bar Assembly 18 The bus bar assembly 18 that constitutes a part of the circuit board 17 includes five bus bars 46, 47, 48, 49, and 50 that form wiring of a three-phase inverter circuit, and a plurality of vertically protruding bus bars. The press-fit terminal 52 is provided. The bus bars 46 to 50 are arranged at positions outside the circuit board 17 and are integrated by insert molding of an insulating hard resin. The terminal plates 26 are connected to the bus bars 46 to 48, and the bus bars 49, 50 are connected. To the terminal plate 44 of the filter mold assembly 21. Each press-fit terminal 52 is also formed with a guide 31 having a tapered tip, similarly to the press-fit terminal 14 described above, and a deformable connection 32 is formed on the bus bar assembly 18 side of the guide 31 so as to be widened. (FIG. 7). The bus bars 49 and 50 are also constituted by press-fit terminals having the same structure as the press-fit terminals 52, and the terminal plate 44 is formed with the same structural portions as a connection hole 54 and a conduction portion 58 described later. 49 and 50 are configured to be connected to the structural portion.
A plurality of through holes 51 through which the press-fit terminals 14 of the respective power switching elements 13 pass are formed in the central portion of the bus bar assembly 18. A plurality of caulking shafts 53 are formed on the periphery of the bus bar assembly 18 by integral molding of a hard resin that constitutes the bus bar assembly 18.
(6) Configuration of Caulking Shafts 53 and 61 and Connection Holes 54 and 52 Note that the caulking shaft 53 of the bus bar assembly 18 is formed at a position corresponding to each mounting hole 34 of the circuit board 17. Projects vertically. In addition, a plurality of crimping shafts 61 project from the partition wall 12 of the motor housing 4 at positions corresponding to the fastening holes 33 of the circuit board 17 described above. In this case, each crimping shaft 61 is formed by integral molding of aluminum (example) constituting the partition wall 12 in the inverter housing portion 8, and is perpendicular to the partition wall 12 toward the opening 9 of the inverter housing portion 8. Protruding.
Further, a conductive portion 58 that is electrically connected to the wiring of the circuit board 17 is formed on the inner surface of the connection hole 54 of the circuit board 17 (FIG. 7).
(7) Procedure for Assembling Inverter Circuit Unit 3 Next, a procedure for assembling the inverter circuit unit 3 to the motor housing 4 when manufacturing the inverter-integrated electric compressor 1 of the present invention will be described. First, the motor housing 4 in a state where the lid member 11 is not attached is in a state in which the inverter accommodating portion 8 faces upward, and each of the motor housings 4 is placed at a predetermined position on the partition wall 12 through the above-described heat conduction sheet or grease. The power switching element 13 is disposed. As a result, each power switching element 13 is brought into a heat conduction relationship with the partition wall 12. At this time, the press-fit terminal 14 of each power switching element 13 is oriented in the direction of standing vertically from the partition wall 12, that is, in the direction of the opening 9 of the inverter accommodating portion 8 (FIG. 5).
Next, in a state where the crimping shafts 53 of the bus bar assembly 18, the bus bars 46 to 50, and the press-fit terminals 52 are oriented in the direction of the opening 9 of the inverter accommodating portion 8, the bus bar assembly 18 is connected to the power switching elements 13. Put on. At this time, each press-fit terminal 14 of each power switching element 13 is caused to enter each through hole 51 of the bus bar assembly 18 so that the guide portion 31 at the tip thereof protrudes from the bus bar assembly 18.
In this state, the press-fit terminal 14 of each power switching element 13, the caulking shaft 53 and press-fit terminal 52 of the bus bar assembly 18, and the caulking shaft 61 of the partition wall 12 are in the same direction, that is, the opening 9 of the inverter accommodating portion 8. It becomes a shape oriented in the direction.
Next, the circuit board 17 is placed on the bus bar assembly 18. At this time, each caulking shaft 61 protruding from the partition wall 12 is inserted into each fastening hole 33 of the circuit board 17, and its tip is protruded from the fastening hole 33. Further, each caulking shaft 53 formed in the bus bar assembly 18 is inserted into each mounting hole 34 of the circuit board 17, and the tip thereof is protruded from the mounting hole 34.
Further, the guide portions 31 of the press-fit terminals 14 of the power switching elements 13 are caused to enter the connection holes 54 of the circuit board 17. Further, the guide portions 31 of the press-fit terminals 52 of the bus bar assembly 18 are caused to enter the connection holes 56 of the circuit board 17. The bus bars 46 to 50 of the bus bar assembly 18 are located outside the circuit board 17.
Thus, after arrange | positioning the power switching element 13, the bus-bar assembly 18, and the circuit board 17 in the inverter accommodating part 8, the crimping jig | tool 63 shown in FIG. 6 is pressed against the circuit board 17 from the opening 9 side. The caulking jig 63 is provided with a caulking recess 64 that is curved at a position corresponding to the tip of each caulking shaft 61 protruding from each fastening hole 33 of the circuit board 17. A crimped portion 66 having a curved and recessed shape is provided at a position corresponding to the tip of each crimping shaft 53 protruding from the hole 34 (shown collectively in FIG. 6). Thermal caulking or ultrasonic welding equipment is used.
Then, the end of the caulking shaft 61 (aluminum) is crushed by the caulking concave portion 64 of the caulking jig 63 and deformed as shown in FIG. 6, and the circuit board 17 is caulked and fastened to the motor housing 4. The bus bar assembly 18 is crimped to the circuit board 17 by deforming the tip of 53 (hard resin) by heat or ultrasonic waves.
Further, in the pressing process by the caulking jig 63, the connection portions 32 of the press fit terminals 14 of the power switching elements 13 are simultaneously press-fitted into the connection holes 54 of the circuit board 17 to connect the press fit terminals 52 of the bus bar assembly 18. The parts 32 are respectively press-fitted into the connection holes 56 of the circuit board 17. As a result, the connection portion 32 of each press-fit terminal 14 of each power switching element 13 is deformed and press-contacted to the conduction portion 62 of the connection hole 54 of the circuit board 17, so that the press-fit terminal 14 is electrically connected to the wiring of the circuit board 17. Since the connection portion 32 of the press-fit terminal 52 of the bus bar assembly 18 is deformed and press-contacts with the conducting portion 62 of the connection hole 56 of the circuit board 17, the press-fit terminal 52 of the bus bar assembly 18 is connected to the circuit. The wiring is electrically connected to the wiring of the substrate 17.
Thereafter, the lead terminals 22 to 24 and the bus bars 46 to 48 are connected by the terminal plate 26, the filter mold assembly 21 is connected to the bus bars 49 and 50 by the terminal plate 44, and the filter mold assembly 21 is connected to the high power connector by the terminal plate 29. 28. Finally, the lid member 11 is attached to the motor housing 4 with screws 59.
As described above in detail, in the present invention, the circuit board 17 and the circuit board 17 of the inverter circuit unit 3 including the power switching element (electrical component) 13 connected to the circuit board 17 are connected to the fastening hole 33 and the wiring on the inner surface. Are formed through the connection holes 54 and 52 in which the conductive portions 58 are formed, the press fitting terminals 14 and 52 are provided in the power switching element 13 and the bus bar assembly 18, and the caulking shaft 61 is protruded from the motor housing 4. The caulking shaft 61 is inserted into the fastening hole 33 and the caulking shaft 61 protruding from the fastening hole 33 is deformed, whereby the circuit board 17 is caulked and fastened to the motor housing 4, and the press- fit terminals 14 and 52 are connected to the connection holes 54. , 56 so that the power switching element 13 and the bus bar assembly 18 are electrically connected to the circuit board 17. , It is not necessary to conclude a circuit board 17 to the motor housing 4 by screws, it is possible to reduce the number of parts. In addition, since it is not necessary to solder the power switching element 13 and the bus bar assembly 18 to the circuit board 17, soldering defects can be eliminated, and the cost of failure can be reduced.
This is particularly effective when the power switching element 13 for switching the power supply to the motor M as in the embodiment is connected to the circuit board 17 while being arranged in a heat conduction relationship with the motor housing 4.
Here, in the embodiment, the caulking shaft 61 is integrally formed of aluminum (metal) constituting the motor housing 4, the caulking shaft 61 is inserted into the fastening hole 33, and the caulking shaft 61 protruding from the fastening hole 33 is used. Since the circuit board 17 is crimped to the motor housing 4 by crushing, the inverter-integrated electric compressor 1 in which the motor housing 4 is usually made of metal such as aluminum or iron is effective. It becomes possible to reduce the number of parts, which is extremely effective.
Further, in the embodiment, the inverter circuit unit 3 includes a resin-molded bus bar assembly 18, and a mounting hole 34 is formed through the circuit board 17, and a caulking shaft 53 is integrally formed on the bus bar assembly 18. Then, the caulking shaft 53 of the bus bar assembly 18 is inserted into the mounting hole 34, and the caulking shaft 53 protruding from the mounting hole 34 is deformed by heat or ultrasonic waves, whereby the bus bar assembly 18 is attached to the circuit board 17. Since the caulking is performed, screws are not required for mounting the bus bar assembly 18 to the circuit board 17, and the number of components can be reduced.
The power switching element 13 and the partition wall 12 of the motor housing 4 are in a heat conduction relationship with the press- fit terminals 14 and 52 of the power switching element 13 and the bus bar assembly 18 oriented in the same direction as the caulking shaft 61 of the motor housing 4. With the caulking shaft 53 of the bus bar assembly 18 oriented in the same direction as the caulking shaft 61 of the motor housing 4, the bus bar assembly 18 is covered with the power switching element 13, and the press-fit terminal 14 is connected to the bus bar assembly 18. After projecting, the circuit board 17 is put on the bus bar assembly 18 to insert the caulking shaft 61 of the motor housing 4 into the fastening hole 33 and the caulking fastening, and to insert the caulking shaft 53 of the bus bar assembly 18 into the mounting hole 34. And crimping and press-fit terminal 1 Since it is possible to perform press-fit connection to 52 of the connection holes 54, 56 in the same process, it is possible to similarly by reducing the number of assembling steps reduce the substantial cost reduction.
In the embodiment, the hard resin bus bar assembly 18 is provided on the circuit board 17 of the inverter circuit unit 3. However, when the bus bar assembly 18 is not provided (inventions other than claims 4 and 6), power switching is performed. In a state where the press-fit terminal 14 of the element 13 is oriented in the same direction as the caulking shaft 61 of the motor housing 4, the power switching element 13 is disposed in a heat conductive relationship with the motor housing 4, and then the circuit board 17 is replaced with the power switching element. 13, the caulking shaft 61 is inserted into the fastening hole 33 and the caulking is fastened, and the press-fit connection of the press-fit terminal 14 to the connection hole 54 is performed in the same process. Even in that case, the number of assembling steps can be remarkably reduced, and the overall cost can be greatly reduced.
Further, when the motor housing 4 constituting the housing 2 is made of hard resin (invention other than claim 2 and claims dependent thereon), the caulking shaft 61 is also integrally molded with hard resin and heat caulking. Alternatively, the tip is deformed by ultrasonic welding, and the fastening hole 33 is caulked and fastened. The same applies to the case where a hard resin member is fixed in advance in the inverter housing portion 8 of the metal motor housing 4 and the caulking shaft 61 is integrally molded with the hard resin member. In those cases, it is not necessary to secure an insulation distance from the wiring of the circuit board 17 as compared with the case where the metal caulking shaft 61 is used as in the above embodiment. There is an advantage that can be achieved.
Furthermore, in the embodiment, the power switching element 13 is taken as an example of an electrical component. However, other electrical components (for example, a location indicated by reference numeral 67 in FIG. 3) attached to the partition wall 12 side of the circuit board 17 are also connected by press-fit terminals. It is good.
Furthermore, the shape and structure of the inverter circuit section 3 and the housing 2 (motor housing 4) shown in the embodiments are not limited thereto, and various changes can be made without departing from the spirit of the present invention. Needless to say.
 1 インバータ一体型電動圧縮機
 2 ハウジング
 3 インバータ回路部
 4 モータハウジング
 8 インバータ収容部
 9 開口
 11 蓋部材
 12 隔壁
 13 電力スイッチング素子
 14、52 プレスフィット端子
 16 制御回路
 17 回路基板
 18 バスバーアセンブリ
 32 接続部
 33 締結孔
 34 取付孔
 51 貫通孔
 53、61 カシメ軸
 54、56 接続孔
 58、62 導通部
 64 カシメ用凹部
 66 カシメ部
 M モータ
DESCRIPTION OF SYMBOLS 1 Inverter integrated electric compressor 2 Housing 3 Inverter circuit part 4 Motor housing 8 Inverter accommodating part 9 Opening 11 Lid member 12 Bulkhead 13 Power switching element 14, 52 Press-fit terminal 16 Control circuit 17 Circuit board 18 Bus bar assembly 32 Connection part 33 Fastening hole 34 Mounting hole 51 Through hole 53, 61 Caulking shaft 54, 56 Connection hole 58, 62 Conducting portion 64 Caulking recess 66 Caulking portion M Motor

Claims (6)

  1.  モータが内蔵されたハウジングと、前記モータに給電するインバータ回路部を備えたインバータ一体型電動圧縮機において、
     前記インバータ回路部は、回路基板と、該回路基板に接続される電気部品を備え、
     前記回路基板には、締結孔が貫通形成されると共に、内面に配線への導通部が形成された接続孔が貫通形成され、
     前記電気部品は、プレスフィット端子を有し、
     前記ハウジングには、カシメ軸が突設されており、
     該カシメ軸を前記締結孔に挿通し、当該締結孔から突出した前記カシメ軸を変形させることで、前記回路基板は前記ハウジングにカシメ締結され、
     前記プレスフィット端子を前記接続孔に圧入することで、前記電気部品は前記回路基板に電気的に接続されていることを特徴とするインバータ一体型電動圧縮機。
    In an inverter-integrated electric compressor having a housing with a built-in motor and an inverter circuit unit for supplying power to the motor,
    The inverter circuit unit includes a circuit board and electrical components connected to the circuit board,
    In the circuit board, a fastening hole is formed to penetrate, and a connection hole in which a conduction portion to the wiring is formed on the inner surface is formed to penetrate.
    The electrical component has a press-fit terminal,
    A caulking shaft is projected from the housing,
    By inserting the caulking shaft into the fastening hole and deforming the caulking shaft protruding from the fastening hole, the circuit board is caulked and fastened to the housing,
    An electric compressor integrated with an inverter, wherein the electrical component is electrically connected to the circuit board by press-fitting the press-fit terminal into the connection hole.
  2.  前記カシメ軸は、前記ハウジングを構成する金属にて一体に形成されており、
     該カシメ軸を前記締結孔に挿通し、当該締結孔から突出した前記カシメ軸を圧潰することで、前記回路基板は前記ハウジングにカシメ締結されていることを特徴とする請求項1に記載のインバータ一体型電動圧縮機。
    The caulking shaft is integrally formed with a metal constituting the housing,
    2. The inverter according to claim 1, wherein the circuit board is crimped to the housing by inserting the crimping shaft into the fastening hole and crushing the crimping shaft protruding from the fastening hole. Integrated electric compressor.
  3.  前記電気部品は、前記モータへの給電をスイッチングするための電力スイッチング素子であり、前記ハウジングと熱伝導関係に配置されていることを特徴とする請求項1又は請求項2に記載のインバータ一体型電動圧縮機。 The inverter integrated type according to claim 1, wherein the electrical component is a power switching element for switching power feeding to the motor, and is disposed in a heat conduction relationship with the housing. Electric compressor.
  4.  前記回路基板は、樹脂成形されたバスバーアセンブリを有し、
     前記回路基板には、取付孔が貫通形成され、
     前記バスバーアセンブリには、カシメ軸が一体に突出形成されており、
     該バスバーアセンブリのカシメ軸を前記取付孔に挿通し、当該取付孔から突出した前記カシメ軸を熱、若しくは、超音波により変形させることで、前記バスバーアセンブリは前記回路基板にカシメ締結されていることを特徴とする請求項1乃至請求項3のうちの何れかに記載のインバータ一体型電動圧縮機。
    The circuit board has a resin molded bus bar assembly,
    A mounting hole is formed through the circuit board,
    A caulking shaft is integrally formed on the bus bar assembly.
    The bus bar assembly is caulked and fastened to the circuit board by inserting the caulking shaft of the bus bar assembly into the mounting hole and deforming the caulking shaft protruding from the mounting hole by heat or ultrasonic waves. The inverter-integrated electric compressor according to any one of claims 1 to 3.
  5.  前記電気部品のプレスフィット端子を前記ハウジングのカシメ軸と同一方向に指向させた状態で、当該電気部品を前記ハウジングと熱伝導関係に配置した後、
     前記回路基板を前記電気部品に被せ、
     前記カシメ軸の前記締結孔への挿通及びカシメ締結と、前記プレスフィット端子の前記接続孔への圧入接続を、同一工程にて行うことを特徴とする請求項1乃至請求項3のうちの何れかに記載のインバータ一体型電動圧縮機の製造方法。
    In a state where the press-fit terminal of the electrical component is oriented in the same direction as the caulking shaft of the housing, the electrical component is disposed in a heat conductive relationship with the housing,
    Put the circuit board on the electrical component,
    The insertion of the caulking shaft into the fastening hole and the caulking fastening and press-fit connection of the press-fit terminal to the connection hole are performed in the same process. A method for manufacturing an inverter-integrated electric compressor according to claim 1.
  6.  前記電気部品のプレスフィット端子を前記ハウジングのカシメ軸と同一方向に指向させた状態で、当該電気部品を前記ハウジングと熱伝導関係に配置し、
     前記バスバーアセンブリのカシメ軸を前記ハウジングのカシメ軸と同一方向に指向させた状態で、当該バスバーアセンブリを前記電気部品に被せ、前記プレスフィット端子を前記バスバーアセンブリより突出させた後、
     前記回路基板を前記バスバーアセンブリに被せ、前記ハウジングのカシメ軸の前記締結孔への挿通及びカシメ締結と、前記バスバーアセンブリのカシメ軸の前記取付孔への挿通及びカシメ締結と、前記プレスフィット端子の前記接続孔への圧入接続を、同一工程にて行うことを特徴とする請求項4に記載のインバータ一体型電動圧縮機の製造方法。
    With the press-fit terminal of the electrical component oriented in the same direction as the caulking shaft of the housing, the electrical component is placed in a heat conductive relationship with the housing,
    With the crimping shaft of the bus bar assembly oriented in the same direction as the crimping shaft of the housing, the bus bar assembly is placed on the electrical component, and the press-fit terminal protrudes from the bus bar assembly.
    Covering the circuit board on the bus bar assembly, inserting the caulking shaft of the housing into the fastening hole and caulking, inserting the caulking shaft of the bus bar assembly into the mounting hole and caulking and fastening, The method for manufacturing an inverter-integrated electric compressor according to claim 4, wherein the press-fitting connection to the connection hole is performed in the same process.
PCT/JP2017/029581 2016-09-14 2017-08-10 Inverter-integrated electric compressor and method for manufacturing same WO2018051718A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017004627.0T DE112017004627T5 (en) 2016-09-14 2017-08-10 Inverter-integrated electric compressor and method of manufacturing the same
CN201780055649.5A CN109690079A (en) 2016-09-14 2017-08-10 Inverter-integrated type electric compressor and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179394A JP6754252B2 (en) 2016-09-14 2016-09-14 Inverter integrated electric compressor and its manufacturing method
JP2016-179394 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051718A1 true WO2018051718A1 (en) 2018-03-22

Family

ID=61619555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029581 WO2018051718A1 (en) 2016-09-14 2017-08-10 Inverter-integrated electric compressor and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP6754252B2 (en)
CN (1) CN109690079A (en)
DE (1) DE112017004627T5 (en)
WO (1) WO2018051718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429765A (en) * 2018-04-30 2019-11-08 翰昂汽车零部件有限公司 The motor shell of electric compressor for air conditioner facility

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021000816T5 (en) * 2020-01-31 2022-11-24 Hanon Systems ELECTRIC COMPRESSOR, INVERTER ASSEMBLY JIG AND INVERTER MANUFACTURING PROCESS
DE102020112596A1 (en) 2020-05-08 2021-11-11 Schwäbische Hüttenwerke Automotive GmbH Pump-motor unit
JP2024002363A (en) * 2022-06-24 2024-01-11 サンデン株式会社 Electric compressor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241722A (en) * 1988-03-22 1989-09-26 Shonan Setsuten Kk Swage-fixing attachment of contact point
JP2001300658A (en) * 2000-04-27 2001-10-30 Fujitsu Ten Ltd Fastening structure of parts, and fastening structure of casing and cover
JP2009119957A (en) * 2007-11-13 2009-06-04 Mitsubishi Electric Corp Electronic control device and its manufacturing method
JP2015040538A (en) * 2013-08-23 2015-03-02 株式会社豊田自動織機 Motor compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363026A3 (en) * 2002-04-26 2004-09-01 Denso Corporation Invertor integrated motor for an automotive vehicle
JP2007198341A (en) * 2006-01-30 2007-08-09 Sanden Corp Motor driven compressor and vehicular air conditioning system using the same
JP2009150234A (en) * 2007-12-18 2009-07-09 Toyota Industries Corp Motor-driven compressor
JP5594836B2 (en) * 2010-11-24 2014-09-24 株式会社ヴァレオジャパン Electric compressor
JP5698007B2 (en) * 2011-01-19 2015-04-08 株式会社ヴァレオジャパン Electric compressor
JP5951553B2 (en) * 2013-04-26 2016-07-13 三菱重工オートモーティブサーマルシステムズ株式会社 Inverter-integrated electric compressor
JP2015208124A (en) * 2014-04-21 2015-11-19 矢崎総業株式会社 Insert bus bar plate and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241722A (en) * 1988-03-22 1989-09-26 Shonan Setsuten Kk Swage-fixing attachment of contact point
JP2001300658A (en) * 2000-04-27 2001-10-30 Fujitsu Ten Ltd Fastening structure of parts, and fastening structure of casing and cover
JP2009119957A (en) * 2007-11-13 2009-06-04 Mitsubishi Electric Corp Electronic control device and its manufacturing method
JP2015040538A (en) * 2013-08-23 2015-03-02 株式会社豊田自動織機 Motor compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429765A (en) * 2018-04-30 2019-11-08 翰昂汽车零部件有限公司 The motor shell of electric compressor for air conditioner facility
US11186177B2 (en) 2018-04-30 2021-11-30 Hanon Systems Motor housing for an electric compressor of an air conditioning system

Also Published As

Publication number Publication date
JP6754252B2 (en) 2020-09-09
DE112017004627T5 (en) 2019-06-06
JP2018046649A (en) 2018-03-22
CN109690079A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2018051718A1 (en) Inverter-integrated electric compressor and method for manufacturing same
WO2017163828A1 (en) Inverter-integrated electric compressor
JP4764365B2 (en) Inverter-integrated electric compressor
JP4719134B2 (en) Inverter-integrated electric compressor
JP5517652B2 (en) Inverter-integrated electric compressor and assembly method thereof
WO2019163411A1 (en) Electric compressor
WO2017163810A1 (en) Inverter-integrated electric compressor
US11936251B2 (en) Electric compressor with inverter circuit section and filter circuit section
US11715990B2 (en) Electric compressor
JP4992292B2 (en) Automotive electric circuit unit
CN107514364B (en) A kind of compressor
WO2017221854A1 (en) Electrical component mounting structure and inverter-integrated electric compressor including the same
WO2019163405A1 (en) Electric compressor
US20220352785A1 (en) Motor housing cover arrangement of an electric motor with components surrounded by molding compound
WO2019163410A1 (en) Electric compressor
US11764632B2 (en) Electric compressor
KR20190038102A (en) Controller and motor assembly having the same
WO2019163408A1 (en) Electric compressor
KR20190042199A (en) Controller and motor assembly having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17850624

Country of ref document: EP

Kind code of ref document: A1