WO2017163828A1 - Inverter-integrated electric compressor - Google Patents

Inverter-integrated electric compressor Download PDF

Info

Publication number
WO2017163828A1
WO2017163828A1 PCT/JP2017/008635 JP2017008635W WO2017163828A1 WO 2017163828 A1 WO2017163828 A1 WO 2017163828A1 JP 2017008635 W JP2017008635 W JP 2017008635W WO 2017163828 A1 WO2017163828 A1 WO 2017163828A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
bus bar
bar assembly
housing
heat dissipation
Prior art date
Application number
PCT/JP2017/008635
Other languages
French (fr)
Japanese (ja)
Inventor
幹生 小林
泰造 佐藤
大輔 廣野
将宜 松田
一重 片桐
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2017163828A1 publication Critical patent/WO2017163828A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00

Definitions

  • the present invention relates to an inverter-integrated electric compressor having an inverter circuit portion in a housing.
  • an inverter-integrated electric compressor in which an inverter circuit portion is attached to a housing is used in consideration of switching noise.
  • the inverter circuit unit cools the power switching element mounted on the substrate, so that the power switching element is in close contact with the outer surface of the housing or in close contact with the heat conduction sheet or grease. It will be attached.
  • the accommodation space of the electric compressor has to be reduced as much as possible, it is also necessary to reduce the volume of the inverter circuit unit.
  • the conventional configuration has a structure in which the resin-molded bus bar assembly is exposed to the outside on the outer surface of the housing, and thus there is a problem in durability. Moreover, since the bus bar assembly is increased in size, there is a problem that handling work of the integrated inverter circuit unit is deteriorated. Furthermore, there is a disadvantage that the base plate is required to bring the power switching element into close contact with the housing without stress and being cut off from the outside, which increases the number of parts.
  • the present invention has been made to solve the conventional technical problem, and is an inverter-integrated electric motor that can be handled easily while reducing the number of components while improving the durability of the inverter circuit section. An object is to provide a compressor.
  • An inverter-integrated electric compressor of the present invention includes a housing in which a motor is built, and an inverter circuit unit that supplies power to the motor.
  • the inverter circuit unit includes a high heat dissipation board on which a power switching element is mounted;
  • the control board on which the control circuit is mounted and the resin molded bus bar assembly are integrated in a state where the high heat dissipation board, the bus bar assembly, and the control board are stacked, and the integrated inverter
  • the circuit portion is accommodated in and attached to the inverter accommodating portion configured in the housing, and the power switching element is arranged in a heat exchange relationship with the housing in that state.
  • the inverter-integrated electric compressor is integrated with the bus bar assembly sandwiched between the high heat dissipation board and the control board, and the bus bar assembly is integrated with the high heat dissipation board. And a positioning pin with the control board.
  • the inverter circuit unit is a state in which the high heat dissipation board, the bus bar assembly, and the control board are integrated. And a space between the bus bar assembly.
  • the inverter-integrated electric compressor there is provided the inverter-integrated electric compressor. It has an interval holding part extending between the control board and the bus bar assembly.
  • the inverter circuit unit integrally includes a smoothing capacitor for absorbing a high-frequency component of the switching current
  • the integrated inverter circuit unit includes:
  • the smoothing capacitor is also disposed in a heat exchange relationship with the housing while being accommodated in the inverter accommodating portion and attached to the housing.
  • the inverter-integrated electric compressor according to a sixth aspect of the present invention is characterized in that, in each of the above-described inventions, the inverter accommodating portion is closed so as to be opened and closed by a lid member in a state where the inverter circuit portion is accommodated therein.
  • the inverter circuit unit includes a high heat dissipation board on which a power switching element is mounted, and a control circuit.
  • a control board on which a circuit is mounted and a resin-molded bus bar assembly are provided, and the high heat dissipation board, the bus bar assembly, and the control board are integrated in a stacked state, and the integrated inverter circuit unit is Since the power switching element is accommodated in the inverter accommodating portion configured in the housing and attached to the housing, and in this state, the power switching element is arranged in a heat exchange relationship with the housing.
  • the inverter housing part can be opened and closed with a lid member while the inverter circuit part is housed inside.
  • Rukoto it is possible to eliminate the conventional such as durability problems.
  • the integrated inverter circuit part can be reduced in size compared with the conventional one, handling is also facilitated.
  • the power switching element can be cooled without hindrance, and the base plate is not necessary, so that the number of parts can be reduced.
  • the inverter circuit portion is integrated with the bus bar assembly sandwiched between the high heat dissipation substrate and the control substrate, so that the strength of the integrated inverter circuit portion is increased.
  • the inverter circuit portion is formed with a space between the high heat dissipation board and the bus bar assembly, and between the control board and the bus bar assembly in a state where the high heat dissipation board, the bus bar assembly, and the control board are integrated. If this is configured, the mounting area of the parts can be increased, and the mounting amount and workability can be improved.
  • bus bar assembly according to the invention of claim 4 is provided with a wall portion protruding in the thickness direction at the peripheral portion, and the space is configured inside the wall portion, and the control board is formed in the space. If a space holding part is provided over the bus bar assembly, the space formed inside can be maintained with high strength.
  • a smoothing capacitor for absorbing a high frequency component of the switching current is integrally provided in the inverter circuit portion, and the integrated inverter circuit portion is accommodated in the inverter accommodating portion, If the smoothing capacitor is also placed in a heat exchange relationship with the housing in the attached state, the handling and durability of the inverter circuit unit including the smoothing capacitor can be improved, and the smoothing capacitor Cooling can be performed without any problem.
  • FIG. 1 is a perspective view of an inverter-integrated electric compressor according to an embodiment to which the present invention is applied.
  • FIG. 2 is a perspective view of a state where a cover member of the inverter-integrated electric compressor in FIG. 1 is removed. It is a disassembled perspective view of the housing and inverter circuit part of the inverter integrated electric compressor of FIG. It is the top view seen from the inverter accommodating part side of the state which removed the cover member of the inverter integrated electric compressor of FIG. It is the sectional view on the AA line of FIG. It is an upper perspective view of the inverter circuit part of the inverter integrated electric compressor of FIG. It is a downward perspective view of the inverter circuit part of FIG. It is a disassembled perspective view of parts other than the smoothing capacitor of the inverter circuit part of FIG.
  • the inverter-integrated electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner that air-conditions a vehicle interior of a vehicle (not shown), and is driven by a motor (not shown) and this motor.
  • a housing 2 containing a compression mechanism (not shown) and an inverter circuit unit 3 for driving the motor are provided.
  • the housing 2 includes a motor housing 4 containing the motor, a compression mechanism housing 6 connected to one side in the axial direction of the motor housing 4 and containing the compression mechanism, and one side of the compression mechanism housing 6.
  • FIG. 1 to 3 show the inverter-integrated electric compressor 1 of the embodiment with the inverter accommodating portion 8 facing up and the compression mechanism cover 7 facing down. One side is arranged in the lateral direction so that the inverter accommodating portion 8 is on the other side.
  • the motor of the embodiment is composed of a three-phase synchronous motor (brushless DC motor), and the compression mechanism is, for example, a scroll type compression mechanism.
  • the compression mechanism is driven by a motor, compresses the refrigerant, and discharges it into the refrigerant circuit.
  • a low-temperature gas refrigerant sucked from an evaporator (also referred to as a heat absorber) that also forms part of the refrigerant circuit is circulated in the motor housing 4. Therefore, the inside of the motor housing 4 is cooled.
  • the inverter accommodating part 8 is divided with the inside of the motor housing 4 in which a motor is accommodated by the partition 12 formed in the motor housing 4, and this partition 12 is also cooled by a low temperature gas refrigerant.
  • the inverter circuit unit 3 includes a high heat dissipation substrate 14 on which a power switching element 13 constituting an arm of each phase of a three-phase inverter circuit is mounted, and a control on which a control circuit 16 is mounted. A substrate 17, a bus bar assembly 18 connected to the power switching element 13 of the high heat dissipation substrate 14, and a filter mold assembly 21 on which a smoothing capacitor 19 is mounted.
  • the inverter circuit unit 3 converts DC power fed from a vehicle battery (not shown) into three-phase AC power and feeds it to a stator coil (not shown) of the motor.
  • connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase has three terminals on the lead terminals 22, 23 and 24 drawn from the partition wall 12 of the motor housing 4.
  • the power terminal of the power switching element 13 on the upper arm side and the ground terminal of the power switching element 13 on the lower arm side are connected to each other via the plate 26 and are called an HV connector of the connector case 27 attached to the motor housing 4. It is connected to the power harness from the battery described above via the high power connector 28 (consisting of screws).
  • the lead terminals 22 to 24 to which the connection points of the upper arm side power switching element 13 and the lower arm side power switching element 13 of each phase are connected penetrate the partition wall 12 and the motor in the motor housing 4.
  • the power supply terminal and the ground terminal are the terminal plate 29 of the filter mold assembly 21, the conductive member 31 called an EMC bus bar assembly, the conductive circuit board 32 called an EMC board, the connector bus bar 33, and the high power described above.
  • Reference numeral 34 denotes a bus bar case called an EMC filter case in which the connector bus bar 33 is built.
  • the power switching element 13 is configured to pass through the high heat dissipation substrate 14 and exchange heat with the other side. Note that circuit components around the power switching element 13 are also arranged on the other surface.
  • electrode terminals (screws) 36, 37, 38 that are connected to the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase described above. These are connected to the lead terminals 22, 23 and 24 drawn from the partition wall 12 via the terminal plate 26 via bus bars 46, 47 and 48 of the bus bar assembly 18 which will be described later. .
  • electrode terminals (screws) 42 and 43 that are connected to the power supply terminal and the ground terminal are projected on one surface of the high heat dissipation substrate 14, and these are connected via bus bars 49 and 50 of the bus bar assembly 18 described later. It is connected to the terminal plate 44 of the filter mold assembly 21. Furthermore, a connector 39 connected to the control circuit 16 of the control board 17 is attached to the periphery of one surface of the high heat dissipation board 14 outside the bus bar assembly 18. (3) Configuration of Control Board 17 The control circuits 16 of the control board 17 are arranged on both sides of the control board 17 and perform switching control of each power switching element 13 of the high heat dissipation board 14 based on a command from the outside. .
  • the smoothing capacitor 19 is connected between the power supply terminal and the ground terminal of the three-phase inverter circuit, and absorbs the high-frequency component of the switching current of the three-phase inverter circuit.
  • the smoothing capacitor 19 is disposed on a filter mold assembly (circuit board) 21, and the terminal plate 29 of the filter mold assembly 21 is connected to the conducting member 31 as described above, and the conducting circuit board 32, the connector bus bar 33, and The terminal board 44 is connected to the above-described electrode terminals 42 and 43 of the high heat dissipation board 14 through electrical connection to the power harness through the high power connector 28 and the like.
  • the bus bar assembly 18 has five bus bars 46, 47, 48, 49, and 50 that form wiring of a three-phase inverter circuit.
  • the bus bars 46 to 50 are arranged at positions outside the control board 17 and are integrated by insert molding of an insulating hard resin.
  • the bus bars 46 to 48 make the electrode terminals 36 and 37 of the high heat dissipation board 14 by the bus bars 46 to 48. 38 and each terminal plate 26 are connected, and the electrode terminals 42 and 43 and the terminal plate 44 of the filter mold assembly 21 are connected by bus bars 49 and 50.
  • a wall portion 51 is integrally formed at the peripheral portion of the bus bar assembly 18 so as to protrude in a thickness direction toward both the one surface and the other surface in a thickness direction.
  • Ten screw holes 52 to 61 are formed.
  • a plurality of metal dummy bus bars 62 (five in the embodiment) projecting from the wall 51 are provided at predetermined positions on one surface inside the wall 51.
  • positioning pins 63 and 64 project from predetermined positions on one surface and the other surface of the bus bar assembly 18.
  • a plurality of screw holes 66 to 72 are also formed in the periphery of the high heat dissipation substrate 14 at positions corresponding to the screw holes 53, 54, 55, 56, 57, 60, 61 of the bus bar assembly 18.
  • screw holes 89 to 93 are formed in the high heat dissipation substrate 14 at positions corresponding to the bus bars 46 to 50 of the bus bar assembly 18.
  • a plurality of screw holes 73 to 80 are formed at positions corresponding to the screw holes 52, 53, 54, 55, 56, 57, 58, 61 of the bus bar assembly 18 in the peripheral portion of the control board 17.
  • a plurality of through holes 81 are formed in the control board 17 at a position corresponding to the dummy bus bar 62 of the bus bar assembly 18. Furthermore, engagement holes 82, 83, 84, 86 are formed in the high heat dissipation board 14 and the control board 17 at positions corresponding to the positioning pins 63, 64 of the bus bar assembly 18, respectively. (6) Assembly procedure of inverter circuit unit 3 Next, an assembly procedure of the inverter circuit unit 3 will be described with the above configuration. First, as shown in FIG.
  • the high heat dissipation board 14 and the bus bar assembly are sandwiched between the high heat dissipation board 14 on which the power switching element 13 and the like are mounted and the control board 17 on which the control circuit 16 is mounted, with the bus bar assembly 18 interposed therebetween. 18 and the control board 17 are laminated. At this time, the positioning pins 63 and 64 of the bus bar assembly 18 are engaged with the engagement holes 82 and 83 of the high heat dissipation board 14 and the engagement holes 84 and 86 of the control board 17, respectively. The position of is determined with high accuracy.
  • the screw holes 66 to 72 of the high heat dissipation substrate 14 correspond to the other surface side of the screw holes 53, 54, 55, 56, 57, 60, 61 of the bus bar assembly 18, and
  • the screw holes 89 to 93 of the heat dissipation board 14 correspond to the other side of the bus bars 46 to 50 of the bus bar assembly 18.
  • Each screw hole 73 to 80 of the control board 17 corresponds to one surface side of each screw hole 52, 53, 54, 55, 56, 57, 58, 61 of the bus bar assembly 18, and each dummy bus bar of the bus bar assembly 18. 62 enters each through-hole 81 of the control board 17.
  • the electrode terminals 36, 37, 38, 42, and 43 made of screws are inserted into the screw holes 89 to 93 from the other surface side of the high heat dissipation substrate 14 to penetrate the high heat dissipation substrate 14. Then, they are screwed into the bus bars 46 to 50 of the bus bar assembly 18 respectively. By this screwing, the electrode terminals 36, 37, 38, 42, 43 are electrically connected to the circuit board of the high heat dissipation board 14 and the bus bars 46-50. Further, screws 87 and 88 are inserted into the screw holes 73 and 79 from one surface side of the control board 17, and are screwed into the screw holes 52 and 58 of the bus bar assembly 18 through the control board 17.
  • each dummy bus bar 62 is soldered to the control board 17 in each through hole 81 of the control board 17, and the dummy bus bar 62 is fixed from the bus bar assembly 18 to the control board 17.
  • the connector 39 of the high heat dissipation board 14 is connected to the connection portion 41 of the control board 17 and both are soldered. By such screwing and soldering, the high heat dissipation board 14, the bus bar assembly 18, and the control board 17 are integrated.
  • the wall portion 51 is formed in the peripheral portion of the bus bar assembly 18, between the high heat dissipation substrate 14 and the bus bar assembly 18 inside the wall portion 51 and between the control substrate 17 and the bus bar assembly 18. There is a space.
  • the power switching element 13 and other circuit components disposed on the one surface side of the high heat dissipation substrate 14 and the circuit components disposed on the other surface side of the control substrate 17 are located.
  • the plurality of metal dummy bus bars 62 are soldered to the control board 17, so that the distance between the control board 17 and the bus bar assembly 18 is well maintained.
  • the terminal plate 44 of the filter mold assembly 21 is directed to one side of the bus bars 49, 50 of the bus bar assembly 18, and screws 94, 96 are inserted to insert the bus bar.
  • the filter mold assembly 21 is screwed to the bus bar assembly 18 by being screwed to 49 and 50.
  • the terminal plate 44 is electrically connected to the electrode terminals 42 and 43 through the bus bars 49 and 50, respectively.
  • the inverter circuit unit 3 including the high heat dissipation substrate 14, the control substrate 17, the bus bar assembly 18, and the filter mold assembly 21 (smoothing capacitor 19) is integrated (sub-assembled) as shown in FIG. (7) Assembly procedure of inverter circuit unit 3
  • the inverter circuit unit 3 integrated in this way is accommodated in the inverter accommodating part 8 of the motor housing 4 with the high heat dissipation substrate 14 as the partition wall 12 side.
  • a sheet or grease for heat conduction is provided on the other surface of the high heat dissipation substrate 14 at a position corresponding to the power switching element 13, and each power switching element 13 is brought into close contact with the partition wall 12 through these to exchange heat. It is related. Further, the smoothing capacitor 19 is also brought into close contact with the partition wall 12 for heat exchange.
  • the screw 97 is inserted into the screw holes 74, 53, 66, the screw 98 is inserted into the screw holes 75, 54, 67, the screw 99 is inserted into the screw holes 76, 55, 68, and the screw 100 is inserted into the screw holes.
  • the screw 101 is inserted into the screw holes 78, 57 and 70
  • the screw 102 is inserted into the screw hole 59 and the screw hole 107 of the filter mold assembly 21, and the screw 103 is inserted into the screw holes 60 and 71.
  • the screws 104 are inserted into the screw holes 80, 61, 72, and the screws 97 to 104 are screwed into the motor housing 4.
  • the screw circuit 108 is inserted into another screw hole 107 formed in the filter mold assembly 21 and screwed into the motor housing 4 to attach the inverter circuit unit 3 to the motor housing 4 (housing 2).
  • the terminal plate 26 is attached between the lead terminals 22, 23, 24 and the bus bars 46, 47, 48 by screwing, and is conducted.
  • the terminal plate 29 of the filter mold assembly 21 is attached to the conducting member 31 with the screw 110 to conduct (FIGS. 4 and 2).
  • the lid member 11 is attached to the opening 9 of the inverter accommodating portion 8 with a plurality of screws 109, and the opening 9 of the inverter accommodating portion 8 is closed so as to be opened and closed (FIG. 1).
  • the high heat dissipation substrate 14 on which the power switching element 13 is mounted and the resin-molded power connection element 13 of the high heat dissipation substrate 14 and the smoothing capacitor 19 of the filter mold assembly 21 are connected.
  • the bus bar assembly 18 and the control board 17 on which the control circuit 26 is mounted are integrated in a stacked state to constitute the inverter circuit unit 3, and the integrated inverter circuit unit 3 is connected to the motor of the housing 2.
  • the power switching element 13 is accommodated in the inverter housing 8 configured in the housing 4 and attached to the motor housing 4 of the housing 2, and the power switching element 13 is arranged in a heat exchange relationship with the motor housing 4 of the housing 2 in that state. .
  • the integrated inverter circuit unit 3 can be reduced in size as compared with the conventional one, handling is also facilitated. Further, the power switching element 13 can be cooled by the partition wall 12 without any trouble, and a conventional base plate is not required, so that the number of parts can be reduced. Further, in the embodiment, the inverter circuit unit 3 is integrated by screwing with the bus bar assembly 18 sandwiched between the high heat dissipation substrate 14 and the control substrate 17, so that the strength of the integrated inverter circuit unit 3 is improved. In addition, since the positioning pins 63 and 64 for the high heat dissipation board 14 and the control board 17 are provided on the bus bar assembly 18, the strength can be maintained while maintaining the assembly accuracy. .
  • the inverter circuit unit 3 is integrated with the high heat dissipation board 14, the bus bar assembly 18, and the control board 17, and the high heat dissipation board 14 and the bus bar assembly 18, and the control board 17 and the bus bar assembly 18. Since the space is formed between the two, the mounting area of the circuit component is increased, and the mounting amount and workability can be improved. Further, the bus bar assembly 18 is provided with a wall portion 51 projecting in the thickness direction at the peripheral portion so that a space is formed inside the wall portion 51, and the control board 17 and the bus bar assembly 18 are formed in the space. Since the dummy bus bar 62 is provided, the space formed inside can be maintained with high strength.
  • a filter mold assembly 21 on which a smoothing capacitor 19 for absorbing a high-frequency component of the switching current is mounted is provided integrally with the inverter circuit unit 3, and the integrated inverter circuit unit 3 is accommodated in the inverter accommodation unit 8. Since the smoothing capacitor 19 is also arranged in a heat exchange relationship with the motor housing 4 of the housing 2 while being attached to the motor housing 4 of the housing 2, the handling performance of the inverter circuit unit 3 including the smoothing capacitor 19 is arranged. Thus, the durability can be improved and the smoothing capacitor 19 can be cooled without any trouble. It should be noted that the shape and structure of the inverter circuit section 3 and the housing 2 shown in the embodiments are not limited thereto, and it goes without saying that various changes can be made without departing from the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Compressor (AREA)

Abstract

Provided is an inverter-integrated electric compressor for which handling is facilitated while improving the durability of an inverter circuit unit, and the number of components can be reduced. In this inverter-integrated electric compressor an inverter circuit unit 3 is equipped with a high heat dissipation substrate 14, a control substrate 17, and a bus bar assembly 18. The inverter circuit unit 3, wherein the high heat dissipation substrate 14, the bus bar assembly 18, and the control substrate 17 are integrated in a stacked state, is housed in and attached to an inverter housing section 8 of a motor housing 4. In that state a power switching element is in a heat-exchange relationship with the motor housing 4.

Description

インバータ一体型電動圧縮機Inverter-integrated electric compressor
 本発明は、ハウジングにインバータ回路部を備えたインバータ一体型電動圧縮機に関する。 The present invention relates to an inverter-integrated electric compressor having an inverter circuit portion in a housing.
 従来より車両用の空気調和装置に用いられる電動圧縮機としては、スイッチングノイズを考慮して、ハウジングにインバータ回路部を取り付けたインバータ一体型の電動圧縮機が用いられている。この場合、インバータ回路部は、基板に実装された電力スイッチング素子を冷却するため、電力スイッチング素子をハウジングの外面に直接、若しくは、熱伝導用のシートやグリスを介し、密着させた状態でハウジングに取り付けられことになる。
 また、電動圧縮機の収容スペースをできるだけ縮小しなければならないため、インバータ回路部の体積縮小も必要とされる。そのため、従来より電力スイッチング素子を実装した基板と、制御回路を実装した基板とに接続されるバスバーアセンブリを準備し、このバスバーアセンブリを両基板にて挟んで一体化し、その状態でベースプレートを介し、ハウジングの外面に取り付ける構造が提案されている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, as an electric compressor used in a vehicle air conditioner, an inverter-integrated electric compressor in which an inverter circuit portion is attached to a housing is used in consideration of switching noise. In this case, the inverter circuit unit cools the power switching element mounted on the substrate, so that the power switching element is in close contact with the outer surface of the housing or in close contact with the heat conduction sheet or grease. It will be attached.
Moreover, since the accommodation space of the electric compressor has to be reduced as much as possible, it is also necessary to reduce the volume of the inverter circuit unit. Therefore, a bus bar assembly connected to a board on which a power switching element is conventionally mounted and a board on which a control circuit is mounted is prepared, and this bus bar assembly is sandwiched and integrated between both boards, and in that state via a base plate, A structure to be attached to the outer surface of the housing has been proposed (see, for example, Patent Document 1).
特開2004−190547号公報JP 2004-190547 A
 しかしながら、従来の構成では樹脂成形されたバスバーアセンブリがハウジングの外面にて外部に露出する構造であったため、耐久性に問題があった。また、バスバーアセンブリが大型化するために、一体化されたインバータ回路部のハンドリング作業が悪化する問題もあった。更に、電力スイッチング素子をストレス無く、且つ、外部から遮断した状態でハウジングに密着させるためにベースプレートを必要とし、部品点数が増加する欠点もあった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、インバータ回路部の耐久性を改善しながらハンドリングも容易とし、部品点数の削減も図ることができるインバータ一体型電動圧縮機を提供することを目的とする。
However, the conventional configuration has a structure in which the resin-molded bus bar assembly is exposed to the outside on the outer surface of the housing, and thus there is a problem in durability. Moreover, since the bus bar assembly is increased in size, there is a problem that handling work of the integrated inverter circuit unit is deteriorated. Furthermore, there is a disadvantage that the base plate is required to bring the power switching element into close contact with the housing without stress and being cut off from the outside, which increases the number of parts.
The present invention has been made to solve the conventional technical problem, and is an inverter-integrated electric motor that can be handled easily while reducing the number of components while improving the durability of the inverter circuit section. An object is to provide a compressor.
 本発明のインバータ一体型電動圧縮機は、モータが内蔵されたハウジングと、モータに給電するインバータ回路部を備えたものであって、インバータ回路部は、電力スイッチング素子が実装された高放熱基板と、制御回路が実装された制御基板と、樹脂成形されたバスバーアセンブリを備え、これら高放熱基板、バスバーアセンブリ、及び、制御基板が積層された状態で一体化されており、当該一体化されたインバータ回路部が、ハウジングに構成されたインバータ収容部に収容されてハウジングに取り付けられると共に、その状態で電力スイッチング素子は、ハウジングと熱交換関係に配置されることを特徴とする。
 請求項2の発明のインバータ一体型電動圧縮機は、上記発明においてインバータ回路部は、高放熱基板と制御基板とでバスバーアセンブリを挟んだ状態で一体化されると共に、バスバーアセンブリは、高放熱基板及び制御基板との位置決めピンを備えたことを特徴とする。
 請求項3の発明のインバータ一体型電動圧縮機は、上記発明においてインバータ回路部は、高放熱基板、バスバーアセンブリ、及び、制御基板が一体化された状態で、高放熱基板とバスバーアセンブリ、制御基板とバスバーアセンブリの間に空間が構成されることを特徴とする。
 請求項4の発明のインバータ一体型電動圧縮機は、上記発明においてバスバーアセンブリは、周辺部において厚み方向に突出する壁部を備え、この壁部の内側に前記空間が構成されると共に、当該空間内において、制御基板とバスバーアセンブリとに渡る間隔保持部を有することを特徴とする。
 請求項5の発明のインバータ一体型電動圧縮機は、上記各発明においてインバータ回路部は、スイッチング電流の高周波成分を吸収するための平滑コンデンサを一体に備え、当該一体化されたインバータ回路部が、インバータ収容部に収容され、ハウジングに取り付けられた状態で、平滑コンデンサもハウジングと熱交換関係に配置されることを特徴とする。
 請求項6の発明のインバータ一体型電動圧縮機は、上記各発明においてインバータ収容部は、内部にインバータ回路部が収容された状態で、蓋部材により開閉可能に閉塞されることを特徴とする。
An inverter-integrated electric compressor of the present invention includes a housing in which a motor is built, and an inverter circuit unit that supplies power to the motor. The inverter circuit unit includes a high heat dissipation board on which a power switching element is mounted; The control board on which the control circuit is mounted and the resin molded bus bar assembly are integrated in a state where the high heat dissipation board, the bus bar assembly, and the control board are stacked, and the integrated inverter The circuit portion is accommodated in and attached to the inverter accommodating portion configured in the housing, and the power switching element is arranged in a heat exchange relationship with the housing in that state.
According to a second aspect of the present invention, the inverter-integrated electric compressor is integrated with the bus bar assembly sandwiched between the high heat dissipation board and the control board, and the bus bar assembly is integrated with the high heat dissipation board. And a positioning pin with the control board.
According to a third aspect of the present invention, there is provided an inverter-integrated electric compressor according to the present invention, wherein the inverter circuit unit is a state in which the high heat dissipation board, the bus bar assembly, and the control board are integrated. And a space between the bus bar assembly.
According to a fourth aspect of the present invention, there is provided the inverter-integrated electric compressor. It has an interval holding part extending between the control board and the bus bar assembly.
In the inverter-integrated electric compressor according to the invention of claim 5, in each of the inventions, the inverter circuit unit integrally includes a smoothing capacitor for absorbing a high-frequency component of the switching current, and the integrated inverter circuit unit includes: The smoothing capacitor is also disposed in a heat exchange relationship with the housing while being accommodated in the inverter accommodating portion and attached to the housing.
The inverter-integrated electric compressor according to a sixth aspect of the present invention is characterized in that, in each of the above-described inventions, the inverter accommodating portion is closed so as to be opened and closed by a lid member in a state where the inverter circuit portion is accommodated therein.
 本発明によれば、モータが内蔵されたハウジングと、モータに給電するインバータ回路部を備えたインバータ一体型電動圧縮機において、インバータ回路部は、電力スイッチング素子が実装された高放熱基板と、制御回路が実装された制御基板と、樹脂成形されたバスバーアセンブリを備えており、これら高放熱基板、バスバーアセンブリ、及び、制御基板を積層した状態で一体化し、当該一体化されたインバータ回路部を、ハウジングに構成されたインバータ収容部に収容してハウジングに取り付けると共に、その状態で電力スイッチング素子は、ハウジングと熱交換関係に配置されるようにしたので、請求項6の発明の如くインバータ収容部の内部にインバータ回路部を収容した状態で、蓋部材によりインバータ収容部を開閉可能に閉塞することで、従来の如き耐久性の問題を解消することができるようになる。
 また、一体化されたインバータ回路部を従来に比して小型化することができるので、ハンドリングも容易となる。更に、電力スイッチング素子の冷却を支障無く行うことができると共に、ベースプレートも不要となるので、部品点数の削減も図ることができるようになるものである。
 また、請求項2の発明によれば、上記発明に加えてインバータ回路部を、高放熱基板と制御基板とでバスバーアセンブリを挟んだ状態で一体化したので、一体化されたインバータ回路部の強度を向上させることができるようになると共に、バスバーアセンブリに、高放熱基板及び制御基板との位置決めピンを設けたので、組立精度を保ちつつ、強度を保持することができるようになる。
 この場合、請求項3の発明の如くインバータ回路部を、高放熱基板、バスバーアセンブリ、及び、制御基板が一体化された状態で、高放熱基板とバスバーアセンブリ、制御基板とバスバーアセンブリの間に空間が構成されるようにすれば、部品の実装面積が拡大し、実装量と加工性の向上を図ることができるようになる。
 更に、請求項4の発明の如くバスバーアセンブリに、周辺部において厚み方向に突出する壁部を設け、この壁部の内側に前記空間が構成されるようにすると共に、当該空間内において、制御基板とバスバーアセンブリとに渡る間隔保持部を設ければ、内部に構成される空間を高い強度で維持することができるようになる。
 また、請求項5の発明の如く、スイッチング電流の高周波成分を吸収するための平滑コンデンサをインバータ回路部に一体に設け、当該一体化されたインバータ回路部が、インバータ収容部に収容され、ハウジングに取り付けられた状態で、平滑コンデンサもハウジングと熱交換関係に配置されるようにすれば、平滑コンデンサを含むインバータ回路部のハンドリング性と耐久性を向上させることができるようになると共に、平滑コンデンサの冷却も支障無く行えるようになるものである。
According to the present invention, in an inverter-integrated electric compressor having a housing with a built-in motor and an inverter circuit unit that supplies power to the motor, the inverter circuit unit includes a high heat dissipation board on which a power switching element is mounted, and a control circuit. A control board on which a circuit is mounted and a resin-molded bus bar assembly are provided, and the high heat dissipation board, the bus bar assembly, and the control board are integrated in a stacked state, and the integrated inverter circuit unit is Since the power switching element is accommodated in the inverter accommodating portion configured in the housing and attached to the housing, and in this state, the power switching element is arranged in a heat exchange relationship with the housing. The inverter housing part can be opened and closed with a lid member while the inverter circuit part is housed inside. In Rukoto, it is possible to eliminate the conventional such as durability problems.
Moreover, since the integrated inverter circuit part can be reduced in size compared with the conventional one, handling is also facilitated. Further, the power switching element can be cooled without hindrance, and the base plate is not necessary, so that the number of parts can be reduced.
According to the invention of claim 2, in addition to the above invention, the inverter circuit portion is integrated with the bus bar assembly sandwiched between the high heat dissipation substrate and the control substrate, so that the strength of the integrated inverter circuit portion is increased. Since the positioning pins for the high heat dissipation board and the control board are provided in the bus bar assembly, the strength can be maintained while maintaining the assembly accuracy.
In this case, as in the invention of claim 3, the inverter circuit portion is formed with a space between the high heat dissipation board and the bus bar assembly, and between the control board and the bus bar assembly in a state where the high heat dissipation board, the bus bar assembly, and the control board are integrated. If this is configured, the mounting area of the parts can be increased, and the mounting amount and workability can be improved.
Further, the bus bar assembly according to the invention of claim 4 is provided with a wall portion protruding in the thickness direction at the peripheral portion, and the space is configured inside the wall portion, and the control board is formed in the space. If a space holding part is provided over the bus bar assembly, the space formed inside can be maintained with high strength.
According to a fifth aspect of the present invention, a smoothing capacitor for absorbing a high frequency component of the switching current is integrally provided in the inverter circuit portion, and the integrated inverter circuit portion is accommodated in the inverter accommodating portion, If the smoothing capacitor is also placed in a heat exchange relationship with the housing in the attached state, the handling and durability of the inverter circuit unit including the smoothing capacitor can be improved, and the smoothing capacitor Cooling can be performed without any problem.
本発明を適用した一実施例のインバータ一体型電動圧縮機の斜視図である。1 is a perspective view of an inverter-integrated electric compressor according to an embodiment to which the present invention is applied. 図1のインバータ一体型電動圧縮機の蓋部材を取り外した状態の斜視図である。FIG. 2 is a perspective view of a state where a cover member of the inverter-integrated electric compressor in FIG. 1 is removed. 図1のインバータ一体型電動圧縮機のハウジングとインバータ回路部の分解斜視図である。It is a disassembled perspective view of the housing and inverter circuit part of the inverter integrated electric compressor of FIG. 図1のインバータ一体型電動圧縮機の蓋部材を取り外した状態のインバータ収容部側から見た平面図である。It is the top view seen from the inverter accommodating part side of the state which removed the cover member of the inverter integrated electric compressor of FIG. 図4のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のインバータ一体型電動圧縮機のインバータ回路部の上方斜視図である。It is an upper perspective view of the inverter circuit part of the inverter integrated electric compressor of FIG. 図6のインバータ回路部の下方斜視図である。It is a downward perspective view of the inverter circuit part of FIG. 図6のインバータ回路部の平滑コンデンサ以外の部分の分解斜視図である。It is a disassembled perspective view of parts other than the smoothing capacitor of the inverter circuit part of FIG.
 以下、本発明の一実施形態について、図面に基づき詳細に説明する。実施例のインバータ一体型電動圧縮機1は、図示しない車両の車室内を空調する車両用空気調和装置の冷媒回路の一部を構成するものであり、図示しないモータと、このモータにより駆動される圧縮機構(図示せず)を内蔵したハウジング2と、モータを駆動するインバータ回路部3を備えている。このハウジング2は、前記モータを内蔵するモータハウジング4と、このモータハウジング4の軸方向の一側に接続されて前記圧縮機構を内蔵する圧縮機構ハウジング6と、この圧縮機構ハウジング6の一側の開口を閉塞する圧縮機構カバー7と、モータハウジング4の軸方向の他側に構成されたインバータ収容部8と、このインバータ収容部8の他側の開口9を開閉可能に閉塞する蓋部材11を備えている。そして、このインバータ収容部8内にインバータ回路部3が収容される。
 尚、図1~図3ではインバータ収容部8を上に、圧縮機構カバー7を下にした状態で実施例のインバータ一体型電動圧縮機1を示しているが、実際には圧縮機構カバー7が一側、インバータ収容部8が他側となるように横方向で配置されるものである。
 実施例のモータは、三相同期モータ(ブラシレスDCモータ)から構成されており、前記圧縮機構は例えばスクロール式の圧縮機構である。圧縮機構はモータにより駆動され、冷媒を圧縮して冷媒回路内に吐出する。そして、モータハウジング4には、これも冷媒回路の一部を構成するエバポレータ(吸熱器とも称される)から吸入された低温のガス冷媒が流通される。そのため、モータハウジング4内は冷却されている。そして、インバータ収容部8は、モータハウジング4に形成された隔壁12によりモータが収容されるモータハウジング4内と区画されており、この隔壁12も低温のガス冷媒により冷却される。
 (1)インバータ回路部3の構成
 前記インバータ回路部3は、三相インバータ回路の各相のアームを構成する電力スイッチング素子13が実装された高放熱基板14と、制御回路16が実装された制御基板17と、高放熱基板14の電力スイッチング素子13に接続されるバスバーアセンブリ18と、平滑コンデンサ19が実装されたフィルタモールドアセンブリ21を有している。
 このインバータ回路部3は、図示しない車両のバッテリから給電される直流電力を三相交流電力に変換して前記モータのステータコイル(図示せず)に給電するものである。そのため、各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点が、モータハウジング4の隔壁12から引き出された引出端子22、23、24に三枚の端子板26を介してそれぞれ接続され、上アーム側の電力スイッチング素子13の電源端子と下アーム側の電力スイッチング素子13の接地端子がモータハウジング4に取り付けられたコネクタケース27のHVコネクタと称される高電力用コネクタ28(ネジから成る)を介して前述したバッテリからの電源ハーネスに接続されることになる。
 この場合、各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点が接続される引出端子22~24は、隔壁12を貫通してモータハウジング4内のモータの前述したステータコイルに接続されている。また、電源端子と接地端子は、フィルタモールドアセンブリ21の端子板29、EMCバスバーアセンブリと称される導通部材31、EMCボードと称される導通回路基板32、コネクタバスバー33、及び、前述した高電力用コネクタ28等を介して電源ハーネスに接続される。尚、34はコネクタバスバー33を内蔵するEMCフィルタケースと称されるバスバーケースである。
 (2)高放熱基板14の構成
 前記高放熱基板14は、回路基板をモールドする樹脂により厚板状に成形されており、各電力スイッチング素子13やそれらの周辺の回路部品は一面側に配置されると共に、電力スイッチング素子13は高放熱基板14を貫通して他面側と熱交換可能に構成されている。尚、この他面にも電力スイッチング素子13周辺の回路部品が配置されている。
 また、高放熱基板14の一面には、前述した各相の上アーム側の電力スイッチング素子13と下アーム側の電力スイッチング素子13との接続点に導通する電極端子(ネジ)36、37、38が突出しており、これらは後述するバスバーアセンブリ18のバスバー46、47、48を介して、隔壁12から引き出された引出端子22、23、24に端子板26を介してそれぞれ接続されることになる。更に、高放熱基板14の一面には、前述した電源端子と接地端子に導通する電極端子(ネジ)42、43が突出しており、これらは後述するバスバーアセンブリ18のバスバー49、50を介して、フィルタモールドアセンブリ21の端子板44に接続されることになる。更にまた、高放熱基板14の一面の周辺部には、バスバーアセンブリ18の外側において制御基板17の制御回路16に接続されるコネクタ39が取り付けられている。
 (3)制御基板17の構成
 前記制御基板17の制御回路16は、制御基板17の両面に配置されており、外部からの指令に基づいて高放熱基板14の各電力スイッチング素子13をスイッチング制御する。また、モータの駆動状態を外部に送信する機能を有しており、マイクロコンピュータ等の回路部品をプリント配線にて接続して構成されている。更に、制御基板17の周辺部には、前述した高放熱基板14のコネクタ39が接続される接続部41が配置されている。
 (4)フィルタモールドアセンブリ21の構成
 前記平滑コンデンサ19は、三相インバータ回路の電源端子と接地端子との間に接続されて、三相インバータ回路のスイッチング電流の高周波成分を吸収する。この平滑コンデンサ19はフィルタモールドアセンブリ(回路基板)21に配置されており、このフィルタモールドアセンブリ21の端子板29が前述した如く導通部材31に接続され、導通回路基板32、コネクタバスバー33、及び、高電力用コネクタ28等を介して電源ハーネスに導通接続され、端子板44が前述した高放熱基板14の電極端子42、43に接続されることになる。
 (5)バスバーアセンブリ18の構成
 前記バスバーアセンブリ18は、三相インバータ回路の配線を成す五つのバスバー46、47、48、49、50を有している。各バスバー46~50は制御基板17の外側となる位置に配置され、絶縁性の硬質樹脂のインサート成形により一体化されており、バスバー46~48により、高放熱基板14の各電極端子36、37、38と各端子板26が接続され、バスバー49、50により、電極端子42、43とフィルタモールドアセンブリ21の端子板44が接続される。
 このバスバーアセンブリ18の周辺部には、一面と他面の双方に向かって厚み方向に所定の寸法で突出した壁部51が一体に形成されており、この壁部51には複数(実施例では10カ所)のネジ孔52~61が形成されている。また、この壁部51より内側の一面の所定位置には、間隔保持部を構成する金属製のダミーバスバー62が複数(実施例では五つ)突設されている。更に、バスバーアセンブリ18の一面と他面の所定位置には、位置決めピン63、64が突設されている。
 一方、高放熱基板14の周辺部にも、バスバーアセンブリ18の各ネジ孔53、54、55、56、57、60、61に対応する位置に複数のネジ孔66~72が形成されている。また、バスバーアセンブリ18の各バスバー46~50に対応する位置の高放熱基板14には、ネジ孔89~93が形成されている。更に、制御基板17の周辺部にも、バスバーアセンブリ18の各ネジ孔52、53、54、55、56、57、58、61に対応する位置に複数のネジ孔73~80が形成されており、バスバーアセンブリ18のダミーバスバー62に対応する位置の制御基板17には、複数の貫通孔81が穿設されている。更にまた、バスバーアセンブリ18の各位置決めピン63、64に対応する位置の高放熱基板14及び制御基板17には、係合孔82、83、及び、84、86がそれぞれ形成されている。
 (6)インバータ回路部3の組立手順
 以上の構成で、次に、インバータ回路部3の組立手順について説明する。先ず図8に示す如く、電力スイッチング素子13等が実装された高放熱基板14と、制御回路16が実装された制御基板17により、バスバーアセンブリ18を挟んだ状態でこれら高放熱基板14、バスバーアセンブリ18、及び、制御基板17を積層する。このとき、バスバーアセンブリ18の位置決めピン63、64が、高放熱基板14の係合孔82、83、及び、制御基板17の係合孔84、86にそれぞれ対応して係合するので、三者の位置は精度良く確定する。
 このように積層された状態で、高放熱基板14の各ネジ孔66~72は、バスバーアセンブリ18のネジ孔53、54、55、56、57、60、61の他面側に対応し、高放熱基板14のネジ孔89~93は、バスバーアセンブリ18の各バスバー46~50の他面側に対応する。また、制御基板17の各ネジ孔73~80は、バスバーアセンブリ18の各ネジ孔52、53、54、55、56、57、58、61の一面側に対応し、バスバーアセンブリ18の各ダミーバスバー62は、制御基板17の各貫通孔81に進入する。
 この状態で、ネジから構成された各電極端子36、37、38、及び、42、43を高放熱基板14の他面側から各ネジ孔89~93内に挿入し、高放熱基板14を貫通してバスバーアセンブリ18のバスバー46~50にそれぞれ螺合させる。この螺合によって高放熱基板14の回路基板とバスバー46~50に各電極端子36、37、38、42、43は導通する。
 また、制御基板17の一面側からネジ87、88をネジ孔73、79内に挿入し、制御基板17を貫通してバスバーアセンブリ18のネジ孔52、58に螺合させる。更に、各ダミーバスバー62を制御基板17の各貫通孔81内において、当該制御基板17に半田付けし、ダミーバスバー62をバスバーアセンブリ18から制御基板17に渡って固定する。また、高放熱基板14のコネクタ39は制御基板17の接続部41に接続され、両者も半田付けする。
 このようなネジ止めと半田付けにより、高放熱基板14とバスバーアセンブリ18と制御基板17は一体化される。このとき、バスバーアセンブリ18の周辺部には壁部51が形成されているので、この壁部51の内側の高放熱基板14とバスバーアセンブリ18の間、及び、制御基板17とバスバーアセンブリ18の間には空間が構成される。この空間内に、高放熱基板14の一面側に配置された電力スイッチング素子13他の回路部品と制御基板17の他面側に配置された回路部品が位置することになる。また、金属製の複数のダミーバスバー62が制御基板17に半田付けされることにより、制御基板17とバスバーアセンブリ18の間の間隔は良好に保持されることになる。
 次に、平滑コンデンサ19を高放熱基板14側とした状態で、フィルタモールドアセンブリ21の端子板44をバスバーアセンブリ18のバスバー49、50の一面側に宛がい、ネジ94、96を挿入してバスバー49、50に螺合させることにより、フィルタモールドアセンブリ21をバスバーアセンブリ18にネジ止めする。この状態で、端子板44はバスバー49、50を介し、電極端子42、43にそれぞれ導通する。これにより、図6の如く高放熱基板14、制御基板17、バスバーアセンブリ18及びフィルタモールドアセンブリ21(平滑コンデンサ19)を備えたインバータ回路部3が一体化(サブアセンブリ)される。
 (7)インバータ回路部3の組み付け手順
 このように一体化されたインバータ回路部3を、高放熱基板14を隔壁12側としてモータハウジング4のインバータ収容部8内に収容する。このとき、電力スイッチング素子13に対応する位置の高放熱基板14の他面には、熱伝導用のシート或いはグリスを設け、これらを介して各電力スイッチング素子13を隔壁12に密着させ、熱交換関係とする。また、平滑コンデンサ19も隔壁12に密着させて熱交換関係とする。
 次に、ネジ97をネジ孔74、53、66に挿通し、ネジ98をネジ孔75、54、67に挿通し、ネジ99をネジ孔76、55、68に挿通し、ネジ100をネジ孔77、56、69に挿通し、ネジ101をネジ孔78、57、70に挿通し、ネジ102をネジ孔59、フィルタモールドアセンブリ21のネジ孔107に挿通し、ネジ103をネジ孔60、71に挿通し、ネジ104をネジ孔80、61、72に挿通して、各ネジ97~104をモータハウジング4に螺合させる。また、フィルタモールドアセンブリ21に形成された他のネジ孔107にもネジ108を挿通してモータハウジング4に螺合させることにより、インバータ回路部3をモータハウジング4(ハウジング2)に取り付ける。
 その後、端子板26を引出端子22、23、24とバスバー46、47、48間に渡ってネジ止めによりそれぞれ取り付けて導通させる。また、フィルタモールドアセンブリ21の端子板29をネジ110により導通部材31に取り付けて導通させる(図4、図2)。そして、最後に蓋部材11をインバータ収容部8の開口9に複数のネジ109により取り付け、開閉可能にインバータ収容部8の開口9を閉塞する(図1)。
 以上詳述した如く、本発明によれば電力スイッチング素子13が実装された高放熱基板14と、樹脂成形されて高放熱基板14の電力スイッチング素子13やフィルタモールドアセンブリ21の平滑コンデンサ19に接続されるバスバーアセンブリ18と、制御回路26が実装された制御基板17とを積層した状態で一体化することでインバータ回路部3を構成し、この一体化されたインバータ回路部3を、ハウジング2のモータハウジング4に構成されたインバータ収容部8に収容してハウジング2のモータハウジング4に取り付けると共に、その状態で電力スイッチング素子13は、ハウジング2のモータハウジング4と熱交換関係に配置されるようにした。
 これにより、インバータ収容部8の内部にインバータ回路部3を収容した状態で、蓋部材11によりインバータ収容部8を開閉可能に閉塞することで、従来に比してインバータ回路部3の耐久性を著しく向上させることができるようになる。
 また、一体化されたインバータ回路部3を従来に比して小型化することができるので、ハンドリングも容易となる。更に、電力スイッチング素子13の冷却を隔壁12により支障無く行うことができると共に、従来の如きベースプレートも不要となるので、部品点数の削減も図ることができるようになる。
 また、実施例ではインバータ回路部3を、高放熱基板14と制御基板17とでバスバーアセンブリ18を挟んだ状態でネジ止めにより一体化しているので、一体化されたインバータ回路部3の強度を向上させることができるようになると共に、バスバーアセンブリ18に、高放熱基板14及び制御基板17との位置決めピン63、64を設けたので、組立精度を保ちつつ、強度を保持することができるようになる。
 この場合、実施例ではインバータ回路部3を、高放熱基板14、バスバーアセンブリ18、及び、制御基板17が一体化された状態で、高放熱基板14とバスバーアセンブリ18、制御基板17とバスバーアセンブリ18の間に空間が構成されるようにしているので、回路部品の実装面積が拡大し、実装量と加工性の向上を図ることができるようになる。
 更に、バスバーアセンブリ18に、周辺部において厚み方向に突出する壁部51を設け、この壁部51の内側に空間が構成されるようにすると共に、当該空間内において、制御基板17とバスバーアセンブリ18とに渡るダミーバスバー62を設けたので、内部に構成される空間を高い強度で維持することができるようになる。
 また、スイッチング電流の高周波成分を吸収するための平滑コンデンサ19が実装されたフィルタモールドアセンブリ21をインバータ回路部3に一体に設け、当該一体化されたインバータ回路部3が、インバータ収容部8に収容され、ハウジング2のモータハウジング4に取り付けられた状態で、平滑コンデンサ19もハウジング2のモータハウジング4と熱交換関係に配置されるようにしたので、平滑コンデンサ19を含むインバータ回路部3のハンドリング性と耐久性を向上させることができるようになると共に、平滑コンデンサ19の冷却も支障無く行えるようになる。
 尚、実施例で示したインバータ回路部3やハウジング2の形状、構造は、それに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能であることは云うまでもない。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The inverter-integrated electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner that air-conditions a vehicle interior of a vehicle (not shown), and is driven by a motor (not shown) and this motor. A housing 2 containing a compression mechanism (not shown) and an inverter circuit unit 3 for driving the motor are provided. The housing 2 includes a motor housing 4 containing the motor, a compression mechanism housing 6 connected to one side in the axial direction of the motor housing 4 and containing the compression mechanism, and one side of the compression mechanism housing 6. A compression mechanism cover 7 that closes the opening, an inverter accommodating portion 8 that is configured on the other side in the axial direction of the motor housing 4, and a lid member 11 that closes the opening 9 on the other side of the inverter accommodating portion 8 so as to be openable and closable. I have. And the inverter circuit part 3 is accommodated in this inverter accommodating part 8. FIG.
1 to 3 show the inverter-integrated electric compressor 1 of the embodiment with the inverter accommodating portion 8 facing up and the compression mechanism cover 7 facing down. One side is arranged in the lateral direction so that the inverter accommodating portion 8 is on the other side.
The motor of the embodiment is composed of a three-phase synchronous motor (brushless DC motor), and the compression mechanism is, for example, a scroll type compression mechanism. The compression mechanism is driven by a motor, compresses the refrigerant, and discharges it into the refrigerant circuit. A low-temperature gas refrigerant sucked from an evaporator (also referred to as a heat absorber) that also forms part of the refrigerant circuit is circulated in the motor housing 4. Therefore, the inside of the motor housing 4 is cooled. And the inverter accommodating part 8 is divided with the inside of the motor housing 4 in which a motor is accommodated by the partition 12 formed in the motor housing 4, and this partition 12 is also cooled by a low temperature gas refrigerant.
(1) Configuration of Inverter Circuit Unit 3 The inverter circuit unit 3 includes a high heat dissipation substrate 14 on which a power switching element 13 constituting an arm of each phase of a three-phase inverter circuit is mounted, and a control on which a control circuit 16 is mounted. A substrate 17, a bus bar assembly 18 connected to the power switching element 13 of the high heat dissipation substrate 14, and a filter mold assembly 21 on which a smoothing capacitor 19 is mounted.
The inverter circuit unit 3 converts DC power fed from a vehicle battery (not shown) into three-phase AC power and feeds it to a stator coil (not shown) of the motor. Therefore, the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase has three terminals on the lead terminals 22, 23 and 24 drawn from the partition wall 12 of the motor housing 4. The power terminal of the power switching element 13 on the upper arm side and the ground terminal of the power switching element 13 on the lower arm side are connected to each other via the plate 26 and are called an HV connector of the connector case 27 attached to the motor housing 4. It is connected to the power harness from the battery described above via the high power connector 28 (consisting of screws).
In this case, the lead terminals 22 to 24 to which the connection points of the upper arm side power switching element 13 and the lower arm side power switching element 13 of each phase are connected penetrate the partition wall 12 and the motor in the motor housing 4. Are connected to the aforementioned stator coil. Further, the power supply terminal and the ground terminal are the terminal plate 29 of the filter mold assembly 21, the conductive member 31 called an EMC bus bar assembly, the conductive circuit board 32 called an EMC board, the connector bus bar 33, and the high power described above. Connected to the power harness through the connector 28 and the like. Reference numeral 34 denotes a bus bar case called an EMC filter case in which the connector bus bar 33 is built.
(2) Configuration of the high heat dissipation board 14 The high heat dissipation board 14 is formed in a thick plate shape by a resin for molding a circuit board, and each power switching element 13 and its peripheral circuit components are arranged on one side. In addition, the power switching element 13 is configured to pass through the high heat dissipation substrate 14 and exchange heat with the other side. Note that circuit components around the power switching element 13 are also arranged on the other surface.
In addition, on one surface of the high heat dissipation substrate 14, electrode terminals (screws) 36, 37, 38 that are connected to the connection point between the power switching element 13 on the upper arm side and the power switching element 13 on the lower arm side of each phase described above. These are connected to the lead terminals 22, 23 and 24 drawn from the partition wall 12 via the terminal plate 26 via bus bars 46, 47 and 48 of the bus bar assembly 18 which will be described later. . Furthermore, electrode terminals (screws) 42 and 43 that are connected to the power supply terminal and the ground terminal are projected on one surface of the high heat dissipation substrate 14, and these are connected via bus bars 49 and 50 of the bus bar assembly 18 described later. It is connected to the terminal plate 44 of the filter mold assembly 21. Furthermore, a connector 39 connected to the control circuit 16 of the control board 17 is attached to the periphery of one surface of the high heat dissipation board 14 outside the bus bar assembly 18.
(3) Configuration of Control Board 17 The control circuits 16 of the control board 17 are arranged on both sides of the control board 17 and perform switching control of each power switching element 13 of the high heat dissipation board 14 based on a command from the outside. . Also, it has a function of transmitting the motor drive state to the outside, and is configured by connecting circuit components such as a microcomputer by printed wiring. Further, a connection portion 41 to which the connector 39 of the high heat dissipation substrate 14 described above is connected is disposed around the control substrate 17.
(4) Configuration of Filter Mold Assembly 21 The smoothing capacitor 19 is connected between the power supply terminal and the ground terminal of the three-phase inverter circuit, and absorbs the high-frequency component of the switching current of the three-phase inverter circuit. The smoothing capacitor 19 is disposed on a filter mold assembly (circuit board) 21, and the terminal plate 29 of the filter mold assembly 21 is connected to the conducting member 31 as described above, and the conducting circuit board 32, the connector bus bar 33, and The terminal board 44 is connected to the above-described electrode terminals 42 and 43 of the high heat dissipation board 14 through electrical connection to the power harness through the high power connector 28 and the like.
(5) Configuration of Bus Bar Assembly 18 The bus bar assembly 18 has five bus bars 46, 47, 48, 49, and 50 that form wiring of a three-phase inverter circuit. The bus bars 46 to 50 are arranged at positions outside the control board 17 and are integrated by insert molding of an insulating hard resin. The bus bars 46 to 48 make the electrode terminals 36 and 37 of the high heat dissipation board 14 by the bus bars 46 to 48. 38 and each terminal plate 26 are connected, and the electrode terminals 42 and 43 and the terminal plate 44 of the filter mold assembly 21 are connected by bus bars 49 and 50.
A wall portion 51 is integrally formed at the peripheral portion of the bus bar assembly 18 so as to protrude in a thickness direction toward both the one surface and the other surface in a thickness direction. Ten screw holes 52 to 61 are formed. In addition, a plurality of metal dummy bus bars 62 (five in the embodiment) projecting from the wall 51 are provided at predetermined positions on one surface inside the wall 51. Further, positioning pins 63 and 64 project from predetermined positions on one surface and the other surface of the bus bar assembly 18.
On the other hand, a plurality of screw holes 66 to 72 are also formed in the periphery of the high heat dissipation substrate 14 at positions corresponding to the screw holes 53, 54, 55, 56, 57, 60, 61 of the bus bar assembly 18. Further, screw holes 89 to 93 are formed in the high heat dissipation substrate 14 at positions corresponding to the bus bars 46 to 50 of the bus bar assembly 18. Further, a plurality of screw holes 73 to 80 are formed at positions corresponding to the screw holes 52, 53, 54, 55, 56, 57, 58, 61 of the bus bar assembly 18 in the peripheral portion of the control board 17. A plurality of through holes 81 are formed in the control board 17 at a position corresponding to the dummy bus bar 62 of the bus bar assembly 18. Furthermore, engagement holes 82, 83, 84, 86 are formed in the high heat dissipation board 14 and the control board 17 at positions corresponding to the positioning pins 63, 64 of the bus bar assembly 18, respectively.
(6) Assembly procedure of inverter circuit unit 3 Next, an assembly procedure of the inverter circuit unit 3 will be described with the above configuration. First, as shown in FIG. 8, the high heat dissipation board 14 and the bus bar assembly are sandwiched between the high heat dissipation board 14 on which the power switching element 13 and the like are mounted and the control board 17 on which the control circuit 16 is mounted, with the bus bar assembly 18 interposed therebetween. 18 and the control board 17 are laminated. At this time, the positioning pins 63 and 64 of the bus bar assembly 18 are engaged with the engagement holes 82 and 83 of the high heat dissipation board 14 and the engagement holes 84 and 86 of the control board 17, respectively. The position of is determined with high accuracy.
In such a stacked state, the screw holes 66 to 72 of the high heat dissipation substrate 14 correspond to the other surface side of the screw holes 53, 54, 55, 56, 57, 60, 61 of the bus bar assembly 18, and The screw holes 89 to 93 of the heat dissipation board 14 correspond to the other side of the bus bars 46 to 50 of the bus bar assembly 18. Each screw hole 73 to 80 of the control board 17 corresponds to one surface side of each screw hole 52, 53, 54, 55, 56, 57, 58, 61 of the bus bar assembly 18, and each dummy bus bar of the bus bar assembly 18. 62 enters each through-hole 81 of the control board 17.
In this state, the electrode terminals 36, 37, 38, 42, and 43 made of screws are inserted into the screw holes 89 to 93 from the other surface side of the high heat dissipation substrate 14 to penetrate the high heat dissipation substrate 14. Then, they are screwed into the bus bars 46 to 50 of the bus bar assembly 18 respectively. By this screwing, the electrode terminals 36, 37, 38, 42, 43 are electrically connected to the circuit board of the high heat dissipation board 14 and the bus bars 46-50.
Further, screws 87 and 88 are inserted into the screw holes 73 and 79 from one surface side of the control board 17, and are screwed into the screw holes 52 and 58 of the bus bar assembly 18 through the control board 17. Further, each dummy bus bar 62 is soldered to the control board 17 in each through hole 81 of the control board 17, and the dummy bus bar 62 is fixed from the bus bar assembly 18 to the control board 17. The connector 39 of the high heat dissipation board 14 is connected to the connection portion 41 of the control board 17 and both are soldered.
By such screwing and soldering, the high heat dissipation board 14, the bus bar assembly 18, and the control board 17 are integrated. At this time, since the wall portion 51 is formed in the peripheral portion of the bus bar assembly 18, between the high heat dissipation substrate 14 and the bus bar assembly 18 inside the wall portion 51 and between the control substrate 17 and the bus bar assembly 18. There is a space. In this space, the power switching element 13 and other circuit components disposed on the one surface side of the high heat dissipation substrate 14 and the circuit components disposed on the other surface side of the control substrate 17 are located. In addition, the plurality of metal dummy bus bars 62 are soldered to the control board 17, so that the distance between the control board 17 and the bus bar assembly 18 is well maintained.
Next, with the smoothing capacitor 19 on the high heat dissipation substrate 14 side, the terminal plate 44 of the filter mold assembly 21 is directed to one side of the bus bars 49, 50 of the bus bar assembly 18, and screws 94, 96 are inserted to insert the bus bar. The filter mold assembly 21 is screwed to the bus bar assembly 18 by being screwed to 49 and 50. In this state, the terminal plate 44 is electrically connected to the electrode terminals 42 and 43 through the bus bars 49 and 50, respectively. As a result, the inverter circuit unit 3 including the high heat dissipation substrate 14, the control substrate 17, the bus bar assembly 18, and the filter mold assembly 21 (smoothing capacitor 19) is integrated (sub-assembled) as shown in FIG.
(7) Assembly procedure of inverter circuit unit 3 The inverter circuit unit 3 integrated in this way is accommodated in the inverter accommodating part 8 of the motor housing 4 with the high heat dissipation substrate 14 as the partition wall 12 side. At this time, a sheet or grease for heat conduction is provided on the other surface of the high heat dissipation substrate 14 at a position corresponding to the power switching element 13, and each power switching element 13 is brought into close contact with the partition wall 12 through these to exchange heat. It is related. Further, the smoothing capacitor 19 is also brought into close contact with the partition wall 12 for heat exchange.
Next, the screw 97 is inserted into the screw holes 74, 53, 66, the screw 98 is inserted into the screw holes 75, 54, 67, the screw 99 is inserted into the screw holes 76, 55, 68, and the screw 100 is inserted into the screw holes. 77, 56 and 69, the screw 101 is inserted into the screw holes 78, 57 and 70, the screw 102 is inserted into the screw hole 59 and the screw hole 107 of the filter mold assembly 21, and the screw 103 is inserted into the screw holes 60 and 71. The screws 104 are inserted into the screw holes 80, 61, 72, and the screws 97 to 104 are screwed into the motor housing 4. Further, the screw circuit 108 is inserted into another screw hole 107 formed in the filter mold assembly 21 and screwed into the motor housing 4 to attach the inverter circuit unit 3 to the motor housing 4 (housing 2).
Thereafter, the terminal plate 26 is attached between the lead terminals 22, 23, 24 and the bus bars 46, 47, 48 by screwing, and is conducted. Further, the terminal plate 29 of the filter mold assembly 21 is attached to the conducting member 31 with the screw 110 to conduct (FIGS. 4 and 2). Finally, the lid member 11 is attached to the opening 9 of the inverter accommodating portion 8 with a plurality of screws 109, and the opening 9 of the inverter accommodating portion 8 is closed so as to be opened and closed (FIG. 1).
As described above in detail, according to the present invention, the high heat dissipation substrate 14 on which the power switching element 13 is mounted and the resin-molded power connection element 13 of the high heat dissipation substrate 14 and the smoothing capacitor 19 of the filter mold assembly 21 are connected. The bus bar assembly 18 and the control board 17 on which the control circuit 26 is mounted are integrated in a stacked state to constitute the inverter circuit unit 3, and the integrated inverter circuit unit 3 is connected to the motor of the housing 2. The power switching element 13 is accommodated in the inverter housing 8 configured in the housing 4 and attached to the motor housing 4 of the housing 2, and the power switching element 13 is arranged in a heat exchange relationship with the motor housing 4 of the housing 2 in that state. .
Thereby, in the state which accommodated the inverter circuit part 3 in the inside of the inverter accommodating part 8, the durability of the inverter circuit part 3 is improved compared with the past by closing the inverter accommodating part 8 with the cover member 11 so that opening and closing is possible. It can be improved significantly.
Moreover, since the integrated inverter circuit unit 3 can be reduced in size as compared with the conventional one, handling is also facilitated. Further, the power switching element 13 can be cooled by the partition wall 12 without any trouble, and a conventional base plate is not required, so that the number of parts can be reduced.
Further, in the embodiment, the inverter circuit unit 3 is integrated by screwing with the bus bar assembly 18 sandwiched between the high heat dissipation substrate 14 and the control substrate 17, so that the strength of the integrated inverter circuit unit 3 is improved. In addition, since the positioning pins 63 and 64 for the high heat dissipation board 14 and the control board 17 are provided on the bus bar assembly 18, the strength can be maintained while maintaining the assembly accuracy. .
In this case, in the embodiment, the inverter circuit unit 3 is integrated with the high heat dissipation board 14, the bus bar assembly 18, and the control board 17, and the high heat dissipation board 14 and the bus bar assembly 18, and the control board 17 and the bus bar assembly 18. Since the space is formed between the two, the mounting area of the circuit component is increased, and the mounting amount and workability can be improved.
Further, the bus bar assembly 18 is provided with a wall portion 51 projecting in the thickness direction at the peripheral portion so that a space is formed inside the wall portion 51, and the control board 17 and the bus bar assembly 18 are formed in the space. Since the dummy bus bar 62 is provided, the space formed inside can be maintained with high strength.
Further, a filter mold assembly 21 on which a smoothing capacitor 19 for absorbing a high-frequency component of the switching current is mounted is provided integrally with the inverter circuit unit 3, and the integrated inverter circuit unit 3 is accommodated in the inverter accommodation unit 8. Since the smoothing capacitor 19 is also arranged in a heat exchange relationship with the motor housing 4 of the housing 2 while being attached to the motor housing 4 of the housing 2, the handling performance of the inverter circuit unit 3 including the smoothing capacitor 19 is arranged. Thus, the durability can be improved and the smoothing capacitor 19 can be cooled without any trouble.
It should be noted that the shape and structure of the inverter circuit section 3 and the housing 2 shown in the embodiments are not limited thereto, and it goes without saying that various changes can be made without departing from the spirit of the present invention.
 1 インバータ一体型電動圧縮機
 2 ハウジング
 3 インバータ回路部
 4 モータハウジング
 6 圧縮機構ハウジング
 8 インバータ収容部
 9 開口
 11 蓋部材
 12 隔壁
 13 電力スイッチング素子
 14 高放熱基板
 16 制御回路
 17 制御基板
 18 バスバーアセンブリ
 19 平滑コンデンサ
 21 フィルタモールドアセンブリ
 22~24 引出端子
 46~50 バスバー
 51 壁部
 62 ダミーバスバー(間隔保持部)
 63、64 位置決めピン
 87、88 ネジ
DESCRIPTION OF SYMBOLS 1 Inverter integrated electric compressor 2 Housing 3 Inverter circuit part 4 Motor housing 6 Compression mechanism housing 8 Inverter accommodating part 9 Opening 11 Lid member 12 Partition 13 Power switching element 14 High heat dissipation board 16 Control circuit 17 Control board 18 Bus bar assembly 19 Smooth Capacitor 21 Filter mold assembly 22 to 24 Lead terminal 46 to 50 Bus bar 51 Wall portion 62 Dummy bus bar (interval holding portion)
63, 64 Locating pin 87, 88 Screw

Claims (6)

  1.  モータが内蔵されたハウジングと、前記モータに給電するインバータ回路部を備えたインバータ一体型電動圧縮機において、
     前記インバータ回路部は、電力スイッチング素子が実装された高放熱基板と、制御回路が実装された制御基板と、樹脂成形されたバスバーアセンブリを備え、これら高放熱基板、バスバーアセンブリ、及び、制御基板が積層された状態で一体化されており、
     当該一体化された前記インバータ回路部が、前記ハウジングに構成されたインバータ収容部に収容されて前記ハウジングに取り付けられると共に、その状態で前記電力スイッチング素子は、前記ハウジングと熱交換関係に配置されることを特徴とするインバータ一体型電動圧縮機。
    In an inverter-integrated electric compressor having a housing with a built-in motor and an inverter circuit unit for supplying power to the motor,
    The inverter circuit unit includes a high heat dissipation board on which a power switching element is mounted, a control board on which a control circuit is mounted, and a resin-molded bus bar assembly. The high heat dissipation board, the bus bar assembly, and the control board include It is integrated in a stacked state,
    The integrated inverter circuit portion is accommodated in the inverter accommodating portion configured in the housing and attached to the housing, and in this state, the power switching element is disposed in a heat exchange relationship with the housing. An inverter-integrated electric compressor characterized by that.
  2.  前記インバータ回路部は、前記高放熱基板と前記制御基板とで前記バスバーアセンブリを挟んだ状態で一体化されると共に、前記バスバーアセンブリは、前記高放熱基板及び制御基板との位置決めピンを備えたことを特徴とする請求項1に記載のインバータ一体型電動圧縮機。 The inverter circuit unit is integrated with the bus bar assembly sandwiched between the high heat dissipation board and the control board, and the bus bar assembly includes positioning pins for the high heat dissipation board and the control board. The inverter-integrated electric compressor according to claim 1.
  3.  前記インバータ回路部は、前記高放熱基板、バスバーアセンブリ、及び、制御基板が一体化された状態で、前記高放熱基板とバスバーアセンブリ、前記制御基板とバスバーアセンブリの間に空間が構成されることを特徴とする請求項2に記載のインバータ一体型電動圧縮機。 The inverter circuit unit includes a space between the high heat dissipation board and the bus bar assembly and the control board and the bus bar assembly in a state where the high heat dissipation board, the bus bar assembly, and the control board are integrated. The inverter-integrated electric compressor according to claim 2.
  4.  前記バスバーアセンブリは、周辺部において厚み方向に突出する壁部を備え、該壁部の内側に前記空間が構成されると共に、当該空間内において、前記制御基板とバスバーアセンブリとに渡る間隔保持部を有することを特徴とする請求項3に記載のインバータ一体型電動圧縮機。 The bus bar assembly includes a wall portion projecting in the thickness direction at a peripheral portion, and the space is formed inside the wall portion, and a space holding portion extending between the control board and the bus bar assembly is provided in the space. The inverter-integrated electric compressor according to claim 3.
  5.  前記インバータ回路部は、スイッチング電流の高周波成分を吸収するための平滑コンデンサを一体に備え、当該一体化された前記インバータ回路部が、前記インバータ収容部に収容され、前記ハウジングに取り付けられた状態で、前記平滑コンデンサも前記ハウジングと熱交換関係に配置されることを特徴とする請求項1乃至請求項4のうちの何れかに記載のインバータ一体型電動圧縮機。 The inverter circuit unit is integrally provided with a smoothing capacitor for absorbing a high-frequency component of a switching current, and the integrated inverter circuit unit is housed in the inverter housing unit and attached to the housing. The inverter-integrated electric compressor according to any one of claims 1 to 4, wherein the smoothing capacitor is also disposed in a heat exchange relationship with the housing.
  6.  前記インバータ収容部は、内部に前記インバータ回路部が収容された状態で、蓋部材により開閉可能に閉塞されることを特徴とする請求項1乃至請求項5のうちの何れかに記載のインバータ一体型電動圧縮機。 6. The inverter according to claim 1, wherein the inverter housing portion is closed by a lid member in a state where the inverter circuit portion is housed therein. Body type electric compressor.
PCT/JP2017/008635 2016-03-24 2017-02-24 Inverter-integrated electric compressor WO2017163828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-060632 2016-03-24
JP2016060632A JP2017172509A (en) 2016-03-24 2016-03-24 Inverter integrated type electric compressor

Publications (1)

Publication Number Publication Date
WO2017163828A1 true WO2017163828A1 (en) 2017-09-28

Family

ID=59901177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008635 WO2017163828A1 (en) 2016-03-24 2017-02-24 Inverter-integrated electric compressor

Country Status (2)

Country Link
JP (1) JP2017172509A (en)
WO (1) WO2017163828A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417280A (en) * 2018-04-30 2019-11-05 翰昂汽车零部件有限公司 The electronic module and its installation method of inverter
IT201800020599A1 (en) * 2018-12-20 2020-06-20 Eldor Corp Spa CONNECTION ELEMENT FOR AN INVERTER AND INVERTER INCLUDING SAID CONNECTION ELEMENT
EP4050787A1 (en) * 2021-02-25 2022-08-31 Fuji Electric Co., Ltd. Power converter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910315B2 (en) * 2018-02-23 2021-07-28 サンデン・オートモーティブコンポーネント株式会社 Electric compressor
JP2019143603A (en) * 2018-02-23 2019-08-29 サンデン・オートモーティブコンポーネント株式会社 Electric compressor
JP2019143605A (en) * 2018-02-23 2019-08-29 サンデン・オートモーティブコンポーネント株式会社 Motor compressor
JP2019143606A (en) * 2018-02-23 2019-08-29 サンデン・オートモーティブコンポーネント株式会社 Motor compressor
JP6976882B2 (en) * 2018-02-23 2021-12-08 サンデン・オートモーティブコンポーネント株式会社 Electric compressor
JP6936168B2 (en) * 2018-02-23 2021-09-15 サンデン・オートモーティブコンポーネント株式会社 Electric compressor
JP6976881B2 (en) * 2018-02-23 2021-12-08 サンデン・オートモーティブコンポーネント株式会社 Electric compressor
JP7095610B2 (en) * 2019-01-30 2022-07-05 株式会社豊田自動織機 Electric compressor
US11533012B2 (en) 2019-10-07 2022-12-20 Toyota Motor Engineering & Manufacturing North America, Inc. High-density integrated power control assemblies having shared cooling system with a motor
JP2022051274A (en) 2020-09-18 2022-03-31 サンデン・オートモーティブコンポーネント株式会社 Motor-driven compressor
JP2023172130A (en) * 2022-05-23 2023-12-06 サンデン株式会社 Composite device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190525A (en) * 2002-12-09 2004-07-08 Denso Corp Vehicular motor-driven compressor
JP2008215089A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Integrated-inverter electric compressor
JP2014114725A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Invertor integrated electric compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190525A (en) * 2002-12-09 2004-07-08 Denso Corp Vehicular motor-driven compressor
JP2008215089A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Integrated-inverter electric compressor
JP2014114725A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Invertor integrated electric compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417280A (en) * 2018-04-30 2019-11-05 翰昂汽车零部件有限公司 The electronic module and its installation method of inverter
CN110417280B (en) * 2018-04-30 2021-08-24 翰昂汽车零部件有限公司 Electronic module of inverter and mounting method thereof
IT201800020599A1 (en) * 2018-12-20 2020-06-20 Eldor Corp Spa CONNECTION ELEMENT FOR AN INVERTER AND INVERTER INCLUDING SAID CONNECTION ELEMENT
WO2020128884A1 (en) * 2018-12-20 2020-06-25 Eldor Corporation S.P.A. Connecting member for an inverter and inverter including said connecting member
EP4050787A1 (en) * 2021-02-25 2022-08-31 Fuji Electric Co., Ltd. Power converter

Also Published As

Publication number Publication date
JP2017172509A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017163828A1 (en) Inverter-integrated electric compressor
JP4764365B2 (en) Inverter-integrated electric compressor
JP5861614B2 (en) High voltage electric device and electric compressor
JP5753829B2 (en) Power converter
US8097992B2 (en) Electric compressor
CN109121457B (en) Electronic circuit device and inverter-integrated electric compressor including the same
JP5529477B2 (en) Inverter-integrated electric compressor
WO2019163411A1 (en) Electric compressor
CN109072894B (en) Inverter-integrated electric compressor
WO2019163406A1 (en) Electric compressor
WO2018051718A1 (en) Inverter-integrated electric compressor and method for manufacturing same
JP7095610B2 (en) Electric compressor
WO2017221854A1 (en) Electrical component mounting structure and inverter-integrated electric compressor including the same
JP6814607B2 (en) Electric compressor
JP2019143604A (en) Motor compressor
JP2019143606A (en) Motor compressor
JP6406562B2 (en) Power storage unit
JP2013062972A (en) Inverter compressor driving device
WO2019163407A1 (en) Electric compressor
JP2014196673A (en) Compressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769873

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769873

Country of ref document: EP

Kind code of ref document: A1